[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6091329B2 - Film material with excellent bending durability and flame resistance - Google Patents

Film material with excellent bending durability and flame resistance Download PDF

Info

Publication number
JP6091329B2
JP6091329B2 JP2013107557A JP2013107557A JP6091329B2 JP 6091329 B2 JP6091329 B2 JP 6091329B2 JP 2013107557 A JP2013107557 A JP 2013107557A JP 2013107557 A JP2013107557 A JP 2013107557A JP 6091329 B2 JP6091329 B2 JP 6091329B2
Authority
JP
Japan
Prior art keywords
mass
film material
flame
coating layer
base fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013107557A
Other languages
Japanese (ja)
Other versions
JP2014226841A (en
Inventor
哲也 田代
哲也 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiraoka and Co Ltd
Bunka Shutter Co Ltd
Original Assignee
Hiraoka and Co Ltd
Bunka Shutter Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiraoka and Co Ltd, Bunka Shutter Co Ltd filed Critical Hiraoka and Co Ltd
Priority to JP2013107557A priority Critical patent/JP6091329B2/en
Publication of JP2014226841A publication Critical patent/JP2014226841A/en
Application granted granted Critical
Publication of JP6091329B2 publication Critical patent/JP6091329B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は屈曲耐久性及び耐炎性に優れた膜材に関するものである。更に詳しく述べるならば、繰り返し屈曲に対する耐久性に優れ、火災発生時に膜材の向こう側の状況を認識できる透光性を有し、かつ、耐炎性にも優れた膜材に関するものであり、特に建築物の開口部に設置される防火設備として、防火性のシャッター或いはスクリーンを構成する素材に好適に用いることができる膜材に関するものである。   The present invention relates to a film material excellent in bending durability and flame resistance. More specifically, it relates to a film material that has excellent durability against repeated bending, has translucency that can recognize the situation on the other side of the film material in the event of a fire, and has excellent flame resistance. The present invention relates to a film material that can be suitably used as a material constituting a fire-proof shutter or screen as fire-proof equipment installed in an opening of a building.

防火地域および準防火地域における商店や民家など建築物において、延焼のおそれのある部分の開口部については、中からの火を食い止めて外へ出さず、外からのもらい火を防いで延焼を防止するために「防火戸(防火設備)」の使用が義務付けられている。このため、民家のサッシや商店のショウウィンドウなどの外側、或いは内側に、金属製のスラットによって構成されたシャッターを、追加設置して用いるケースが増えている。しかし、金属製のシャッターは重量が重いため設置部分の補強が必要であり、しかも大きなスペースを必要とするため、建築コストの負担が大きくなる問題がある。また、シャッターが閉鎖した状態では、シャッターの向こう側の状況を認識し難く、火災発生時の的確な状況判断が困難であり、判断の遅れにより避難が困難となったり、状況判断できないまま避難して思わぬ事故に遭遇したりする恐れがあった。この様な問題を解決する方法として、防火シャッターを耐炎性のシートで構成する技術が提案されている(例えば、特許文献1参照)。金属シャッターよりも軽量で柔軟な耐炎性のシートを用いることで、建築コストの負担を軽減する事ができ、また、防火シャッターの向こう側で火災を生じていれば、シートを透過して炎の明かるさを視認でき、火災の有無を認識する事ができる。しかし、この例では、無機繊維からなる織布をそのまま用いているため、巻取りや巻き出し時の織布同士の摩擦により繊維が傷つきやすく、日常開け閉めを行うシャッターとしては耐久性が不充分であった。   In buildings such as shops and private houses in fire-prevention areas and semi-fire-prevention areas, prevent the spread of fire by preventing fire from the outside and preventing fire from entering the openings in areas that may spread. To do so, the use of “fire doors (fire prevention equipment)” is obligatory. For this reason, there are an increasing number of cases in which shutters made of metal slats are additionally installed outside or inside a sash of a private house or a show window of a store. However, since the metal shutter is heavy, it is necessary to reinforce the installation part, and also requires a large space. In addition, when the shutter is closed, it is difficult to recognize the situation behind the shutter, making it difficult to judge the exact situation in the event of a fire. There was a risk of encountering an unexpected accident. As a method for solving such a problem, a technique in which a fire-proof shutter is composed of a flame-resistant sheet has been proposed (see, for example, Patent Document 1). By using a flame-resistant sheet that is lighter and more flexible than a metal shutter, it is possible to reduce the burden of construction costs, and if there is a fire on the other side of the fire shutter, the sheet will permeate the flame. You can see the brightness and recognize the presence or absence of fire. However, in this example, since the woven fabric made of inorganic fibers is used as it is, the fibers are easily damaged by friction between the woven fabrics during winding and unwinding, and the durability is insufficient as a shutter for daily opening and closing. Met.

無機繊維を用いた織布に樹脂を被覆することで、摩擦に対する耐久性を向上させることはこれまでに数多く行われてきたが、可燃性の樹脂で被覆することは耐炎性の面で不利となる。そのため、被覆樹脂として、耐熱性の高いPTFE樹脂を用いた膜材が提案されている(例えば特許文献2)。しかし、PTFE樹脂は非常に硬いため、得られる膜材が剛直となって取り扱い性が劣り、コンパクトに巻き上げる事ができないため巻き込みケースを大型にしなければならなくなるなど、デザイン面及びコスト面の問題を生じることがある。PTFE樹脂よりも柔軟な樹脂を用いて、耐炎性を与えるために、樹脂に防炎剤や無機充填剤を多量に加えて被覆することも考えられるが、この場合、防炎剤や無機充填剤を多量に含むことで被覆層が硬くなって膜材の柔軟性が得られず、また、樹脂の強度が低下して開閉時の摩擦により外観に損傷を受け易くなり、更に、織布内部に含浸した樹脂に含まれる無機充填剤の硬度が高いと、巻取りや巻き出しの度に無機繊維を傷つけて、膜材の強度が低下するなどの問題がある。また、防炎剤や無機充填剤を多量に含むことは隠蔽性の増大にもつながり、シャッターが閉鎖した状態では、シャッターの向こう側の状況が認識し難くなる問題も有している。この他、樹脂に熱膨張性黒鉛を加えることも耐炎性付与には有効であるが(例えば特許文献3参照)、防炎剤や無機充填剤を多量に加えた場合と同様膜材の柔軟性が得られず、隠蔽性を増大させる問題を有している。   There have been many attempts to improve the durability against friction by coating a resin on a woven fabric using inorganic fibers. However, coating with a flammable resin is disadvantageous in terms of flame resistance. Become. Therefore, a film material using a highly heat-resistant PTFE resin as a coating resin has been proposed (for example, Patent Document 2). However, since PTFE resin is very hard, the resulting film material is rigid and inferior in handleability, and cannot be rolled up compactly. May occur. In order to give flame resistance by using a softer resin than PTFE resin, it is conceivable to add a large amount of flameproofing agent or inorganic filler to the resin, and in this case, flameproofing agent or inorganic filler The coating layer becomes hard due to containing a large amount of the film, and the flexibility of the film material cannot be obtained, and the strength of the resin is lowered and the appearance is easily damaged due to friction at the time of opening and closing. If the hardness of the inorganic filler contained in the impregnated resin is high, there is a problem that the strength of the film material is reduced by damaging the inorganic fiber each time the film is wound or unwound. Further, the inclusion of a large amount of flameproofing agent and inorganic filler also leads to an increase in concealment, and there is a problem that it is difficult to recognize the situation beyond the shutter when the shutter is closed. In addition, addition of thermally expandable graphite to the resin is effective for imparting flame resistance (see, for example, Patent Document 3), but the flexibility of the film material is the same as when a large amount of flameproofing agent or inorganic filler is added. Cannot be obtained, and there is a problem of increasing concealment.

以上述べてきたように、火災発生時に膜材の向こう側の状況を認識できる透光性を有し、柔軟で、繰り返し屈曲に対する耐久性に優れ、耐炎性にも優れており、建築物の開口部に設置される防火設備として、防火性のシャッター或いはスクリーンを構成する素材に用いることのできる膜材は、これまで提案されていない。   As mentioned above, it has translucency that can recognize the situation on the other side of the membrane material in the event of a fire, is flexible, has excellent durability against repeated bending, has excellent flame resistance, and has an opening in a building. A film material that can be used as a fire-proof shutter or a material constituting a screen has not been proposed so far.

実開昭57−204392号公報Japanese Utility Model Publication No. 57-204392 特開2002−12678号公報JP 2002-12678 A 特開平10−95887号公報JP-A-10-95887

本発明は、火災発生時に膜材の向こう側の状況を認識できる透光性を有し、繰り返し屈曲に対する耐久性に優れ、かつ、耐火基準を満たし、建築物の開口部に設置される防火設備に用いることのできる耐炎性膜材を提供しようとするものである。   The present invention has a light-transmitting property capable of recognizing the situation on the other side of the membrane material in the event of a fire, is excellent in durability against repeated bending, satisfies fire resistance standards, and is installed in an opening of a building. An object of the present invention is to provide a flame resistant film material that can be used for the above.

本発明者は、上記課題を解決する為、鋭意検討を行った結果、難燃性樹脂被覆層を形成する樹脂の、基布への含浸を抑制しつつ基布と樹脂との接着性を確保することで、屈曲耐久性の高い膜材を得ることができ、難燃性樹脂被覆層が熱線反射性粒子を含むことで、耐炎性を向上させることができることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventor has secured the adhesion between the base fabric and the resin while suppressing the impregnation of the resin forming the flame-retardant resin coating layer into the base fabric. In order to complete the present invention, it is possible to obtain a film material having high bending durability, and that the flame-retardant resin coating layer includes heat ray reflective particles, thereby improving flame resistance. It came.

すなわち本発明の屈曲耐久性及び耐炎性に優れた膜材は、ガラスクロス製基布の両面に、難燃性樹脂被覆層が形成された可撓性膜材であって、前記ガラスクロス製基布の全体がフッ素系化合物で撥油処理されており、前記難燃性樹脂被覆層が、反応性ウレタン樹脂および熱線反射性粒子を含む軟質ポリ塩化ビニル樹脂組成物の塗工硬化物により形成され、前記難燃性樹脂被覆層に対して前記反応性ウレタン樹脂を3〜10質量%、前記熱線反射性粒子を1〜10質量%それぞれ含み、前記可撓性膜材の可視光透過率(JIS Z8722)が15〜55%であることを特徴とする。   That is, the film material excellent in bending durability and flame resistance of the present invention is a flexible film material in which a flame-retardant resin coating layer is formed on both surfaces of a glass cloth base fabric, and the glass cloth base material The entire cloth is oil-repellent treated with a fluorine-based compound, and the flame-retardant resin coating layer is formed of a coated cured product of a soft polyvinyl chloride resin composition containing a reactive urethane resin and heat ray reflective particles. And 3-10% by mass of the reactive urethane resin and 1-10% by mass of the heat ray reflective particles with respect to the flame retardant resin coating layer, respectively, and visible light transmittance (JIS) of the flexible film material. Z8722) is 15 to 55%.

本発明の屈曲耐久性及び耐炎性に優れた膜材において、前記反応性ウレタン樹脂が、1液硬化型ウレタン系樹脂、または、2液硬化型ウレタン系樹脂から選ばれる1種、または2種以上である事が好ましい。   In the film material excellent in bending durability and flame resistance of the present invention, the reactive urethane resin is selected from one-component curable urethane resin or two-component curable urethane resin, or two or more types. It is preferable that

本発明の屈曲耐久性及び耐炎性に優れた膜材において、前記熱線反射性粒子が、波長800nm〜2500nmの赤外領域に、少なくとも一つの反射ピークを有する薄片状の干渉雲母粒子である事が好ましい。   In the film material excellent in bending durability and flame resistance of the present invention, the heat ray reflective particles may be flaky interference mica particles having at least one reflection peak in an infrared region having a wavelength of 800 nm to 2500 nm. preferable.

本発明の屈曲耐久性及び耐炎性に優れた膜材において、前記ガラスクロス製基布が、ガラスマルチフィラメント糸条を製織してなる織布であり、かつ、質量90〜400g/m、空隙率0〜5%を有する事が好ましい。 In the membrane material excellent in bending durability and flame resistance of the present invention, the glass cloth base fabric is a woven fabric formed by weaving glass multifilament yarns, and has a mass of 90 to 400 g / m 2 and voids. It is preferable to have a rate of 0-5%.

本発明の屈曲耐久性及び耐炎性に優れた膜材において、前記ガラスクロス製基布の質量及び前記難燃性樹脂被覆層との質量比が1:0.25〜1:3であることが好ましい。   In the film material excellent in bending durability and flame resistance of the present invention, the mass ratio of the glass cloth base fabric to the flame retardant resin coating layer is 1: 0.25 to 1: 3. preferable.

本発明によれば、繰り返し屈曲に対する耐久性に優れ、火災発生時に膜材の向こう側の状況を認識できる透光性を有し、かつ、耐炎性にも優れた、膜材を提供することができる。本発明の膜材から構成したシャッターやスクリーンは、延焼の恐れのある建築物の開口部に、単独で設置したり、或いは耐火基準を満たさない窓に併設する防火設備として好適に用いることができる。   According to the present invention, it is possible to provide a membrane material that is excellent in durability against repeated bending, has translucency capable of recognizing the situation on the other side of the membrane material in the event of a fire, and has excellent flame resistance. it can. The shutter and screen composed of the film material of the present invention can be suitably used as a fire prevention facility installed alone in an opening of a building where there is a risk of fire spread, or attached to a window that does not meet fire resistance standards. .

