[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6070060B2 - 撮像装置およびプログラム - Google Patents

撮像装置およびプログラム Download PDF

Info

Publication number
JP6070060B2
JP6070060B2 JP2012236191A JP2012236191A JP6070060B2 JP 6070060 B2 JP6070060 B2 JP 6070060B2 JP 2012236191 A JP2012236191 A JP 2012236191A JP 2012236191 A JP2012236191 A JP 2012236191A JP 6070060 B2 JP6070060 B2 JP 6070060B2
Authority
JP
Japan
Prior art keywords
parallax
amount
pixel
image
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012236191A
Other languages
English (en)
Other versions
JP2014086981A (ja
Inventor
清茂 芝崎
清茂 芝崎
浜島 宗樹
宗樹 浜島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012236191A priority Critical patent/JP6070060B2/ja
Publication of JP2014086981A publication Critical patent/JP2014086981A/ja
Application granted granted Critical
Publication of JP6070060B2 publication Critical patent/JP6070060B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Description

本発明は、撮像装置およびプログラムに関する。
2つの撮影光学系を用いて、右目用の画像と左目用の画像とから成るステレオ画像を取得するステレオ撮像装置が知られている。
[先行技術文献]
[特許文献]
[特許文献1] 特開平8−47001号公報
ここで、右目用の画像と左目用画像との間の視差量がどれくらいの大きさであれば自然な立体視をできるのかは、撮影者が不慣れな場合等、撮影時に撮影者側で認識できていなことが多い。
本発明の第1の態様においては、撮像装置であって、二次元的に配された複数の光電変換素子のうち少なくとも一部の光電変換素子のそれぞれに対応して開口マスクが設けられた少なくとも2つの視差画像データを含むデータセットを出力する撮像素子と、開口マスクへの入射光束を調整することにより、少なくとも2つの視差画素データ間の視差量を増減する光束調整部と、少なくとも2つのデータセットの視差量の差分を指定する差分量の入力を受け付ける差分受付部と、受付部により受け付けられた差分量に基づいて、光束調整部により入射光束を調整して、撮像素子により少なくとも2つのデータセットを出力させる制御部とを備える。
本発明の第2の態様においては、二次元的に配された複数の光電変換素子のうち少なくとも一部の光電変換素子のそれぞれに対応して開口マスクが設けられた少なくとも2つの視差画像データを含むデータセットを出力する撮像素子と、前記開口マスクへの入射光束を調整することにより、前記少なくとも2つの視差画素データ間の視差量を増減する光束調整部とを有する撮像装置を制御するプログラムであって、前記撮影装置に、少なくとも2つのデータセットの視差量の差分を指定する差分量の入力を受け付ける差分受付機能、および、前記受付部により受け付けられた前記差分量に基づいて、前記光束調整部により前記入射光束を調整して、前記撮像素子により少なくとも2つのデータセットを出力させる制御機能を実現させる。
なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
デジタルカメラの構成を説明する図である。 撮像素子の一部を拡大した様子を概念的に表す概念図である。 2D画像データと視差画像データの生成処理の例を説明する図である。 デフォーカスの概念を説明する図である。 視差画素が出力する光強度分布を示す図である。 デジタルカメラにおける絞り値、画像の鮮鋭度を示すコントラストおよび視差量の関係を模式的に示す。 視差量の定量的な定義の一例を示す。 絞りF値と、ユーザにより入力される視差ステップとの関係を示す。 デジタルカメラにおいて複数の視差画像データセットを出力するフローチャートの一例である。 被写体像を示す。 デジタルカメラにおける合焦面、画像の鮮鋭度を示すコントラストおよび視差量の関係を模式的に示す。 他の被写体配置における視差量を模式的に示す。 図12の被写体配置における被写体像を示す。 デジタルカメラにおいて複数の視差画像データセットを出力するフローチャートの他の例である。
以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
撮像装置の一形態である本実施形態に係るデジタルカメラは、1つのシーンについて複数の視点数の画像を一度の撮影により生成できるように構成されている。互いに視点の異なるそれぞれの画像を視差画像と呼ぶ。本実施形態においては、特に、右目と左目に対応する2つの視点による右視差画像と左視差画像を生成する場合について説明する。本実施形態におけるデジタルカメラは、中央視点による視差のない視差なし画像も、視差画像と共に生成できる。
図1は、デジタルカメラ10の構成を説明する図である。デジタルカメラ10は、被写体を撮影して複数の視差画像を生成する。さらにデジタルカメラ10は、同一の被写体に対して視差量の異なる複数の視差画像データセットを生成して出力する、視差量に関するブラケット撮影を行う。
デジタルカメラ10は、撮影光学系としての撮影レンズ20を備え、光軸21に沿って入射する被写体光束を撮像素子100へ導く。デジタルカメラ10は、被写体光束の周辺を遮光する絞り22をさらに備える。撮影レンズ20は絞り22と共に、デジタルカメラ10に対して着脱できる交換式レンズであっても構わない。デジタルカメラ10は、撮像素子100、制御部201、A/D変換回路202、メモリ203、駆動部204、画像処理部205、メモリカードIF207、操作部208、表示部209、LCD駆動回路210およびAFセンサ211を備える。
