[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3155814B2 - Flow measurement control system - Google Patents

Flow measurement control system

Info

Publication number
JP3155814B2
JP3155814B2 JP10441792A JP10441792A JP3155814B2 JP 3155814 B2 JP3155814 B2 JP 3155814B2 JP 10441792 A JP10441792 A JP 10441792A JP 10441792 A JP10441792 A JP 10441792A JP 3155814 B2 JP3155814 B2 JP 3155814B2
Authority
JP
Japan
Prior art keywords
flow
calibration
suspicious
flow rate
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10441792A
Other languages
Japanese (ja)
Other versions
JPH05296815A (en
Inventor
一郎 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10441792A priority Critical patent/JP3155814B2/en
Publication of JPH05296815A publication Critical patent/JPH05296815A/en
Application granted granted Critical
Publication of JP3155814B2 publication Critical patent/JP3155814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、流路の構成材質,形態
等の構成条件や流路の沈殿物,錆等の外的条件によって
変化する偏流、旋流等に起因する誤差を校正する機能を
有する流量計測制御システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention calibrates errors caused by drifts, vortices, etc., which vary depending on the constituent conditions such as the material and form of the flow path and external conditions such as sediment and rust in the flow path. The present invention relates to a flow measurement control system having a function.

【0002】[0002]

【従来の技術】従来から、管路,開路等の流路の流量を
測定するために種々の流量計が使用されているが、これ
ら流量計の測定精度は全て流量計製造メーカのカタロ
グ,取扱い説明書に記載される表示値に依存しており、
製造メーカと使用者との信頼関係の上に成り立ってい
る。
2. Description of the Related Art Conventionally, various flow meters have been used to measure the flow rate of a flow path such as a pipe line and an open circuit. It depends on the display value described in the manual,
It is based on the relationship of trust between the manufacturer and the user.

【0003】しかし、実際のプラントに流量計を取り付
けた場合、その流路の壁の表面状態,沈殿物,曲り,流
路内の挿入物等の状況により、メーカカタログの許容精
度以外に数%〜数10%の誤差を伴うことが多い。従っ
て、実プラントに流量計を取り付けた状態で正確な校正
を行わなければ、高精度な測定が望めないことが多い。
そこで、ここでは誤差の発生状況について説明し、本発
明システムの開発の重要性を訴えることとする。
However, when a flow meter is attached to an actual plant, the flow rate may be several percent depending on the surface condition of the flow path wall, sediment, bending, inserts in the flow path, etc., in addition to the allowable accuracy of the manufacturer's catalog. It often involves an error of ~ 10%. Therefore, unless accurate calibration is performed with a flow meter attached to an actual plant, highly accurate measurement cannot be expected in many cases.
Therefore, the state of occurrence of errors will be described here, and the importance of developing the system of the present invention will be emphasized.

【0004】すなわち、その昔、水道分野では、専らベ
ンチューリー(差圧)式流量計が使われていたが、昭和
40(1965)年頃から電磁流量計が全国的に採用さ
れることになり、その後も発展の一途を辿ってきてい
る。そして、昭和50(1975)年頃から超音波流量
計が広く使用され、また、プローブ状の流量計を配管内
部に挿入し、配管内の代表点の流速を測定し流量を算出
する流量計も出現するに至っている。
That is, in the past, in the field of water supply, a venturi (differential pressure) type flow meter was exclusively used, but from around 1965, electromagnetic flow meters were adopted nationwide. Since then, it has continued to evolve. Ultrasonic flowmeters have been widely used since around 1975, and flowmeters that calculate the flow rate by inserting a probe-shaped flowmeter into the pipe and measuring the flow velocity at a representative point in the pipe have also appeared. It has led to.

【0005】ところで、現在,使用者側に立ってカタロ
グを見ると、流量計の測定方式を問わず、その測定精度
は±1%内外と記載されており、この限りでは精度上の
優劣は全く分からない。
By the way, at present, when the user stands and views the catalog, the measurement accuracy is described as ± 1% regardless of the measurement method of the flow meter. I do not understand.

【0006】しかし、実際のプラントに流量計を取り付
けた瞬間から、配管内面や配管の状態,旋流の有無,流
量計の方式等により、その流量計には±10%〜±30
%程度の誤差が発生する場合があり、工場での試験成績
書に示されている±0.5%内外の数値とは似ても似つ
かない大きな誤差となる。
However, from the moment the flow meter is attached to the actual plant, the flow meter may have a flow rate of ± 10% to ± 30% depending on the condition of the inner surface of the pipe and the pipe, the presence or absence of swirling, the flow meter method, and the like.
In some cases, an error of about% occurs, which is a large error that does not resemble the numerical value within ± 0.5% shown in the test report at the factory.

【0007】流量を正確に測定するには、流量計の測定
方式に拘らず、流量計の上流側に10D(Dは管の呼び
径),下流側に5D以上の直管部を設ければよいと言わ
れているが、ここで論じている管は例えばステンレス引
抜鋼管のように内面が真円で平滑な長期間表面状態の変
らない管を考えている。一般の非引抜鋼管や鋳鉄管の場
合には、内面のモルタルライニング,塗装,メッキ等の
状況により管内壁表面付近の流れは大きく異なる。この
ことは、新管を用いた場合でも、上流側に錆源があった
り、取水管の如く付着性の物質を含んだ水の管内面の付
着により、管内面の状態が変化する。ましてや、古い管
では、内面の錆,付着物,沈殿物等の状況等で流れのパ
ターン(含偏流)が著しく変化する。このようなことか
ら、水道に適用する流量計は、カタログの精度比較のみ
から選定することはできない。
In order to accurately measure the flow rate, a straight pipe section of 10D (D is the nominal diameter of the pipe) upstream and 5D or more downstream is provided regardless of the measurement method of the flowmeter. Although it is said to be good, the tubes discussed here are considered to be tubes whose inner surface is round and smooth and the surface state of which does not change for a long period of time, such as a drawn stainless steel tube. In the case of a general non-drawing steel pipe or cast iron pipe, the flow near the inner wall surface of the pipe differs greatly depending on the condition of mortar lining, coating, plating and the like on the inner surface. This means that even when a new pipe is used, the state of the pipe inner surface changes due to the presence of a rust source on the upstream side or the adhesion of water pipe containing an adhesive substance such as an intake pipe. Furthermore, in the case of an old pipe, the flow pattern (including the non-uniform flow) changes significantly due to the conditions such as rust, deposits, and sediments on the inner surface. For this reason, the flow meter applied to the water supply cannot be selected only from the accuracy comparison of the catalog.

【0008】水道向に適する流量計は、管内壁の状態,
管の曲り,弁,旋流等の影響を受けにくい流量計である
ことが望ましい条件と言える。このような条件に強い流
量計としては上下流側の必要直管部が短くても精度の出
るものが適すると言える。具体的には、小流量用として
は容積式、小〜超大流量用としては関数磁界分布形電磁
流量計が適している。
[0008] The flow meter suitable for the water supply, the state of the pipe inner wall,
It can be said that a desirable condition is a flow meter that is not easily affected by pipe bending, valves, swirling, and the like. It can be said that a flowmeter that is highly resistant to such conditions and has high accuracy even if the required straight pipe sections on the upstream and downstream sides are short is suitable. Specifically, a positive displacement type is suitable for a small flow rate, and a functional magnetic field distribution type electromagnetic flow meter is suitable for a small to very large flow rate.

【0009】次に、偏流に強い流量計の重要性について
公的な資料を用いて偏流の発生状況を説明する。偏流の
発生状況については、「管内にピトー管(Pitot Tube)
やカレントメータ(Current Meter )を挿入して計測す
る流速分布計測」、「透明管と懸濁流体とを用いたレー
ザドップラ流速計(Laser Doppler Current Meter )に
よる流速分布計測」、「管の外周にそって数点の流速を
測定する超音波流量計を用いた測定」等を行うことによ
り知ることができる。
Next, the state of occurrence of drift will be described with reference to public data regarding the importance of a flowmeter resistant to drift. For details on the occurrence of drift, see "Pitot Tube
And current flow meter by inserting a current meter), "Flow rate distribution measurement by laser Doppler current meter using transparent tube and suspension fluid", " Then, measurement using an ultrasonic flowmeter that measures the flow velocity at several points ”and the like are performed.

【0010】(1) 長い直管部を有する新管内の流速
分布 発電専門委員会資料によれば、全国64個所の発電所で
過去に水圧鉄管(新管)内の流量および流速の測定結果
に基づいて図9に示すような管内の偏流状況が掲載され
ている。但し、同図は上流等断面直管部の長さと鉄管径
比(L/D)−流量補正係数との関係を示す。但し、こ
の測定法にはカーレントメータ法,ピトー管法が用いら
れ、被測定管の呼び径は500mm以上,平均流速は1.
5m /sec 以上とし、さらに管全体の80%はL(直管
長)/D(呼び径)=10〜40となっている。なお、
流量補正係数Kとしては、 K=(直径上の平均流速から算出した管内平均流速)/
(断面の平均流速から算出した管内平均流速) によって表される。
(1) Velocity distribution in a new pipe with a long straight pipe section According to the data of the Technical Committee on Power Generation, the flow rate and flow velocity in a penstock (new pipe) have been measured in 64 power stations nationwide in the past. FIG. 9 shows the drift state in the pipe as shown in FIG. However, this figure shows the relationship between the length of the straight pipe section of the upstream equal cross section and the iron pipe diameter ratio (L / D) -flow rate correction coefficient. However, the Karentometer method and the Pitot tube method are used for this measuring method, the nominal diameter of the tube to be measured is 500 mm or more, and the average flow velocity is 1.
5 m / sec or more, and 80% of the entire pipe is L (straight pipe length) / D (nominal diameter) = 10 to 40. In addition,
As the flow rate correction coefficient K, K = (the average flow velocity in the pipe calculated from the average flow velocity on the diameter) /
(Average flow velocity in the pipe calculated from the average flow velocity in the cross section).

