[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5926677B2 - Ground fault detector - Google Patents

Ground fault detector Download PDF

Info

Publication number
JP5926677B2
JP5926677B2 JP2012284868A JP2012284868A JP5926677B2 JP 5926677 B2 JP5926677 B2 JP 5926677B2 JP 2012284868 A JP2012284868 A JP 2012284868A JP 2012284868 A JP2012284868 A JP 2012284868A JP 5926677 B2 JP5926677 B2 JP 5926677B2
Authority
JP
Japan
Prior art keywords
connection line
ground fault
insulation resistance
battery
fault detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012284868A
Other languages
Japanese (ja)
Other versions
JP2014126510A5 (en
JP2014126510A (en
Inventor
伸哉 加藤
伸哉 加藤
明広 町田
明広 町田
山内 辰美
辰美 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2012284868A priority Critical patent/JP5926677B2/en
Priority to PCT/JP2013/082123 priority patent/WO2014103613A1/en
Publication of JP2014126510A publication Critical patent/JP2014126510A/en
Publication of JP2014126510A5 publication Critical patent/JP2014126510A5/ja
Application granted granted Critical
Publication of JP5926677B2 publication Critical patent/JP5926677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、地絡検知装置に関する。   The present invention relates to a ground fault detection device.

一般に、電気自動車やハイブリッド自動車には、モータ駆動系として、モータの駆動エネルギーの供給源としての電池や、電池状態を監視するための回路、電池から供給される直流電力を交流電力に変換するインバータ回路等が搭載されている。これらは、車体との間で閉回路を作らないように車体から絶縁されている。これにより、人が誤ってモータ駆動系に接触した場合にも、人体に電流が流れて感電するのを防ぐことができるようにしている。   Generally, in an electric vehicle or a hybrid vehicle, as a motor drive system, a battery as a motor drive energy supply source, a circuit for monitoring the battery state, an inverter that converts DC power supplied from the battery into AC power Circuits etc. are installed. These are insulated from the vehicle body so as not to form a closed circuit with the vehicle body. As a result, even when a person accidentally contacts the motor drive system, it is possible to prevent electric current from flowing through the human body and electric shock.

上記のようなモータ駆動系において、車体に対する絶縁抵抗が一定以上であることを検証するための従来技術として、電池とインバータ回路等の負荷との間の接続線に一定周期の交流波形を印加し、これに応じた電圧変化を平滑フィルタおよび比較器を用いて検出する手法が周知である。しかし、このような従来の手法を用いた場合、接続線の電位変動によって誤動作が発生することが知られている。   In the motor drive system as described above, as a conventional technique for verifying that the insulation resistance with respect to the vehicle body is above a certain level, an AC waveform with a constant period is applied to the connection line between the battery and a load such as an inverter circuit. A method of detecting a voltage change corresponding to this using a smoothing filter and a comparator is well known. However, when such a conventional method is used, it is known that a malfunction occurs due to potential fluctuation of the connection line.

そこで、上記の問題点の解決策として、たとえば接続線の電位変動を検知したら、その後は一定の期間だけ地絡検知を停止する手法が提案されている(特許文献1参照)。   Thus, as a solution to the above-described problem, for example, a method has been proposed in which when a potential fluctuation of a connection line is detected, ground fault detection is stopped for a certain period thereafter (see Patent Document 1).

特開2004−286523号公報JP 2004-286523 A

特許文献1に開示された手法において、地絡検知を停止する期間は、接続線の電位が変動してから一定の範囲内に落ち着くまでの時間に応じて設定することが好ましい。この時間は一般に、接続線の浮遊容量や絶縁抵抗の大きさに依存しており、これらの値が大きいほど長い時間が必要となる。したがって、車体に対する絶縁状態が正常に保たれているときには、電池と負荷の間の接続線に電位変動が生じて地絡検知を停止した後に、地絡検知を素早く再開することが困難である。   In the method disclosed in Patent Document 1, it is preferable to set the period during which ground fault detection is stopped according to the time from when the potential of the connection line fluctuates until it settles within a certain range. In general, this time depends on the stray capacitance of the connection line and the size of the insulation resistance, and a longer time is required as these values increase. Therefore, when the insulation state with respect to the vehicle body is normally maintained, it is difficult to quickly restart the ground fault detection after the potential fluctuation occurs in the connection line between the battery and the load and the ground fault detection is stopped.

本発明による地絡検知装置は、電池と負荷の間の接続線の地絡を検知するものであって、交流信号を発生し、カップリングコンデンサを介して接続線に交流信号を印加する交流信号発生部と、交流信号に対する応答信号を検出し、応答信号に基づいて接続線の地絡を検知する地絡検知部と、接続線の電位が変動する際に、接続線の絶縁抵抗を低下させる絶縁抵抗変化部とを備え、接続線には、外部からの切替制御に応じて電池と負荷の間を切断または導通するリレーが接続されており、絶縁抵抗変化部は、一端が接地された抵抗器と、抵抗器と接続線の間に接続されたスイッチとを有すると共に、リレーにより電池と負荷の間が導通されるときに、スイッチを切断状態から導通状態に切り替えることにより、接続線の絶縁抵抗を低下させることを特徴とする。 A ground fault detection device according to the present invention detects a ground fault of a connection line between a battery and a load, generates an AC signal, and applies an AC signal to the connection line via a coupling capacitor. Reduces the insulation resistance of the connection line when the potential of the generation line, the ground fault detection part that detects the response signal to the AC signal, detects the ground fault of the connection line based on the response signal, and the potential of the connection line fluctuates and an insulation resistance change portion, the connecting line, is connected to a relay for cutting or conduction between the battery and the load in accordance with the switching control from the outside, the insulation resistance change portion, one end of which is grounded A resistor and a switch connected between the resistor and the connection line, and when the relay is connected between the battery and the load, the switch is switched from the disconnected state to the conductive state, thereby connecting the connection line. lowering the insulation resistance And wherein the door.

本発明によれば、電池と負荷の間の接続線に電位変動が生じて地絡検知を停止した後に、地絡検知を素早く再開することができる。   According to the present invention, the ground fault detection can be quickly restarted after the potential fluctuation occurs in the connection line between the battery and the load and the ground fault detection is stopped.