本発明の屈曲耐久性及び耐炎性に優れた部材の構成の一例を示す断面図Sectional drawing which shows an example of a structure of the member excellent in bending durability and flame resistance of this invention

本発明の膜材は、ガラスクロス製基布の両面に、難燃性樹脂被覆層が形成された可撓性膜材であり、難燃性樹脂被覆層に熱線反射性粒子を含むことで、防炎剤や無機充填剤を多量に含まなくても、火災発生時の膜材の温度上層を抑制して、火炎に曝されている面とは反対側の面での発炎や、反対側への火炎の噴出(透過)を防いだり、一定時間遅らせることができ、更に、燃焼時の発熱を抑制することもできる。また、ガラスクロス製基布の全体がフッ素系化合物で撥油処理されているため、難燃性樹脂被覆層用組成物に含まれる熱線反射性粒子、無機充填剤、などの粒子がガラスクロス内部に入り込むことを抑制して、繊維の傷つきによる強度の低下を防止する事ができ、難燃性樹脂被覆層に接着性の反応性ウレタン樹脂を含むことで、ガラスクロス製基布と難燃性樹脂被覆層の接着性が撥油処理によって低下するのを防ぐ事ができる。更に、本発明の防火設備用膜材は、火災発生時に膜材の向こう側の状況を認識できる透光性を有するため、的確な判断による避難を可能とする。   The film material of the present invention is a flexible film material in which a flame retardant resin coating layer is formed on both surfaces of a glass cloth base fabric, and includes heat ray reflective particles in the flame retardant resin coating layer. Even if it does not contain a large amount of flame retardants or inorganic fillers, it suppresses the upper layer temperature of the film material in the event of a fire, and causes flames on the surface opposite to the surface exposed to the flame or the other side It is possible to prevent the flame from being blown out (permeated), to delay the flame for a certain period of time, and to suppress heat generation during combustion. In addition, since the entire glass cloth base fabric is oil-repellent treated with a fluorine compound, particles such as heat ray reflective particles and inorganic filler contained in the flame retardant resin coating layer composition are contained inside the glass cloth. It is possible to prevent the strength from being deteriorated due to fiber damage by suppressing the penetration of the fiber. By including an adhesive reactive urethane resin in the flame retardant resin coating layer, the glass cloth base fabric and flame retardant It can prevent that the adhesiveness of a resin coating layer falls by an oil-repellent process. Furthermore, since the film material for fire prevention equipment of the present invention has translucency that can recognize the situation on the other side of the film material in the event of a fire, evacuation can be made by accurate judgment.

本発明の難燃性樹脂被覆層は、反応性ウレタン樹脂と熱線反射性粒子とを必須成分として含む軟質塩化ビニル樹脂組成物の塗工硬化物により形成される。   The flame retardant resin coating layer of the present invention is formed by a coated cured product of a soft vinyl chloride resin composition containing a reactive urethane resin and heat ray reflective particles as essential components.

本発明において反応性ウレタン樹脂としては、1液硬化型ウレタン系樹脂、または、2液硬化型ウレタン系樹脂、から選択された1種を単独で、または2種以上を併用して用いる事が好ましく、反応性ウレタン樹脂は難燃性樹脂被覆層に対して3〜10質量%含まれる。反応性ウレタン樹脂をこの範囲で含むことで、ガラスクロス製基布の全体がフッ素系化合物で撥油処理されていても、基布と樹脂層との接着性が確保され、繰り返し屈曲を受けても難燃性樹脂被覆層の浮きや剥がれを生じ難くすることができる。難燃性樹脂被覆層に含まれる反応性ウレタン樹脂が3質量部未満では、基布と樹脂層との接着性が充分に得られないことがあり、屈曲時に難燃性樹脂被覆層の浮きや剥がれを生じ、ガラスクロス製基布が直接屈曲されて傷つき、膜材の耐久性が低下することがある。反応性ウレタン樹脂を10質量部を超えて加えてもそれ以上接着性は向上せず、また、難燃性樹脂被覆層が硬くなって、得られる膜材が剛直となるため取り扱い性が劣り、防火シャッターとして用いた際の巻き取りや巻出し時に、巻き込みケース内で膜材とケース内壁、あるいは膜材同士がこすれ合って、膜材表面や織布が傷ついて外観が損なわれたり、屈曲によってガラスクロス製基布が傷ついて膜材の耐久性が低下するなどの問題を生じることがある。   In the present invention, as the reactive urethane resin, it is preferable to use one type selected from one-component curable urethane resin or two-component curable urethane resin alone or in combination of two or more types. The reactive urethane resin is contained in an amount of 3 to 10% by mass with respect to the flame-retardant resin coating layer. By including the reactive urethane resin in this range, even if the entire glass cloth base fabric is oil-repellent treated with a fluorine-based compound, the adhesiveness between the base fabric and the resin layer is ensured and subjected to repeated bending. However, it is possible to make it difficult for the flame-retardant resin coating layer to float or peel off. If the reactive urethane resin contained in the flame retardant resin coating layer is less than 3 parts by mass, sufficient adhesion between the base fabric and the resin layer may not be obtained. Peeling may occur, and the glass cloth base fabric may be directly bent and damaged, resulting in a decrease in durability of the film material. Even if the reactive urethane resin is added in excess of 10 parts by mass, the adhesion is not improved any more, and the flame-retardant resin coating layer is hardened, resulting in a rigid film material, resulting in poor handling. During winding and unwinding when used as a fire shutter, the film material and the case inner wall or the film material rub against each other in the entraining case, and the surface of the film material and the woven fabric may be damaged, and the appearance may be damaged. The glass cloth base fabric may be damaged to cause problems such as a decrease in durability of the membrane material.

本発明において反応性ウレタン樹脂に用いられる1液硬化型ウレタン系樹脂とは、ポリイソシアネートとポリオールを反応させ、ポリオールの水酸基を全てウレタン結合させてイソシアネート基を残したものであり、残ったイソシアネート基が空気中の水分と反応してイソシアネート基どうしが結合(ウレア結合)して硬化するものである。ウレタンプレポリマーに用いられるポリイソシアネートとしては、脂肪族ポリイソシアネート、脂環式ポリイソシアネート、芳香脂肪族ポリイソシアネート、芳香族ポリイソシアネート、これらのポリイソシアネートの変性物、及び、珪素含有ポリイソシアネートなどが例示され、ポリオールとしては、ポリオキシアルキレンポリオール、ポリエステルポリオール、ポリオレフィンポリオール、アクリルポリオール、ヒマシ油系ポリオール、及び、これらのポリオール中でエチレン性不飽和単量体を重合して得られる重合体ポリオールなどが例示される。   In the present invention, the one-component curable urethane resin used for the reactive urethane resin is one in which a polyisocyanate and a polyol are reacted, all hydroxyl groups of the polyol are urethane-bonded to leave an isocyanate group, and the remaining isocyanate group Reacts with moisture in the air, and the isocyanate groups bond (urea bonds) to cure. Examples of the polyisocyanate used in the urethane prepolymer include aliphatic polyisocyanates, alicyclic polyisocyanates, araliphatic polyisocyanates, aromatic polyisocyanates, modified products of these polyisocyanates, and silicon-containing polyisocyanates. Polyols include polyoxyalkylene polyols, polyester polyols, polyolefin polyols, acrylic polyols, castor oil-based polyols, and polymer polyols obtained by polymerizing ethylenically unsaturated monomers in these polyols. Illustrated.

本発明において反応性ウレタン樹脂に用いられる2液硬化型ウレタン系樹脂とは、ポリオール成分とイソシアネート基含有化合物とを含み、これらを混合することで、ポリオールの水酸基とイソシアネート基とが反応して硬化するものである。2液硬化型ウレタン系樹脂に用いるポリオール成分としては、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール、ポリカプロラクトンポリオール、アクリルポリオールなどが例示され、イソシアネート基含有化合物としては、TDI(トリレンジイソシアネート)系、MDI(ジフェニルメタンジイソシアネート)系、XDI(キシリレンジイソシアネート)系、IPDI(イソホロンジイソシアネート)系、HDI(ヘキサメチレンジイソシアネート)系、など、従来公知のジイソシアネート化合物、これらのジイソシアネートをポリオールと反応させた上でイソシアネート基を残存させたポリイソシアネート、および、イソシアネート3量体(イソシアヌレート系)などが例示される。   In the present invention, the two-component curable urethane resin used for the reactive urethane resin includes a polyol component and an isocyanate group-containing compound, and by mixing these, the hydroxyl group of the polyol and the isocyanate group react to cure. To do. Examples of the polyol component used in the two-component curable urethane-based resin include polyester polyol, polyether polyol, polycarbonate polyol, polycaprolactone polyol, and acrylic polyol. Examples of the isocyanate group-containing compound include TDI (tolylene diisocyanate), Conventionally known diisocyanate compounds such as MDI (diphenylmethane diisocyanate), XDI (xylylene diisocyanate), IPDI (isophorone diisocyanate), HDI (hexamethylene diisocyanate), and the like, after reacting these diisocyanates with polyols Examples thereof include polyisocyanate in which a group remains and isocyanate trimer (isocyanurate type).

本発明において熱線反射性粒子は、難燃性樹脂被覆層に対して1〜10質量%含まれる。熱線反射性粒子をこの範囲で含むことで、防炎剤や無機充填剤を多量に含まなくても、火炎から放射される熱線(赤外線)を反射して、火災発生時の膜材の温度上層を抑制し、火炎に曝されている面とは反対側の面での発炎や、熱によるガラスクロス製基布の損傷を防ぎ、反対側への火炎の噴出(透過)を遅らせることができる。その結果、建築基準法第2条第9号の二のロ(防火戸その他の政令で定める防火設備)の認定に係る基準、すなわち、膜材の一方の面に対して、ISO834に準拠した標準加熱曲線に従って加熱を行った時に、20分後の時点で、(1)非加熱面への火炎の噴出がなく、(2)非加熱面で10秒を超えて継続する発炎を生じず、(3)火炎が通る亀裂等の損傷及び隙間を発生しない、を満たし、更に、ASTM−E1354コーンカロリーメーター試験法による燃焼試験にも適合する膜材を得る事ができる。難燃性樹脂被覆層に含まれる熱線反射性粒子が1質量部未満であると膜材の温度上層を抑制する効果が充分に得られない事があり、熱線反射性粒子が10質量部を超えると、難燃性樹脂被覆層が硬くなって膜材の取り扱い性が劣ったり、屈曲耐久性が損なわれたりすることがあり、また、15%以上の可視光透過率(JISZ8722)が得られなくなることがある。熱線反射性粒子としては、波長800nm〜2500nmの赤外領域に少なくとも一つの反射ピークを有する薄片状の干渉雲母粒子、および、重量平均粒子径が0.5〜1.6の金属酸化物粒子(例えば、酸化チタン、酸化亜鉛(ZnO)、酸化スズ、酸化ジルコニウム、酸化インジウム(In)、スズドープ酸化インジウム、インジウムドープ酸化スズ、アンチモンドープ酸化スズなど)から、1種あるいは2種以上選択して用いることができる。火災時の燃焼温度は1200℃に達するといわれ、その炎から発する熱は赤外線(熱線)として放射されるが、本発明の熱線反射性粒子は、熱線(780nmを超える赤外線)を反射しつつ、可視領域(380〜780nm)の光を選択的に透過するため膜材の可視光透過率をさほど低下させず、膜材の向こう側で火災を生じている場合に、膜材を透過して炎のあかるさを視認して火災の有無を認識する事ができ、かつ熱線を反射して延焼を防止する事ができる。本発明においては、これらの粒子の内特に、波長800nm〜2500nmの赤外領域に少なくとも一つの反射ピークを有する薄片状の干渉雲母粒子が、可視光透過率の低下が少ない点、雲母の硬度(モース硬度2〜3)がガラスの硬度(モース硬度5)より低いため、ガラスクロス製基布を傷つけ難い点、及び、薄片状であるため難燃性樹脂被覆層にピンホールを生じ難くする点、などから、特に好ましく用いられる。この様な干渉雲母粒子としては、酸化チタン、酸化錫、酸化ジルコニウムから選ばれた1種或いは2種以上混合された金属酸化物からなる単層の薄膜、或いは酸化チタン/酸化ケイ素/酸化チタンの3層からなる複層薄膜で被覆された薄片状の雲母粒子を例示することができ、その粒径(薄片の厚さ方向ではなく、面方向の幅及び長さ)は、5〜60μmであることが好ましい。 In this invention, 1-10 mass% of heat ray reflective particles are contained with respect to a flame-retardant resin coating layer. By including heat-reflective particles in this range, even if it does not contain a large amount of flameproofing agent or inorganic filler, it reflects the heat rays (infrared rays) emitted from the flame, and the upper layer temperature of the film material in the event of a fire Suppresses flames, prevents flames on the opposite side of the surface exposed to the flame, damages the glass cloth base fabric due to heat, and delays the ejection (permeation) of the flame to the opposite side . As a result, the standards pertaining to the certification of Article 2-9 of the Building Standards Act (Fireproofing Facilities stipulated by fireproof doors and other government ordinances), that is, the standard in conformity with ISO834 for one side of the membrane material When heating is performed according to the heating curve, after 20 minutes, (1) there is no jet of flame on the non-heated surface, (2) no flame that continues for more than 10 seconds on the non-heated surface, (3) It is possible to obtain a film material that satisfies the condition that it does not generate cracks and other cracks through which a flame passes and does not generate a gap, and is also compatible with a combustion test by the ASTM-E1354 cone calorimeter test method. If the heat ray reflective particles contained in the flame retardant resin coating layer are less than 1 part by mass, the effect of suppressing the temperature upper layer of the film material may not be sufficiently obtained, and the heat ray reflective particles exceed 10 parts by mass. When the flame retardant resin coating layer becomes hard, the handling of the film material may be inferior, the bending durability may be impaired, and a visible light transmittance of 15% or more (JIS Z8722) cannot be obtained. Sometimes. As the heat ray reflective particles, flaky interference mica particles having at least one reflection peak in the infrared region having a wavelength of 800 nm to 2500 nm, and metal oxide particles having a weight average particle diameter of 0.5 to 1.6 ( For example, one or more selected from titanium oxide, zinc oxide (ZnO), tin oxide, zirconium oxide, indium oxide (In 2 O 3 ), tin-doped indium oxide, indium-doped tin oxide, antimony-doped tin oxide, etc. Can be used. It is said that the combustion temperature at the time of fire reaches 1200 ° C., and the heat emitted from the flame is emitted as infrared rays (heat rays), but the heat ray reflective particles of the present invention reflect the heat rays (infrared rays exceeding 780 nm), In order to selectively transmit light in the visible region (380 to 780 nm), the visible light transmittance of the film material is not reduced so much, and when there is a fire on the other side of the film material, the film material passes through the flame. It is possible to recognize whether there is a fire by visually recognizing the warmth, and to prevent the spread of fire by reflecting the heat rays. In the present invention, among these particles, flaky interference mica particles having at least one reflection peak in the infrared region with a wavelength of 800 nm to 2500 nm have a small decrease in visible light transmittance, the mica hardness ( Since the Mohs hardness 2-3) is lower than the hardness of the glass (Mohs hardness 5), the glass cloth base fabric is less likely to be damaged, and the flakes are less likely to cause pinholes in the flame-retardant resin coating layer. From the above, it is particularly preferably used. Examples of such interference mica particles include a single-layer thin film made of a metal oxide selected from titanium oxide, tin oxide, and zirconium oxide, or a mixture of titanium oxide / silicon oxide / titanium oxide. Examples of flaky mica particles covered with a multilayer thin film consisting of three layers can be exemplified, and the particle size (width and length in the plane direction, not in the thickness direction of the flakes) is 5 to 60 μm. It is preferable.