【0011】この図9のデータから明らかなことは、新
管で、かつ、10〜40D程度の直管部がとれる理想的
な管の管内流速分布(流量補正係数K)であっても大き
くばらついており、8%程度の偏流があることが分か
る。仮に、偏流がなければ、K=1.00になるはずで
ある。
What is clear from the data in FIG. 9 is that even if the flow velocity distribution (flow rate correction coefficient K) in a pipe is an ideal pipe which can take a straight pipe section of about 10 to 40 D, the flow rate distribution coefficient K is large. It can be seen that there is a drift of about 8%. If there was no drift, K would be 1.00.

【0012】(2) 鋳鉄製水道管内の流速分布 敷設後約10年を経過した呼び径300mmと250mmの
鋳鉄管についてピトー管法を用いてその管内の流速分布
(直管部上下流共約10D)を測定した。但し、このと
きの流速は1.8m /sec である。
(2) Velocity distribution in a cast iron water pipe About 10 years after laying, for a cast iron pipe with a nominal diameter of 300 mm and 250 mm, the flow velocity distribution in the pipe using the Pitot pipe method (both straight pipe parts upstream and downstream is about 10D). ) Was measured. However, the flow velocity at this time is 1.8 m / sec.

【0013】この測定結果から何れも管壁近くの流速が
平均流速よりも30%程度遅い部分が目立った。本流速
は乱流域でありながら,一見,層流状のフローパターン
が観測された。しかし、一般に水道管の流速は対称流に
はならない。なぜならば、水道管内の錆は一様でないた
めである。通常、水道管内上壁部は遊離気体が流れるた
めに錆やすく、底部には沈殿物ができやすい。流れの尖
頭は測定管内面の表面状態によって様々な流線を描き、
また管の種類によってもフローパターンがそれぞれ異な
り、管の曲りや合流管部では単純な偏流の他に、旋流が
発生することがあり、流量計の方式によっては精度に大
きな影響が発生する場合がある。
From this measurement result, a portion where the flow velocity near the pipe wall was lower by about 30% than the average flow velocity was conspicuous. At first glance, a laminar flow pattern was observed at first glance, although the flow velocity was in a turbulent region. However, in general, the flow velocity of the water pipe is not symmetrical. This is because the rust in the water pipe is not uniform. Normally, the upper wall portion of the water pipe is easily rusted due to the flow of free gas, and sediment is easily formed at the bottom portion. The peak of the flow draws various stream lines depending on the surface condition of the inner surface of the measurement tube,
In addition, the flow pattern differs depending on the type of pipe, and in addition to the simple deviation, the swirl may occur at the pipe bending or merging pipe section, and depending on the type of flow meter, the accuracy may be greatly affected. There is.

【0014】この旋流についてはヘッダ(Header)管を
用いた例で説明する。このヘッダ管は、水道プラントの
主要ポンプ設備の一部をなし、各ポンプから配管を通っ
て水が直角に合流する部分の管である。つまり、この旋
流の原理は、図10に示すごとくポンプPn からの水が
噴水のように対称的な流れでヘッダ管の円筒壁に衝突
し、ここで何らかの原因で対称的な流れのバランスが崩
れると、その瞬間から図示するごとく旋回を始める。そ
して、一旦旋回を始めると、その後徐々に減衰するもの
の、旋回を妨げるものがない限り下流100mにも及ぶ
場合がある。一方、水中の溶解空気は旋流により遊離
し、最初から混入していた気泡と一緒になって旋流によ
る遠心力で流体軸上に一直線に集まってくる。この気泡
を中心軸上気泡という。
This swirl will be described by way of an example using a header tube. This header pipe is a part of the main pump equipment of the water supply plant, and is a pipe at a portion where water merges at right angles through pipes from each pump. In other words, the principle of this swirling is that the water from the pump Pn collides with the cylindrical wall of the header pipe in a symmetrical flow like a fountain, as shown in FIG. When it collapses, it starts turning from the moment as shown. Then, once the turn is started, it gradually attenuates thereafter, but may extend as far as 100 m downstream unless there is an obstacle to the turn. On the other hand, the dissolved air in the water is released by swirling, and together with air bubbles mixed from the beginning, gathers in a straight line on the fluid axis due to the centrifugal force caused by the swirling. These bubbles are referred to as bubbles on the central axis.

【0015】ところで、かかる旋流には図10に示すご
とく節の様な縞があり、節と節との間隔Lは流速が変化
すれば変化する。L0 もLと同様に変化する。ポンプ設
備では、ヘッダ管を用いた「ポンプ台数制御」、「配水
圧力一定制御/流量によるポンプ台数制御」等が行われ
ており、運転中にはL,L0 は絶えず変化する。
By the way, as shown in FIG. 10, such a swirl has a knot-like stripe, and the interval L between knots changes when the flow velocity changes. L 0 also changes similarly to L. The pump equipment, "pump units control" using the header tubes, and the like "pump quantity control by distribution constant pressure control / flow" takes place, during operation L, L 0 is constantly changing.

【0016】また、超音波流量計を用いたヘッダ管内の
流量計測では、超音波の伝播異常と著しい誤差の発生を
みた。この原因を究明した結果、ヘッダ管内に偏流が発
生し、かつ、中心軸上気泡が発生して揺らいでいること
を分かった。しかも、この偏流によって超音波流量計の
出力に奇妙な現象が発生した。すなわち、「ポンプ台数
制御」のポンプ1台稼働の場合よりポンプ2台を稼働し
た方が流量が少なくなるという珍現象である。これは、
図10から分かるように、ポンプ1台の稼働の時は超音
波流量計の超音波ビームが軸方向の流速が速い旋流の腹
の位置ABにあり、ポンプ2台稼働の場合には超音波ビ
ームの位置が軸方向の流速が遅い節の位置にあったため
であると実験し確認された。つまり、図10に示すよう
にポンプ1台のみを稼働して一定のヘッダ管内流速を流
しておき、超音波送受波素子をAB位置から流体軸方向
にそって超音波流量計の出力信号が小さくなる位置まで
移動したところ、軸方向の流速が遅い節の位置であるこ
とが確認された。
In the flow rate measurement in the header pipe using the ultrasonic flow meter, abnormal propagation of the ultrasonic wave and a remarkable error were observed. As a result of investigating the cause, it was found that the drift occurred in the header pipe and the bubble was generated on the central axis and fluctuated. In addition, a strange phenomenon occurred in the output of the ultrasonic flowmeter due to this drift. In other words, it is a rare phenomenon that the flow rate becomes smaller when two pumps are operated than when one pump is operated in the “number of pumps control”. this is,
As can be seen from FIG. 10, when one pump is operated, the ultrasonic beam of the ultrasonic flow meter is located at the position AB of the swirling antinode where the flow velocity in the axial direction is fast. Experiments confirmed that the beam was located at a node where the flow velocity in the axial direction was slow. That is, as shown in FIG. 10, only one pump is operated to flow a constant flow velocity in the header pipe, and the output signal of the ultrasonic flowmeter is reduced by moving the ultrasonic wave transmitting / receiving element from the AB position in the fluid axis direction. When it was moved to a certain position, it was confirmed that it was a position of a node where the flow velocity in the axial direction was slow.

【0017】一方、流速が速くなると、超音波流量計の
測定異常のランプが頻繁に点灯するようになる。これは
前述した中心軸上気泡の揺ぎにより、超音波が遮られる
ことによって発生すると推定される。
On the other hand, when the flow velocity is increased, the lamp of the measurement abnormality of the ultrasonic flowmeter is frequently turned on. This is presumed to be caused by the interruption of the ultrasonic wave due to the above-mentioned fluctuation of the bubble on the central axis.

【0018】ところで、水道プラントでは、何時の時代
でもそうであるように水を需要家に安定に供給すること
が必要不可欠であるが、このときプラントを動かす上で
基準となる流量の真の意味での高精度な流量計測は、緊
急に手を打たなければなにない重要な課題である。
By the way, in a water supply plant, it is indispensable to supply water stably to a customer as in any time, but at this time, the true meaning of the flow rate which is a reference for operating the plant is required. High-precision flow measurement is an important issue that must be dealt with urgently.

【0019】現在、水道を取り巻く環境システムは、情
報処理制御システムの急速な発展に伴い、「浄水場・ポ
ンプ場ごとの制御監視システム」から多様なニーズに合
わせつつ所轄する水道網全体にわたって水の需要家の要
望に対してリアルタイムに応える有機的で、かつ、人,
物,金,時間,情報等を扱う「水の統合制御システム」
へと移行する傾向にある。
At present, with the rapid development of information processing control systems, the environmental systems surrounding water supply have been changed from “control and monitoring systems for each water purification plant and pumping station” to waters throughout the water network under their control while meeting various needs. Organic and human, responding in real time to the demands of consumers,
"Integrated water control system" that handles things, money, time, information, etc.
There is a tendency to move to.

【0020】このような時代に入ってくると、水の収支
(総取水・総配水・総給水量等)を高精度に追及するこ
とになり、益々流量の高精度・高信頼性のシステムが要
求されるようになる。
In such an era, the balance of water (total water intake, total water distribution, total water supply, etc.) must be investigated with high precision. Will be required.

【0021】[0021]

【発明が解決しようとする課題】ところが、最近では、
ディジタル計装制御システムの発達に伴い、流路網を構
成する各流路の流量計測を総合的、かつ、有機的に取り
扱うようになってきたが、このときに送水流量合計と需
要家受水流量合計との収支が合わない現象がいろいろな
場所で発生している。これらの現象は流路の壁の表面状
態がいろいろ変化したり、荒れているプラントによく発
生している。代表例としては、管路系では上下水道や工
業用水等に多く、開路系では下水や農業用水等に多く発
生している。
However, recently,
With the development of digital instrumentation control systems, flow measurement of each flow path in the flow network has been handled comprehensively and organically. Phenomena in which the balance with the total flow rate does not match have occurred in various places. These phenomena often occur in plants where the surface condition of the walls of the flow path changes or is rough. As a typical example, a large amount occurs in water and sewage and industrial water in a pipeline system, and a large amount occurs in sewage and agricultural water in an open circuit system.