本発明の一実施形態に係るモータ駆動系の構成例を示す図である。It is a figure which shows the structural example of the motor drive system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る地絡検知に関する回路構成を示す図である。It is a figure which shows the circuit structure regarding the ground fault detection which concerns on one Embodiment of this invention. 本発明を適用しない場合の各部位の電圧値および抵抗値の変化の様子を示す図である。It is a figure which shows the mode of the change of the voltage value and resistance value of each site | part at the time of not applying this invention. 本発明を適用した場合の各部位の電圧値および抵抗値の変化の様子を示す図である。It is a figure which shows the mode of the change of the voltage value and resistance value of each site | part at the time of applying this invention.

図1は、本発明の一実施形態に係るモータ駆動系の構成例を示す図である。図1に示すモータ駆動系は、たとえば電気自動車やハイブリッド自動車において用いられるものであり、監視装置100、電池モジュール112、駆動回路113およびモータ140を有している。   FIG. 1 is a diagram illustrating a configuration example of a motor drive system according to an embodiment of the present invention. The motor drive system shown in FIG. 1 is used in, for example, an electric vehicle or a hybrid vehicle, and includes a monitoring device 100, a battery module 112, a drive circuit 113, and a motor 140.

電池モジュール112は、所定数の電池セルが電気的に直列に接続されて構成された電池群が、複数個電気的に直列に接続されて構成されている。電池モジュール112は、正極接続線160および負極接続線161を介して駆動回路113と接続されており、各電池セルの放電によって発生した直流電力を駆動回路113へ供給する。なお、電池モジュール112の各電池セルは、充放電可能な二次電池であってもよい。この場合、モータ140の回生発電によって生じた交流電力を駆動回路113により直流電力に変換して電池モジュール112へ出力することにより、電池モジュール112の各電池セルが充電される。   The battery module 112 is configured by electrically connecting a plurality of battery groups each having a predetermined number of battery cells electrically connected in series. The battery module 112 is connected to the drive circuit 113 via the positive electrode connection line 160 and the negative electrode connection line 161, and supplies DC power generated by the discharge of each battery cell to the drive circuit 113. Each battery cell of the battery module 112 may be a chargeable / dischargeable secondary battery. In this case, each battery cell of the battery module 112 is charged by converting AC power generated by the regenerative power generation of the motor 140 into DC power by the drive circuit 113 and outputting the DC power to the battery module 112.

駆動回路113は、電池モジュール112から供給された直流電力を交流電力に変換してモータ140へ出力することにより、モータ140を駆動する。なお、図1では、駆動回路113として、三相分のスイッチング素子(トランジスタ)を備えた三相型インバータの構成例を示しているが、駆動回路113の構成はこれに限定されない。モータ140の構造等に応じて、様々な構成の駆動回路113を用いることができる。   The drive circuit 113 drives the motor 140 by converting the DC power supplied from the battery module 112 into AC power and outputting the AC power to the motor 140. Although FIG. 1 shows a configuration example of a three-phase inverter provided with switching elements (transistors) for three phases as the driving circuit 113, the configuration of the driving circuit 113 is not limited to this. Depending on the structure of the motor 140 and the like, the drive circuit 113 having various configurations can be used.

モータ140は、駆動回路113から出力された交流電力を受けて回転駆動することにより、図1のモータ駆動系が搭載されている車両の駆動力を発生する。なお、前述のように電池モジュール112の各電池セルを二次電池とした場合、制動時に車両の運動エネルギーを用いてモータ140が回生発電を行うことで、モータ140により交流電力を発生してもよい。この回生発電によって得られた交流電力が駆動回路113により直流電力に変換されて電池モジュール112へ出力されることで、電池モジュール112の各電池セルが充電される。   The motor 140 is driven to rotate by receiving AC power output from the drive circuit 113, thereby generating a driving force of a vehicle on which the motor drive system of FIG. 1 is mounted. As described above, when each battery cell of the battery module 112 is a secondary battery, the motor 140 performs regenerative power generation using the kinetic energy of the vehicle at the time of braking, so that AC power is generated by the motor 140. Good. The AC power obtained by the regenerative power generation is converted into DC power by the drive circuit 113 and output to the battery module 112, whereby each battery cell of the battery module 112 is charged.

なお、駆動回路113およびモータ140と、電池モジュール112および監視装置100とは、リレー150および151が開かれた状態では互いに絶縁されている。また、これらはグランド電位からそれぞれ絶縁されている。そのため、リレー150および151が開いているとき、駆動回路113およびモータ140と、電池モジュール112および監視装置100とは、それぞれ異なる対地電位を有していることがある。   The drive circuit 113 and the motor 140 are insulated from the battery module 112 and the monitoring device 100 when the relays 150 and 151 are opened. These are also insulated from the ground potential. Therefore, when the relays 150 and 151 are open, the drive circuit 113 and the motor 140, the battery module 112, and the monitoring device 100 may have different ground potentials.

監視装置100は、電池モジュール112の状態を監視するための装置であり、電池状態監視用集積回路120、地絡検知装置121、通信回路130、制御部131および通信部132を有している。   The monitoring device 100 is a device for monitoring the state of the battery module 112, and includes a battery state monitoring integrated circuit 120, a ground fault detection device 121, a communication circuit 130, a control unit 131, and a communication unit 132.

電池状態監視用集積回路120は、電池モジュール112の各電池セルと接続されており、通信回路130を介して制御部131から送信される制御指令に応じて、各電池セルの電圧測定やバランシング制御等を行う。電池状態監視用集積回路120による各電池セルの測定結果は、通信回路130を介して制御部131へ送信される。なお、電池状態監視用集積回路120は、電池モジュール112の電池群ごとに対応して設けられていてもよい。   The battery state monitoring integrated circuit 120 is connected to each battery cell of the battery module 112, and according to a control command transmitted from the control unit 131 via the communication circuit 130, voltage measurement and balancing control of each battery cell. Etc. The measurement result of each battery cell by the battery state monitoring integrated circuit 120 is transmitted to the control unit 131 via the communication circuit 130. The battery state monitoring integrated circuit 120 may be provided corresponding to each battery group of the battery module 112.

制御部131は、通信回路130を介して電池状態監視用集積回路120へ制御指令を送信することにより、電池状態監視用集積回路120の起動制御を行うと共に、電池状態監視用集積回路120の動作を制御して、電池モジュール112の各電池セルの状態監視を行う。また、通信部132を介して外部の上位コントローラとの間で通信を行うことにより、電池モジュール112の各電池セルの状態監視結果を報告する。   The control unit 131 controls the activation of the battery state monitoring integrated circuit 120 by transmitting a control command to the battery state monitoring integrated circuit 120 via the communication circuit 130, and the operation of the battery state monitoring integrated circuit 120. And the state of each battery cell of the battery module 112 is monitored. Moreover, the state monitoring result of each battery cell of the battery module 112 is reported by performing communication with an external host controller via the communication unit 132.