本発明で用いられるポリ塩化ビニル樹脂としては、乳化重合によって得られた数平均分子量P=700〜3800、好ましくは1000〜2000のペースト塩化ビニル樹脂、および、塩化ビニル−エチレン共重合体樹脂、塩化ビニル−酢酸ビニル共重合体樹脂、塩化ビニル−塩化ビニリデン共重合体樹脂、塩化ビニル−アクリル酸共重合体樹脂、及び塩化ビニル−ウレタン共重合体樹脂などの塩化ビニル共重合体樹脂(共重合成分は2〜30質量%)を包含する。本発明において軟質ポリ塩化ビニル樹脂組成物は、上述の、ポリ塩化ビニル樹脂、反応性ウレタン樹脂、および、熱線反射性粒子、を含み、更に可塑剤を加えたペーストゾルとして、全体に撥油処理を施したガラスクロス製基布の両面上に、ディッピング、またはコーティングによって塗工され、160〜200℃で加熱硬化されて難燃性樹脂被覆層が形成される。難燃性樹脂被覆層の付着量は、ガラスクロス製基布の質量(撥油処理前)と難燃性樹脂被覆層との質量比で、1:0.25〜1:3である事が好ましい。ガラスクロス製基布に対する難燃性樹脂被覆層の質量比が1:0.25未満では、巻き出し巻取りの際の摩擦によりガラスクロス製基布が傷つき易く、得られる膜材の屈曲耐久性が劣る事があり、1:3を超えると火災の際に、炎に曝された側とは半対面で発炎を生じやすくなって、延焼を防止する能力が不足する事があり、また、ASTM−E1354コーンカロリーメーター試験法による燃焼試験において、総発熱量や発熱速度が基準を上回ってしまう事がある。   The polyvinyl chloride resin used in the present invention is a paste vinyl chloride resin having a number average molecular weight P obtained by emulsion polymerization of P = 700 to 3800, preferably 1000 to 2000, and a vinyl chloride-ethylene copolymer resin, chloride Vinyl chloride copolymer resins such as vinyl-vinyl acetate copolymer resins, vinyl chloride-vinylidene chloride copolymer resins, vinyl chloride-acrylic acid copolymer resins, and vinyl chloride-urethane copolymer resins (copolymerization components) 2-30 mass%). In the present invention, the soft polyvinyl chloride resin composition includes the above-described polyvinyl chloride resin, reactive urethane resin, and heat ray reflective particles, and further as an oil-repellent treatment as a paste sol to which a plasticizer is further added. The glass cloth base fabric is subjected to dipping or coating on both sides and heated and cured at 160 to 200 ° C. to form a flame retardant resin coating layer. The adhesion amount of the flame retardant resin coating layer is a mass ratio of the mass of the glass cloth base fabric (before the oil repellent treatment) and the flame retardant resin coating layer, and may be 1: 0.25 to 1: 3. preferable. When the mass ratio of the flame retardant resin coating layer to the glass cloth base fabric is less than 1: 0.25, the glass cloth base fabric is easily damaged by friction during unwinding and winding, and the bending durability of the obtained film material When the ratio exceeds 1: 3, it is easy to generate a flame in half-facing with the side exposed to the flame in the event of a fire, and the ability to prevent the spread of fire may be insufficient. In the combustion test by the ASTM-E1354 corn calorimeter test method, the total calorific value and the heat generation rate may exceed the standard.

軟質ポリ塩化ビニル樹脂組成物に用いる可塑剤には特に限定は無く、フタル酸エステル系可塑剤、シクロヘキサンジカルボン酸エステル系可塑剤、脂肪酸エステル系可塑剤、ポリエステル系可塑剤、クエン酸エステル系可塑剤、スルホン酸エステル系可塑剤、エポキシ系可塑剤、リン酸エステル系可塑剤、塩素化パラフィン系可塑剤など、塩化ビニル系樹脂用可塑剤として従来公知のものから適宜選択して用いることができる。軟質ポリ塩化ビニル樹脂組成物には、本発明の目的を阻害しない限りにおいて、これらの他に、安定剤、防炎剤、充填剤、紫外線吸収剤、酸化防止剤、帯電防止剤、抗菌剤、防黴剤、着色剤(有機顔料、無機顔料、染料)、蛍光増白剤、蛍光顔料、蓄光顔料、湿潤剤、分散剤、希釈用の有機溶剤などを含んでも良い。   The plasticizer used in the soft polyvinyl chloride resin composition is not particularly limited, and includes a phthalate ester plasticizer, a cyclohexanedicarboxylic ester plasticizer, a fatty acid ester plasticizer, a polyester plasticizer, and a citrate ester plasticizer. A sulfonate ester plasticizer, an epoxy plasticizer, a phosphate ester plasticizer, a chlorinated paraffin plasticizer, and the like can be appropriately selected from conventionally known plasticizers for vinyl chloride resins. As long as the object of the present invention is not impaired, the soft polyvinyl chloride resin composition includes a stabilizer, a flame retardant, a filler, an ultraviolet absorber, an antioxidant, an antistatic agent, an antibacterial agent, Anti-mold agents, colorants (organic pigments, inorganic pigments, dyes), fluorescent brighteners, fluorescent pigments, phosphorescent pigments, wetting agents, dispersants, organic solvents for dilution, and the like may also be included.

本発明のガラスクロス製基布は、ガラス繊維糸条からなる織布あるいは編布である。織布を用いる場合は、長さ方向に平行に配された経糸に対して直交する緯糸を挿入して製織した、平織、綾織、繻子織、紗織、絽織などの織布の他、平行に並べた経糸と緯糸とを直交するように重ね、これらを絡み糸で押えて構成した絡み織などの織布から適宜選択して用いる事ができる。また、編布を用いる場合はタテ方向に整経された糸をループで絡み合わせるタテ編み編布の内、緯糸挿入トリコット編布が好ましく用いられる。これら編織布は、空隙率が0〜5%、より好ましくは0〜3%で、糸条間に実質上間隙が形成されていない非粗目状の編織布であることが好ましい。空隙率が5%を超えると、難燃性樹脂被覆層を形成しても、膜材の表裏に貫通した孔が残る事がある。火災時には、この孔から火炎が噴出(透過)することがあり、仮に孔が残らず、空隙部分が難燃性樹脂で覆われたとしても、ガラス繊維糸条を含まない部分は火災時に燃え抜け易く、燃え抜けた孔から火炎が噴出(透過)することがある。また、本発明のガラスクロス製基布の質量は90〜400g/mであることが好ましく、100〜350g/mであることがより好ましい。ガラスクロス製基布の質量が90g/m未満であると、得られる膜材の強度が不足し、繰り返し行われる巻取りや巻き出しに対する耐久性が不充分となる事がある。ガラスクロス製基布の質量が400g/mを超えると、得られる膜材が剛直となって取り扱い性が悪くなったり、巻き取り及び送り出し時に膜材同士がこすれ合って、膜材表面や織布が傷ついて、外観が損なわれたり、膜材強度が低下するなどの問題を生じることがある。 The glass cloth base fabric of the present invention is a woven or knitted fabric made of glass fiber yarns. When using a woven fabric, weaving by inserting wefts orthogonal to the warp arranged in parallel in the length direction, weaving, such as plain weave, twill weave, satin weave, silk weave, woven weave, in parallel The warps and wefts arranged side by side are stacked so as to be orthogonal to each other, and these can be appropriately selected from woven fabrics such as a woven fabric formed by pressing them with the entangled yarn. In the case of using a knitted fabric, a weft insertion tricot knitted fabric is preferably used among the warp knitted knitted fabrics in which yarns warped in the warp direction are entangled with loops. These knitted fabrics are preferably non-coarse knitted fabrics having a porosity of 0 to 5%, more preferably 0 to 3%, and substantially no gaps formed between the yarns. When the porosity exceeds 5%, even if the flame retardant resin coating layer is formed, holes penetrating on the front and back of the film material may remain. In the event of a fire, a flame may be ejected (permeated) from this hole, and even if the hole does not remain and the void is covered with a flame-retardant resin, the part that does not contain glass fiber yarn will burn out in the event of a fire. It is easy, and a flame may be ejected (permeated) from the burned-out hole. The mass of the glass cloth made base fabric of the present invention is preferably from 90~400g / m 2, and more preferably 100~350g / m 2. When the mass of the glass cloth base fabric is less than 90 g / m 2 , the strength of the obtained film material is insufficient, and durability against repeated winding and unwinding may be insufficient. When the mass of the glass cloth base fabric exceeds 400 g / m 2 , the obtained film material becomes rigid and the handleability deteriorates, and the film materials rub against each other during winding and feeding, and the surface of the film material and the woven fabric The cloth may be damaged, resulting in problems such as the appearance being deteriorated and the strength of the film material being lowered.

本発明のガラスクロス製基布に用いるガラス繊維糸条を形成するガラス質には特に限定は無く、E(無アルカリ)ガラス、C(含アルカリ)ガラス、Sガラス、Dガラスなど、従来よりガラス繊維に用いられている公知のガラス組成から適宜選択して用いる事ができる。ガラス繊維糸条の形態としては、100〜2000dtex(デシテックス)のガラスマルチフィラメント糸条が好ましく用いられ、200〜1500dtexがより好ましい。ガラスマルチフィラメント糸条を構成するフィラメント単糸個々の直径は、1μm〜15μmであることが好ましく、5μm〜10μmが柔軟な膜材を得るために特に好ましい。   There is no particular limitation on the vitreous that forms the glass fiber yarn used for the glass cloth base fabric of the present invention, and glass such as E (non-alkali) glass, C (alkali-containing) glass, S glass, and D glass is conventionally used. It can be appropriately selected from known glass compositions used for fibers. As the form of the glass fiber yarn, a glass multifilament yarn of 100 to 2000 dtex (decitex) is preferably used, and 200 to 1500 dtex is more preferable. The diameter of each filament single yarn constituting the glass multifilament yarn is preferably 1 μm to 15 μm, and particularly preferably 5 μm to 10 μm in order to obtain a flexible membrane material.