【0022】特に、ディジタル計装制御システムの発達
により、コンピュータ上で流路網のバルブ操作等による
流量計を経路の変更をしたり、関連流量計の収支を検討
したり、他の流量計との間で指示を比較したりすること
ができるようになってきた。
In particular, with the development of the digital instrumentation control system, the path of the flow meter is changed on the computer by operating the valve of the flow path network, the balance of the related flow meter is examined, and the flow meter is connected to another flow meter. And can compare instructions.

【0023】しかし、非常に重要、かつ、肝心な流量計
の測定精度については未だ何らの対策がたっておらず、
従来信頼されてきた流量計を,一応,不審流量計と称す
ることにし、かかる不審流量計の早急な信頼性を回復す
ることが望まれている。
However, no measure has been taken for the measurement accuracy of the flow meter which is very important and important.
A flow meter that has been trusted in the past is referred to as a suspicious flow meter for the time being, and it is desired to restore the reliability of the suspicious flow meter immediately.

【0024】本発明は上記実情に鑑みてなされたもの
で、流路の各所に設けた不審流量計について基準装置を
用いて容易に校正し、流路の状況が変化しても、不審流
量計の測定流量に基づいて正確な校正流量を得る流量計
測制御システムを提供することを目的とする。
The present invention has been made in view of the above circumstances, and suspicious flow meters provided at various points in a flow path are easily calibrated using a reference device, and even if the flow path conditions change, the suspicious flow meter can be used. It is an object of the present invention to provide a flow rate measurement control system that obtains an accurate calibration flow rate based on the measured flow rate.

【0025】また、本発明の他の目的は、基準装置を用
いて不審流量計の低流速時または高流速時の数点の流速
から校正を行うとともに、内・外挿を有効に利用しつ
つ、不審流量計の測定流量に基づいて正確な校正流量を
得ることにあり、かつ、内・外挿に不向き不審流量計で
あっても校正用の検量線を作成することにある。
Another object of the present invention is to calibrate the suspicious flow meter from several points at low flow rate or high flow rate using a reference device, and to make effective use of interpolation and extrapolation. Another object of the present invention is to obtain an accurate calibration flow rate based on the flow rate measured by the suspicious flow meter, and to create a calibration curve for calibration even if the suspicious flow meter is not suitable for internal and extrapolation.

【0026】[0026]

【課題を解決するための手段】請求項1に対応する発明
は上記課題を解決するために、主流路の各個所に設けら
れ、測定流量の校正機能をもった流量測定校正装置と、
これらの流量測定校正装置を統括制御する流路統括制御
装置とを備え、前記各流量測定校正装置は、前記主流路
に流れる流体の流量を測定する不審流量計と、前記主流
路に形成されるバイパス流路に取付けられ、低流量範囲
の流量を測定する基準流量測定用基準装置と、前記流路
統括制御装置からの制御指示に基づき、前記バイパス流
路の間の前記主流路を閉に設定し、前記基準装置の出力
と前記不審流量計の出力とを比較しながら校正用検量線
を作成するとともに、前記基準装置の測定流量を基準と
して前記不審流量計の挙動を評価し前記校正用検量線を
修正し、また非校正または校正済みの測定流量を前記流
路統括制御装置に送信するデータ処理制御部とを設け、
前記流路統括制御装置は、所要の校正環境のもとに各流
量測定校正装置に対して前記制御指示を送出し、また前
記データ処理制御部に代わって前記校正用検量線を作成
する手段を設けた流量計測制御システムである。
In order to solve the above-mentioned problems, the invention corresponding to claim 1 is provided at each position of the main flow path.
A flow measurement and calibration device with a calibration function for the measured flow rate,
General control of flow path to control these flow measurement and calibration devices
Device, wherein each of the flow measurement and calibration devices is provided with the main flow path.
A suspicious flow meter for measuring the flow rate of fluid flowing through the mainstream
Attached to the bypass flow path formed in the channel, low flow rate range
A reference device for measuring a reference flow rate for measuring the flow rate of the
Based on a control instruction from the general control unit, the bypass flow
Setting the main flow path between the paths closed and the output of the reference device
Calibration calibration curve while comparing the output of the suspicious flow meter with
And the measured flow rate of the reference device as a reference
To evaluate the behavior of the suspicious flow meter and calculate the calibration curve for calibration.
Corrected and uncalibrated or calibrated measured flow
A data processing control unit for transmitting to the road general control device,
The overall flow controller controls each flow under the required calibration environment.
Sends the control instruction to the mass measurement calibration device and
Create calibration calibration curve in place of data processing controller
It is a flow rate measurement control system provided with a means for performing the measurement .

【0027】次に、請求項2に対応する発明では、流路
の所要とする各個所に不審流量計を取り付けて流体の流
量を測定する流量計測制御システムにおいて、不審流量
計の上流側および下流側の何れか一方または両方に設け
た主流路側バルブと、このバルブの上流側と下流側との
間に掛け渡したバイパス流路に設けられた小口径の基準
流量測定用の基準装置と、前記主流路側バルブを閉じ、
前記基準装置の出力と前記不審流量計の出力とを比較し
ながら校正用検量線を作成し、前記不審流量計による流
量測定時の測定流量から当該校正用検量線を用いて校正
流量を得るデータ処理制御部とを備えた流量測定校正装
置を、前記不審流量計ごとに設けた構成である。
Next, according to a second aspect of the present invention, there is provided a flow rate measurement control system for measuring a flow rate of a fluid by attaching a suspicious flow meter to required portions of a flow path. A main flow path side valve provided on one or both of the sides, a reference device for measuring a small-diameter reference flow rate provided in a bypass flow path bridged between an upstream side and a downstream side of the valve; and Close the main flow path side valve,
A calibration calibration curve is created while comparing the output of the reference device and the output of the suspicious flow meter, and data for obtaining a calibration flow rate from the measured flow rate at the time of flow measurement by the suspicious flow meter using the calibration calibration curve. A flow measurement and calibration device including a processing control unit is provided for each of the suspicious flow meters.

【0028】次に、請求項3に対応する発明は、不審流
量計として偏流に強い電磁流量計を用い、この不審流量
計と基準装置とが直列になるように流路を切換え、不審
流量計の低流速域または高流速域の数点の流速時の不審
流量計出力と基準流量計出力とを比較して校正用検量線
の一部分を作成し、他の流速域では流速に応じて内挿ま
たは外挿により補填し、前記不審流量計の測定流量に応
じた校正流量を得るものである。
Next, an invention corresponding to claim 3 uses an electromagnetic flowmeter which is strong against drift as a suspicious flow meter, and switches the flow path so that the suspicious flow meter and the reference device are connected in series. A part of the calibration curve for calibration is created by comparing the suspicious flow meter output and the reference flow meter output at several flow speeds in the low or high flow speed range, and interpolating according to the flow speed in other flow speed ranges. Alternatively, the flow rate is compensated by extrapolation to obtain a calibration flow rate according to the flow rate measured by the suspicious flow meter.

【0029】一方、請求項4に対応する発明は、流路の
所要とする各個所に偏流対策を採っていない内・外挿に
不向きな不審流量計を取り付けて流体の流量を測定する
流量計測制御システムにおいて、不審流量計の上流側お
よび下流側の何れか一方または両方に設けた主流路側バ
ルブと、このバルブの上流側と下流側との間に掛け渡し
たバイパス流路に設けられた基準流量測定用の基準装置
およびバイパス流路側バルブと、このバイパス流路側バ
ルブを開、前記主流路側バルブを閉とし、前記基準装置
と前記不審流量計とを直列に接続し、前記不審流量計の
使用流速または使用流速前後の流速時に前記不審流量計
の出力と基準装置の出力とを比較しながら校正用検量線
を作成し、校正後、前記主流路側バルブを開、前記バイ
パス流路側バルブを閉とするデータ処理制御部とを備え
た流量測定校正装置を、前記不審流量計ごとに設けた構
成である。
On the other hand, a fourth aspect of the present invention is a flow rate measuring device for measuring a flow rate of a fluid by mounting a suspicious flow meter which does not take measures against drifting and which is not suitable for internal / external insertion at required portions of a flow path. In the control system, a main flow path valve provided on one or both of the upstream side and the downstream side of the suspicious flow meter, and a reference provided on a bypass flow path bridged between the upstream side and the downstream side of the valve. Reference device for flow rate measurement and bypass flow path side valve, open this bypass flow path side valve, close the main flow path side valve, connect the reference device and the suspicious flow meter in series, use the suspicious flow meter Create a calibration curve for calibration while comparing the output of the suspicious flow meter and the output of the reference device at the flow rate or the flow rate around the use flow rate, after calibration, open the main flow path side valve, the bypass flow path side valve The flow measurement calibration apparatus and a data processing control unit for closed, a structure in which for each of the suspicious flowmeter.

【0030】さらに、請求項5,6に対応する発明で
は、不審流量計の少くとも上流側の流路内に整流体を設
け、またデータ処理制御部または流路統括制御装置で
は、前記不審流量計および基準装置に方向性があると
き、校正時に適する流体方向のときに校正処理を行うも
のである。
Further, in the invention according to claims 5 and 6, a rectifier is provided at least in the flow path on the upstream side of the suspicious flow meter, and the suspicious flow meter is provided in the data processing control unit or the flow path overall control device. When the meter and the reference device have directionality, the calibration process is performed when the fluid direction is suitable for calibration.

【0031】[0031]

【作用】従って、請求項1に対応する発明は以上のよう
な手段を講じたことにより、流路統括制御装置は、各流
量測定校正装置の総合的な流体の流れに着目し、校正条
件にマッチしたとき、また基準装置,不審流量計の適切
な測定条件になったとき、或は校正環境作りを行った
後、制御指示を各流量測定校正装置に送信すると、これ
ら流量測定校正装置のデータ処理制御部は、バイパス流
路間の主流路を閉に設定し、前記基準装置の出力と前記
不審流量計の出力とを比較しながら校正用検量線を作成
する。また、データ処理制御部は、基準装置の測定流量
を基準として前記不審流量計の挙動を評価し前記校正用
検量線を修正し、また非校正または校正済みの測定流量
を前記流路統括制御装置に送信する。従って、流路の状
況が変化しても、不審流量計を用いて常に安定な状態で
正確に流量を測定できる。
Therefore, the invention corresponding to claim 1 takes the above-mentioned means, and the overall flow path control device can control each flow path.
Pay attention to the total fluid flow of the
When a match is found, and the reference device and suspicious flow meter are appropriate
When the measurement conditions are met, or create a calibration environment
Later, when a control instruction is sent to each flow measurement and calibration device,
The data processing control unit of the flow measurement and calibration device
The main flow path between the roads is set to closed, the output of the reference device and the
Create calibration calibration curve while comparing with suspicious flow meter output
I do. In addition, the data processing control unit calculates the measured flow rate of the reference device.
The behavior of the suspicious flow meter was evaluated based on
Correct calibration curve and uncalibrated or calibrated measurement flow rate
Is transmitted to the channel general control device. Therefore, even if the condition of the flow path changes, the flow rate can be accurately measured in a stable state using the suspicious flow meter at all times.