地絡検知装置121は、駆動回路113と電池モジュール112との間の地絡を検知する装置である。地絡検知装置121による地絡検知結果は、制御部131へ通知される。なお、地絡検知装置121の詳細については、後で図2を用いて説明する。   The ground fault detection device 121 is a device that detects a ground fault between the drive circuit 113 and the battery module 112. The ground fault detection result by the ground fault detection device 121 is notified to the control unit 131. Details of the ground fault detection device 121 will be described later with reference to FIG.

監視装置100において、電池状態監視用集積回路120と制御部131とは、通信回路130および地絡検知装置121を介して、互いに絶縁された状態で接続されている。そのため、以下では図1に示すように、電池モジュール112と接続されており、電池状態監視用集積回路120を含む高電位側の監視装置100の部分を、監視装置(HV側)110と称する。また、上位コントローラと接続されており、制御部131および通信部132を含む低電位側の監視装置100の部分を、監視装置(LV側)111と称する。監視装置(LV側)111は、接地用回路114を介して車両のグランドに接地されているため、その対地電位は0である。   In the monitoring device 100, the battery state monitoring integrated circuit 120 and the control unit 131 are connected to each other in an insulated state via the communication circuit 130 and the ground fault detection device 121. Therefore, hereinafter, as shown in FIG. 1, the portion of the monitoring device 100 on the high potential side that is connected to the battery module 112 and includes the integrated circuit 120 for monitoring the battery state is referred to as a monitoring device (HV side) 110. A portion of the monitoring device 100 on the low potential side that is connected to the host controller and includes the control unit 131 and the communication unit 132 is referred to as a monitoring device (LV side) 111. Since the monitoring device (LV side) 111 is grounded to the ground of the vehicle via the grounding circuit 114, its ground potential is zero.

図2は、本発明の一実施形態に係る地絡検知に関する回路構成を示す図である。図2において、電池モジュール112の負荷として作用する駆動回路113およびモータ140は、リレー150が設けられた正極接続線160を介して、電池モジュール112の正極側に接続されている。また、リレー151が設けられた負極接続線161を介して、電池モジュール112の負極側に接続されている。   FIG. 2 is a diagram showing a circuit configuration relating to ground fault detection according to an embodiment of the present invention. In FIG. 2, the drive circuit 113 and the motor 140 that act as a load of the battery module 112 are connected to the positive side of the battery module 112 via a positive connection line 160 provided with a relay 150. Moreover, it is connected to the negative electrode side of the battery module 112 via the negative electrode connection line 161 provided with the relay 151.

なお、駆動回路113およびモータ140とグランド電位との間には、その絶縁状態に応じた浮遊容量211および絶縁抵抗212が存在する。同様に、電池モジュール112とグランド電位との間には、その絶縁状態に応じた浮遊容量201および絶縁抵抗202が存在する。   A stray capacitance 211 and an insulation resistance 212 corresponding to the insulation state exist between the drive circuit 113 and the motor 140 and the ground potential. Similarly, a stray capacitance 201 and an insulation resistance 202 corresponding to the insulation state exist between the battery module 112 and the ground potential.

駆動回路113およびモータ140と電池モジュール112の正極側との間を接続している正極接続線160は、図2に示すように、地絡検知装置121にも接続されている。地絡検知装置121は、カップリングコンデンサ220、地絡検知部221、交流信号発生部222および絶縁抵抗変化部250を有する。   As shown in FIG. 2, the positive connection line 160 that connects the drive circuit 113 and the motor 140 to the positive side of the battery module 112 is also connected to the ground fault detection device 121. The ground fault detection device 121 includes a coupling capacitor 220, a ground fault detection unit 221, an AC signal generation unit 222, and an insulation resistance change unit 250.

交流信号発生部222は、所定の振幅を有する交流信号(たとえばパルス信号)を発生して出力する。交流信号発生部222から出力された交流信号は、分圧回路およびカップリングコンデンサ220を介して正極接続線160に印加される。   The AC signal generator 222 generates and outputs an AC signal (for example, a pulse signal) having a predetermined amplitude. The AC signal output from the AC signal generator 222 is applied to the positive electrode connection line 160 via the voltage dividing circuit and the coupling capacitor 220.

交流信号発生部222により発生された交流信号が正極接続線160に印加されると、正極接続線160において、そのグランド電位に対する絶縁状態に応じた振幅の応答信号が生じる。すなわち、正極接続線160の対地抵抗値が高ければ、交流信号に対する応答信号の波形は振幅が大きいものとなり、反対に正極接続線160の対地抵抗値が低ければ、交流信号に対する応答信号の波形は振幅が小さいものとなる。この応答信号は、カップリングコンデンサ220および分圧回路を介して地絡検知部221により検出される。   When the AC signal generated by the AC signal generator 222 is applied to the positive connection line 160, a response signal having an amplitude corresponding to the insulation state with respect to the ground potential is generated in the positive connection line 160. That is, if the ground resistance value of the positive connection line 160 is high, the waveform of the response signal with respect to the AC signal has a large amplitude. Conversely, if the ground resistance value of the positive connection line 160 is low, the waveform of the response signal with respect to the AC signal is The amplitude is small. This response signal is detected by the ground fault detector 221 via the coupling capacitor 220 and the voltage dividing circuit.

地絡検知部221は、交流信号発生部222からの交流信号に対する応答信号を検出し、これに基づいて正極接続線160の地絡を検知する。たとえば、検出した応答信号の振幅が所定の閾値未満であるか否かを判定し、閾値未満であった場合は正極接続線160の対地抵抗値が基準値よりも低下していると判断して地絡を検知する。地絡検知部221による地絡検知結果は、地絡検知装置121から図1の制御部131へ通知される。   The ground fault detection unit 221 detects a response signal to the AC signal from the AC signal generation unit 222, and detects a ground fault of the positive electrode connection line 160 based on the response signal. For example, it is determined whether or not the amplitude of the detected response signal is less than a predetermined threshold, and if it is less than the threshold, it is determined that the ground resistance value of the positive connection line 160 is lower than the reference value. Detect a ground fault. The ground fault detection result by the ground fault detection unit 221 is notified from the ground fault detection device 121 to the control unit 131 of FIG.