なお、図示するように、撮像素子100へ向かう光軸21に平行な方向をZ軸プラス方向と定め、Z軸と直交する平面において紙面手前へ向かう方向をX軸プラス方向、紙面上方向をY軸プラス方向と定める。撮影における構図との関係はX軸が水平方向、Y軸が垂直方向となる。以降のいくつかの図においては、図1の座標軸を基準として、それぞれの図の向きがわかるように座標軸を表示する。
撮影レンズ20は、複数の光学レンズ群から構成され、シーンからの被写体光束をその焦点面近傍に結像させる。なお、図1では撮影レンズ20を説明の都合上、瞳近傍に配置された仮想的な1枚のレンズで代表して表している。
絞り22は、撮影レンズ20の瞳近傍に配され、撮像素子100へ入射する被写体光束の周辺領域を遮光する。絞り22の絞り値は可変であって、制御部201からの制御により設定される。当該絞り22の一例は虹彩絞りであるが、これに限られない。
撮像素子100は、撮影レンズ20の焦点面近傍に配置されている。撮像素子100は、二次元的に複数の光電変換素子が配列された、例えばCCD、CMOSセンサ等のイメージセンサである。撮像素子100は、駆動部204によりタイミング制御されて、受光面上に結像された被写体像を画像信号に変換してA/D変換回路202へ出力する。
A/D変換回路202は、撮像素子100が出力する画像信号をデジタル画像信号に変換してメモリ203へ出力する。視差量算出部231は、撮像された被写体の視差量を算出する。
制御部201は、デジタルカメラ10を統合的に制御する。例えば、設定された絞り値に応じて絞り22の開口を調整し、AF評価値に応じて撮影レンズ20を光軸方向に進退させる。また、撮影レンズ20の位置を検出して、撮影レンズ20の焦点距離、フォーカスレンズ位置を把握する。さらに、駆動部204に対してタイミング制御信号を送信し、撮像素子100から出力される画像信号が画像処理部205で撮影画像データに処理されるまでの一連のシーケンスを管理する。
画像処理部205は、メモリ203をワークスペースとして種々の画像処理を施し、画像データを生成する。画像処理部205は、他にも選択された画像フォーマットに従って画像データを調整するなどの画像処理一般の機能も担う。生成された画像データは、LCD駆動回路210により表示信号に変換され、表示部209に表示される。また、メモリカードIF207に装着されているメモリカード220に記録される。
操作部208は、ユーザからの撮影指示を受け付けるレリーズボタンを有する。操作部208はさらに、ユーザからの視差量に関するブラケット撮影の指示、および、その場合の視差量の差分を指定する差分量である視差ステップの入力を受け付けるボタンを有する。
AFセンサ211は、被写体空間に対して複数の測距点が設定された位相差センサであり、それぞれの測距点において被写体像のデフォーカス量を検出する。なお、撮像素子100がAFセンサを兼ねてもよく、その場合には別個のAFセンサ211を設けなくてよい。
一連の撮影シーケンスは、操作部208がユーザの操作を受け付けて、制御部201へ操作信号を出力することにより開始される。撮影シーケンスに付随するAF,AE等の各種動作は、制御部201に制御されて実行される。例えば、制御部201は、AFセンサ211の検出信号を解析して、撮影レンズ20の一部を構成するフォーカスレンズを移動させる合焦制御を実行する。
図2は、撮像素子100の一部を拡大した様子を概念的に表す概念図である。画素領域には2000万個以上もの画素がマトリックス状に配列されている。本実施形態においては、隣接する8画素×8画素の64画素が一つの基本格子110を形成する。基本格子110は、2×2の4画素を基本単位とするベイヤー配列を、Y軸方向に4つ、X軸方向に4つ含む。なお、図示するように、ベイヤー配列においては、左上画素と右下画素に緑フィルタ(Gフィルタ)、左下画素に青フィルタ(Bフィルタ)、右上画素に赤フィルタ(Rフィルタ)が配される。
基本格子110は、視差画素と視差なし画素を含む。視差画素は、撮影レンズ20を透過する入射光束のうち、光軸から偏位した部分光束を受光する画素である。視差画素には、当該部分光束のみを透過させるように、画素中心から偏位した偏位開口を有する開口マスクが設けられている。開口マスクは、例えば、カラーフィルタに重ねて設けられる。本実施形態においては、開口マスクにより、部分光束が画素中心に対して左側に到達するように規定された視差Lt画素と、部分光束が画素中心に対して右側に到達するように規定された視差Rt画素の2種類が存在する。一方、視差なし画素は、開口マスクが設けられていない画素であり、撮影レンズ20を透過する入射光束の全体を受光する画素である。
なお、視差画素は、光軸から偏位した部分光束を受光するにあたり、開口マスクに限らず、受光領域と反射領域が区分された選択的反射膜、偏位したフォトダイオード領域など、様々な構成を採用し得る。すなわち、視差画素は、撮影レンズ20を透過する入射光束のうち、光軸から偏位した部分光束を受光できるように構成されていれば良い。
基本格子110内の画素をPIJで表す。例えば、左上画素はP11であり、右上画素はP81である。図に示すように、視差画素は以下のように配列されている。
11…視差Lt画素+Gフィルタ(=G(Lt))
51…視差Rt画素+Gフィルタ(=G(Rt))
32…視差Lt画素+Bフィルタ(=B(Lt))
63…視差Rt画素+Rフィルタ(=R(Rt))
15…視差Rt画素+Gフィルタ(=G(Rt))
55…視差Lt画素+Gフィルタ(=G(Lt))
76…視差Rt画素+Bフィルタ(=B(Rt))
27…視差Lt画素+Rフィルタ(=R(Lt))
他の画素は視差なし画素であり、視差無し画素+Rフィルタ、視差なし画素+Gフィルタ、視差無し画素+Bフィルタのいずれかである。
撮像素子100の全体でみた場合に、視差画素は、Gフィルタを有する第1群と、Rフィルタを有する第2群と、Bフィルタを有する第3群のいずれかに区分され、基本格子110には、それぞれの群に属する視差Lt画素および視差Rt画素が少なくとも1つは含まれる。図の例のように、これらの視差画素および視差なし画素が、基本格子110内においてランダム性を有して配置されると良い。ランダム性を有して配置されることにより、色成分ごとの空間分解能に偏りを生じさせることなく、視差画素の出力としてRGBのカラー情報を取得することができるので、高品質な視差画像データが得られる。