【0032】また、請求項2に対応する発明は、不審流
量計をもつ主流路に取り付けたバイパス流路に小口径の
基準装置を取り付け、この不審流量計出力と基準装置出
力との比較から校正用線量線を作成するので、主流路を
損なうことなくバイパス流路を利用して不審流量計を校
正することができる。
According to a second aspect of the present invention, a reference device having a small diameter is attached to a bypass passage attached to a main passage having a suspicious flow meter, and calibration is performed by comparing the output of the suspicious flow meter with the output of the reference device. Since the dose line is created, the suspicious flow meter can be calibrated using the bypass flow path without damaging the main flow path.

【0033】また、請求項3に対応する発明は、不審流
量計の低流速域または高流速域の数点の流速を利用して
不審流量計出力と基準装置の出力とを比較しながら校正
用線量線の一部分を作成するだけで、内挿または外挿に
より全流速域の流速に応じた校正流量を得ることができ
る。
Further, the invention according to claim 3 is a method for calibrating the suspicious flow meter while comparing the output of the suspicious flow meter with the output of the reference device using the flow velocity at several points in the low flow velocity region or the high flow velocity region. Only by creating a part of the dose line, a calibration flow rate corresponding to the flow velocity in the entire flow velocity range can be obtained by interpolation or extrapolation.

【0034】さらに、請求項4に対応する発明は、内挿
または外挿に不向きな不審流量計であっても、不審流量
計の使用流速または使用流速前後の流速時の一定流量制
御を行って校正用線量線を作成するので、全流速域の校
正用線量線を得ることができる。さらに、請求項5に対
応する発明では、流路の内壁に錆等が発生しても安定な
フローパターンが得られ、より正確な校正用線量線を得
ることができる。さらに、請求項6に対応する発明で
は、校正時に適する流体方向の時に校正を行うので、よ
り正確な校正用線量線を得ることができる。
Further, the invention according to claim 4 performs a constant flow rate control at a flow rate of the suspicious flow meter or at a flow rate around the use flow rate even if the suspicious flow meter is not suitable for interpolation or extrapolation. Since the dose line for calibration is created, the dose line for calibration in the entire flow velocity region can be obtained. Furthermore, in the invention corresponding to claim 5, even if rust or the like is generated on the inner wall of the flow path, a stable flow pattern can be obtained, and a more accurate dose line for calibration can be obtained. Further, in the invention corresponding to claim 6, since the calibration is performed in the fluid direction suitable for the calibration, a more accurate calibration dose line can be obtained.

【0035】[0035]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0036】図1は本発明に係わる流量計測制御システ
ムの一実施例を示す構成図である。本発明に係わる流量
計測制御システムは、流体供給源1から送られてくる流
体の流量を制御しながら流体を流路Aに供給する流量供
給源制御装置10と、この流路Aの要所要所に設置され
測定流量の校正機能をもった流量測定校正装置20と、
周期的または適宜な時期に流量測定校正装置20に校正
用線量線の作成指示を与え、或いは流量測定校正装置2
0から送られてくる測定流量に基づいて予め定めた所要
とするデータ処理を行い、さらに流量供給源制御装置1
0に必要な制御指示を与える流路統括制御装置30とに
よって構成されている。
FIG. 1 is a block diagram showing one embodiment of a flow rate measurement control system according to the present invention. A flow rate measurement control system according to the present invention includes a flow rate supply source control device 10 that supplies a fluid to a flow path A while controlling a flow rate of a fluid sent from a fluid supply source 1, and a necessary portion of the flow path A. A flow measurement and calibration device 20 installed in the
An instruction to create a dose line for calibration is given to the flow measurement / calibration device 20 periodically or at an appropriate time, or the flow measurement / calibration device 2
Based on the measured flow rate sent from 0, predetermined required data processing is performed, and the flow rate source control device 1
And a flow path overall control device 30 for giving a control instruction necessary for 0.

【0037】前記流体供給源1は、流体を一時的に貯留
して需要家の要望に応じて配水などを行うダム2aや例
えば水処理施設の貯水池2bなどを意味するが、必ずし
もダム2aや貯水池2bに限るものでなく、例えば冷暖
房施設の場合にはタンクなどを含み、要するに流体を一
時的に貯留する施設であればよい。3a,3bは弁、4
bはポンプである。
The fluid supply source 1 means a dam 2a for temporarily storing a fluid and distributing water according to a demand of a customer, or a reservoir 2b of a water treatment facility, for example, but not necessarily a dam 2a or a reservoir. The facility is not limited to 2b. For example, in the case of a cooling and heating facility, any facility that includes a tank or the like and temporarily stores fluid may be used. 3a and 3b are valves, 4
b is a pump.

【0038】前記流量供給源制御装置10は、流路A上
に精度の高い基準級流量計検出器11および制御バルブ
12が設けられ、流量計検出器11で検出された信号は
信号変換器13によって流体の流量に比例する所定の信
号に変換された後、流量コントローラ14およびデータ
処理制御部15に送られる。この基準級流量計検出器1
1は、関数磁界分布形電磁流量計を用いるのが望ましい
が、例えば上下流側に整流管の付いたベンチューリーや
超音波流量計等を用いてもよい。データ処理制御部15
は、メモリ、CPUおよびデータ伝送部などを有し、デ
ータ処理機能,とりわけ流路統括制御装置30からの指
示にしたがって比較校正テーブル(検量線)を作成した
り、需要家への供給流量の目標値を決定したりする。前
記流量コントローラ14はデータ処理制御部15からの
目標値と測定流量と偏差が零になるように制御バルブを
操作する。
The flow supply source control device 10 is provided with a high-precision reference-class flowmeter detector 11 and a control valve 12 on a flow path A, and a signal detected by the flowmeter detector 11 is converted into a signal converter 13. Is converted into a predetermined signal proportional to the flow rate of the fluid, and then sent to the flow rate controller 14 and the data processing control unit 15. This reference class flow meter detector 1
For 1, it is desirable to use a functional magnetic field distribution type electromagnetic flow meter, but for example, a venturi or an ultrasonic flow meter having a rectifier tube on the upstream and downstream sides may be used. Data processing control unit 15
Has a memory, a CPU, a data transmission unit, and the like, creates a comparison calibration table (calibration curve) in accordance with data processing functions, particularly, instructions from the flow path overall control device 30, and sets a target of a supply flow rate to a customer. Or determine a value. The flow controller 14 operates the control valve so that the deviation from the target value from the data processing control unit 15, the measured flow, and the deviation become zero.

【0039】前記流量測定校正装置20は、例えば図2
に示すように流路A上に従来一般に使用されている不審
流量計21が設けられ、この不審流量計21の上流側に
ストップバルブまたは制御バルブ22a,22b、下流
側に制御バルブ23が配置されている。この不審流量計
21の上流側および下流側の何れか一方または両方でも
よいが、例えば図示するように上流側のバルブ22a,
22bを挟むようにバイパス流路24が設けられてい
る。このバイパス流路24には基準流量校正装置または
基準流量校正システムとなる基準流量を測定する例えば
小口径の基準装置25aが取り付けられ、この基準装置
25aの上流側にストップバルブまたは制御バルブ26
a,26b、下流側に制御バルブ26cが設けられてい
る。25bは信号変換器である。
The flow rate measuring and calibrating device 20 is, for example, shown in FIG.
As shown in the figure, a suspicious flow meter 21 conventionally used generally is provided on a flow path A, and a stop valve or a control valve 22a, 22b is arranged upstream of the suspicious flow meter 21 and a control valve 23 is arranged downstream thereof. ing. Any one or both of the upstream and downstream sides of the suspicious flow meter 21 may be used.
A bypass flow path 24 is provided so as to sandwich 22b. A reference flow rate calibration device or a small-diameter reference device 25a for measuring a reference flow rate serving as a reference flow rate calibration system is attached to the bypass flow passage 24, and a stop valve or a control valve 26 is provided upstream of the reference device 25a.
a, 26b, and a control valve 26c is provided on the downstream side. 25b is a signal converter.

【0040】27はデータ処理制御部であって、ここで
はメモリ、CPUおよびデータ伝送部などを有し、流路
統括制御装置30からの指示にしたがってバルブの操作
や基準装置25aからの流量の取り込みおよび不審流量
計21から信号変換器28を介して測定流量を取り込
み、かつ、基準装置25aからの流量と不審流量計21
からの測定流量とを用いて比較校正テーブル,つまり校
正用検量線を作成し、さらに流路統括制御装置30に非
校正または校正ずみ測定流量データを伝送する機能をも
っている。29は信号変換器28のゲインを調整するゲ
イン調整器である。
Reference numeral 27 denotes a data processing control unit, which has a memory, a CPU, a data transmission unit, etc., and operates a valve according to an instruction from the flow path general control device 30 and takes in a flow rate from the reference device 25a. And the measured flow rate from the suspicious flow meter 21 via the signal converter 28, and the flow rate from the reference device 25a and the suspicious flow meter 21
It has a function to create a comparison calibration table, that is, a calibration curve for calibration, using the measured flow rate from the apparatus, and to transmit non-calibrated or calibrated measured flow rate data to the flow path overall control device 30. 29 is a gain adjuster for adjusting the gain of the signal converter 28.