絶縁抵抗変化部250は、カップリングコンデンサ220と正極接続線160の間に接続されており、スイッチ251および抵抗器252を有する。抵抗器252は抵抗値Rqを有しており、その一端側が接地されている。スイッチ251は、抵抗器252の接地されていない側と正極接続線160の間に接続されており、これらの接続状態の切り替え動作を行う。このスイッチ251による切り替え動作は、リレー150、151の状態に応じて、以下のように制御される。   The insulation resistance changing unit 250 is connected between the coupling capacitor 220 and the positive electrode connection line 160 and includes a switch 251 and a resistor 252. The resistor 252 has a resistance value Rq, and one end thereof is grounded. The switch 251 is connected between the non-grounded side of the resistor 252 and the positive connection line 160, and performs a switching operation of these connection states. The switching operation by the switch 251 is controlled as follows according to the state of the relays 150 and 151.

正極接続線160と負極接続線161には、リレー150、151がそれぞれ接続されている。リレー150、151は、外部の上位コントローラからの切替制御に応じて、電池モジュール112と負荷である駆動回路113およびモータ140の間をそれぞれ切断(OFF)または導通(ON)する。   Relays 150 and 151 are connected to the positive connection line 160 and the negative connection line 161, respectively. The relays 150 and 151 disconnect (OFF) or conduct (ON) between the battery module 112 and the drive circuit 113 and the motor 140, which are loads, according to switching control from an external host controller.

リレー150および151がOFFされており、駆動回路113と電池モジュール112の間が切断されているときには、地絡検知装置121の絶縁抵抗変化部250においてスイッチ251は切断(OFF)状態となっている。この状態からリレー150および151がONに切り替えられて駆動回路113と電池モジュール112の間が接続されるときに、スイッチ251は所定時間だけ導通(ON)される。所定時間の経過後、スイッチ251は再び切断される。   When the relays 150 and 151 are OFF and the drive circuit 113 and the battery module 112 are disconnected, the switch 251 is in the disconnected (OFF) state in the insulation resistance changing unit 250 of the ground fault detector 121. . When the relays 150 and 151 are switched on from this state and the drive circuit 113 and the battery module 112 are connected, the switch 251 is turned on (ON) for a predetermined time. After the predetermined time has elapsed, the switch 251 is disconnected again.

地絡検知装置121において、リレー150および151の切り替えタイミングは、図1に示した制御部131から通知される。地絡検知装置121は、制御部131から通知された切り替えタイミングに応じて、絶縁抵抗変化部250のスイッチ251の動作を制御することができる。なお、制御部131は、たとえば、不図示の上位コントローラから通信部132を介して送信される情報に基づいて、リレー150および151の切り替えタイミングを特定することができる。   In the ground fault detection device 121, the switching timing of the relays 150 and 151 is notified from the control unit 131 shown in FIG. The ground fault detection device 121 can control the operation of the switch 251 of the insulation resistance changing unit 250 according to the switching timing notified from the control unit 131. Note that the control unit 131 can specify the switching timing of the relays 150 and 151 based on information transmitted from a host controller (not shown) via the communication unit 132, for example.

ここで、リレー150および151がOFFであるときに、駆動回路113およびモータ140の対地電位と、電池モジュール112および監視装置(HV側)110の対地電位との間に差異が存在したとする。この場合、駆動回路113およびモータ140とグランド電位との間の浮遊容量211の両端電圧と、電池モジュール112および監視装置(HV側)110とグランド電位との間の浮遊容量201の両端電圧とは異なっている。そのため、上記のようにリレー150および151がOFFからONに切り替えられて駆動回路113と電池モジュール112の間が接続されると、浮遊容量211と浮遊容量201の両端電圧が一致するように、これらの間に電流が流れる。たとえば、浮遊容量201よりも浮遊容量211の両端電圧の方が高い場合、図2において矢印に示すように、浮遊容量211から浮遊容量201へと電流が流れる。その結果、浮遊容量201および211の両端電圧が変化する。これは、駆動回路113や電池モジュール112において対地電位が変動することに等しい。   Here, it is assumed that there is a difference between the ground potential of the drive circuit 113 and the motor 140 and the ground potential of the battery module 112 and the monitoring device (HV side) 110 when the relays 150 and 151 are OFF. In this case, the both-ends voltage of the stray capacitance 211 between the drive circuit 113 and the motor 140 and the ground potential and the both-ends voltage of the stray capacitance 201 between the battery module 112 and the monitoring device (HV side) 110 and the ground potential are: Is different. Therefore, when the relays 150 and 151 are switched from OFF to ON as described above and the drive circuit 113 and the battery module 112 are connected, the voltage across the stray capacitance 211 and the stray capacitance 201 coincides with each other. Current flows between the two. For example, when the voltage across the stray capacitance 211 is higher than that of the stray capacitance 201, current flows from the stray capacitance 211 to the stray capacitance 201 as indicated by an arrow in FIG. As a result, the voltage across the stray capacitances 201 and 211 changes. This is equivalent to a change in ground potential in the drive circuit 113 and the battery module 112.

上記のようにして電池モジュール112の対地電位が変動すると、正極接続線160の電位にも変動が生じる。そのため、カップリングコンデンサ220を介して検出される応答信号は、リレー150および151がOFFであるときの状態から変化し、地絡検知部221において正しい地絡検知を行うことができなくなる。この対地電位の変動による応答信号への影響が解消されるためには、カップリングコンデンサ220が充電または放電されることにより、蓄積されている電荷量が、駆動回路113と接続された後の電池モジュール112(監視装置(HV側)110)と監視装置(LV側)111の対地電位差に応じた電荷量まで増加または減少される必要がある。   When the ground potential of the battery module 112 varies as described above, the potential of the positive electrode connection line 160 also varies. Therefore, the response signal detected via the coupling capacitor 220 changes from the state when the relays 150 and 151 are OFF, and the ground fault detection unit 221 cannot perform correct ground fault detection. In order to eliminate the influence on the response signal due to the fluctuation of the ground potential, the battery after the coupling capacitor 220 is charged or discharged and the accumulated charge amount is connected to the drive circuit 113 It is necessary to increase or decrease the charge amount according to the ground potential difference between the module 112 (monitoring device (HV side) 110) and the monitoring device (LV side) 111.