次に、撮像素子100から出力される撮影画像データから2D画像データと視差画像データを生成する処理の概念を説明する。図3は、2D画像データと視差画像データの生成処理の例を説明する図である。
基本格子110における視差画素および視差なし画素の配列からもわかるように、撮像素子100の出力をその画素配列に一致させてそのまま羅列しても、特定の像を表す画像データにはならない。撮像素子100の画素出力を、同一に特徴付けられた画素グループごとに分離して寄せ集めてはじめて、その特徴に即した一つの像を表す画像データが形成される。例えば、左右の視差画素をそれぞれ寄せ集めると、互いに視差を有する左右の視差画像データが得られる。このように、同一に特徴付けられた画素グループごとに分離して寄せ集められたそれぞれの画像データを、プレーンデータと呼ぶ。
画像処理部205は、撮像素子100の画素配列順にその出力値(画素値)が羅列されたRAW元画像データを受け取り、複数のプレーンデータに分離するプレーン分離処理を実行する。図の左列は、2D画像データとしての2D−RGBプレーンデータの生成処理の例を示す。
2D−RGBプレーンデータを生成するにあたり、画像処理部205は、まず視差画素の画素値を除去して、空格子とする。そして、空格子となった画素値を、周辺画素の画素値を用いて補間処理により算出する。例えば、空格子P11の画素値は、斜め方向に隣接するGフィルタ画素の画素値である、P−1−1、P2−1、P−12、P22の画素値を平均化演算して算出する。また、例えば空格子P63の画素値は、上下左右に1画素飛ばして隣接するRフィルタの画素値である、P43、P61、P83、P65の画素値を平均化演算して算出する。同様に、例えば空格子P76の画素値は、上下左右に1画素飛ばして隣接するBフィルタの画素値である、P56、P74、P96、P78の画素値を平均化演算して算出する。
このように補間された2D−RGBプレーンデータは、ベイヤー配列を有する通常の撮像素子の出力と同様であるので、その後は2D画像データとして各種処理を行うことができる。すなわち、公知のベイヤー補間を行って、各画素にRGBデータの揃ったカラー画像データを生成する。画像処理部205は、静止画データを生成する場合にはJPEG等の、動画データを生成する場合にはMPEG等の、予め定められたフォーマットに従って一般的な2D画像としての画像処理を行う。
本実施形態においては、画像処理部205は、2D−RGBプレーンデータをさらに色ごとに分離し、上述のような補間処理を施して、基準画像データとしての各プレーンデータを生成する。すなわち、緑色の基準画像プレーンデータとしてのGnプレーンデータ、赤色の基準画像プレーンデータとしてのRnプレーンデータ、および青色の基準画像プレーンデータとしてのBnプレーンデータの3つを生成する。
図の右列は、視差画素得データとしての2つのGプレーンデータ、2つのRプレーンデータおよび2つのBプレーンデータの生成処理の例を示す。2つのGプレーンデータは、左視差画像データとしてのGLtプレーンデータと右視差画像データとしてのGRtプレーンデータであり、2つのRプレーンデータは、左視差画像データとしてのRLtプレーンデータと右視差画像データとしてのRRtプレーンデータであり、2つのBプレーンデータは、左視差画像データとしてのBLtプレーンデータと右視差画像データとしてのBRtプレーンデータである。
GLtプレーンデータを生成するにあたり、画像処理部205は、撮像素子100の全出力値からG(Lt)画素の画素値以外の画素値を除去して空格子とする。すると、基本格子110には、P11とP55の2つの画素値が残る。そこで、基本格子110を縦横に4等分し、左上の16画素分をP11の出力値で代表させ、右下の16画素分をP55の出力値で代表させる。そして、右上の16画素分および左下の16画素分は、上下左右に隣接する周辺の代表値を平均化演算して補間する。すなわち、GLtプレーンデータは、16画素単位で一つの値を有する。
同様に、GRtプレーンデータを生成するにあたり、画像処理部205は、撮像素子100の全出力値からG(Rt)画素の画素値以外の画素値を除去して空格子とする。すると、基本格子110には、P51とP15の2つの画素値が残る。そこで、基本格子110を縦横に4等分し、右上の16画素分をP51の出力値で代表させ、左下の16画素分をP15の出力値で代表させる。そして、左上の16画素分および右下の16画素分は、上下左右に隣接する周辺の代表値を平均化演算して補間する。すなわち、GRtプレーンデータは、16画素単位で一つの値を有する。このようにして、2D−RGBプレーンデータよりは解像度の低いGLtプレーンデータとGRtプレーンデータを生成することができる。
RLtプレーンデータを生成するにあたり、画像処理部205は、撮像素子100の全出力値からR(Lt)画素の画素値以外の画素値を除去して空格子とする。すると、基本格子110には、P27の画素値が残る。この画素値を基本格子110の64画素分の代表値とする。同様に、RRtプレーンデータを生成するにあたり、画像処理部205は、撮像素子100の全出力値からR(Rt)画素の画素値以外の画素値を除去して空格子とする。すると、基本格子110には、P63の画素値が残る。この画素値を基本格子110の64画素分の代表値とする。このようにして、2D−RGBプレーンデータよりは解像度の低いRLtプレーンデータとRRtプレーンデータが生成される。この場合、RLtプレーンデータとRRtプレーンデータの解像度は、GLtプレーンデータとGRtプレーンデータの解像度よりも低い。
BLtプレーンデータを生成するにあたり、画像処理部205は、撮像素子100の全出力値からB(Lt)画素の画素値以外の画素値を除去して空格子とする。すると、基本格子110には、P32の画素値が残る。この画素値を基本格子110の64画素分の代表値とする。同様に、BRtプレーンデータを生成するにあたり、画像処理部205は、撮像素子100の全出力値からB(Rt)画素の画素値以外の画素値を除去して空格子とする。すると、基本格子110には、P76の画素値が残る。この画素値を基本格子110の64画素分の代表値とする。このようにして、2D−RGBプレーンデータよりは解像度の低いBLtプレーンデータとBRtプレーンデータが生成される。この場合、BLtプレーンデータとBRtプレーンデータの解像度は、GLtプレーンデータとGRtプレーンデータの解像度よりも低く、RLtプレーンデータとRRtプレーンデータの解像度と同等である。