【0041】従って、本発明システムは、以上のように
流路Aの要所要所に図2に示すような流量測定校正装置
20,…を組み込み、流路統括制御装置30にて各流量
測定校正装置20,…の総合的な流体の流れに着目し、
校正条件にマッチした環境となったとき、例えば基準装
置25a,不審流量計21の適切な測定条件に可能な流
速のとき、或いは流路統括制御装置30から校正環境作
りを行った後、校正を行うものである。
Accordingly, the system of the present invention incorporates the flow rate measuring and calibrating devices 20,... As shown in FIG. Focusing on the overall fluid flow of the devices 20,.
When the environment matches the calibration conditions, for example, when the flow rate is possible under the appropriate measurement conditions of the reference device 25a and the suspicious flow meter 21, or after the calibration environment is created from the flow path overall control device 30, the calibration is performed. Is what you do.

【0042】この校正処理はデータ処理制御部27また
は流路統括制御装置30の何れで行ってもよいが、何れ
にせよ、基準装置25aと不審流量計21との間の一点
流量比較だけでは十分な精度が得られないタイプの不審
流量計21を校正する場合には、流速の異なる数点の流
量について基準装置25aと不審流量計21との出力を
取り込み、図3に示すような検量線を作成して自身のテ
ーブルメモリに格納する。その結果、通常の流量測定
時、不審流量計21の測定流量Qy が得られたとき、校
正用検量線から基準装置25aの指示値であるQx を読
み取れば、正確な校正流量を得ることができる。
This calibration process may be performed by either the data processing control unit 27 or the flow path overall control device 30, but in any case, a single-point flow comparison between the reference device 25a and the suspicious flow meter 21 is sufficient. When calibrating the suspicious flow meter 21 of a type that cannot obtain a high accuracy, the outputs of the reference device 25a and the suspicious flow meter 21 are taken in at several flow rates having different flow rates, and a calibration curve as shown in FIG. Create and store in your own table memory. As a result, when the measured flow rate Qy of the suspicious flow meter 21 is obtained during the normal flow rate measurement, an accurate calibration flow rate can be obtained by reading the indicated value Qx of the reference device 25a from the calibration curve for calibration. .

【0043】従って、以上のようなシステムによれば、
流路各所の不審流量計21に直列に基準装置25aを接
続し、これら不審流量計21と基準装置25aとの各出
力を比較しながら校正用線量線を作成するが、その後も
データ処理制御部27または流路統括制御装置30にて
周期的または任意の時期に不審流量計21の挙動を再評
価して校正用線量線を修正するので、流路の状況が変化
しても、不審流量計21を用いて常に安定な状態で正確
に流量を測定できる。
Therefore, according to the above system,
A reference device 25a is connected in series to the suspicious flow meter 21 in each part of the flow path, and a calibration dose line is created while comparing each output of the suspicious flow meter 21 and the reference device 25a. Since the behavior of the suspicious flow meter 21 is re-evaluated periodically or at an arbitrary time by the flow control device 27 or the flow path control device 30 to correct the dose line for calibration, the flow rate of the suspicious flow meter is changed even if the flow path condition changes. 21 can be used to accurately measure the flow rate in a stable state.

【0044】また、不審流量計21をもつ主流路Aに取
り付けたバイパス流路24に小口径の基準装置25aを
取り付け、この不審流量計出力と基準装置出力との比較
から校正用線量線を作成するので、主流路Aを損なうこ
となくバイパス流路24を利用して不審流量計21を確
実に校正できる。次に、上水道の管路に図2に示す流量
測定校正装置20を設け、不審流量計21の校正を行う
例について説明する。 (1) 偏流に強い関数磁界形電磁流量計或いは偏流に
比較的強い均一磁界形電磁流量計を不審流量計として用
いた場合。
Further, a small-diameter reference device 25a is attached to the bypass flow passage 24 attached to the main flow passage A having the suspicious flow meter 21, and a dose line for calibration is created by comparing the output of the suspicious flow meter with the output of the reference device. Therefore, the suspicious flow meter 21 can be reliably calibrated using the bypass flow path 24 without damaging the main flow path A. Next, an example in which the flow rate measuring and calibrating device 20 shown in FIG. (1) When a functional magnetic field type flowmeter that is strong against drift or a uniform magnetic field type electromagnetic flowmeter that is relatively strong against drift is used as a suspicious flowmeter.

【0045】先ず、校正条件としては、不審流量計21
の指示が最大或いは通常の流速の数分の1になったとき
に行う。上水道の実プラントに不審流量計21を取り付
けた状態であるので、工場の校正プラントと異なり自在
に自由な流速に調整しながら設定できないことが多い。
一般には、下流の需要状態によって決まることが多く、
特に夜間などの小流量の需要時に校正を行うことが有効
である。なお、後方に貯水池を有する場合には校正の数
時間〜数日前から貯水池の水位を減らすチャンスを作る
運転を行い、水位が減ったときに工場の校正と同様に流
速を自由に可変するごとくしてもよい。
First, the calibration conditions are as follows.
Is performed when the flow rate reaches the maximum or a fraction of the normal flow rate. Since the suspicious flow meter 21 is attached to an actual water supply plant, unlike a factory calibration plant, it is often impossible to set the flow rate while freely adjusting the flow rate.
Generally, it is often determined by downstream demand conditions,
In particular, it is effective to perform calibration when a small flow rate is required, such as at night. If there is a reservoir in the rear, an operation to create a chance to reduce the water level of the reservoir from several hours to several days before calibration is performed, and when the water level decreases, the flow velocity can be changed freely as in factory calibration. You may.

【0046】しかして、以上のような校正条件の下で校
正を行う場合、流路統括制御装置30から周期的または
適宜な時期な1つ以上の流量測定校正装置20,…に校
正指示を行うと、当該流量測定校正装置20のデータ処
理制御部27では、例えばバルブ26a,26cを開に
する一方、バルブ22a,22b,26bを閉とするこ
とにより、基準装置25aと不審流量計21とを直列に
接続し、これら基準装置25aおよび流量計21の測定
流量を取り込んでメモリに記憶し、前述のように校正用
検量線を作成する。この場合、バルブ22aを確実に閉
じることが必要であるが、他のバルブ22b,26bは
必ずしも閉じる必要がない。
When the calibration is performed under the above-described calibration conditions, a calibration instruction is issued from the channel general control device 30 to one or more flow rate measurement calibration devices 20, periodically or at an appropriate time. In the data processing control unit 27 of the flow measurement and calibration device 20, the reference device 25a and the suspicious flow meter 21 are connected by, for example, opening the valves 26a and 26c and closing the valves 22a, 22b and 26b. They are connected in series, and the measured flow rates of the reference device 25a and the flow meter 21 are fetched and stored in a memory, and a calibration curve for calibration is created as described above. In this case, it is necessary to close the valve 22a securely, but it is not necessary to close the other valves 22b and 26b.

【0047】一方、一時的に流体の流れが止められる流
路Aの場合には、例えばバルブ22a22b,26aを
閉、バルブ26b,26cを開とし、バルブ22aから
流体が漏れているか否かを基準装置25aの出力から確
認し、漏れていない場合にはバルブ26aを開、バルブ
26bを閉にし、前述と同様な手順により校正処理を行
う。バルブ22aの漏れが検出された場合にはバルブ2
2a,22b等の開閉を繰り返し、この時点で漏れが止
まったら校正処理を行う。依然として漏れが止まらない
場合には警報を出力するか、表示装置の表示画面にガイ
ダンスを行うことによりオペレータに修理すべきことを
知らせる。
On the other hand, in the case of the flow path A where the flow of the fluid is temporarily stopped, for example, the valves 22a 22b and 26a are closed, the valves 26b and 26c are opened, and it is determined whether or not the fluid is leaking from the valve 22a. After checking from the output of the device 25a, if there is no leakage, the valve 26a is opened and the valve 26b is closed, and the calibration process is performed in the same procedure as described above. If leakage of the valve 22a is detected, the valve 2
Opening and closing of 2a, 22b, etc. is repeated, and when the leakage stops at this point, a calibration process is performed. If the leak still does not stop, an alarm is output or guidance is provided on the display screen of the display device to inform the operator that repair is required.

【0048】次に、数点の比較校正結果の校正値を流速
に応じて内・外挿する校正例について述べる。なお、内
挿とは高流速時に得られた校正値から低流速の検量線を
得ることであり、逆に外挿とは低流速時に得られた校正
値から高流速の検量線を得ることである。以下、外挿の
例について述べる。この外挿の場合には低流速の一点と
して漏れのない流速0の時を有効に利用できるので、ま
ず、漏れのない流速0の状態を確認する必要がある。
Next, a calibration example in which the calibration values of several comparison calibration results are interpolated and extrapolated according to the flow velocity will be described. In addition, interpolation means obtaining a calibration curve of low flow velocity from calibration values obtained at high flow velocity, and conversely, extrapolation means obtaining calibration curve of high flow velocity from calibration values obtained at low flow velocity is there. Hereinafter, an example of extrapolation will be described. In the case of this extrapolation, it is necessary to confirm the state of the zero flow velocity without leakage since the point of the zero flow velocity can be effectively used as one point of the low flow velocity.

【0049】なお、バルブ22a,22bの別の漏れ検
出手段としては、図4に示すようにバルブ26bの出力
管路端面に一端固定の板スプリング41の先端面を接近
するように配置するとともに、この板スプリング41の
反対面側にマイクロスイッチ42を設け、バルブ22
a,22bを閉、バルブ26bを開とし、流体の漏れに
よる板スプリング41の変形によってマイクロスイッチ
42が動作したとき漏れ有りと判断し、マイクロスイッ
チ42が動作しないとき校正処理を行うものである。
As another means for detecting leakage of the valves 22a and 22b, as shown in FIG. 4, an end face of a leaf spring 41 fixed at one end is arranged close to an end face of the output pipe of the valve 26b. A micro switch 42 is provided on the opposite side of the plate spring 41, and a valve 22 is provided.
a, 22b are closed, the valve 26b is opened, and when the micro switch 42 is operated due to the deformation of the plate spring 41 due to the leakage of the fluid, it is determined that there is a leak, and when the micro switch 42 is not operated, the calibration process is performed.