ここで、本発明を適用していない従来技術として、地絡検知装置121に絶縁抵抗変化部250が設けられていない場合を考える。この場合、カップリングコンデンサ220の充電または放電は、駆動回路113およびモータ140とグランド電位との間の絶縁抵抗212や、電池モジュール112および監視装置(HV側)110とグランド電位との間の絶縁抵抗202を介して行われることとなる。そのため、カップリングコンデンサ220の電荷量が上記の電荷量まで増加または減少されるまでに長時間を要すると共に、その時間を予め計算して見積もることが困難であった。   Here, as a conventional technique to which the present invention is not applied, a case where the insulation resistance change unit 250 is not provided in the ground fault detection device 121 is considered. In this case, the coupling capacitor 220 is charged or discharged by the insulation resistance 212 between the drive circuit 113 and the motor 140 and the ground potential, or the insulation between the battery module 112 and the monitoring device (HV side) 110 and the ground potential. This is done via the resistor 202. For this reason, it takes a long time for the charge amount of the coupling capacitor 220 to increase or decrease to the above-described charge amount, and it is difficult to calculate and estimate the time in advance.

一方、本発明を適用した上記の実施形態によれば、地絡検知装置121において、カップリングコンデンサ220と正極接続線160の間に絶縁抵抗変化部250が設けられている。この絶縁抵抗変化部250は、前述のようにリレー150および151がOFFからONに切り替えられて正極接続線160の電位が変動する際に、スイッチ251を所定時間だけONする。これにより、正極接続線160の絶縁抵抗として抵抗器252が作用し、正極接続線160の電位変動に応じたカップリングコンデンサ220の充電または放電は、絶縁抵抗202、212よりも低い抵抗値Rqを有する抵抗器252を介して行われるようになる。そのため、絶縁抵抗変化部250が設けられていない場合と比べて、地絡検知部221が地絡検知できない期間を短縮して、短時間で地絡検知を再開することができる。   On the other hand, according to the above embodiment to which the present invention is applied, in the ground fault detection device 121, the insulation resistance changing unit 250 is provided between the coupling capacitor 220 and the positive electrode connection line 160. As described above, the insulation resistance changing unit 250 turns on the switch 251 for a predetermined time when the relays 150 and 151 are switched from OFF to ON and the potential of the positive connection line 160 fluctuates. As a result, the resistor 252 acts as the insulation resistance of the positive connection line 160, and the charging or discharging of the coupling capacitor 220 in accordance with the potential fluctuation of the positive connection line 160 has a resistance value Rq lower than that of the insulation resistances 202 and 212. This is done via a resistor 252 having the same. Therefore, compared with the case where the insulation resistance change unit 250 is not provided, the period during which the ground fault detection unit 221 cannot detect the ground fault can be shortened, and the ground fault detection can be resumed in a short time.

以上説明したような絶縁抵抗変化部250の有無による地絡検知装置121の動作の違いについて、以下に具体例を挙げて説明する。図3は、本発明を適用しない場合の各部位の電圧値および抵抗値の変化の様子を示す図である。図3において、(a)はリレー150、151の切り替え状態を示し、(b)は電池モジュール112の対地電位を示し、(c)は電池モジュール112とグランド電位間の絶縁抵抗値を示し、(d)はカップリングコンデンサ220の両端電圧を示し、(e)は地絡検知部221において検出される応答信号の電圧を示している。   The difference in operation of the ground fault detection device 121 depending on the presence / absence of the insulation resistance changing unit 250 as described above will be described below with a specific example. FIG. 3 is a diagram showing how the voltage value and resistance value of each part change when the present invention is not applied. 3, (a) shows the switching state of the relays 150 and 151, (b) shows the ground potential of the battery module 112, (c) shows the insulation resistance value between the battery module 112 and the ground potential, d) shows the voltage across the coupling capacitor 220, and (e) shows the voltage of the response signal detected by the ground fault detector 221.

図3(a)に示すように、時刻t0においてリレー150、151がOFFからONに切り替えられると、図3(b)に示すように、電池モジュール112の対地電位が変化する。一方、図3(c)に示すように、電池モジュール112とグランド電位間の絶縁抵抗値は、時刻t0の前後で変化しない。なお、図3(b)では、時刻t0以前において駆動回路113およびモータ140の対地電位が電池モジュール112および監視装置(HV側)110の対地電位よりも低く、そのため時刻t0で電池モジュール112の対地電位が低下している場合の例を示している。   As shown in FIG. 3A, when the relays 150 and 151 are switched from OFF to ON at time t0, the ground potential of the battery module 112 changes as shown in FIG. 3B. On the other hand, as shown in FIG. 3C, the insulation resistance value between the battery module 112 and the ground potential does not change before and after time t0. In FIG. 3B, the ground potential of the drive circuit 113 and the motor 140 is lower than the ground potential of the battery module 112 and the monitoring device (HV side) 110 before time t0, and therefore the ground of the battery module 112 at time t0. An example in which the potential is lowered is shown.

時刻t0において電池モジュール112の対地電位が低下すると、これに応じて、カップリングコンデンサ220の放電が開始される。この放電は、前述のように絶縁抵抗202や絶縁抵抗212を介して行われる。そのため、図3(d)に示すように、カップリングコンデンサ220の両端電圧はゆっくりと低下していく。   When the ground potential of the battery module 112 decreases at time t0, the coupling capacitor 220 starts to be discharged accordingly. This discharge is performed via the insulation resistance 202 and the insulation resistance 212 as described above. For this reason, as shown in FIG. 3D, the voltage across the coupling capacitor 220 gradually decreases.

図3(e)に示すように、カップリングコンデンサ220の両端電圧が変化している間は、応答信号が正しく出力されないため、地絡検知部221において地絡検知を行うことができない。時刻t1においてカップリングコンデンサ220の両端電圧がほぼ一定になると、応答信号が再び正しく出力されるようになり、地絡検知を再開することができる。このように、本発明を適用しない場合に地絡検知部221において地絡検知できない期間は、図3(e)に示した時刻t0から時刻t1までの期間である。   As shown in FIG. 3E, since the response signal is not correctly output while the voltage across the coupling capacitor 220 is changing, the ground fault detection unit 221 cannot perform ground fault detection. When the voltage across the coupling capacitor 220 becomes substantially constant at time t1, the response signal is output again correctly, and the ground fault detection can be resumed. Thus, when the present invention is not applied, the period during which the ground fault detection unit 221 cannot detect the ground fault is the period from time t0 to time t1 shown in FIG.