本発明において、ガラスクロス製基布は、その全体をフッ素系化合物で撥油処理する必要がある。フッ素系化合物を用いることで、ガラスクロスを構成するガラス繊維糸条の各単糸表面の表面エネルギーが低くなって撥油性を発現し、樹脂被覆加工時にガラス繊維糸条内部への軟質ポリ塩化ビニル樹脂組成物ペーストゾルの浸透が抑制される。これにより、難燃性樹脂被覆層に含まれる熱線反射性粒子、無機充填剤、など、粒子状の添加剤がガラス繊維糸条内部に侵入して繊維を直接傷つけたり、内部に異物があることで屈曲の際に部分的に強い応力がかかって繊維糸条が損傷を受ける事を防いで、屈曲耐久性を向上させることができる。更に、熱線反射性粒子が基布内部に入り込まないことで、火災時に基布に到達する熱線を効果的に反射する事ができ、耐炎性の面でも有利となる。パラフィン系やシリコーン系のいわゆる撥水処理剤で処理したり、あるいは撥油処理を行わなかった場合には、加工液のガラスクロスへの浸透抑制が不充分となり、膜材の屈曲耐久性が損なわれる事がある。また、撥油処理しないガラスクロス製基布では、難燃性樹脂被覆層を形成するためのペーストゾルが粘度調整用の希釈溶剤を含む場合に、加工液に触れた瞬間に希釈溶剤だけが先にガラスクロス製基布に浸透して、基布周辺の液粘度が不均一になり、その結果均一な被覆層が形成されず、膜材の外観が損なわれる事がある。ガラスクロス製基布へのフッ素系化合物の付着量は、用いる処理剤の種類によって適宜調整する必要はあるが、ガラスクロス製基布の質量に対して0.3〜1.0質量%であることが好ましい。撥油処理に用いるフッ素系化合物としては、通常撥油処理剤として用いられているフッ素系化合物であれば限定無く用いる事ができるが、特に人体への毒性に懸念を持たれるPFOA(パーフルオロオクタン酸)、PFOS(パーフロロオクタンスルフォン酸)、長鎖PFCAs(PFOAよりも炭素数の多いパーフロロカルボン酸)などの含有量が100ppb以下である化合物が好ましく、高速液体クロマトグラフ−質量分析計で測定したときの検出限界値である5ppb以下である化合物がより好ましい。この様な化合物としては、(a)炭素数1〜6のパーフルオロアルキル基、または−CO−、−CO−および−CFO−からなる群から選択された少なくとも一種の繰り返し単位を有するフルオロエーテル基を有し、炭素−炭素2重結合を有する重合性単量体(例えば、パーフルオロアルキルアクリレート、パーフルオロアルキルメタアクリレート、パーフルオロポリエーテルアクリレートなど)、(b)炭素数1〜6のパーフルオロアルケニル基を有する重合性単量体、(c)重合性基を有する含フッ素シルセスキオキサン単量体、の、いずれかからなる単独重合体、これらの内2種以上の単量体を含む共重合体、あるいは、これらの単量体と共重合可能でフッ素原子を有さない重合性単量体(例えばアルキルアクリレート、ビニルエステル類、ビニルエーテル類、α−オレフィン類、塩素含有不飽和モノマー、などの炭素−炭素2重結合を有する重合性単量体)との共重合体、などが例示される。 In the present invention, the glass cloth base fabric needs to be oil-repellent treated with a fluorine-based compound as a whole. By using a fluorine-based compound, the surface energy of each single yarn of the glass fiber yarn constituting the glass cloth is lowered to exhibit oil repellency, and the soft polyvinyl chloride inside the glass fiber yarn during resin coating processing The penetration of the resin composition paste sol is suppressed. As a result, particulate additives such as heat ray reflective particles and inorganic fillers contained in the flame retardant resin coating layer may enter the inside of the glass fiber yarn and damage the fiber directly, or there may be foreign matter inside. The bending durability can be improved by preventing the fiber yarn from being damaged due to partial strong stress during bending. Further, since the heat ray reflective particles do not enter the inside of the base fabric, it is possible to effectively reflect the heat rays that reach the base fabric in the event of a fire, which is advantageous in terms of flame resistance. When treated with a so-called water-repellent treatment agent such as paraffin or silicone, or when oil-repellent treatment is not performed, the penetration of the processing liquid into the glass cloth becomes insufficient, and the bending durability of the membrane material is impaired. There are times. In addition, in a glass cloth base fabric that is not treated with oil repellency, when the paste sol for forming the flame-retardant resin coating layer contains a diluent solvent for adjusting viscosity, only the diluent solvent is first applied when the processing solution is touched. Infiltrating into the glass cloth base fabric, the liquid viscosity around the base fabric becomes non-uniform. As a result, a uniform coating layer is not formed, and the appearance of the film material may be impaired. The adhesion amount of the fluorine-based compound to the glass cloth base fabric needs to be appropriately adjusted depending on the type of the treatment agent used, but is 0.3 to 1.0% by mass with respect to the mass of the glass cloth base fabric. It is preferable. As the fluorine-based compound used in the oil-repellent treatment, any fluorine-based compound that is usually used as an oil-repellent treating agent can be used without limitation, but in particular, PFOA (perfluorooctane) that has a concern about toxicity to the human body. Acid), PFOS (perfluorooctane sulphonic acid), long chain PFCAs (perfluorocarboxylic acid having more carbon atoms than PFOA) and the like are preferred, and a high-performance liquid chromatograph-mass spectrometer is preferred. A compound having a detection limit value of 5 ppb or less as measured is more preferable. Such a compound was selected from the group consisting of (a) a C 1-6 perfluoroalkyl group, or —C 3 F 6 O—, —C 2 F 4 O—, and —CF 2 O—. A polymerizable monomer having a fluoroether group having at least one repeating unit and having a carbon-carbon double bond (for example, perfluoroalkyl acrylate, perfluoroalkyl methacrylate, perfluoropolyether acrylate, etc.), a homopolymer composed of any one of b) a polymerizable monomer having a C 1-6 perfluoroalkenyl group and (c) a fluorine-containing silsesquioxane monomer having a polymerizable group, A copolymer containing two or more of these monomers, or a polymerizable monomer that can be copolymerized with these monomers and does not have a fluorine atom (for example, an alkylacrylate). And a copolymer with a polymerizable monomer having a carbon-carbon double bond such as a rate, a vinyl ester, a vinyl ether, an α-olefin, a chlorine-containing unsaturated monomer, and the like.

本発明において、ガラスクロス製基布の全体に撥油処理を施す方法には特に限定は無く、例えば、上述のフッ素系化合物を、水や有機溶剤に溶解、或いは分散した処理液を用いて、パッド・ドライ法、パッド・スチーム法、パッド・ドライ・スチーム法、グラビアコーテイング法、スプレー法などによりガラスクロス製基布の全体に処理液を付与し、60〜200℃で加熱乾燥する方法などが例示される。また、処理液には、本発明の目的を阻害しない限り、上述のフッ素系化合物の他に、パラフィン系化合物、脂肪族アマイド系化合物、アルキルエチレン尿素化合物、シリコーン系化合物等の、フッ素原子を有さない撥水性化合物を併用して用いても良く、その他に、架橋剤(イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系など)、シランカップリング剤、結合材(樹脂成分)、エポキシ系硬化剤、硬化触媒、界面活性剤、浸透剤、消泡剤、帯電防止剤、造膜助剤等、従来公知の添加剤を含んでも良い。   In the present invention, there is no particular limitation on the method of applying an oil repellent treatment to the entire glass cloth base fabric, for example, using a treatment liquid in which the above-mentioned fluorine-based compound is dissolved or dispersed in water or an organic solvent, A method of applying a treatment liquid to the entire glass cloth base by the pad / dry method, the pad / steam method, the pad / dry / steam method, the gravure coating method, the spray method, and the like, followed by drying at 60 to 200 ° C. Illustrated. In addition to the fluorine compounds described above, the treatment liquid has fluorine atoms such as paraffin compounds, aliphatic amide compounds, alkylethylene urea compounds, silicone compounds, etc., as long as the object of the present invention is not impaired. In addition, cross-linking agents (isocyanate-based, melamine-based, carbodiimide-based, oxazoline-based, etc.), silane coupling agents, binders (resin components), epoxy curing agents In addition, conventionally known additives such as a curing catalyst, a surfactant, a penetrating agent, an antifoaming agent, an antistatic agent, and a film forming aid may be included.

本発明の屈曲耐久性及び耐炎性に優れた膜材は、15〜55%の可視光透過率(JIS
Z8722)を有するものであり、20〜50%であることがより好ましい。可視光透過率が15%未満であると、火災発生時に膜材の向こう側の状況を的確に認識する事ができないことがあり、特に日中の火災においては、周辺が明るい為膜材越しでは火災の発生に気づかず、避難の遅れにつながる事がある。一方、本発明においては、可視光透過率が55%を超える膜材を得るのは困難である。
The film material excellent in bending durability and flame resistance of the present invention has a visible light transmittance of 15 to 55% (JIS
Z8722), and more preferably 20 to 50%. If the visible light transmittance is less than 15%, it may not be possible to accurately recognize the situation on the other side of the membrane material in the event of a fire. Not aware of the occurrence of a fire and may lead to delayed evacuation. On the other hand, in the present invention, it is difficult to obtain a film material having a visible light transmittance exceeding 55%.

以下、本発明について実施例、および比較例を挙げて具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited to these.

実施例及び比較例で得た膜材を、以下の評価を行った。
1、耐炎性能
実施例・比較例で作成した膜材について、建築基準法第2条第9号の二のロ(防火戸
その他の政令で定める防火設備)の認定に係る性能評価法に準じて、耐炎性能を評価し
た。ただし、試験に供した膜材の大きさは幅200cm×高さ100mとし、幅190
cm×高さ90cmの開口部を有する標準仕様の周壁(木造軸組工法に厚さ12.5m
mの石膏ボードの2枚重ね張り)の、開口部内側(加熱側)に、試料固定用の鉄枠
(枠部幅5cm)を介して隙間がない様固定し、ISO834に準拠した標準加熱曲線
に従って加熱を行い、20分(加熱温度781℃)及び30分(加熱温度842℃)の
時点で、下記の項目についてそれぞれ以下の様に評価・判定した。
(1)非加熱面への火炎の噴出
A1:非加熱側への火炎の噴出がない
A2:非加熱側への火炎の噴出があったが10秒以内であった
B:非加熱側へ10秒を超えて継続する火炎の噴出があった
*判定:A1およびA2を適合とし、Bを不適合とした
(2)非加熱面での発炎の有無
A1:非加熱側に発炎を生じない
A2:非加熱側に発炎を生じたが、10秒以内であった
B:非加熱側に10秒を超えて継続する発炎を生じた
*判定:A1およびA2を適合とし、Bを不適合とした
(3)火炎が通る亀裂等の損傷及び隙間の有無
A:火炎が通る亀裂等の損傷及び隙間を発生しない
B:火炎が通る亀裂等の損傷及び隙間を発生した
*判定:Aを適合とし、Bを不適合とした
2、燃焼試験(ASTM−E1354:コーンカロリーメーター試験法)
実施例及び比較例で得た膜材に対して、輻射電気ヒーターによる50kW/mの輻射
熱を20分間照射する発熱性試験を行い、20分間の総発熱量と発熱速度を測定すると
ともに、試験後の膜材外観を観察し、以下の様に判定した。(いずれもAを適合とし、
Bを不適合とした)
(1)総発熱量
A:8MJ/m以下
B:8MJ/mを越えた
(2)発熱速度
A:10秒以上継続して200kW/mを超えない
B:10秒以上継続して200kW/mを超えた
(3)外観観察
A:直径0.5mmを超えるピンホール陥没痕の発生がない
B:直径0.5mmを超えるピンホール陥没痕が発生した
3、屈曲耐久性
JISP8115 紙及び板紙のMIT型試験機による耐折り強さ試験方法に準じて、
試験片に9.8Nの荷重を掛けた状態で往復折り曲げを繰返し、膜材が破断した時の
折り曲げ回数(1往復で1回とする)を記録した。なお、膜材の縦(経)方向及び
横(緯)方向とも各5点の試験片について試験を行い、縦横それぞれの平均回数をとり、
その値について以下の様に評価した。
A1:縦横とも30000回以上であり、屈曲耐久性に優れた膜材である
A2:縦横何れか一方、或いは両方が30000回未満であるが、縦横とも20000
回以上であり、屈曲耐久性を有する膜材である。
B:縦横何れか一方、或いは両方が20000回未満であり、屈曲耐久性の劣る膜材で
ある
*判定:A1およびA2を適合とし、Bを不適合とした
4、可視光透過率
実施例及び比較例で得た膜材の可視光透過率を、分光側色計CM−3600d(コニカ
ミノルタ(株)製)を使用しJISZ 8722に従って測定した。
The film materials obtained in Examples and Comparative Examples were evaluated as follows.
1. In accordance with the performance evaluation method related to the certification of Article 2-9 of the Building Standards Act (Fireproof Doors and other fire prevention equipment specified by Cabinet Order) for the film materials created in Examples and Comparative Examples of Flame Resistance Performance The flame resistance was evaluated. However, the size of the membrane material used for the test was 200 cm wide × 100 m high, and the width 190
Standard specification peripheral wall with an opening of cm x 90 cm in height (thickness 12.5 m for wooden shaft construction method)
Standard heating curve in accordance with ISO834, fixed to the inside of the opening (heating side) of the m gypsum board with a steel frame (frame width 5 cm) for fixing the sample. The following items were evaluated and judged as follows at 20 minutes (heating temperature 781 ° C.) and 30 minutes (heating temperature 842 ° C.), respectively.
(1) Flame ejection to the non-heating surface A1: No flame ejection to the non-heating side A2: Flame ejection to the non-heating side was within 10 seconds B: 10 to the non-heating side There was a fire eruption that continued for more than 2 seconds. * Judgment: A1 and A2 were compliant, B was irrelevant. (2) Presence or absence of flames on the non-heated surface A1: No flaming occurred on the non-heated side A2: Flame was generated on the non-heated side, but it was within 10 seconds B: Flame was generated on the non-heated side for more than 10 seconds * Judgment: A1 and A2 were compliant, B was not compliant (3) The presence of cracks and other cracks and gaps through which the flame passes A: Does not generate cracks and other cracks through which the flame passes B: The crack and other cracks through which the flame passes and the gap occurs * Judgment: A And made B non-conforming
2. Combustion test (ASTM-E1354: Corn calorimeter test method)
The film materials obtained in the examples and comparative examples were subjected to exothermic tests in which a radiant heat of 50 kW / m 2 was applied by a radiant electric heater for 20 minutes, and the total calorific value and heat generation rate for 20 minutes were measured. The appearance of the film material after the test was observed and judged as follows. (Everything is A,
B is considered nonconforming)
(1) Total calorific value A: 8 MJ / m 2 or less B: Exceeds 8 MJ / m 2 (2) Heat generation rate A: Continues for 10 seconds or more and does not exceed 200 kW / m 2 B: Continues for 10 seconds or more 200 kW / m 2 was exceeded (3) external observation a: no pinholes depressed scars of more than 0.5mm diameter B: pinhole depressed mark is generated in excess of 0.5mm diameter
3. Bending durability
According to JISP8115 paper and board fold strength test method by MIT type tester,
The test piece was repeatedly reciprocated with a load of 9.8 N applied, and the number of times of bending when the film material was broken (one reciprocation was recorded once) was recorded. In addition, the test was performed on each of the five specimens in both the longitudinal (longitudinal) direction and the lateral (weft) direction of the film material, and the average number of times of the longitudinal and lateral directions was taken.
The value was evaluated as follows.
A1: The film material is 30000 times or more in both length and width and is excellent in bending durability. A2: Either one or both of the length and width is less than 30,000 times, but both length and width are 20000.
It is a film material that has a bending durability.
B: Either longitudinal or lateral or both are less than 20000 times, and the film material is inferior in bending durability. * Judgment: A1 and A2 are qualified, and B is not
4. Visible light transmittance The visible light transmittance of the film materials obtained in Examples and Comparative Examples was measured according to JISZ 8722 using a spectroscopic colorimeter CM-3600d (manufactured by Konica Minolta Co., Ltd.).

[実施例1]
<基布>
1350dtexのガラス(Eガラス)マルチフィラメント(フィラメント単糸直径6
μm)糸条を、経糸及び緯糸に用いた平織布(織密度:経糸29本/インチ×緯糸32本/インチ)を、ガラスクロス製基布1(質量340g/m、空隙率0%)として用いた。
<撥油処理>
上記ガラスクロス製基布1を下記配合1のフッ素系化合物含有撥油処理組成物に浸漬し、引き上げると同時にマングルロールで圧搾し、基布に撥油処理剤組成物を完全に含浸させた。次いで、オーブン内で140℃×1分加熱して、フッ素系化合物で全体を撥油処理されたガラス繊維製基布を得た。(付着量:固形分で1.7g/m ・・・ガラスクロス製基布の質量に対して0.5質量%)
(配合1)フッ素系化合物撥油処理組成物
フッ素系撥油処理剤 5質量部
(旭硝子(株)社製:商品名「アサヒガードE−300D」)
水 95質量部
<難燃性樹脂被覆層の形成>
撥油処理されたガラスクロス製基布を、下記配合2の軟質ポリ塩化ビニル樹脂組成物からなるペーストゾルに浸漬し、引き上げると同時にマングルロールで圧搾し、次いでオーブン内で190℃×1分加熱して、撥油処理したガラスクロス製基布上に、両面合わせて100g/mの難燃性樹脂被覆層を有する実施例1の膜材を得た。なお、配合2において、反応性ウレタン樹脂としてポリエステルポリオールとイソシアヌレート化HDIからなる2液硬化型ウレタン樹脂を用い、熱線反射性粒子として波長900nmに反射ピークを有する薄片状の干渉雲母粒子を用いた。得られた膜材において、難燃性樹脂被覆層に対して反応性ウレタン樹脂が4.7質量%、熱線反射性粒子が3.1質量%含まれており、ガラスクロス製基布の質量(撥油処理前)と難燃性樹脂被覆層との質量比は1:0.29であった。この膜材を各種試験に供した結果を表1に示す。
(配合2)軟質ポリ塩化ビニル樹脂組成物
乳化重合ポリ塩化ビニル樹脂(数平均分子量1700) 100質量部
フタル酸ジ−2−エチルヘキシル(可塑剤) 50質量部
リン酸トリクレジル(可塑剤) 15質量部
三酸化アンチモン(難燃剤粒子) 10質量部
波長900nmに反射ピークを有する薄片状の干渉雲母粒子 6質量部
(メルク(株)製:商品名「ソーラーフレア870」)
ポリエステル系ポリオール(固形分100%) 6質量部
(日本ポリウレタン工業(株)製:商品名「ニッポラン1004」)
イソシアヌレート化HDI(固形分100%) 3質量部
(日本ポリウレタン工業(株)製:商品名「コロネートHX」)
安定剤:Ba−Zn系 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
希釈溶剤:トルエン 20質量部
[Example 1]
<Base fabric>
1350 dtex glass (E glass) multifilament (filament single yarn diameter 6
(μm) A plain woven fabric (weaving density: 29 warps / inch × 32 wefts / inch) used for warp and weft yarns, a glass cloth base fabric 1 (mass 340 g / m 2 , porosity 0%) ).
<Oil repellent treatment>
The glass cloth base fabric 1 was dipped in a fluorine-based compound-containing oil repellent treatment composition of the following formulation 1 and pulled up and simultaneously pressed with a mangle roll to completely impregnate the base fabric with the oil repellent treatment composition. Subsequently, it heated at 140 degreeC * 1 minute in oven, and obtained the glass fiber base fabric by which the whole was oil-repellent-treated with the fluorine-type compound. (Adhesion amount: 0.5% by weight based on the weight of 1.7 g / m 2 · · · glass cloth made base fabric on solids)
(Formulation 1) Fluorine-based compound oil-repellent treatment composition Fluorine-based oil-repellent treatment agent 5 parts by mass (manufactured by Asahi Glass Co., Ltd .: trade name “Asahi Guard E-300D”)
95 parts by weight of water <Formation of flame retardant resin coating layer>
The base cloth made of glass cloth treated with oil repellency is immersed in a paste sol made of a soft polyvinyl chloride resin composition having the following composition 2, pulled up and simultaneously pressed with a mangle roll, and then heated in an oven at 190 ° C. for 1 minute. Thus, the film material of Example 1 having a flame retardant resin coating layer of 100 g / m 2 on both surfaces was obtained on the oil-repellent glass cloth base fabric. In Formulation 2, a two-component curable urethane resin comprising polyester polyol and isocyanurated HDI was used as the reactive urethane resin, and flaky interference mica particles having a reflection peak at a wavelength of 900 nm were used as the heat ray reflective particles. . The obtained film material contains 4.7% by mass of a reactive urethane resin and 3.1% by mass of heat ray reflective particles with respect to the flame-retardant resin coating layer, and the mass of the glass cloth base fabric ( The mass ratio between the oil repellent treatment and the flame retardant resin coating layer was 1: 0.29. The results of subjecting this membrane material to various tests are shown in Table 1.
(Formulation 2) Soft polyvinyl chloride resin composition Emulsion polymerization polyvinyl chloride resin (number average molecular weight 1700) 100 parts by mass Di-2-ethylhexyl phthalate (plasticizer) 50 parts by mass Tricresyl phosphate (plasticizer) 15 parts by mass 10 parts by mass of antimony trioxide (flame retardant particles) 6 parts by mass of flake-like interference mica particles having a reflection peak at a wavelength of 900 nm (Merck, Inc., trade name “Solar Flare 870”)
Polyester polyol (solid content: 100%) 6 parts by mass (Nippon Polyurethane Industry Co., Ltd .: trade name “Nipporan 1004”)
3 parts by mass of isocyanurated HDI (solid content: 100%) (manufactured by Nippon Polyurethane Industry Co., Ltd .: trade name “Coronate HX”)
Stabilizer: Ba-Zn series 2 parts by mass Ultraviolet absorber: Benzotriazole series 0.5 parts by mass Diluent: Toluene 20 parts by mass

[実施例2]
配合2の代わりに下記配合3の軟質ポリ塩化ビニル樹脂組成物から難燃性樹脂被覆層を形成した以外は、実施例1と同様にして実施例2の膜材を得た。配合3において、熱線反射性粒子として、干渉雲母粒子に代えて、重量平均粒子径1.0μmの酸化チタン粒子(ルチル型)を用いた。得られた膜材の難燃性樹脂被覆層の質量は、両面合わせて105g/m(ガラスクロス製基布の質量(撥油処理前)と難燃性樹脂被覆層との質量比は1:0.31)であった。難燃性樹脂被覆層に対して反応性ウレタン樹脂が4.6質量%、熱線反射性粒子が5.1質量%含まれていた。この膜材を各種試験に供した結果を表1に示す。
(配合3) 軟質ポリ塩化ビニル樹脂組成物
乳化重合ポリ塩化ビニル樹脂(数平均分子量1700) 100質量部
フタル酸ジ−2−エチルヘキシル(可塑剤) 50質量部
リン酸トリクレジル(可塑剤) 15質量部
三酸化アンチモン(難燃剤粒子) 10質量部
重量平均粒子径1.0μmの酸化チタン粒子(ルチル型) 10質量部
ポリエステル系ポリオール(固形分100%) 6質量部
(日本ポリウレタン工業(株)製:商品名「ニッポラン1004」)
イソシアヌレート化HDI(固形分100%) 3質量部
(日本ポリウレタン工業(株)製:商品名「コロネートHX」)
安定剤:Ba−Zn系 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
希釈溶剤:トルエン 20質量部
[Example 2]
A film material of Example 2 was obtained in the same manner as in Example 1 except that the flame retardant resin coating layer was formed from the soft polyvinyl chloride resin composition of the following Formulation 3 instead of Formulation 2. In Formulation 3, titanium oxide particles (rutile type) having a weight average particle diameter of 1.0 μm were used as heat ray reflective particles instead of the interference mica particles. The mass of the flame retardant resin coating layer of the obtained film material is 105 g / m 2 on both sides (the mass ratio between the mass of the glass cloth base fabric (before the oil-repellent treatment) and the flame retardant resin coating layer is 1). : 0.31). The flame retardant resin coating layer contained 4.6% by mass of reactive urethane resin and 5.1% by mass of heat ray reflective particles. The results of subjecting this membrane material to various tests are shown in Table 1.
(Formulation 3) Soft polyvinyl chloride resin composition Emulsion polymerization polyvinyl chloride resin (number average molecular weight 1700) 100 parts by mass Di-2-ethylhexyl phthalate (plasticizer) 50 parts by mass Tricresyl phosphate (plasticizer) 15 parts by mass Antimony trioxide (flame retardant particles) 10 parts by weight Titanium oxide particles having a weight average particle diameter of 1.0 μm (rutile type) 10 parts by weight Polyester polyol (solid content 100%) 6 parts by weight (manufactured by Nippon Polyurethane Industry Co., Ltd .: Product name “Nipporan 1004”)
3 parts by mass of isocyanurated HDI (solid content: 100%) (manufactured by Nippon Polyurethane Industry Co., Ltd .: trade name “Coronate HX”)
Stabilizer: Ba-Zn series 2 parts by mass Ultraviolet absorber: Benzotriazole series 0.5 parts by mass Diluent: Toluene 20 parts by mass

[実施例3]
配合2の代わりに下記配合4の軟質ポリ塩化ビニル樹脂組成物から難燃性樹脂被覆層を形成した以外は、実施例1と同様にして実施例3の膜材を得た。配合4において、熱線反射性粒子として、配合2で用いた干渉雲母粒子と配合3で用いた酸化チタン粒子(ルチル型)を併用して用いた。得られた膜材の難燃性樹脂被覆層の質量は、両面合わせて105g/m(ガラスクロス製基布の質量(撥油処理前)と難燃性樹脂被覆層との質量比は1:0.31)であった。難燃性樹脂被覆層に対して反応性ウレタン樹脂が4.5質量%、熱線反射性粒子が4.0質量%含まれていた。この膜材を各種試験に供した結果を表1に示す。
(配合4) 軟質ポリ塩化ビニル樹脂組成物
乳化重合ポリ塩化ビニル樹脂(数平均分子量1700) 100質量部
フタル酸ジ−2−エチルヘキシル(可塑剤) 50質量部
リン酸トリクレジル(可塑剤) 15質量部
三酸化アンチモン(難燃剤粒子) 10質量部
波長900nmに反射ピークを有する薄片状の干渉雲母粒子 3質量部
(メルク(株)製:商品名「ソーラーフレア870」)
重量平均粒子径1.0μmの酸化チタン粒子(ルチル型) 5質量部
ポリエステル系ポリオール(固形分100%) 6質量部
(日本ポリウレタン工業(株)製:商品名「ニッポラン1004」)
イソシアヌレート化HDI(固形分100%) 3質量部
(日本ポリウレタン工業(株)製:商品名「コロネートHX」)
安定剤:Ba−Zn系 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
希釈溶剤:トルエン 20質量部
[Example 3]
A film material of Example 3 was obtained in the same manner as in Example 1 except that the flame retardant resin coating layer was formed from the soft polyvinyl chloride resin composition of the following composition 4 instead of the composition 2. In Formula 4, the interference mica particles used in Formula 2 and the titanium oxide particles (rutile type) used in Formula 3 were used in combination as heat ray reflective particles. The mass of the flame retardant resin coating layer of the obtained film material is 105 g / m 2 on both sides (the mass ratio between the mass of the glass cloth base fabric (before the oil-repellent treatment) and the flame retardant resin coating layer is 1). : 0.31). 4.5 mass% of reactive urethane resins and 4.0 mass% of heat ray reflective particles were contained with respect to the flame-retardant resin coating layer. The results of subjecting this membrane material to various tests are shown in Table 1.
(Formulation 4) Soft polyvinyl chloride resin composition Emulsion polymerization polyvinyl chloride resin (number average molecular weight 1700) 100 parts by mass Di-2-ethylhexyl phthalate (plasticizer) 50 parts by mass Tricresyl phosphate (plasticizer) 15 parts by mass 10 parts by mass of antimony trioxide (flame retardant particles) 3 parts by mass of flake-like interference mica particles having a reflection peak at a wavelength of 900 nm (Merck, Inc., trade name “Solar Flare 870”)
Titanium oxide particles having a weight average particle size of 1.0 μm (rutile type) 5 parts by mass Polyester polyol (solid content 100%) 6 parts by mass (manufactured by Nippon Polyurethane Industry Co., Ltd .: trade name “Nipporan 1004”)
3 parts by mass of isocyanurated HDI (solid content: 100%) (manufactured by Nippon Polyurethane Industry Co., Ltd .: trade name “Coronate HX”)
Stabilizer: Ba-Zn series 2 parts by mass Ultraviolet absorber: Benzotriazole series 0.5 parts by mass Diluent: Toluene 20 parts by mass

[実施例4]
配合2の代わりに下記配合5の軟質ポリ塩化ビニル樹脂組成物から難燃性樹脂被覆層を形成した以外は、実施例1と同様にして実施例4の膜材を得た。配合5において、2液硬化型ウレタン系樹脂の代わりに、イソシアネート末端を有するウレタンプレポリマーからなる1液硬化型ウレタン系樹脂を用いた。得られた膜材の難燃性樹脂被覆層の質量は両面合わせて100g/m(ガラスクロス製基布の質量(撥油処理前)と難燃性樹脂被覆層との質量比1:0.29)、難燃性樹脂被覆層に対して反応性ウレタン樹脂が5.2質量%、熱線反射性粒子が3.1質量%含まれていた。この膜材を各種試験に供した結果を表1に示す。
(配合5) 軟質ポリ塩化ビニル樹脂組成物
乳化重合ポリ塩化ビニル樹脂(数平均分子量1700) 100質量部
フタル酸ジ−2−エチルヘキシル(可塑剤) 50質量部
リン酸トリクレジル(可塑剤) 15質量部
三酸化アンチモン(難燃剤粒子) 10質量部
波長900nmに反射ピークを有する薄片状の干渉雲母粒子 6質量部
(メルク(株)製:商品名「ソーラーフレア870」)
1液硬化型ウレタンプレポリマー(固形分100%) 10質量部
(日本ポリウレタン工業(株)製:商品名「コロネート2011」)
安定剤:Ba−Zn系 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
希釈溶剤:トルエン 20質量部
[Example 4]
A film material of Example 4 was obtained in the same manner as in Example 1 except that the flame retardant resin coating layer was formed from the soft polyvinyl chloride resin composition of the following composition 5 instead of the composition 2. In Formulation 5, instead of the two-component curable urethane resin, a one-component curable urethane resin composed of a urethane prepolymer having an isocyanate terminal was used. The mass of the flame retardant resin coating layer of the obtained film material is 100 g / m 2 in both sides (mass ratio of the mass of the glass cloth base fabric (before the oil repellent treatment) and the flame retardant resin coating layer 1: 0. .29), 5.2% by mass of reactive urethane resin and 3.1% by mass of heat ray reflective particles were contained in the flame-retardant resin coating layer. The results of subjecting this membrane material to various tests are shown in Table 1.
(Formulation 5) Soft polyvinyl chloride resin composition Emulsion polymerization polyvinyl chloride resin (number average molecular weight 1700) 100 parts by mass Di-2-ethylhexyl phthalate (plasticizer) 50 parts by mass Tricresyl phosphate (plasticizer) 15 parts by mass 10 parts by mass of antimony trioxide (flame retardant particles) 6 parts by mass of flake-like interference mica particles having a reflection peak at a wavelength of 900 nm (Merck, Inc., trade name “Solar Flare 870”)
1 part curable urethane prepolymer (solid content 100%) 10 parts by mass (made by Nippon Polyurethane Industry Co., Ltd .: trade name “Coronate 2011”)
Stabilizer: Ba-Zn series 2 parts by mass Ultraviolet absorber: Benzotriazole series 0.5 parts by mass Diluent: Toluene 20 parts by mass

[実施例5]
ガラスクロス製基布1の代わりに、375dtexのガラス(Eガラス)マルチフィラメント(フィラメント単糸直径9μm)糸条を経糸及び緯糸に用いた平織布(織密度:経糸32本/インチ×緯糸32本/インチ、質量100g/m、空隙率2.5%)からなるガラスクロス製基布2を用い、配合2の希釈溶剤を5質量部とした以外は、実施例1と同様にして、実施例5の膜材を得た。ガラスクロス製基布2に対する撥油処理剤の付着量は固形分で1.7g/m(ガラスクロス製基布の質量に対して0.5質量%)であり、得られた膜材の難燃性樹脂被覆層の質量は、両面合わせて110g/m(ガラスクロス製基布の質量(撥油処理前)と難燃性樹脂被覆層との質量比1:1.1)、難燃性樹脂被覆層に対して反応性ウレタン樹脂が4.7質量%、熱線反射性粒子が3.1質量%含まれていた。この膜材を各種試験に供した結果を表1に示す。
[Example 5]
Plain woven fabric (woven density: 32 warps / inch × weft 32) using 375 dtex glass (E glass) multifilament (filament single yarn diameter 9 μm) as warp and weft instead of glass cloth base fabric 1 The same as in Example 1, except that a glass cloth base fabric 2 composed of a book / inch, a mass of 100 g / m 2 , and a porosity of 2.5% was used, and the dilution solvent of Formulation 2 was changed to 5 parts by mass. The film material of Example 5 was obtained. The amount of the oil repellent treatment agent attached to the glass cloth base fabric 2 is 1.7 g / m 2 in solid content (0.5% by mass with respect to the mass of the glass cloth base fabric). The mass of the flame-retardant resin coating layer is 110 g / m 2 on both sides (mass ratio 1: 1.1 of the mass of the glass cloth base fabric (before the oil-repellent treatment) and the flame-retardant resin coating layer), The reactive urethane resin was contained by 4.7% by mass and the heat ray reflective particles were contained by 3.1% by mass with respect to the flammable resin coating layer. The results of subjecting this membrane material to various tests are shown in Table 1.

[実施例6]
配合2の代わりに配合3を用い、配合3の希釈溶剤を5質量部とした以外は、実施例5と同様にして、実施例6の膜材を得た。ガラスクロス製基布2に対する撥油処理剤の付着量は固形分で1.7g/m(ガラスクロス製基布の質量に対して0.5質量%)であり、得られた膜材の難燃性樹脂被覆層の質量は、両面合わせて117g/m(ガラスクロス製基布の質量(撥油処理前)と難燃性樹脂被覆層との質量比1:1.2)、難燃性樹脂被覆層に対して反応性ウレタン樹脂が4.7質量%、熱線反射性粒子が3.1質量%含まれていた。この膜材を各種試験に供した結果を表1に示す。
[Example 6]
A film material of Example 6 was obtained in the same manner as Example 5 except that Formulation 3 was used instead of Formulation 2 and the diluent solvent of Formulation 3 was changed to 5 parts by mass. The amount of the oil repellent treatment agent attached to the glass cloth base fabric 2 is 1.7 g / m 2 in solid content (0.5% by mass with respect to the mass of the glass cloth base fabric). The mass of the flame retardant resin coating layer is 117 g / m 2 on both sides (mass ratio of the mass of the glass cloth base fabric (before the oil-repellent treatment) and the flame retardant resin coating layer is 1: 1.2), The reactive urethane resin was contained by 4.7% by mass and the heat ray reflective particles were contained by 3.1% by mass with respect to the flammable resin coating layer. The results of subjecting this membrane material to various tests are shown in Table 1.

実施例1〜6の膜材は、本発明の要件を全て満たした膜材であり、耐炎性能、燃焼試験の全ての項目に適合し、防火設備に用いることのできる耐炎性に優れた膜材であった。また、実施例1〜6の膜材は、全て往復折り曲げ20000回以上の屈曲耐久性を有するため、巻き取りや巻き出しを繰返されるシャッターやスクリーンに適して用いることとができ、更に、可視光透過率が15以上であるため、この膜材を用いたシャッターやスクリーンが閉じた状態であっても、膜材の向こう側で発生した火災を認識することができる、防災上非常に有益なものであった。実施例1と実施例2および3の比較では、実施例1の耐屈曲性が実施例2および3比べて優れていたが、これは、実施例2および3で熱線反射性粒子として用いた酸化チタン粒子の硬度が高く(モース硬度7.0〜7.5)、繰返し屈曲の際にガラスマルチフィラメント糸条の表面が傷ついたためであると考えられる。しかし、ガラスクロス製基布の全体がフッ素系化合物で撥油処理されていることで、ガラスマルチフィラメント糸条内部には熱線反射性粒子が侵入することは無く、実用上充分な屈曲耐久性を有していた。実施例1と4とは、難燃性樹脂被覆層に含まれる反応性ウレタン樹脂が異なり、実施例1がポリオール成分とイソシアネート基含有化合物とを含む2液硬化型ウレタン系樹脂であり、実施例4がイソシアネート末端を有するウレタンプレポリマーからなる1液硬化型ウレタン系樹脂であったが、評価結果には差がなく、いずれも本発明に適して用いられる事が確認された。実施例5は、使用したガラスクロス製基布が実施例1よりも軽く、同じ配合の難燃性樹脂被覆層の質量は同程度であり、ガラスクロス製基布に対する難燃性樹脂被覆層の質量比が多かったため、加熱30分での耐炎性能の評価にわずかに差が出たものの、評価基準には適合していた。実施例6もまた、同じ配合の実施例2との比較で、ガラスクロス製基布に対する難燃性樹脂被覆層の質量比が多かったため、加熱30分での耐炎性能の評価にわずかに差が出たものの、評価基準には適合していた。   The film materials of Examples 1 to 6 are film materials that satisfy all the requirements of the present invention, are suitable for all items of flame resistance performance and combustion test, and are excellent in flame resistance that can be used for fire prevention equipment. Met. In addition, since all of the film materials of Examples 1 to 6 have bending durability of 20,000 times or more for reciprocal bending, they can be used suitably for shutters and screens that are repeatedly wound and unwound, and further visible light. Since the transmittance is 15 or more, even if the shutter or screen using this membrane material is closed, it is possible to recognize the fire that occurred on the other side of the membrane material, which is very useful for disaster prevention Met. In comparison between Example 1 and Examples 2 and 3, the flex resistance of Example 1 was superior to that of Examples 2 and 3, but this was due to the oxidation used as heat ray reflective particles in Examples 2 and 3. This is presumably because the titanium particles have a high hardness (Mohs hardness 7.0 to 7.5), and the surface of the glass multifilament yarn was damaged during repeated bending. However, since the entire glass cloth base fabric is treated with an oil repellent treatment with a fluorine-based compound, heat ray reflective particles do not enter the glass multifilament yarn, providing practically sufficient bending durability. Had. Examples 1 and 4 differ from the reactive urethane resin contained in the flame-retardant resin coating layer, and Example 1 is a two-component curable urethane resin containing a polyol component and an isocyanate group-containing compound. 4 was a one-component curable urethane resin composed of a urethane prepolymer having an isocyanate terminal, but there was no difference in the evaluation results, and it was confirmed that both were suitable for the present invention. In Example 5, the glass cloth base fabric used was lighter than Example 1, the mass of the flame retardant resin coating layer of the same composition was about the same, and the flame retardant resin coating layer of the glass cloth base fabric Although there were many mass ratios, the evaluation criteria of the flame resistance after heating for 30 minutes differed slightly, but the evaluation criteria were met. In Example 6, the mass ratio of the flame-retardant resin coating layer to the glass cloth base fabric was also larger than that of Example 2 having the same composition, so there was a slight difference in the evaluation of the flame resistance performance after heating for 30 minutes. Although it came out, it met the evaluation criteria.

[比較例1]
撥油処理を省略した以外は、実施例1と同様にして比較例1の膜材を得た。得られた膜材の難燃性樹脂被覆層の質量は、両面合わせて160g/m(ガラスクロス製基布の質量と難燃性樹脂被覆層との質量比1:0.47)、難燃性樹脂被覆層に対して反応性ウレタン樹脂が4.7質量%、熱線反射性粒子が3.1質量%含まれていた。この膜材を各種試験に供した結果を表2に示す。
[Comparative Example 1]
A film material of Comparative Example 1 was obtained in the same manner as Example 1 except that the oil repellent treatment was omitted. The mass of the flame retardant resin coating layer of the obtained film material is 160 g / m 2 on both sides (mass ratio of the mass of the glass cloth base fabric to the flame retardant resin coating layer is 1: 0.47), The reactive urethane resin was contained by 4.7% by mass and the heat ray reflective particles were contained by 3.1% by mass with respect to the flammable resin coating layer. The results of subjecting this membrane material to various tests are shown in Table 2.

比較例1の膜材は、難燃性樹脂被覆層の付着が不均一で外観が悪く、屈曲耐久性が不適合であり、巻き取りや巻き出しを繰り返されるシャッターやスクリーンに適さない膜材であった。また、耐炎性能、燃焼性能において不適合評価があり、防火設備に用いることのできない膜材であった。外観については、ガラスクロス製基布に撥油処理を行わなかった為に、ガラスクロス製基布が加工液に触れた瞬間、希釈溶剤が先に浸透して基布周辺の液粘度が不均一になったことが原因であると考えられる。屈曲耐久性については、難燃性樹脂被覆層形成時に、熱線反射性粒子や難燃剤粒子がガラスマルチフィラメント糸条内部に入り込み、繰返し屈曲を行った際に部分的に大きな応力がかかったこと、および、不均一な難燃性樹脂被覆層において、部分的に厚さが異なり、厚さの異なる部分に大きな応力がかかったこと、などが原因であると考えられる。   The film material of Comparative Example 1 is a film material that does not adhere to the flame-retardant resin coating layer, has a poor appearance, has inadequate bending durability, and is not suitable for a shutter or screen that is repeatedly wound and unwound. It was. Moreover, it was a film material which had non-conformity evaluation in flame resistance performance and combustion performance and could not be used for fire prevention equipment. As for the appearance, because the glass cloth base fabric was not treated with oil repellency, the liquid solvent around the base cloth was uneven because the diluted solvent penetrated the moment the glass cloth base fabric touched the processing liquid. This is considered to be the cause. Regarding the bending durability, when the flame retardant resin coating layer was formed, heat ray reflective particles and flame retardant particles entered the glass multifilament yarn, and when subjected to repeated bending, a large amount of stress was applied, In addition, in the non-uniform flame retardant resin coating layer, it is considered that the thickness is partially different and a large stress is applied to the portions having different thicknesses.

[比較例2]
撥油処理を省略した以外は、実施例2と同様にして比較例2の膜材を得た。得られた膜材の難燃性樹脂被覆層の質量は、両面合わせて165g/m(ガラスクロス製基布の質量と難燃性樹脂被覆層との質量比1:0.49)、難燃性樹脂被覆層に対して反応性ウレタン樹脂が4.5質量%、熱線反射性粒子が5.1質量%含まれていた。この膜材を各種試験に供した結果を表2に示す。
[Comparative Example 2]
A film material of Comparative Example 2 was obtained in the same manner as Example 2 except that the oil repellent treatment was omitted. The mass of the flame retardant resin coating layer of the obtained film material is 165 g / m 2 in both sides (mass ratio of the mass of the glass cloth base fabric to the flame retardant resin coating layer is 1: 0.49), difficult. 4.5 mass% of reactive urethane resin and 5.1 mass% of heat ray reflective particles were contained with respect to the flammable resin coating layer. The results of subjecting this membrane material to various tests are shown in Table 2.

比較例2の膜材も、比較例1と同様ガラスクロス製基布に撥油処理を行わなかった為に、難燃性樹脂被覆層の付着が不均一で外観が悪く、屈曲耐久性が不適合であり、巻き取りや巻き出しを繰り返されるシャッターやスクリーンに適さない膜材であった。また、耐炎性能、燃焼性能において不適合評価があり、防火設備に用いることのできない膜材であった。なお、比較例2は耐炎性能評価(30分)において亀裂が発生しており、比較例1よりも劣る結果であった。これは、熱線反射性粒子として用いられた酸化チタン粒子が、ガラスよりも高い硬度を有しており、それがガラスマルチフィラメント糸条内部に入り込んで繊維を傷つけたためであると考えられる。   Similarly to Comparative Example 1, the film material of Comparative Example 2 was not subjected to an oil repellency treatment on the glass cloth base fabric, so that the flame-retardant resin coating layer was unevenly adhered, the appearance was poor, and the bending durability was incompatible. Therefore, the film material is not suitable for a shutter or screen that is repeatedly wound and unwound. Moreover, it was a film material which had non-conformity evaluation in flame resistance performance and combustion performance and could not be used for fire prevention equipment. In Comparative Example 2, cracks occurred in the flame resistance evaluation (30 minutes), which was inferior to Comparative Example 1. This is presumably because the titanium oxide particles used as the heat ray reflective particles have a higher hardness than glass, which penetrates into the glass multifilament yarn and damages the fibers.

[比較例3]
配合1のフッ素系化合物撥油処理組成物の代わりに下記配合6のパラフィン系撥水処理組成物を用いた以外は、実施例1と同様にして比較例3の膜材を得た。ガラスクロス製基布に対するパラフィン系撥水処理の付着量は固形分で1.6g/m ガラスクロス製基布の質量に対して0.5質量%)、得られた膜材の難燃性樹脂被覆層の質量は、両面合わせて120g/m(ガラスクロス製基布の質量(撥水処理前)と難燃性樹脂被覆層との質量比1:0.35)、難燃性樹脂被覆層に対して反応性ウレタン樹脂が4.7質量%、熱線反射性粒子が3.1質量%含まれていた。この膜材を各種試験に供した結果を表2に示す。
(配合6)撥水処理組成物
パラフィン系撥水処理剤 8質量部
(大原パラジウム(株)社製:商品名「パラジウムNT」)
水 92質量部
[Comparative Example 3]
A film material of Comparative Example 3 was obtained in the same manner as in Example 1 except that the paraffinic water repellent composition of the following Formulation 6 was used instead of the fluorine compound oil repellent composition of Formulation 1. The adhesion amount of the paraffin-based water repellent treatment to the glass cloth base fabric is 1.6 g / m 2 in solid content ( 0.5% by mass with respect to the mass of the glass cloth base fabric), and the flame retardant of the obtained film material The weight of the resin coating layer is 120 g / m 2 on both sides (mass ratio of the glass cloth base fabric (before water repellent treatment) and the flame retardant resin coating layer is 1: 0.35), flame retardancy The reactive urethane resin was contained by 4.7% by mass and the heat ray reflective particles were contained by 3.1% by mass with respect to the resin coating layer. The results of subjecting this membrane material to various tests are shown in Table 2.
(Formulation 6) Water repellent composition 8 parts by weight of paraffinic water repellent (Ohara Palladium Co., Ltd .: trade name “Palladium NT”)
92 parts by weight of water

比較例3の膜材は、ガラスクロス製基布に対してパラフィン系の撥水処理を行ったことで、何も処理を行わなかった比較例1に比べて、外観については改善が見られたものの、屈曲耐久性については不適合であり、巻き取りや巻き出しを繰り返されるシャッターやスクリーンに適さない膜材であった。パラフィン系の撥水処理ではガラスクロス製基布へのペーストゾルの浸透抑制が不充分であり、難燃性樹脂被覆層形成時に、熱線反射性粒子や難燃剤粒子がガラスマルチフィラメント内部に入り込み、屈曲耐久性が損なわれたと考えられる。また、耐炎性能、燃焼性能において不適合評価はなかったものの、熱線反射性粒子がガラスマルチフィラメント内部に入り込んでしまったため基布に到達する熱線を反射する効果が減じ、実施例1に比べて耐炎性能について、やや劣っていた。   The film material of Comparative Example 3 was improved in appearance compared to Comparative Example 1 in which no treatment was performed by performing paraffin-based water-repellent treatment on the glass cloth base fabric. However, it was incompatible with bending durability, and was a film material that was not suitable for a shutter or screen that was repeatedly wound and unwound. The paraffin-based water repellent treatment is insufficient to suppress the penetration of the paste sol into the glass cloth base fabric, and when forming the flame retardant resin coating layer, heat ray reflective particles and flame retardant particles enter the inside of the glass multifilament, It is thought that bending durability was impaired. In addition, although there was no incompatibility evaluation in flame resistance and combustion performance, the effect of reflecting the heat rays reaching the base fabric was reduced because the heat ray reflective particles had entered the inside of the glass multifilament, and flame resistance performance compared to Example 1. About a little inferior.

[比較例4]
配合2の代わりに下記配合7の軟質ポリ塩化ビニル樹脂組成物から難燃性樹脂被覆層を形成した以外は、実施例1と同様にして比較例4の膜材を得た。得られた膜材の難燃性樹脂被覆層の質量は両面合わせて100g/m(ガラスクロス製基布の質量(撥油処理前)と難燃性樹脂被覆層との質量比1:0.29)、難燃性樹脂被覆層に対して熱線反射性粒子は3.3質量%含まれていたが、反応性ウレタン樹脂を含んでいなかった。この膜材を各種試験に供した結果を表2に示す。
(配合7) 軟質ポリ塩化ビニル樹脂組成物
乳化重合ポリ塩化ビニル樹脂(数平均分子量1700) 100質量部
フタル酸ジ−2−エチルヘキシル(可塑剤) 50質量部
リン酸トリクレジル(可塑剤) 15質量部
三酸化アンチモン(難燃剤粒子) 10質量部
波長900nmに反射ピークを有する薄片状の干渉雲母粒子 6質量部
(メルク(株)製:商品名「ソーラーフレア870」)
安定剤:Ba−Zn系 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
希釈溶剤:トルエン 20質量部
[Comparative Example 4]
A film material of Comparative Example 4 was obtained in the same manner as Example 1 except that the flame retardant resin coating layer was formed from the soft polyvinyl chloride resin composition of the following Formulation 7 instead of Formulation 2. The mass of the flame retardant resin coating layer of the obtained film material is 100 g / m 2 in both sides (mass ratio of the mass of the glass cloth base fabric (before the oil repellent treatment) and the flame retardant resin coating layer 1: 0. .29), although the heat-reflective particles were contained in an amount of 3.3% by mass with respect to the flame-retardant resin coating layer, they did not contain the reactive urethane resin. The results of subjecting this membrane material to various tests are shown in Table 2.
(Formulation 7) Soft polyvinyl chloride resin composition Emulsion polymerization polyvinyl chloride resin (number average molecular weight 1700) 100 parts by mass Di-2-ethylhexyl phthalate (plasticizer) 50 parts by mass Tricresyl phosphate (plasticizer) 15 parts by mass 10 parts by mass of antimony trioxide (flame retardant particles) 6 parts by mass of flake-like interference mica particles having a reflection peak at a wavelength of 900 nm (Merck, Inc., trade name “Solar Flare 870”)
Stabilizer: Ba-Zn series 2 parts by mass Ultraviolet absorber: Benzotriazole series 0.5 parts by mass Diluent: Toluene 20 parts by mass

比較例4の膜材は、実施例1の難燃性樹脂被覆層から2液硬化型ウレタン系樹脂を省略した膜材であり、実施例1に比べて屈曲耐久性が大きく劣っており、シャッターやスクリーンなど巻き出しや巻き取りを繰り返す用途に適さない膜材であった。これは、ガラスクロス製基布と難燃性樹脂被覆層の接着性が低いため、屈曲試験中に難燃性樹脂被覆層が脱落し、ガラスマルチフィラメント糸条が直接繰返し折り曲げに曝されて傷つき、切れ易くなったためであると考えられる。   The film material of Comparative Example 4 is a film material in which the two-component curable urethane-based resin is omitted from the flame-retardant resin coating layer of Example 1, and the bending durability is greatly inferior to that of Example 1. It was a film material that was not suitable for repeated unwinding and winding up such as screens and screens. This is because the adhesion between the glass cloth base fabric and the flame retardant resin coating layer is low, the flame retardant resin coating layer falls off during the bending test, and the glass multifilament yarn is directly exposed to repeated bending and is damaged. This is thought to be because it became easier to cut.

[比較例5]
配合2の代わりに下記配合8の軟質ポリ塩化ビニル樹脂組成物から難燃性樹脂被覆層を形成した以外は、実施例1と同様にして比較例4の膜材を得た。得られた膜材の難燃性樹脂被覆層の質量は両面合わせて100g/m(ガラスクロス製基布の質量(撥油処理前)と難燃性樹脂被覆層との質量比1:0.29)、難燃性樹脂被覆層に対して反応性ウレタン樹脂が12.8質量%、熱線反射性粒子が2.9質量%含まれていた。この膜材を各種試験に供した結果を表2に示す。
(配合8) 軟質ポリ塩化ビニル樹脂組成物
乳化重合ポリ塩化ビニル樹脂(数平均分子量1700) 100質量部
フタル酸ジ−2−エチルヘキシル(可塑剤) 50質量部
リン酸トリクレジル(可塑剤) 15質量部
三酸化アンチモン(難燃剤粒子) 10質量部
波長900nmに反射ピークを有する薄片状の干渉雲母粒子 6質量部
(メルク(株)製:商品名「ソーラーフレア870」)
ポリエステル系ポリオール(固形分100%) 15質量部
(日本ポリウレタン工業(株)製:商品名「ニッポラン1004」)
イソシアヌレート化HDI(固形分100%) 12質量部
(日本ポリウレタン工業(株)製:商品名「コロネートHX」)
安定剤:Ba−Zn系 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
希釈溶剤:トルエン 20質量部
[Comparative Example 5]
A film material of Comparative Example 4 was obtained in the same manner as Example 1 except that the flame retardant resin coating layer was formed from the soft polyvinyl chloride resin composition of the following Formulation 8 instead of Formulation 2. The mass of the flame retardant resin coating layer of the obtained film material is 100 g / m 2 in both sides (mass ratio of the mass of the glass cloth base fabric (before the oil repellent treatment) and the flame retardant resin coating layer 1: 0. .29), 12.8% by mass of reactive urethane resin and 2.9% by mass of heat ray reflective particles were contained in the flame-retardant resin coating layer. The results of subjecting this membrane material to various tests are shown in Table 2.
(Formulation 8) Soft polyvinyl chloride resin composition Emulsion polymerization polyvinyl chloride resin (number average molecular weight 1700) 100 parts by mass Di-2-ethylhexyl phthalate (plasticizer) 50 parts by mass Tricresyl phosphate (plasticizer) 15 parts by mass 10 parts by mass of antimony trioxide (flame retardant particles) 6 parts by mass of flake-like interference mica particles having a reflection peak at a wavelength of 900 nm (Merck, Inc., trade name “Solar Flare 870”)
Polyester polyol (solid content: 100%) 15 parts by mass (manufactured by Nippon Polyurethane Industry Co., Ltd .: trade name “Nipporan 1004”)
12 parts by mass of isocyanurated HDI (solid content: 100%) (manufactured by Nippon Polyurethane Industry Co., Ltd .: trade name “Coronate HX”)
Stabilizer: Ba-Zn series 2 parts by mass Ultraviolet absorber: Benzotriazole series 0.5 parts by mass Diluent: Toluene 20 parts by mass

比較例4の膜材は、難燃性樹脂被覆層に含まれる反応性ウレタン樹脂の量が、難燃性樹脂被覆層に対して12.8質量%であり、10質量%を超えていた。そのため、難燃性樹脂被覆層が硬くなって屈曲耐久性が不適合となり、シャッターやスクリーンなど巻き出しや巻き取りを繰り返す用途に適さない膜材であった。   In the film material of Comparative Example 4, the amount of the reactive urethane resin contained in the flame retardant resin coating layer was 12.8% by mass with respect to the flame retardant resin coating layer, exceeding 10% by mass. Therefore, the flame-retardant resin coating layer becomes hard and bending durability becomes incompatible, and the film material is not suitable for applications such as shutters and screens that repeat unwinding and winding.

[比較例6]
配合2の代わりに下記配合9の軟質ポリ塩化ビニル樹脂組成物から難燃性樹脂被覆層を形成した以外は、実施例1と同様にして比較例5の膜材を得た。得られた膜材の難燃性樹脂被覆層の質量は両面合わせて100g/m(ガラスクロス製基布の質量(撥油処理前)と難燃性樹脂被覆層との質量比1:0.29)、難燃性樹脂被覆層に対して反応性ウレタン樹脂が4.8質量%含まれていたが、熱線反射性粒子を含んでいなかった。この膜材を各種試験に供した結果を表2に示す。
(配合9) 軟質ポリ塩化ビニル樹脂組成物
乳化重合ポリ塩化ビニル樹脂(数平均分子量1700) 100質量部
フタル酸ジ−2−エチルヘキシル(可塑剤) 50質量部
リン酸トリクレジル(可塑剤) 15質量部
三酸化アンチモン(難燃剤粒子) 10質量部
ポリエステル系ポリオール(固形分100%) 6質量部
(日本ポリウレタン工業(株)製:商品名「ニッポラン1004」)
イソシアヌレート化HDI(固形分100%) 3質量部
(日本ポリウレタン工業(株)製:商品名「コロネートHX」)
安定剤:Ba−Zn系 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
希釈溶剤:トルエン 20質量部
[Comparative Example 6]
A film material of Comparative Example 5 was obtained in the same manner as in Example 1 except that the flame retardant resin coating layer was formed from the soft polyvinyl chloride resin composition of Formula 9 below instead of Formulation 2. The mass of the flame retardant resin coating layer of the obtained film material is 100 g / m 2 in both sides (mass ratio of the mass of the glass cloth base fabric (before the oil repellent treatment) and the flame retardant resin coating layer 1: 0. .29), although 4.8% by mass of the reactive urethane resin was contained in the flame-retardant resin coating layer, it did not contain heat ray reflective particles. The results of subjecting this membrane material to various tests are shown in Table 2.
(Formulation 9) Soft polyvinyl chloride resin composition Emulsion polymerization polyvinyl chloride resin (number average molecular weight 1700) 100 parts by mass Di-2-ethylhexyl phthalate (plasticizer) 50 parts by mass Tricresyl phosphate (plasticizer) 15 parts by mass Antimony trioxide (flame retardant particles) 10 parts by weight Polyester polyol (solid content 100%) 6 parts by weight (manufactured by Nippon Polyurethane Industry Co., Ltd .: trade name “Nipporan 1004”)
3 parts by mass of isocyanurated HDI (solid content: 100%) (manufactured by Nippon Polyurethane Industry Co., Ltd .: trade name “Coronate HX”)
Stabilizer: Ba-Zn series 2 parts by mass Ultraviolet absorber: Benzotriazole series 0.5 parts by mass Diluent: Toluene 20 parts by mass

比較例6の膜材は、難燃性樹脂被覆層に熱線反射性粒子を含まないため、耐炎性能の評価において不適合となり、また、燃焼試験において、発熱速度が10秒以上継続して200kW/mを超えて不適合となった。 Since the film material of Comparative Example 6 does not contain heat ray reflective particles in the flame retardant resin coating layer, it becomes unsuitable in the evaluation of flame resistance, and in the combustion test, the heating rate continues for 10 seconds or more and is 200 kW / m. Non-conformity exceeding 2 .

[比較例7]
配合2の代わりに下記配合10の軟質ポリ塩化ビニル樹脂組成物から難燃性樹脂被覆層を形成した以外は、実施例1と同様にして比較例6の膜材を得た。得られた膜材の難燃性樹脂被覆層の質量は両面合わせて120g/m(ガラスクロス製基布の質量(撥油処理前)と難燃性樹脂被覆層との質量比1:0.35)、難燃性樹脂被覆層に対して反応性ウレタン樹脂が3.1質量%含まれていた。この膜材を各種試験に供した結果を表2に示す。
(配合10) 軟質ポリ塩化ビニル樹脂組成物
乳化重合ポリ塩化ビニル樹脂(数平均分子量1700) 100質量部
フタル酸ジ−2−エチルヘキシル(可塑剤) 50質量部
リン酸トリクレジル(可塑剤) 15質量部
三酸化アンチモン(難燃剤粒子) 10質量部
水酸化マグネシウム(難燃剤) 50質量部
熱膨張性黒鉛 50質量部
(東ソー(株)社製:商品名「フレームカットGREP−EG」)
ポリエステル系ポリオール(固形分100%) 6質量部
(日本ポリウレタン工業(株)製:商品名「ニッポラン1004」)
イソシアヌレート化HDI(固形分100%) 3質量部
(日本ポリウレタン工業(株)製:商品名「コロネートHX」)
安定剤:Ba−Zn系 2質量部
紫外線吸収剤:ベンゾトリアゾール系 0.5質量部
希釈溶剤:トルエン 20質量部
[Comparative Example 7]
A film material of Comparative Example 6 was obtained in the same manner as in Example 1 except that the flame retardant resin coating layer was formed from the soft polyvinyl chloride resin composition having the following composition 10 instead of the composition 2. The mass of the flame retardant resin coating layer of the obtained film material is 120 g / m 2 in total on both sides (mass ratio of the mass of the glass cloth base fabric (before the oil repellent treatment) to the flame retardant resin coating layer 1: 0. .35), 3.1% by mass of a reactive urethane resin was contained in the flame-retardant resin coating layer. The results of subjecting this membrane material to various tests are shown in Table 2.
(Formulation 10) Soft polyvinyl chloride resin composition Emulsion polymerization polyvinyl chloride resin (number average molecular weight 1700) 100 parts by mass Di-2-ethylhexyl phthalate (plasticizer) 50 parts by mass Tricresyl phosphate (plasticizer) 15 parts by mass Antimony trioxide (flame retardant particles) 10 parts by weight Magnesium hydroxide (flame retardant) 50 parts by weight Thermally expandable graphite 50 parts by weight (manufactured by Tosoh Corporation: trade name “Frame Cut GREP-EG”)
Polyester polyol (solid content: 100%) 6 parts by mass (Nippon Polyurethane Industry Co., Ltd .: trade name “Nipporan 1004”)
3 parts by mass of isocyanurated HDI (solid content: 100%) (manufactured by Nippon Polyurethane Industry Co., Ltd .: trade name “Coronate HX”)
Stabilizer: Ba-Zn series 2 parts by mass Ultraviolet absorber: Benzotriazole series 0.5 parts by mass Diluent: Toluene 20 parts by mass

比較例7の膜材は、比較例6と同様難燃性樹脂被覆層に熱線反射性粒子を含まないが、 代わりに水酸化マグネシウムと熱膨張性黒鉛を含むため、耐炎性能及び燃焼試験の評価において適合となった。しかし、水酸化マグネシウムと熱膨張性黒鉛が多量に添加されていため屈曲耐久性に劣り、かつ可視光透過率が0%で、膜材を隔てると火災の発生を認識する事ができないため、防火シャッターや防火スクリーンには適さない膜材であった。   The film material of Comparative Example 7 does not contain heat ray reflective particles in the flame-retardant resin coating layer as in Comparative Example 6, but instead contains magnesium hydroxide and thermally expandable graphite. In conformity with. However, since magnesium hydroxide and thermally expandable graphite are added in large quantities, the bending durability is inferior, and the visible light transmittance is 0%. If the membrane material is separated, the occurrence of a fire cannot be recognized. The film material was not suitable for shutters and fire screens.

本発明の屈曲耐久性及び耐炎性に優れた膜材は、耐炎性に優れ、繰り返し屈曲に対する耐久性にも優れ、かつ、火災発生時に膜材の向こう側の状況を認識できる透光性を有している。そのため、建築基準法に規定される延焼の恐れのある建築物の開口部に、単独で設置したり、或いは耐火基準を満たさない窓に併設する防火設備として、耐火シャッターや耐火スクリーンを構成する膜材に好適に用いることができる。   The membrane material excellent in bending durability and flame resistance of the present invention has excellent flame resistance, durability against repeated bending, and translucency that can recognize the situation on the other side of the membrane material in the event of a fire. doing. Therefore, as a fire protection equipment to be installed alone in the opening of a building that is subject to the spread of fire as stipulated in the Building Standards Act, or to be attached to a window that does not meet the fire resistance standards, a film that constitutes a fireproof shutter or fireproof screen It can be suitably used for the material.

1:膜材
2:ガラスクロス製基布(フッ素系化合物で撥油処理)
2−1:経糸条
2−2:緯糸条
3:難燃性樹脂被覆層(熱線反射性粒子含有)
1: Film material 2: Glass cloth base fabric (fluorine compound and oil repellent treatment)
2-1: Warp 2-2: Weft 3: Flame retardant resin coating layer (contains heat ray reflective particles)

Claims (5)

ガラスクロス製基布の両面に、難燃性樹脂被覆層が形成された可撓性膜材であって、前記ガラスクロス製基布の全体がフッ素系化合物で撥油処理されており、前記難燃性樹脂被覆層が、反応性ウレタン樹脂および熱線反射性粒子を含む軟質ポリ塩化ビニル樹脂組成物の塗工硬化物により形成され、かつ、前記ガラスクロス製基布の内部に前記熱線反射性粒子を含まない状態で形成され、前記難燃性樹脂被覆層に対して前記反応性ウレタン樹脂を3〜10質量%、前記熱線反射性粒子を1〜10質量%それぞれ含み、前記可撓性膜材の可視光透過率(JIS Z8722)が15〜55%であることを特徴とする、屈曲耐久性及び耐炎性に優れた膜材。   A flexible film material having a flame retardant resin coating layer formed on both sides of a glass cloth base fabric, and the entire glass cloth base fabric is oil-repellent treated with a fluorine-based compound. The flammable resin coating layer is formed of a coated cured product of a soft polyvinyl chloride resin composition containing a reactive urethane resin and heat ray reflective particles, and the heat ray reflective particles are formed inside the glass cloth base fabric. 3 to 10% by mass of the reactive urethane resin and 1 to 10% by mass of the heat ray reflective particles with respect to the flame-retardant resin coating layer, respectively, and the flexible film material The film material excellent in bending durability and flame resistance, characterized by having a visible light transmittance (JIS Z8722) of 15 to 55%. 前記反応性ウレタン樹脂が、1液硬化型ウレタン系樹脂、または、2液硬化型ウレタン系樹脂から選ばれる1種、または2種以上である、請求項1に記載の屈曲耐久性及び耐炎性に優れた膜材。   2. The bending durability and flame resistance according to claim 1, wherein the reactive urethane resin is one type selected from a one-component curable urethane resin or a two-component curable urethane resin, or two or more types. Excellent membrane material. 前記熱線反射性粒子が、波長800nm〜2500nmの赤外領域に、少なくとも一つの反射ピークを有する薄片状の干渉雲母粒子である、請求項1または2に記載の屈曲耐久性及び耐炎性に優れた膜材。   The heat ray reflective particles are flake-like interference mica particles having at least one reflection peak in an infrared region having a wavelength of 800 nm to 2500 nm, and have excellent bending durability and flame resistance. Membrane material. 前記ガラスクロス製基布が、ガラスマルチフィラメント糸条を製織してなる織布であり、かつ、質量90〜400g/m、空隙率0〜5%を有する、請求項1から3いずれか1項に記載の屈曲耐久性及び耐炎性に優れた膜材。 The glass cloth base fabric is a woven fabric formed by weaving glass multifilament yarns, and has a mass of 90 to 400 g / m 2 and a porosity of 0 to 5%. The film material excellent in bending durability and flame resistance described in the item. 前記ガラスクロス製基布の質量及び前記難燃性樹脂被覆層との質量比が1:0.25〜1:3である、請求項1から4いずれか1項に記載の屈曲耐久性及び耐炎性に優れた膜材。   The bending durability and flame resistance according to any one of claims 1 to 4, wherein a mass ratio of the glass cloth base fabric to the flame retardant resin coating layer is 1: 0.25 to 1: 3. Excellent film material.
JP2013107557A 2013-05-22 2013-05-22 Film material with excellent bending durability and flame resistance Active JP6091329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013107557A JP6091329B2 (en) 2013-05-22 2013-05-22 Film material with excellent bending durability and flame resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013107557A JP6091329B2 (en) 2013-05-22 2013-05-22 Film material with excellent bending durability and flame resistance

Publications (2)

Publication Number Publication Date
JP2014226841A JP2014226841A (en) 2014-12-08
JP6091329B2 true JP6091329B2 (en) 2017-03-08

Family

ID=52127140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013107557A Active JP6091329B2 (en) 2013-05-22 2013-05-22 Film material with excellent bending durability and flame resistance

Country Status (1)

Country Link
JP (1) JP6091329B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6484790B2 (en) * 2014-12-25 2019-03-20 平岡織染株式会社 Noncombustible film materials for building structures
JP2016125163A (en) * 2014-12-29 2016-07-11 株式会社クラレ Polyether imide-based fiber and fiber assembly
CN104960255A (en) * 2015-06-29 2015-10-07 安徽丹凤电子材料股份有限公司 High-fire-retardant corrosion-resistant glass fiber cloth
JP6580928B2 (en) * 2015-10-02 2019-09-25 平岡織染株式会社 Deodorant fabric
JP6472822B2 (en) 2017-03-03 2019-02-20 住友化学株式会社 Nonaqueous electrolyte secondary battery separator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189374A (en) * 1984-10-05 1986-05-07 平岡織染株式会社 Production of water-proof sheet
JP5115931B2 (en) * 2008-08-29 2013-01-09 平岡織染株式会社 Transparency composite sheet

Also Published As

Publication number Publication date
JP2014226841A (en) 2014-12-08

Similar Documents

Publication Publication Date Title
JP6091329B2 (en) Film material with excellent bending durability and flame resistance
JP5731175B2 (en) Transparent incombustible sheet and sheet shutter using the same
JP5462973B1 (en) Transparent incombustible sheet
JP5945057B1 (en) Transparent incombustible sheet
JP6239459B2 (en) Transparent incombustible sheet
TW200304411A (en) Stainproof, waterproof sheet
DK3194514T3 (en) FLAMMABLE COMPOSITION FOR TEXTILE
JP6243562B1 (en) Transparent sheet, smoke barrier wall including the transparent sheet, and method for producing the transparent sheet
JP2017209943A (en) Transparent sheet
JP3794961B2 (en) Soundproofing sheet for construction with daylighting and flame resistance
JP5648139B1 (en) Transparent incombustible sheet
JP6232628B2 (en) Noncombustible film material
JP6303331B2 (en) Transparent incombustible sheet
JP6357272B1 (en) Method for producing transparent sheet and transparent sheet
JP5602931B1 (en) Transparent incombustible sheet
JP5634591B1 (en) Transparent incombustible sheet
JP6959647B2 (en) A transparent sheet, a smoke-proof hanging wall containing the transparent sheet, and a method for manufacturing the transparent sheet.
JP6371445B1 (en) Transparent sheet, smoke barrier wall including the transparent sheet, and method for producing the transparent sheet
JP6504395B2 (en) Transparent noncombustible sheet
JPS62257842A (en) Incombustible waterproof sheet having light transmittance
JP4375541B2 (en) Olefin resin laminated non-combustible film material
JP7355369B2 (en) Sheet and membrane ceiling containing the sheet
JP6940875B2 (en) Manufacturing method of transparent sheet and transparent sheet
JP2024016062A (en) Noncombustible sheet, and smokeproof hanging wall including noncombustible sheet
JP2006161193A (en) Anti-staining membrane material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160427

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170207

R150 Certificate of patent or registration of utility model

Ref document number: 6091329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250