【0050】このようにして漏れなしの状態を確認した
後、基準装置25aの出力指示となるようにゲイン調整
器29を介して不審流量計21の出力を調整する。しか
も、基準装置25aおよび不審流量計21とも方形波励
磁の電磁流量計の場合には、流速0のときの測定流量が
0または0に近い既知の値を示し、このときリニアリテ
ィの良いことが分かっている場合にはさらに異なる低流
速時を待ってもう一点について行い,すなわち最低2点
の流量比較を行って校正用検量線を作成する。そして、
得られた校正用検量線に基づいて図示点線のように流速
に応じて外挿により正確な校正流量を求める。以上のよ
うにして不審流量計21の指示が通常の流速の数分の1
或いは最大のときに校正し、その後、最大或いは通常の
流速或いは校正値よりも低い流速時等の流量については
内・外挿により補填し校正流量を求めるものである。
After confirming the state of no leakage in this way, the output of the suspicious flow meter 21 is adjusted via the gain adjuster 29 so as to be the output instruction of the reference device 25a. In addition, when the reference device 25a and the suspicious flow meter 21 are both electromagnetic wave meters of square wave excitation, the measured flow rate when the flow velocity is 0 shows 0 or a known value close to 0, and it is understood that the linearity is good at this time. In this case, the flow is performed for another point after waiting for a different low flow rate, that is, the flow rates of at least two points are compared to create a calibration curve for calibration. And
Based on the calibration curve obtained, an accurate calibration flow rate is obtained by extrapolation according to the flow velocity as shown by the dotted line in the figure. As described above, the indication of the suspicious flow meter 21 is a fraction of the normal flow rate.
Alternatively, calibration is performed at the maximum, and thereafter, the flow rate at the time of the maximum or normal flow rate or a flow rate lower than the calibration value is compensated by interpolation / extrapolation to obtain a calibration flow rate.

【0051】つまり、内挿は、検量線の実変数,例えば
Xの関数f(x) の形が未知であっても、ある区間の2つ
以上の変数の値Xi (i=1 〜n )に対する関数値f(xi)
が分っている場合、その区間の内の任意のXに対する関
数値を推定することを内挿といい、多くの場合にはf(x
i)を通る多項式でf(x) を近似する。すなわち、
In other words, the interpolation means that the values Xi (i = 1 to n) of two or more variables in a certain section are obtained even if the shape of the actual variable of the calibration curve, for example, the function f (x) of X is unknown. Function value f (xi) for
Is known, estimating the function value for an arbitrary X in the interval is called interpolation, and in many cases, f (x
Approximate f (x) with a polynomial passing through i). That is,

【0052】[0052]

【数1】 によって任意のXに対するf(x) の値を推定する。外挿
は、内挿の拡張であって、関数f(x) の値が既知の点を
含む区間の外でのf(x) の値を内挿と同じ方法により推
定することをいう。
(Equation 1) To estimate the value of f (x) for any X. Extrapolation is an extension of interpolation and refers to estimating the value of f (x) outside the interval containing the point at which the value of the function f (x) is known by the same method as for interpolation.

【0053】次に、基準装置25aおよび不審流量計2
1の大きさに関する一実施例について図5および図6を
参照して説明する。これらの図は口径1mのポンプ1〜
2台を用いて送水する例であり、さらに具体的な仕様
は、液質は清水、吐出量は140m3 /H、定格揚程は
50m、動力は330KW、定格能力は図5に示す逆L
の内部に斜線を引いた値とする。なお、図5に示す抵抗
曲線は、ポンプの定格揚程50mのとき、16.67千
3 /Hの水が流れるように、プラント設計時に決めた
値を数式化した曲線である。
Next, the reference device 25a and the suspicious flow meter 2
One embodiment relating to the size of 1 will be described with reference to FIGS. These figures show pumps 1 to 1 m in diameter.
This is an example of water supply using two units. More specific specifications are that the liquid quality is clear water and the discharge amount is 140 m 3. / H, Rated head is 50m, Power is 330KW, Rated capacity is reverse L shown in Fig.5
The value shown is shaded inside. Note that the resistance curve shown in FIG. 5 is 16.67000 m 3 when the rated head of the pump is 50 m. FIG. 4 is a curve obtained by formulating a value determined at the time of plant design so that water of / H flows.

【0054】このときの基準装置25aおよび不審流量
計21の校正を図5のグラフ中の流速1m/sのところ
で行うとすれば、基準装置25a側の口径を1m/sと
したとき、不審流量計21側の口径は0.3m程度でよ
く、流速は約11m/sになる。
If the calibration of the reference device 25a and the suspicious flow meter 21 at this time is performed at the flow velocity of 1 m / s in the graph of FIG. The diameter on the total 21 side may be about 0.3 m, and the flow velocity is about 11 m / s.

【0055】今、低流速QLL時の口径300mm電磁流量
計に水を流す圧力は、1台のポンプの時…Hp =53
m、2台ポンプの時…Hp =73mであり、十分に11
m/sの流速で流体を流す圧力である。流路Aの摩擦損
出水頭hf はいろいろの算出法があるが、代表的な下記
するダルシィの公式を用いて試算する。 hf =f・(L/D)・(v2 /2g) …… (1) f=0.02+0.005/D(新管の場合) …… (2) 但し、Lは管長(m) 、vは管内流速(m/s)、Dは管径で
ある。
Now, the pressure at which water flows into the electromagnetic flowmeter having a diameter of 300 mm at the time of low flow rate QLL is as follows when one pump is used: Hp = 53
m, 2 pumps ... Hp = 73m, enough 11
This is the pressure at which the fluid flows at a flow rate of m / s. There are various methods of calculating the friction loss head hf of the flow path A, but a trial calculation is made using a representative Darcy's formula described below. hf = f ・ (L / D) ・ (v 2 / 2g) (1) f = 0.02 + 0.005 / D (in the case of a new pipe) (2) where L is pipe length (m), v is pipe flow velocity (m / s), and D is pipe Is the diameter.

【0056】そして、(2)式を(1)式に代入し、か
つ、L=20m、v=11m/s、D=0.3mの値を
(1)式に代入すると、hf =15.09、ほぼ15m
となる。このhf =15mは図5中のQLLの時のHp =
73m(ポンプ2台)、Hp=53m(ポンプ1台)に
比べて小さく、吐出管出口の損失水頭をhf に加えても
十分に11m/sの流速は得られる。
Then, substituting equation (2) into equation (1) and substituting the values of L = 20 m, v = 11 m / s, and D = 0.3 m into equation (1), hf = 15. 09, almost 15m
Becomes This hf = 15 m is the same as Hp = QLL in FIG.
It is smaller than 73 m (two pumps) and Hp = 53 m (one pump), and a sufficient flow velocity of 11 m / s can be obtained even if the head loss at the outlet of the discharge pipe is added to hf.

【0057】従って、このシステムにおいては、不審流
量計21の低流速域または高流速域の数点の流速を利用
して不審流量計21出力と基準装置25aの出力とを比
較しながら校正用線量線の一部分を作成するだけで、内
挿または外挿により全流速域の流速に応じた校正流量を
得ることができる。 (2) 次に、偏流対策を採っていない内・外挿に弱い
不審流量計の場合。
Accordingly, in this system, the output of the suspicious flow meter 21 is compared with the output of the reference device 25a using the flow velocity of the suspicious flow meter 21 at several points in the low flow velocity region or the high flow velocity region, and the calibration dose is measured. By simply forming a part of the line, a calibration flow rate corresponding to the flow velocity in the entire flow velocity range can be obtained by interpolation or extrapolation. (2) Next, the case of a suspicious flow meter that does not take measures against drifting and is vulnerable to internal and extrapolation.

【0058】図5に示す通常の流速QL の時:口径10
00mmの時の不審流量計21の校正を行う場合には前記
(1)で説明した内・外挿を行うことが不向きである付
き、不審流量計21には口径400mm或いは500mmの
ものを用いて行うことにある。つまり、内・外挿不可の
場合、基準装置25aの口径には不審流量計21とほぼ
同じ口径のものを用い、図7に示すように通常の流路A
の所要とする個所に流量測定校正装置20a,20bの
基準装置25aを設ける。
[0058] when the normal flow rate Q L shown in Figure 5: diameter 10
When the calibration of the suspicious flow meter 21 at the time of 00 mm is performed, it is not suitable to perform the inside and extrapolation described in the above (1), and the suspicious flow meter 21 having a diameter of 400 mm or 500 mm is used. To do. In other words, when the inside and outside cannot be inserted, the diameter of the reference device 25a is approximately the same as that of the suspicious flow meter 21, and the normal flow path A is used as shown in FIG.
The reference device 25a of the flow measurement / calibration devices 20a and 20b is provided at a required location.

【0059】そして、流路統括制御装置30において、
データ処理制御部27aおよび不審流量計21に対応す
るデータ処理制御部51を介して流路Aおよび分岐路の
必要なバルブ52a〜52n,53a〜53nを制御し
ながら流路aおよび分岐路に流れる流体の流速に合わせ
て実流試験を行いながら、このときの基準装置25aと
不審流量計21aまたは21mの流量を取り込み、各流
速に対応した校正用検量線を作成する。
Then, in the flow path overall control device 30,
Via the data processing control unit 27a and the data processing control unit 51 corresponding to the suspicious flow meter 21, the fluid flows into the flow path a and the branch path while controlling the flow path A and the valves 52a to 52n and 53a to 53n required for the branch path. While performing the actual flow test in accordance with the flow velocity of the fluid, the flow rates of the reference device 25a and the suspicious flow meter 21a or 21m at this time are taken in, and a calibration calibration curve corresponding to each flow velocity is created.