図4は、本発明を適用した場合の各部位の電圧値および抵抗値の変化の様子を示す図である。図3と同様に、図4において、(a)はリレー150、151の切り替え状態を示し、(b)は電池モジュール112の対地電位を示し、(c)は電池モジュール112とグランド電位間の絶縁抵抗値を示し、(d)はカップリングコンデンサ220の両端電圧を示し、(e)は地絡検知部221において検出される応答信号の電圧を示している。   FIG. 4 is a diagram showing how the voltage value and resistance value of each part change when the present invention is applied. 4, (a) shows the switching state of the relays 150 and 151, (b) shows the ground potential of the battery module 112, and (c) shows the insulation between the battery module 112 and the ground potential. The resistance value is shown, (d) shows the voltage across the coupling capacitor 220, and (e) shows the voltage of the response signal detected by the ground fault detector 221.

図4(a)に示すように、時刻t0においてリレー150、151がOFFからONに切り替えられると、図4(b)に示すように、電池モジュール112の対地電位が変化する。この点は、図3(a)、(b)と同様である。   As shown in FIG. 4A, when the relays 150 and 151 are switched from OFF to ON at time t0, the ground potential of the battery module 112 changes as shown in FIG. 4B. This is the same as in FIGS. 3A and 3B.

ここで、時刻t0の直前において、前述のように絶縁抵抗変化部250のスイッチ251がONされると、正極接続線160が抵抗器252を介してグランド電位に接続され、正極接続線160の絶縁抵抗として抵抗器252が作用する。これにより、図4(c)に示すように、電池モジュール112とグランド電位間の絶縁抵抗値が低下する。その後、時刻t0において電池モジュール112の対地電位が低下すると、これに応じて、カップリングコンデンサ220の放電が開始される。このときのカップリングコンデンサ220の放電は、図3の場合とは異なり、絶縁抵抗202や絶縁抵抗212ではなく、抵抗器252を介して行われる。そのため、図4(d)に示すように、カップリングコンデンサ220の両端電圧は図3(d)と比べて素早く低下していき、時刻t2においてほぼ一定となる。   Here, immediately before time t0, when the switch 251 of the insulation resistance changing unit 250 is turned on as described above, the positive connection line 160 is connected to the ground potential via the resistor 252, and the positive connection line 160 is insulated. Resistor 252 acts as a resistor. Thereby, as shown in FIG.4 (c), the insulation resistance value between the battery module 112 and ground potential falls. Thereafter, when the ground potential of the battery module 112 decreases at time t0, the coupling capacitor 220 starts to be discharged accordingly. Unlike the case of FIG. 3, the coupling capacitor 220 is discharged through the resistor 252 instead of the insulation resistor 202 and the insulation resistor 212. Therefore, as shown in FIG. 4D, the voltage between both ends of the coupling capacitor 220 decreases quickly as compared with FIG. 3D, and becomes substantially constant at time t2.

時刻t2においてカップリングコンデンサ220の両端電圧がほぼ一定になると、図4(e)に示すように、応答信号の出力が復活して地絡検知を再開することができる。したがって、本発明を適用した場合に地絡検知部221において地絡検知できない期間は、図4(e)に示した時刻t0から時刻t2までの期間であり、これは図3(e)に示した地絡検知できない時刻t0から時刻t1までの期間よりも短いことが分かる。   When the voltage across the coupling capacitor 220 becomes substantially constant at time t2, the output of the response signal is restored and the ground fault detection can be resumed as shown in FIG. 4 (e). Therefore, when the present invention is applied, the period during which the ground fault detection unit 221 cannot detect the ground fault is the period from time t0 to time t2 shown in FIG. 4 (e), which is shown in FIG. 3 (e). It can be seen that it is shorter than the period from time t0 to time t1 when the ground fault cannot be detected.

なお、絶縁抵抗変化部250においてスイッチ251をONする期間の開始点は、前述のように、リレー150、151がOFFからONに切り替えられる時刻t0よりも前の時点、または時刻t0と同時点であることが好ましい。また、図4(c)に示した時間Tは、時刻t0からこの期間の終了点までの時間を表しており、これは以下の式(1)を満たすことが好ましい。式(1)において、Cはカップリングコンデンサ220の容量値、Rqは抵抗器252の抵抗値、VLは交流信号発生部222から発生される交流信号の振幅、VHは電池モジュール112が取り得る最大電圧をそれぞれ表している。ただし、式(1)において、ln{VH/(VH−VL)}はVH/(VH−VL)の自然対数を表している。
T≧C×Rq×ln{VH/(VH−VL)} ・・・(1)
As described above, the start point of the period during which the switch 251 is turned on in the insulation resistance changing unit 250 is the time before the time t0 when the relays 150 and 151 are switched from OFF to ON, or at the same time as the time t0. Preferably there is. Moreover, the time T shown in FIG.4 (c) represents the time from the time t0 to the end point of this period, and it is preferable that this satisfy | fills the following formula | equation (1). In Expression (1), C is the capacitance value of the coupling capacitor 220, Rq is the resistance value of the resistor 252, VL is the amplitude of the AC signal generated from the AC signal generator 222, and VH is the maximum that the battery module 112 can take. Each voltage is shown. However, in Formula (1), ln {VH / (VH−VL)} represents a natural logarithm of VH / (VH−VL).
T ≧ C × Rq × ln {VH / (VH−VL)} (1)

以上説明した本発明の一実施形態によれば、次の作用効果を奏する。   According to the embodiment of the present invention described above, the following operational effects are obtained.

(1)地絡検知装置121は、絶縁抵抗変化部250により、正極接続線160の電位が変動する際に、正極接続線160の絶縁抵抗を低下させる。このようにしたので、電池と負荷の間の接続線に電位変動が生じて地絡検知を停止した後に、地絡検知を素早く再開することができる。 (1) The ground fault detection device 121 causes the insulation resistance changing unit 250 to reduce the insulation resistance of the positive connection line 160 when the potential of the positive connection line 160 varies. Since it did in this way, after a potential fluctuation arises in the connection line between the battery and the load and the ground fault detection is stopped, the ground fault detection can be restarted quickly.