本実施形態においては、画像処理部205は、これらのプレーンデータを用いて、左側視点のカラー画像データおよび右側視点のカラー画像データを生成する。具体的な処理に先立って、まず生成原理について説明する。
図4は、デフォーカスの概念を説明する図である。視差Lt画素および視差Rt画素は、レンズ瞳の部分領域としてそれぞれ光軸対象に設定された2つの視差仮想瞳のいずれかから到達する被写体光束を受光する。本実施形態の光学系においては、実際の被写体光束はレンズ瞳の全体を通過するので、視差画素に到達するまでは、視差仮想瞳に対応する光強度分布が互いに区別されるのではない。しかし、視差画素は、それぞれが有する開口マスクの作用により、視差仮想瞳を通過した部分光束のみを光電変換した画像信号を出力する。したがって、視差画素の出力が示す画素値分布は、それぞれ対応する視差仮想瞳を通過した部分光束の光強度分布と比例関係にあると考えても良い。
図4(a)で示すように、被写体である物点が焦点位置に存在する場合、いずれの視差仮想瞳を通った被写体光束であっても、それぞれの視差画素の出力は、対応する像点の画素を中心として急峻な画素値分布を示す。像点付近に視差Lt画素が配列されていれば、像点に対応する画素の出力値が最も大きく、周辺に配列された画素の出力値が急激に低下する。また、像点付近に視差Rt画素が配列されていても、像点に対応する画素の出力値が最も大きく、周辺に配列された画素の出力値が急激に低下する。すなわち、被写体光束がいずれの視差仮想瞳を通過しても、像点に対応する画素の出力値が最も大きく、周辺に配列された画素の出力値が急激に低下する分布を示し、それぞれの分布は互いに一致する。
一方、図4(b)に示すように、物点が焦点位置からずれると、物点が焦点位置に存在した場合に比べて、視差Lt画素が示す画素値分布のピークは、像点に対応する画素から一方向に離れた位置に現れ、かつその出力値は低下する。また、出力値を有する画素の幅も広がる。視差Rt画素が示す感度分布のピークは、像点に対応する画素から、視差Lt画素における一方向とは逆向きかつ等距離に離れた位置に現れ、同様にその出力値は低下する。また、同様に出力値を有する画素の幅も広がる。すなわち、物点が焦点位置に存在した場合に比べてなだらかとなった同一の画素値分布が、互いに等距離に離間して現れる。また、図4(c)に示すように、さらに物点が焦点位置からずれると、図7(b)の状態に比べて、さらになだらかとなった同一の画素値分布が、より離間して現れる。つまり、物点が焦点位置から大きくずれる程、ぼけ量と視差量が増すと言える。別言すれば、デフォーカスに応じて、ぼけ量と視差量は連動して変化する。すなわち、ぼけ量と視差量は、一対一に対応する関係を有する。
また、図4(b)(c)は、物点が焦点位置から遠ざかる方向へずれる場合を示すが、物点が焦点位置から近づく方向へずれる場合は、図4(d)に示すように、図4(b)(c)と比べて、視差Lt画素が示す画素値分布と視差Rt画素が示す画素値分布の相対的な位置関係が逆転する。このようなデフォーカス関係により、視差画像を鑑賞するときに鑑賞者は、焦点位置より奥に存在する被写体を遠くに視認し、手前に存在する被写体を近くに視認する。
図4(b)(c)で説明した画素値分布の変化をそれぞれグラフ化すると、図5のように表される。図において、横軸は画素位置を表し、中心位置が像点に対応する画素位置である。縦軸は各画素の出力値(画素値)を表す。この出力値は上述の通り実質的に光強度に比例する。
分布曲線1804と分布曲線1805は、それぞれ図4(b)の視差Lt画素の画素値分布と視差Rt画素の画素値分布を表す。図からわかるように、これらの分布は中心位置に対して線対称の形状を成す。また、これらを足し合わせた合成分布曲線1806は、図4(b)の状況に対する視差なし画素の画素値分布、すなわち被写体光束の全体を受光した場合の画素値分布と略相似形状を示す。
分布曲線1807と分布曲線1808は、それぞれ図4(c)の視差Lt画素の画素値分布と視差Rt画素の画素値分布を表す。図からわかるように、これらの分布も中心位置に対して線対称の形状を成す。また、これらを足し合わせた合成分布曲線1809は、図4(c)の状況に対する視差なし画素の画素値分布と略相似形状を示す。
図6は、デジタルカメラ10における絞り値、画像の鮮鋭度を示すコントラストおよび視差量の関係を模式的に示す。図1から図12のデジタルカメラ10においては、視差情報のない2D画像を得るデジタルカメラと同様に、図6(a)から(c)に示すように、絞り値が大きいほど合焦面の前後のコントラストが高く、いわゆる被写界深度の深い画像を得る。なお、以降の説明においては、レンズ20を基準にしてレンズ20に近づく方向に向かう方向を手前側、レンズ20から離れる方向に向かう方向を奥側とする。
さらに本実施形態のデジタルカメラ10においては、図6(a)から(c)に示すように、絞り値が大きいほど合焦面の前後の視差量が小さい視差画像となる。これは、デジタルカメラ10の撮像素子100の視差画素が、図2等に示すように、射出瞳における偏った位置からの光束を受光するので、絞り値が大きいほど絞り22が絞られて射出瞳における偏った側からの光束が遮られることに基づく。すなわち、図6(a)から(c)を比較すると、絞り22のF値が1.4の場合に比べ、F値が4、8となるに従い、合焦面より前の視差量および後の視差量が小さくなる。
図7は、視差量の定量的な定義の一例を示す。なお、図7には、図6(a)に示された、丸、三角、四角の撮像素子100からの距離に応じた視差が現れている。また、図7は倒立像となる。
視差量の定量的な定義の一例は、撮像素子100の撮像領域に投影される被写体像350のX方向の幅P0に対する、同一の被写体の視差による撮像素子100上でのX方向のずれ量p1、すなわち(p1/P0)である。ここで、幅P0および量p1は実寸でもよいし画素数でもよい。
ずれ量p1の符号は、例えば、被写体が合焦面に共役な面よりも手前にあるときに現れる視差の方向を正とする。図7の例では、被写体「丸」は正のずれ量を有し、被写体「三角」はずれ量がゼロであり、被写体「四角」は負のずれ量を有する。なお、図6および以降の図面において視差量の軸線に視差量「0」を明示した。
図8は、絞りF値と、ユーザにより入力される視差ステップとの対応関係を示す。当該対応関係は例えばテーブル形式でメモリ203に格納されている。
上記図6(a)から(c)に示したように、絞りF値が大きくなるほど、視差量の絶対値は小さくなる。よって、絞りF値は視差量を変える調整条件の一例であって、絞りF値を変更できる絞り22は光束調整部の一例である。なお、絞りF値の段数と視差量の絶対値との関係は、撮像素子100の開口を含む構造と、デジタルカメラ10の光学系とにより定まる。
ここで、視差ステップの符号は、視差量の絶対値を増やす方向を正とし、視差量の絶対値を減らす方向を負とする。また、視差ステップの段数が示す視差量の差分量は、上記定義における一定値でもよいし、視差画像データに基づいてユーザが得る立体感が当該視差ステップによって一定に増減する感覚に基づいた値でもよい。
視差ステップの段数が示す視差量を上記いずれかで定義した場合に、視差ステップの段数が同じであっても、当該視差量の差分に対応する絞りF値の段数とは一致しないことがある。図8に示す例において、絞りF値「2.8」の場合の視差量に対して、視差ステップ「+1」は2段開放により得られ、視差ステップ「−1」も2段開放により得られる。一方、絞りF値「2.8」の場合の視差量に対して、視差ステップ「−2」は5段開放により得られる。また、絞りF値「4」の場合の視差量に対して、視差ステップ「−1」は3段開放により得られる。
これら視差ステップの段数と絞りF値との対応関係は、予め実験的にまたは計算上で算出しておく。さらに、光学系が変わると上記対応関係も変わり得る。よって、撮影レンズ20が交換できるデジタルカメラ10の場合に、上記対応関係のデフォルト値がメモリ203に格納されており、装着された撮影レンズ20に基づいて当該デフォルト値が補正されてもよい。
図9は、デジタルカメラ10において複数の視差画像データセットを出力するフローチャートの一例である。図9のフローチャートにおいては視差量を調整する調整条件として、絞り22の絞り値が用いられる例を説明する。当該フローチャートは、操作部208がユーザから視差量に関するブラケット撮影の指示を受けた場合に開始する。
制御部201は、差分量としての視差ステップの段数をメモリ203から読み出す(S100)。この場合に、例えば初期値として視差ステップ「+1」がメモリ203に格納されており、操作部208がユーザから視差ステップの入力を受け付けた場合には、受け付けた視差ステップの段数に更新しておく。また、一度のブラケット撮影において、視差量の異なる視差画像データセットを2つ生成するか、3つ生成するか等も、初期値が設定されており、ユーザの入力により更新されてもよい。
制御部201は、レリーズボタンが半押しされるまで待機する(S102:No)。レリーズボタンが半押しされた場合に、制御部201は、撮像条件を初期値に設定する(S104)。ここで、初期値は例えば、ブラケット撮影をしない場合における撮像条件と同じである。
制御部201は、レリーズボタンが全押しされるまで待機する(S106:No)。レリーズボタンが全押しされた場合に、制御部201は撮像条件を設定する(S104)。続けて、制御部201は当該撮像条件で撮像素子100により被写体像を撮像して、画像処理部205は図3の処理に従って視差画像データの1セット分を生成し、メモリ203に書き込む(S110)。
ここで、撮像条件は、当該ブラケット撮影内における最初の撮像においては上記初期値である。他の撮像条件については後述する。
制御部201は、メモリ203に格納されている視差画像データセットの数分だけステップS106からS110を繰り返す(S112)。以上により本フローチャートが終了する。
この場合に、1のブラケット撮影における2回目以降の撮像において、制御部201は最初の撮像の絞り値と、メモリ203に格納されている、ユーザから設定された視差ステップとに基づき、上記図8の関係から当該撮像における絞り値を設定する。例えば、最初の撮像が絞り値F「2.8」であって、ユーザが視差ステップ数「−1」を設定している場合には、2回目の撮像において絞り値F「5.6」が設定される。
図10は、図7の被写体像350に対して視差ステップ数「−1」で撮像される被写体像352を示す。被写体像352においては、合焦面に共役な面よりも手前側の被写体「丸」の視差量(p2/P0)が図7の視差量(p1/P0)よりも減少している。同様に、合焦面に共役な面よりも奥側の被写体「四角」の視差量の絶対値も、図7の被写体「四角」の視差量の絶対値より減少している。合焦面にある被写体「三角」の視差量はゼロのままである。
以上により、ユーザにより設定された視差ステップに基づいて、絞り値が調整されて、互いに異なる視差量を有する2つ以上の視差画像データセットが出力される。これにより、ユーザが自らの望む視差量を把握できていない場合であっても、互いに異なる視差量の視差画像データセットのうち、自らが望む視差画像データセットを選択することができる。
なお、1のブラケット撮影における2回目以降のステップS104において、最初の撮像と露光量が同じになるように撮影条件が選ばれることが好ましい。例えば、絞り値が2段大きくなった場合に、露光時間を2段長くする、または、ISO感度を2段分上げることが好ましい。これにより、複数の視差画像データセット間で画像全体の明るさを合せることができる。
図11は、デジタルカメラ10における合焦面、画像の鮮鋭度を示すコントラストおよび視差量の関係を模式的に示す。図11(a)から(c)のいずれにおいてもデジタルカメラ10と被写体「三角」との位置関係は変わらない。
図11(a)に示すように被写体が合焦面に共役な面にあるときには視差がつかない。これに対し、図11(b)、(c)に示すように、合焦面に共役な面を被写体からずらすほど視差量が大きくなる。すなわち、被写体が合焦する合焦面を撮像素子100の受光面からずらすほど、視差量が大きくなる。図11(b)、(c)に示す例において、合焦面に共役な面を被写体よりも手前にすることにより、被写体について奥側に沈み込む方向の視差が得られる。よって、ある閾値のコントラストが得られる範囲内で合焦面に共役な面を被写体に対してずらすことにより、当該被写体のぼけを感じさせない範囲で、異なる視差量の視差画像を得ることができる。
そこで、図8の関係において、視差ステップと絞りF値に代えて、視差ステップと合焦面との関係を予め対応付けておき、図9のフローチャートにおいて絞りF値を変更することに代えて、合焦面の位置を変更することによっても、互いに異なる視差量を有する2つ以上の視差画像データセットが出力される。
すなわち、この場合には撮影レンズ20の合焦光学系が光束調整部の一例であり、かつ、合焦面が調整条件の一例である。この場合には、露光条件は積極的には変えていないので、これにより、複数の視差画像データセット間で画像全体の明るさを合せることができる。また、絞り値が一定であれば、全体のぼけ感も合わせることができる。
さらに、調整条件として、絞りF値と合焦面の位置とを組み合わせてもよい。例えば露光量が少なくてまたは多くて絞りF値を変更することが難しい場合に合焦面を調整条件として用い、被写体に微細な構造がある等によって被写体から合焦面を外すことが難しい場合に絞りF値を調整条件として用いてもよい。さらに、いずれの調整条件を用いるかをユーザが選択できるようにしてもよい。
図12は、他の被写体配置における視差量を模式的に示し、図13は図12の被写体配置における被写体像354を示す。図12において、被写体の順序および互いの距離は、図6の被写体と同じであって、図6よりも全体が奥側に配されている。
図12を図6と比較して明らかなとおり、デジタルカメラ10で撮像される被写体像にあっては、合焦面に共役な面から同じ距離だけ離れていても、手前側の被写体の方が、奥側の被写体よりも、視差量の絶対値が大きい。よって、図12および図13のように、合焦面に共役な面より手前に被写体がない場合の視差量の絶対値の最大値(p3/P0)は、手前に被写体がある場合に比べて小さいことが多い。
一方、視差量の絶対値はある範囲を超えると、ユーザに違和感を生じさせる(輻輳と調整の矛盾、といわれることがある)。そこで、視差量に関するブラケット撮影において生成される複数の視差画像データセットはいずれも、視差量の絶対値が予め定められた範囲内に収まることが好ましい。
上記の通り被写体の奥行き方向の配置によって視差量の絶対値の最大値が異なるので、視差量に関するブラケット撮影において視差量の絶対値を予め定められた範囲内に収める場合に、視差量の分布を予め算出しておくことが好ましい。それにより、当該分布に応じて、視差ステップの一段分が示す視差量を異ならせて適切なブラケット撮影をすることができる。
図14は、デジタルカメラ10において複数の視差画像データセットを出力するフローチャートの他の例である。図14のフローチャートにおいては視差量の分布を予め算出してから視差量を調整する例を説明する。図14のフローチャートにおいて図9のフローチャートと同じステップに対しては同じ参照番号を付して説明を省略する。
図14のフローチャートにおいて、ステップS104の後に、制御部201は、初期値に設定された撮影条件で撮像して仮画像データを生成する(S120)。当該仮画像データは初期データセットの一例である。視差量算出部231は、仮画像データから視差量の分布を算出する(S122)。この場合に、視差量算出部231は、仮画像データから図3の視差画像データの組を生成する。さらに視差量算出部231は、左右一対の視差画像データの組、例えばGLtプレーンデータとGRtプレーンデータとをパターンマッチングして、マッチングした画像領域の当該プレーン上の画素位置の差から視差量を算出する。
制御部201は、視差量の分布に基づいて、視差ステップに対応する調整条件を算出する(S124)。例えば、この場合に視差量の分布が合焦面に共役な面よりも手前に被写体があることを示しているときには、制御部201は、それがない場合に比べて、視差ステップの1段に対する視差量が小さくなるような、調整条件を算出してもよい。例えば、図8の対応関係に対して、視差ステップの1段に対応する絞り値の段数を1つ少なくしてもよい。
ステップS124の他の例として、視差量の分布は予め定められた絶対値を越えた視差量の被写体があることを示しているときは、制御部201は、負の視差ステップのみを受け付けてもよい。
なお、ステップS104における初期値は、視差量がより大きくなるような初期値であってもよい。例えば、調整条件が絞り値である場合に、当該初期値は開放の絞り値であってよい。また、ステップS120において仮画像データを生成するのに代えて、制御部201それぞれの被写体に対して合焦したときの合焦面の位置から視差量の分布を算出してもよい。この場合に合焦面の位置のデータが初期データセットの一例である。
上記実施形態において絞り22は、絞り値が大きくなると、光束の周辺から中央に向かって徐々に遮光領域が増加する虹彩絞りであるが、絞りはこれに限られない。例えば、X方向に2個の楕円形状の透過領域が連結された眼鏡型絞りであってもよい。この場合に、各楕円の中心を維持して周辺を徐々に遮光する形態と、全体の周辺が徐々に遮光されることで楕円の中心が実質的に近接していく形態とを選択制御できるものであれば、視差量を変えずに露光量を減らす絞りと、上記ブラケティングの調整部として絞りとを独立して制御することができる。
なお、図9および図14のフローチャートにおいて、複数の視差画像データセットは、レリーズボタンが全押される毎に1つずつ生成されているが、これに限られない。一回のレリーズボタンの全押に対して、予め設定された数の視差画像データセットが順次、生成されてもよい。また、図9および図14のフローチャートの各ステップはプログラムとして提供され、制御部201にインストールされることにより実行されてもよい。
また、表示部209が視差画像を立体視可能に表示できる場合には、上記複数の視差画像データセットが、逐次、表示部209に表示されてもよい。この場合に、表示部209は、視差量の大きい順に複数の視差画像を表示してもよい。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10 デジタルカメラ、20 撮影レンズ、21 光軸、22 絞り、100 撮像素子、110 基本格子、201 制御部、202 A/D変換回路、203 メモリ、204 駆動部、205 画像処理部、207 メモリカードIF、208 操作部、209 表示部、210 LCD駆動回路、211 AFセンサ、220 メモリカード、231 視差量算出部、350 被写体像、352 被写体像、354 被写体像、1804 分布曲線、1805 分布曲線、1806 合成分布曲線、1807 分布曲線、1808 分布曲線、1809 合成分布曲線

Claims (7)

  1. 二次元的に配された複数の光電変換素子のうち少なくとも一部の光電変換素子のそれぞれに対応して開口マスクが設けられた少なくとも2つの視差画像データを含むデータセットを出力する撮像素子と、
    前記開口マスクへの入射光束を調整することにより、前記少なくとも2つの視差画素データ間の視差量を増減する光束調整部と、
    少なくとも2つのデータセットの視差量の差分を指定する差分量の入力を受け付ける差分受付部と、
    前記差分受付部により受け付けられた前記差分量に基づいて、前記光束調整部により前記入射光束を調整して、前記撮像素子により少なくとも2つのデータセットを出力させる制御部と
    を備える撮像装置。
  2. 前記制御部は、前記差分受付部により受け付けられた前記差分量に基づいて前記撮像素子によりデータセットを出力させるのに先立って、前記光束調整部に対して予め定められた調整条件で前記入射光束を調整して、前記撮像素子により初期データセットを出力させ、前記初期データセットの視差量に基づいて、前記差分量に基づいた前記調整条件を算出する請求項1に記載の撮像装置。
  3. 前記光束調整部は、前記初期データセットに対して、視差量がより大きくなる調整条件で前記入射光束を調整する請求項2に記載の撮像装置。
  4. 前記制御部は、前記初期データセットから得られる、前記少なくとも2つの視差画像データに含まれる被写体の視差量の分布に基づいて、前記差分量に基づく前記調整条件を設定する請求項2または3に記載の撮像装置。
  5. 前記光束調整部は、前記撮像素子の全体に対して被写体からの光束を周辺から絞ることにより視差量を変える絞りを含む請求項1から4のいずれか1項に記載の撮像装置。
  6. 前記光束調整部は、前記撮像素子の全体に対して合焦面の位置を変えることにより視差量を変える合焦光学系を含む請求項1から5のいずれか1項に記載の撮像装置。
  7. 二次元的に配された複数の光電変換素子のうち少なくとも一部の光電変換素子のそれぞれに対応して開口マスクが設けられた少なくとも2つの視差画像データを含むデータセットを出力する撮像素子と、前記開口マスクへの入射光束を調整することにより、前記少なくとも2つの視差画素データ間の視差量を増減する光束調整部とを有する撮像装置を制御するプログラムであって、前記撮像装置に、
    少なくとも2つのデータセットの視差量の差分を指定する差分量の入力を受け付ける差分受付手順、および、
    前記差分受付手順により受け付けられた前記差分量に基づいて、前記光束調整部により前記入射光束を調整して、前記撮像素子により少なくとも2つのデータセットを出力させる制御手順を実行させるプログラム。
JP2012236191A 2012-10-26 2012-10-26 撮像装置およびプログラム Active JP6070060B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012236191A JP6070060B2 (ja) 2012-10-26 2012-10-26 撮像装置およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012236191A JP6070060B2 (ja) 2012-10-26 2012-10-26 撮像装置およびプログラム