【0060】特に、図7では、種々の主流路Aに分岐路
が設けられているので、流路統括制御装置30において
分岐に流れ出す流量を正確に計測するとか、或いは分岐
から流れ出す水を停止する。例えばバルブ53a,52
bを閉、バルブ52a,53b,52nを開とし、基準
装置52aと不審流量計21aに同一流量を流して校正
用検量線を作成するとか、或いはバルブ25a,25
b,25nを開、バルブ53a〜53cを閉とし、2つ
の基準装置25a,25bと不審流量計21mとを直結
して同一流量を流し、基準装置25a,25bの流量が
同一流量であることを確認しつつ、不審流量計21mの
校正用検量線を作成してもよい。さらに、不審流量計2
1aの校正後、不審流量計21mの校正を行う場合、
In particular, in FIG. 7, since the branch paths are provided in the various main flow paths A, the flow control device 30 accurately measures the flow rate flowing to the branch, or stops the water flowing from the branch. . For example, valves 53a and 52
b is closed, valves 52a, 53b, and 52n are opened, and the same flow rate is applied to the reference device 52a and the suspicious flow meter 21a to create a calibration calibration curve, or the valves 25a, 25
b, 25n are opened, the valves 53a to 53c are closed, and the two reference devices 25a, 25b and the suspicious flow meter 21m are directly connected and flow at the same flow rate, and the flow rates of the reference devices 25a, 25b are the same flow rate. While checking, a calibration curve for calibration of the suspicious flow meter 21m may be created. In addition, suspicious flow meter 2
When calibrating the suspicious flow meter 21m after the calibration of 1a,

【0061】装置20aの基準装置25aの実流量=不
審流量計21aの校正流量+不審流量計21m;の未知
校正流量=装置20bの基準装置25a等の関係から、
不審流量計21m;の未知校正流量を求めることができ
る。54は種々の条件下で得られた校正用検量線を記憶
し、この検量線データに基づいて不審流量計の出力ゲイ
ンを調整し校正流量を得るメモリである。
The actual flow rate of the reference device 25a of the device 20a = the calibration flow rate of the suspicious flow meter 21a + the unknown calibration flow rate of the suspicious flow meter 21m;
The unknown calibration flow rate of the suspicious flow meter 21m can be obtained. A memory 54 stores calibration calibration curves obtained under various conditions, and adjusts the output gain of the suspicious flow meter based on the calibration curve data to obtain a calibration flow rate.

【0062】なお、前記基準装置25aとしては関数磁
束分布形電磁流量計や図8のように貯水池2bを用い、
この面積SとヘッドHとから定まる流速を不審流量計2
1に流すような構成であってもよい。
As the reference device 25a, a function magnetic flux distribution type electromagnetic flow meter or a reservoir 2b as shown in FIG.
The flow rate determined from the area S and the head H is determined by the suspicious flow meter 2.
It may be configured to flow into one.

【0063】なお、上記実施例では、単なる流路Aの所
要とする個所に不審流量計21、21a,21mを設け
たが、例えば不審流量計21、21a,21mの上流側
または上下流側に断面十字状またはメッシュ状の整流体
を内挿し、例えば流路内壁が錆等で生ずるフローパター
ンを安定なフローパターンに改善するようにしてもよ
い。
In the above-described embodiment, the suspicious flow meters 21, 21a, 21m are provided at required positions of the simple flow path A. However, for example, the suspicious flow meters 21, 21a, 21m may be provided upstream or downstream of the suspicious flow meters 21, 21a, 21m. A rectifier having a cross-shaped cross section or a mesh section may be interpolated to improve a flow pattern in which a flow path inner wall is formed by rust or the like into a stable flow pattern.

【0064】さらに、一般的には、基準装置25aおよ
び不審流量計21,21a,21mが電磁流量計の場合
には正逆流何でも校正を行うことができるが、これら基
準装置および不審流量計に方向性がある場合、校正時に
適する流体方向のときに校正処理を行うようにしてもよ
い。また、正逆流で検量線の特性が異なる場合、両方の
検量線を作成するものとする。その他、本発明はその要
旨を逸脱しない範囲で種々変形して実施できる。
Further, in general, when the reference device 25a and the suspicious flowmeters 21, 21a, 21m are electromagnetic flowmeters, any normal or reverse flow can be calibrated. If there is a possibility, the calibration process may be performed when the fluid direction is suitable for calibration. If the characteristics of the calibration curves differ between forward and reverse flows, both calibration curves are created. In addition, the present invention can be implemented with various modifications without departing from the scope of the invention.

【0065】[0065]

【発明の効果】以上説明したように本発明によれば、次
のような種々の効果を奏する。
As described above, according to the present invention, the following various effects can be obtained.

【0066】請求項1の発明は、流路状況が変化して
も、多数の不審流量計を適宜校正しながら正確に流体の
流量を測定でき、流路全体にわたって高精度、かつ、信
頼性の高いシステムを実現できる。
According to the first aspect of the present invention, even if the condition of the flow path changes, the flow rate of the fluid can be accurately measured while appropriately calibrating a large number of suspicious flow meters, and the accuracy and reliability of the entire flow path can be improved. A high system can be realized.

【0067】請求項2の発明は、主流路に不審流量計を
設け、かつ、主流路にバルブを介してバイパス流路を設
けるとともに当該バイパス流路に小口径の基準装置を取
り付けたので、バイパス流路の基準装置を用いて校正用
検量線を作成でき、通常の流量測定時には主流路を損な
うことなく、かつ、校正用検量線を用いて正確に流体の
流量を測定できる。
According to the second aspect of the present invention, a suspicious flow meter is provided in the main flow path, a bypass flow path is provided in the main flow path via a valve, and a small-diameter reference device is attached to the bypass flow path. A calibration calibration curve can be created using the flow channel reference device, and the flow rate of the fluid can be accurately measured using the calibration calibration curve without damaging the main flow path during normal flow rate measurement.

【0068】次に、請求項3の発明では、低流速域また
は高流速域の数点の流速を用いて校正用検量線の一部分
を作成でき、さらに内挿または外挿法を利用することに
より全流速域の校正を確実に行うことができる。
Next, according to the third aspect of the present invention, a part of the calibration curve for calibration can be created using the flow velocity at several points in the low flow velocity region or the high flow velocity region, and furthermore, the interpolation or extrapolation method is used. Calibration of the entire flow velocity region can be performed reliably.

【0069】さらに、請求項4においては、不審流量計
の使用流速またはその使用流速前後の流速で校正用検量
線を作成でき、流路状況の変化に対しても流体の流量を
正確に測定できる。
Further, according to the present invention, a calibration curve for calibration can be created at the flow rate of the suspicious flow meter or at a flow rate before and after the flow rate of the suspicious flow meter, and the flow rate of the fluid can be accurately measured even when the flow path condition changes. .

【0070】さらに、請求項5の発明は、不審流量計の
少くとも上流側に整流体を設けることにより、流路状況
の変化による影響を緩和し、より精度の高い校正用検量
線を作成できる。さらに、請求項6の発明は、不審流量
計などの特性を考慮しながらより精度の高い校正用検量
線を作成できる。
Further, according to the fifth aspect of the present invention, by providing a rectifier at least on the upstream side of the suspicious flow meter, the influence of a change in the flow path condition can be reduced, and a more accurate calibration calibration curve can be created. . Further, according to the invention of claim 6, it is possible to create a more accurate calibration calibration curve while considering the characteristics of the suspicious flow meter and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる流量計測制御システムの一実施
例を示す全体構成図。
FIG. 1 is an overall configuration diagram showing one embodiment of a flow rate measurement control system according to the present invention.

【図2】図1に示す流量測定構成装置の具体的な構成
図。
FIG. 2 is a specific configuration diagram of the flow rate measurement configuration device shown in FIG.

【図3】不審流量計の校正用検量線の作成および不審流
量計の測定流量から校正流量を求める図。
FIG. 3 is a diagram showing the creation of a calibration curve for a suspicious flow meter and the calculation of a calibration flow rate from the measured flow rate of the suspicious flow meter.

【図4】バルブの漏れを検出する一構成例図。FIG. 4 is a diagram illustrating an example of a configuration for detecting leakage of a valve.

【図5】送水ポンプのQ(流速)H(圧力)曲線の一例
図。
FIG. 5 is an example of a Q (flow velocity) H (pressure) curve of a water pump.

【図6】送水ポンプと流量測定校正装置との配置構成
図。
FIG. 6 is an arrangement configuration diagram of a water supply pump and a flow measurement calibration device.

【図7】本発明に係わる流量計測制御システムの他の実
施例を示す全体構成図。
FIG. 7 is an overall configuration diagram showing another embodiment of the flow rate measurement control system according to the present invention.

【図8】貯水池を基準装置として用いる例を示す図。FIG. 8 is a diagram showing an example in which a reservoir is used as a reference device.

【図9】上流等断面直管部の長さと鉄管径との比…流量
補正係数との関係図。
FIG. 9 is a diagram showing a ratio of a length of a straight pipe portion having an upstream uniform cross section to a diameter of an iron pipe, that is, a flow correction coefficient.

【図10】旋流の発生する状況を説明する図。FIG. 10 is a diagram illustrating a situation in which a swirl occurs.