(2)絶縁抵抗変化部250は、一端が接地された抵抗器252と、抵抗器252と正極接続線160の間に接続されたスイッチ251とを有する。このスイッチ251を切断状態から導通状態に切り替えることにより、正極接続線160の絶縁抵抗を低下させるようにしたので、簡単な回路で確実に絶縁抵抗を低下させることができる。 (2) The insulation resistance changing unit 250 includes a resistor 252 whose one end is grounded, and a switch 251 connected between the resistor 252 and the positive electrode connection line 160. By switching the switch 251 from the disconnected state to the conductive state, the insulation resistance of the positive electrode connection line 160 is reduced, so that the insulation resistance can be reliably reduced with a simple circuit.

(3)正極接続線160には、外部からの切替制御に応じて電池モジュール112と負荷である駆動回路113およびモータ140の間を切断または導通するリレー150、151が接続されている。絶縁抵抗変化部250は、このリレー150、151により電池モジュール112と負荷の間が導通されるときに、スイッチ251を切断状態から導通状態に切り替える。このようにしたので、正極接続線160に電位変動が生じる際に、正極接続線160の絶縁抵抗を確実に低下させることができる。 (3) Relays 150 and 151 that disconnect or connect between the battery module 112 and the drive circuit 113 that is a load and the motor 140 are connected to the positive electrode connection line 160 in accordance with switching control from the outside. The insulation resistance changing unit 250 switches the switch 251 from the disconnected state to the conductive state when the relays 150 and 151 are connected between the battery module 112 and the load. Since it did in this way, when an electric potential fluctuation | variation arises in the positive electrode connection line 160, the insulation resistance of the positive electrode connection line 160 can be reduced reliably.

(4)絶縁抵抗変化部250は、電池モジュール112と負荷の間が導通されてから、前述の式(1)で表される時間Tの間、正極接続線160の絶縁抵抗を低下させることが好ましい。このようにすれば、カップリングコンデンサ220が充電または放電されてその両端電圧が一定となるまでの間、正極接続線160の絶縁抵抗を確実に低下させることができる。 (4) The insulation resistance changing unit 250 may reduce the insulation resistance of the positive electrode connection line 160 during the time T represented by the above-described formula (1) after the battery module 112 and the load are conducted. preferable. In this way, the insulation resistance of the positive electrode connection line 160 can be reliably reduced until the coupling capacitor 220 is charged or discharged and the voltage at both ends becomes constant.

なお、上記の実施形態では、絶縁抵抗変化部250においてスイッチ251を切断状態から導通状態に切り替えることにより、正極接続線160の絶縁抵抗を低下させるようにする例を説明した。しかし、正極接続線160の電位変動の際にその絶縁抵抗を低下させることができれば、これ以外の回路構成としてもよい。   In the above-described embodiment, the example in which the insulation resistance of the positive electrode connection line 160 is reduced by switching the switch 251 from the disconnected state to the conductive state in the insulation resistance changing unit 250 has been described. However, other circuit configurations may be used as long as the insulation resistance can be reduced when the potential of the positive electrode connection line 160 fluctuates.

また、上記の実施形態では、地絡検知装置121を電池モジュール112の正極側に接続して、交流信号発生部222からの交流信号を正極接続線160に印加することとした。しかし、地絡検知装置121を電池モジュール112の負極側に接続して、交流信号発生部222からの交流信号を負極接続線161に印加してもよい。このようにしても、上記の実施形態と同様の方法で地絡検知を行うと共に、負極接続線161の電位変動の際には絶縁抵抗を低下して、地絡検知できない期間を短縮することができる。   In the above embodiment, the ground fault detection device 121 is connected to the positive electrode side of the battery module 112, and the AC signal from the AC signal generator 222 is applied to the positive electrode connection line 160. However, the ground fault detection device 121 may be connected to the negative electrode side of the battery module 112 and the AC signal from the AC signal generator 222 may be applied to the negative electrode connection line 161. Even in this case, ground fault detection can be performed in the same manner as in the above embodiment, and the insulation resistance can be reduced when the potential of the negative electrode connection line 161 changes, thereby shortening the period during which ground fault detection is not possible. it can.

以上説明した実施形態や各種の変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。   The embodiment and various modifications described above are merely examples, and the present invention is not limited to these contents as long as the features of the invention are not impaired.

100 監視装置
112 電池モジュール
113 駆動回路
114 接地用回路
120 電池状態監視用集積回路
121 地絡検知装置
130 通信回路
131 制御部
132 通信部
140 モータ
150 リレー
151 リレー
160 正極接続線
161 負極接続線
201 浮遊容量
202 絶縁抵抗
211 浮遊容量
212 絶縁抵抗
220 カップリングコンデンサ
221 地絡検知部
222 交流信号発生部
250 絶縁抵抗変化部
251 スイッチ
252 抵抗器
100 monitoring device 112 battery module 113 drive circuit 114 grounding circuit 120 battery state monitoring integrated circuit 121 ground fault detection device 130 communication circuit 131 control unit 132 communication unit 140 motor 150 relay 151 relay 160 positive connection line 161 negative connection line 201 floating Capacitance 202 Insulation resistance 211 Floating capacitance 212 Insulation resistance 220 Coupling capacitor 221 Ground fault detection unit 222 AC signal generation unit 250 Insulation resistance change unit 251 Switch 252 Resistor

Claims (2)

電池と負荷の間の接続線の地絡を検知する地絡検知装置であって、
交流信号を発生し、カップリングコンデンサを介して前記接続線に前記交流信号を印加する交流信号発生部と、
前記交流信号に対する応答信号を検出し、前記応答信号に基づいて前記接続線の地絡を検知する地絡検知部と、
前記接続線の電位が変動する際に、前記接続線の絶縁抵抗を低下させる絶縁抵抗変化部とを備え
前記接続線には、外部からの切替制御に応じて前記電池と前記負荷の間を切断または導通するリレーが接続されており、
前記絶縁抵抗変化部は、一端が接地された抵抗器と、前記抵抗器と前記接続線の間に接続されたスイッチとを有すると共に、前記リレーにより前記電池と前記負荷の間が導通されるときに、前記スイッチを切断状態から導通状態に切り替えることにより、前記接続線の絶縁抵抗を低下させる
ことを特徴とする地絡検知装置。
A ground fault detection device for detecting a ground fault of a connection line between a battery and a load,
An AC signal generator that generates an AC signal and applies the AC signal to the connection line via a coupling capacitor;
Detecting a response signal to the AC signal, and detecting a ground fault of the connection line based on the response signal;
When the potential of the connection line varies, and an insulation resistance changing portion to decrease the insulation resistance of the connection line,
A relay that disconnects or conducts between the battery and the load according to switching control from the outside is connected to the connection line,
The insulation resistance changing unit includes a resistor having one end grounded, and a switch connected between the resistor and the connection line, and when the battery and the load are connected by the relay. In addition, the ground fault detection device is characterized in that the insulation resistance of the connection line is lowered by switching the switch from a disconnected state to a conductive state .
請求項に記載の地絡検知装置において、
前記絶縁抵抗変化部は、前記カップリングコンデンサの容量値C、前記抵抗器の抵抗値Rq、前記交流信号の振幅VLおよび前記電池の最大電圧VHに基づいて、前記電池と前記負荷の間が導通されてから下記の式で表される時間Tの間、前記接続線の絶縁抵抗を低下させることを特徴とする地絡検知装置。
T≧C×Rq×ln{VH/(VH−VL)}
ただし、上記式においてln{VH/(VH−VL)}は、VH/(VH−VL)の自然対数を表す。
In the ground fault detection apparatus according to claim 1 ,
The insulation resistance changing unit is connected between the battery and the load based on a capacitance value C of the coupling capacitor, a resistance value Rq of the resistor, an amplitude VL of the AC signal, and a maximum voltage VH of the battery. After that, during the time T expressed by the following formula, the ground fault detection device reduces the insulation resistance of the connection line.
T ≧ C × Rq × ln {VH / (VH−VL)}
In the above formula, ln {VH / (VH−VL)} represents the natural logarithm of VH / (VH−VL).
JP2012284868A 2012-12-27 2012-12-27 Ground fault detector Active JP5926677B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012284868A JP5926677B2 (en) 2012-12-27 2012-12-27 Ground fault detector
PCT/JP2013/082123 WO2014103613A1 (en) 2012-12-27 2013-11-29 Ground fault detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012284868A JP5926677B2 (en) 2012-12-27 2012-12-27 Ground fault detector

Publications (3)

Publication Number Publication Date
JP2014126510A JP2014126510A (en) 2014-07-07
JP2014126510A5 JP2014126510A5 (en) 2015-07-09
JP5926677B2 true JP5926677B2 (en) 2016-05-25

Family

ID=51020707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012284868A Active JP5926677B2 (en) 2012-12-27 2012-12-27 Ground fault detector

Country Status (2)

Country Link
JP (1) JP5926677B2 (en)
WO (1) WO2014103613A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196176A (en) * 2018-03-01 2018-06-22 威马智慧出行科技(上海)有限公司 The Insulation monitoring warning device and its method of a kind of battery pack

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865506B (en) * 2015-05-20 2017-11-14 王运国 A kind of insulation detection device of DC electrical system
JP2017173231A (en) * 2016-03-25 2017-09-28 トヨタ自動車株式会社 Insulation resistance reduction detection device
CN106932682B (en) * 2017-03-23 2023-09-29 中国南方电网有限责任公司超高压输电公司南宁局 Grounding loop detection method for one-point grounding of voltage total station
JP7020952B2 (en) * 2018-02-13 2022-02-16 本田技研工業株式会社 Power system
CN110154765B (en) * 2019-05-31 2020-06-30 吉林大学 High-voltage power-on and power-off control strategy for series hybrid vehicle
CN110531210B (en) * 2019-09-24 2024-08-23 成都凯迪飞研科技有限责任公司 Aviation harness conduction and insulation intelligent detection system
CN113009302B (en) * 2021-03-18 2023-03-21 奇瑞新能源汽车股份有限公司 Method and device for positioning insulation fault of high-voltage system of electric automobile
US11637421B2 (en) * 2021-07-09 2023-04-25 Transportation Ip Holdings, Llc Ground impedance and fault detection system and method
CN115494427B (en) * 2022-09-26 2024-07-26 内蒙古霍煤鸿骏铝电有限责任公司 Method for detecting ground insulation fault of aluminum electrolysis cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170714A (en) * 2004-12-14 2006-06-29 Nissan Motor Co Ltd Ground fault detector, method of setting threshold for ground fault detector
JP5234282B2 (en) * 2009-02-09 2013-07-10 三菱自動車工業株式会社 Battery pack inspection device
JP5528370B2 (en) * 2011-02-16 2014-06-25 オムロンオートモーティブエレクトロニクス株式会社 Leakage detection device, threshold setting method etc. in leakage detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196176A (en) * 2018-03-01 2018-06-22 威马智慧出行科技(上海)有限公司 The Insulation monitoring warning device and its method of a kind of battery pack

Also Published As

Publication number Publication date
WO2014103613A1 (en) 2014-07-03
JP2014126510A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5926677B2 (en) Ground fault detector
US8513953B2 (en) Power supply device and method for making decision as to contactor weld of power supply device
JP6633585B2 (en) Ground fault detector
KR101312852B1 (en) Electric leakage sensing apparatus
US20160156258A1 (en) Power source control device and method for detecting relay abnormality
JP2014038023A (en) Ground fault detecting circuit, and power supply device
CN106353692B (en) Monitoring system for detecting the presence of electrical leakage and/or short circuit condition of relay in electrical system
CN104518547A (en) Bus pre-charge control using buck converter
JPWO2011040128A1 (en) Ground fault detection circuit and power supply device
WO2007123279A1 (en) Power source control device, and relay malfunction detecting method
JP2019056626A (en) Ground fault detector
JP5541743B2 (en) Contactor welding detector
JP7438213B2 (en) Earth leakage detection device, vehicle power system
JP2012242330A (en) Electric leakage detection device
CN114144687B (en) Leakage detection device and power supply system for vehicle
JP6081320B2 (en) Power supply apparatus, battery pack control method and control program
CN104205593A (en) Power source device
JP2014098681A (en) Electric leakage detector
CN114729972A (en) Electric leakage detection device and power supply system for vehicle
JP7458397B2 (en) Earth leakage detection device, vehicle power system
JP6742191B2 (en) Sticking detection device and battery system
JP6607161B2 (en) In-vehicle battery system control method
JP2017001425A (en) Power supply system
JP2010166679A (en) Charging system of electric vehicle
JP2006333693A (en) Power supply system and vehicle

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160422

R150 Certificate of patent or registration of utility model

Ref document number: 5926677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250