Publications (2)

Publication Number Publication Date
JP2014086981A JP2014086981A (ja) 2014-05-12
JP6070060B2 true JP6070060B2 (ja) 2017-02-01

Family

ID=50789642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012236191A Active JP6070060B2 (ja) 2012-10-26 2012-10-26 撮像装置およびプログラム

Country Status (1)

Country Link
JP (1) JP6070060B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5368350B2 (ja) * 2010-03-18 2013-12-18 富士フイルム株式会社 立体撮像装置
US9485495B2 (en) * 2010-08-09 2016-11-01 Qualcomm Incorporated Autofocus for stereo images
JP2012085258A (ja) * 2010-08-31 2012-04-26 Panasonic Corp カメラ本体、撮像装置、カメラ本体の制御方法、プログラムおよびプログラムを記録した記録媒体
JP2012151538A (ja) * 2011-01-17 2012-08-09 Panasonic Corp 3d撮像装置

Also Published As

Publication number Publication date
JP2014086981A (ja) 2014-05-12

Similar Documents

Publication Publication Date Title
JP6354838B2 (ja) 撮像素子、撮像装置および画像処理装置
JP6003983B2 (ja) 画像処理装置、撮像装置および画像処理プログラム
WO2013136819A1 (ja) 撮像素子、撮像装置および撮像システム
JPWO2014024495A1 (ja) 画像処理装置、撮像装置および画像処理装置の制御プログラム
WO2013136808A1 (ja) 画像処理装置、撮像装置および画像処理プログラム
JP6036840B2 (ja) 撮像装置、画像処理装置、撮像装置の制御プログラムおよび画像処理装置の制御プログラム
JP5942984B2 (ja) 画像処理装置、撮像装置および画像処理プログラム
JP6288088B2 (ja) 撮像装置
JP6003575B2 (ja) 撮像装置およびレンズユニット
JPWO2013038598A1 (ja) 撮像素子、撮像装置および画像処理装置
JP5979137B2 (ja) 撮像装置および撮像装置の制御プログラム
JP5887845B2 (ja) 画像処理方法および画像処理プログラム
JP6070060B2 (ja) 撮像装置およびプログラム
JP2014107594A (ja) 撮像素子および撮像装置
JP6476630B2 (ja) 撮像装置
JP2014085608A (ja) 撮像装置
JP6331279B2 (ja) 撮像装置、撮像方法およびプログラム
WO2015163350A1 (ja) 画像処理装置、撮像装置及び画像処理プログラム
JP5978737B2 (ja) 画像処理装置、撮像装置および画像処理プログラム
JP6255753B2 (ja) 画像処理装置および撮像装置
JP6070061B2 (ja) 画像処理装置、撮影装置、画像処理方法およびプログラム
JP5978735B2 (ja) 画像処理装置、撮像装置および画像処理プログラム
JP6051568B2 (ja) 撮像素子および撮像装置
JP2013090265A (ja) 画像処理装置および画像処理プログラム
JP2013150055A (ja) 画像処理装置、画像処理方法、及び、プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R150 Certificate of patent or registration of utility model

Ref document number: 6070060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250