【符号の説明】[Explanation of symbols]

1…流体供給源、10…流量供給源制御装置、11…基
準級流量計検出器、14…流量コントローラ、15…デ
ータ処理制御部、20…流量測定校正装置、21…不審
流量計、22a,22b,23,26a〜26c…バル
ブ、25a…基準装置、27…データ処理制御部、30
…流路統括制御装置。
DESCRIPTION OF SYMBOLS 1 ... Fluid supply source, 10 ... Flow supply source control device, 11 ... Standard flowmeter detector, 14 ... Flow controller, 15 ... Data processing control unit, 20 ... Flow measurement calibration device, 21 ... Suspicious flow meter, 22a, 22b, 23, 26a to 26c: valve, 25a: reference device, 27: data processing control unit, 30
... Flow control system.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 主流路の各個所に設けられ、測定流量の
校正機能をもった流量測定校正装置と、 これらの流量測定校正装置を統括制御する流路統括制御
装置とを備え、 前記各流量測定校正装置は、前記主流路に流れる流体の
流量を測定する不審流量計と、前記主流路に形成される
バイパス流路に取付けられ、低流量範囲の流量を測定す
る基準流量測定用基準装置と、前記流路統括制御装置か
らの制御指示に基づき、前記バイパス流路の間の前記主
流路を閉に設定し、前記基準装置の出力と前記不審流量
計の出力とを比較しながら校正用検量線を作成するとと
もに、前記基準装置の測定流量を基準として前記不審流
量計の挙動を評価し前記校正用検量線を修正し、また非
校正または校正済みの測定流量を前記流路統括制御装置
に送信するデータ処理制御部とを設け、 前記流路統括制御装置は、所要の校正環境のもとに各流
量測定校正装置に対して前記制御指示を送出し、また前
記データ処理制御部に代わって前記校正用検量線を作成
する手段を設けたことを特徴とする流量計測制御システ
ム。
1. A flow rate measuring and calibrating device provided at each position of a main flow path and having a function of calibrating a measured flow rate, and a flow path overall control device that comprehensively controls these flow rate measuring and calibrating devices. The measurement calibration device is a suspicious flow meter that measures the flow rate of the fluid flowing in the main flow path, and is attached to a bypass flow path formed in the main flow path, and a reference flow measurement reference device that measures a flow rate in a low flow rate range. Setting the main flow path between the bypass flow paths to be closed based on a control instruction from the flow path overall control device, and comparing the output of the reference device with the output of the suspicious flow meter for calibration calibration. While creating a line, the behavior of the suspicious flow meter is evaluated based on the measured flow rate of the reference device, the calibration calibration curve is corrected, and the uncalibrated or calibrated measured flow rate is transmitted to the flow path overall control device. Data to send A flow control unit, the flow path control unit sends the control instruction to each flow measurement and calibration device under a required calibration environment, and the calibration process is performed in place of the data processing control unit. A flow rate measurement control system comprising a means for creating a calibration curve.
【請求項2】 流路の所要とする各個所に不審流量計を
取り付けて流体の流量を測定する流量計測制御システム
において、 前記不審流量計の上流側および下流側の何れか一方また
は両方に設けた主流路側バルブと、このバルブの上流側
と下流側との間に掛け渡したバイパス流路に設けられた
小口径の基準流量測定用の基準装置と、前記主流路側バ
ルブを閉じ、前記基準装置の出力と前記不審流量計の出
力とを比較しながら校正用検量線を作成し、前記不審流
量計による流量測定時の測定流量から当該校正用検量線
を用いて校正流量を得るデータ処理制御部とを備えた流
量測定校正装置を、前記不審流量計ごとに設けたことを
特徴とする流量計測制御システム。
2. A flow measurement control system for measuring a flow rate of a fluid by attaching a suspicious flow meter to each required portion of a flow path, wherein the suspicious flow meter is provided on one or both of an upstream side and a downstream side of the suspicious flow meter. A main flow path valve, a reference device for measuring a small-diameter reference flow rate provided in a bypass flow path bridged between an upstream side and a downstream side of the valve, and closing the main flow path valve, A data processing control unit that creates a calibration calibration curve while comparing the output of the suspicious flow meter with the output of the suspicious flow meter, and obtains the calibration flow rate from the measured flow rate at the time of flow measurement by the suspicious flow meter using the calibration calibration curve. A flow measurement control system comprising: a flow measurement and calibration device comprising: a suspicious flow meter;
【請求項3】 不審流量計として偏流に強い電磁流量計
を用い、かつ、不審流量計の低流速時または高流速時に
当該不審流量計と前記基準装置とが直列になるように流
路を切換え、各低流速域または高流速域の数点の流速時
の不審流量計出力と基準流量計出力とを比較して校正用
検量線の一部分を作成し、他の流速域では流速に応じて
内挿または外挿により補填することにより、前記不審流
量計の測定流量に応じた校正流量を得ることを特徴とす
る請求項2記載の流量計測制御システム。
3. A suspicious flowmeter that uses an electromagnetic flowmeter that is resistant to drift and that switches the flow path so that the suspicious flowmeter and the reference device are in series when the suspicious flowmeter is at a low or high flow rate. By comparing the suspicious flow meter output at several flow velocities in each low flow velocity region or high flow velocity region with the reference flow meter output, a part of the calibration curve for calibration is created. 3. The flow measurement control system according to claim 2, wherein a calibration flow rate corresponding to a flow rate measured by the suspicious flow meter is obtained by supplementing the flow rate by insertion or extrapolation.
【請求項4】 流路の所要とする各個所に偏流対策を採
っていない内・外挿に不向きな不審流量計を取り付けて
流体の流量を測定する流量計測制御システムにおいて、 前記不審流量計の上流側および下流側の何れか一方また
は両方に設けた主流路側バルブと、このバルブの上流側
と下流側との間に掛け渡したバイパス流路に設けられた
基準流量測定用の基準装置およびバイパス流路側バルブ
と、このバイパス流路側バルブを開、前記主流路側バル
ブを閉とし、前記基準装置と前記不審流量計とを直列に
接続し、前記不審流量計の使用流速または使用流速前後
の流速時に当該不審流量計の一定流速制御を行って前記
不審流量計の出力と基準装置の出力とを比較しながら校
正用検量線を作成し、校正後、前記主流路側バルブを
開、前記バイパス流路側バルブを閉とするデータ処理制
御部とを備えた流量測定校正装置を、前記不審流量計ご
とに設けたことを特徴とする流量計測制御システム。
4. A flow rate measurement control system for measuring a flow rate of a fluid by attaching a suspicious flow meter which is not suitable for internal and extrapolation which does not take a countermeasure against drift in each required part of a flow path, A main flow path side valve provided on one or both of the upstream side and the downstream side, and a reference device and a bypass for measuring a reference flow rate provided on a bypass flow path provided between the upstream side and the downstream side of the valve. The flow path side valve, this bypass flow path side valve is opened, the main flow path side valve is closed, the reference device and the suspicious flow meter are connected in series, and the flow rate of the suspicious flow meter is at or around the operating flow rate. The calibration flow curve is created while performing the constant flow rate control of the suspicious flow meter and comparing the output of the suspicious flow meter with the output of the reference device.After calibration, the main flow path side valve is opened, and the bypass flow Flow measurement control system, characterized in that the flow measurement calibration apparatus and a data processing control unit for the side valve closed, is provided for each of the suspicious flowmeter.
【請求項5】 不審流量計の少くとも上流側の流路内に
整流体を設けたことを特徴とする請求項1ないし4の何
れかに記載の流量計測制御システム。
5. The flow measurement control system according to claim 1, wherein a rectifier is provided in at least an upstream flow path of the suspicious flow meter.
【請求項6】 データ処理制御部または流路統括制御装
置は、前記不審流量計および基準装置に方向性があると
き、校正時に適する流体方向のときに校正処理を行うこ
とを特徴とする請求項1ないし4の何れかに記載の流量
計測制御システム。
6. The data processing control unit or the flow path overall control device performs the calibration process when the suspicious flow meter and the reference device have a direction, and when the fluid direction is suitable for calibration. 5. The flow measurement control system according to any one of 1 to 4.
JP10441792A 1992-04-23 1992-04-23 Flow measurement control system Expired - Fee Related JP3155814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10441792A JP3155814B2 (en) 1992-04-23 1992-04-23 Flow measurement control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10441792A JP3155814B2 (en) 1992-04-23 1992-04-23 Flow measurement control system

Publications (2)

Publication Number Publication Date
JPH05296815A JPH05296815A (en) 1993-11-12
JP3155814B2 true JP3155814B2 (en) 2001-04-16

Family

ID=14380122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10441792A Expired - Fee Related JP3155814B2 (en) 1992-04-23 1992-04-23 Flow measurement control system

Country Status (1)

Country Link
JP (1) JP3155814B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506840A (en) * 2009-10-01 2013-02-28 ローズマウント インコーポレイテッド Process equipment with sampling skew error correction

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002602B2 (en) * 2006-12-05 2012-08-15 株式会社堀場エステック Flow rate controller verification method
JP5191017B1 (en) * 2012-07-26 2013-04-24 株式会社Ersホールディングス Accuracy check method for flow meters used in sewers
KR101522703B1 (en) * 2015-01-08 2015-05-26 안용관 Site Calibration Method for Flowmeter in Partly Filled Sewage Pipes Using Delay Time
CN118010120B (en) * 2024-04-10 2024-06-21 成都锦城学院 Flow monitoring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506840A (en) * 2009-10-01 2013-02-28 ローズマウント インコーポレイテッド Process equipment with sampling skew error correction

Also Published As

Publication number Publication date
JPH05296815A (en) 1993-11-12

Similar Documents

Publication Publication Date Title
CN102128666B (en) Method for calibrating Coriolis mass flowmeter
US9970808B2 (en) Method for ascertaining a compensated flow and/or a compensated flow velocity, ultrasonic, flow measuring device and computer program product
KR20010020975A (en) Non-iterative method for obtaining mass flow rate
CA2448275A1 (en) Flowmeter proving device and method
CA2317445A1 (en) Friction flowmeter
WO2019000258A1 (en) Gas turbine flowmeter detection device and detection method
WO2010002432A1 (en) Insertable ultrasonic meter and method
JP3155814B2 (en) Flow measurement control system
CN108709609A (en) A kind of natural gas big flow is real to flow calibrating installation and method
Aumanand et al. A novel method of using a control valve for measurement and control of flow
CA2589198C (en) System and method for flow profile calibration correction for ultrasonic flowmeters
JPS6329209Y2 (en)
JP4698899B2 (en) Steam turbine power generation system and flow meter verification method in steam turbine power generation system
Graham et al. Impact of Using ISO/TR 11583 for a Venturi Tube in 3-Phase Wet-Gas Conditions
JPH07333017A (en) Flowmeter
JP2002214002A (en) Flow meter
Einhellig et al. Flow measurement opportunities using irrigation pipe elbows
JP3502716B2 (en) Ball valve for gas conduit
Müller et al. Improving operational efficiency of power plants through on-site calibration of flow sensors
US20240247961A1 (en) Selecting a zero-verification criteria for a zero verification of a vibratory meter
AU2011239253B2 (en) Method for Generating a Diagnostic from a Deviation of a Flow Meter Parameter
JP2002340632A (en) Flowmeter
Cascetta et al. Water flow measurement in large bore pipes: An experimental comparison between two different types of insertion flowmeters
JP2008216034A (en) Method and tool for measuring flow rate
Lin et al. Test Facility for Pressure Losses in Plumbing Pipes and Fittings

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees