JP5992198B2 - Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby - Google Patents
Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby Download PDFInfo
- Publication number
- JP5992198B2 JP5992198B2 JP2012106011A JP2012106011A JP5992198B2 JP 5992198 B2 JP5992198 B2 JP 5992198B2 JP 2012106011 A JP2012106011 A JP 2012106011A JP 2012106011 A JP2012106011 A JP 2012106011A JP 5992198 B2 JP5992198 B2 JP 5992198B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- active material
- electrode active
- electrolyte secondary
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、負極活物質を改良した非水電解質二次電池用負極活物質の製造方法及びこれによって得られる非水電解質二次電池用負極活物質に係わるものである。 The present invention relates to a method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery with an improved negative electrode active material, and a negative electrode active material for a non-aqueous electrolyte secondary battery obtained thereby.
近年、急速なエレクトロニクス機器の小型化技術の発達により、種々の携帯電子機器が普及しつつある。そして、これら携帯電子機器の電源である電池にも小型化が求められており、高エネルギー密度を持つ非水電解質二次電池が注目を集めている。 In recent years, various portable electronic devices are becoming widespread due to rapid development of miniaturization technology of electronic devices. Further, miniaturization is also required for batteries that are power sources of these portable electronic devices, and non-aqueous electrolyte secondary batteries having high energy density are attracting attention.
金属リチウムを負極活物質として用いた非水電解質二次電池は、非常に高いエネルギー密度を持つが、充電時にデンドライトと呼ばれる樹枝状の結晶が負極上に析出するため電池寿命が短く、またデンドライトが成長して正極に達し内部短絡を引き起こす等、安全性にも問題があった。そこでリチウム金属に替わる負極活物質として、リチウムを吸蔵・脱離する炭素材料、特に黒鉛質炭素が用いられるようになった。しかし、黒鉛質炭素の容量はリチウム金属・リチウム合金等に比べ小さく、大電流特性が低い等の問題がある。そこで、シリコン、スズなどのリチウムと合金化する元素、非晶質カルコゲン化合物などリチウム吸蔵容量が大きく、密度の高い物質を用いる試みがなされてきた。
中でもシリコンはシリコン原子1に対してリチウム原子を4.4の比率までリチウムを吸蔵することが可能であり、重量あたりの負極容量は黒鉛質炭素の約10倍となる。しかし、シリコンは、充放電サイクルにおけるリチウムの挿入脱離に伴なう体積の変化が大きく活物質粒子の微粉化などサイクル寿命に問題があった。
Nonaqueous electrolyte secondary batteries using metallic lithium as the negative electrode active material have a very high energy density, but the dendritic crystals called dendrites are deposited on the negative electrode during charging, so the battery life is short, and There was also a problem in safety, such as growing up to reach the positive electrode and causing an internal short circuit. Therefore, carbon materials that absorb and desorb lithium, particularly graphitic carbon, have been used as negative electrode active materials instead of lithium metal. However, there is a problem that the capacity of graphitic carbon is smaller than that of lithium metal, lithium alloy, etc., and the large current characteristics are low. Therefore, attempts have been made to use a substance having a large lithium storage capacity and a high density, such as an element that forms an alloy with lithium such as silicon and tin, and an amorphous chalcogen compound.
Among them, silicon can occlude lithium up to a ratio of 4.4 lithium atoms to 1 silicon atom, and the negative electrode capacity per weight is about 10 times that of graphitic carbon. However, silicon has a problem in cycle life, such as a large change in volume accompanying lithium insertion / desorption in a charge / discharge cycle, such as pulverization of active material particles.
従来、Si粒子の負極材料に炭素被覆を行い、上記問題点を解決することが試みられている(特許文献1参照)。かかる特許文献には、不純物としてSiO2も含有されてもよい旨が記載されている。 Conventionally, an attempt has been made to solve the above-mentioned problems by coating the negative electrode material of Si particles with carbon (see Patent Document 1). Such a patent document describes that SiO 2 may also be contained as an impurity.
しかし、この公知例の負極材料の出発原料であるSi粉末は0.1μm以上の大きいもので、通常の充放電サイクルにおける活物質の微粉化や割れを防ぐことは困難である。例えば実施例では、出発原料のSiとして和光純製薬の試薬1級珪素粉末を使用しているが、これは結晶シリコンを粉末にしたもので、負極材料の粉末X線回折測定におけるSi(220)面の回折ピークは0.1℃以下のきわめて低い値となる。この様な負極活物質材料では、さらなる高容量かつ高サイクル特性の電池を実現することは困難であった。 However, the Si powder, which is a starting material for the negative electrode material of this known example, is a large one of 0.1 μm or more, and it is difficult to prevent the active material from being pulverized or cracked in a normal charge / discharge cycle. For example, in the examples, Wako Pure Chemical's reagent grade silicon powder is used as the starting material Si. This is a powdered crystalline silicon, and Si (220) in the powder X-ray diffraction measurement of the negative electrode material. The diffraction peak of the surface has a very low value of 0.1 ° C. or less. With such a negative electrode active material, it has been difficult to realize a battery with higher capacity and higher cycle characteristics.
即ち、本発明者らは鋭意実験を重ねた結果、負極活物質材料の炭素質物中にSiを分散させることによってサイクル特性の向上を図っても、ある一定の向上しか望め無いことを見出した。そして、その原因に関しては、分散するSiの結晶の大きさおよび、Si周囲の基質との結合性に因果関係が存在することを見出し、微結晶SiをSiと強固に結合するSiO2に包含または保持された状態にして炭素質物中に分散させることで高容量化およびサイクル特性の向上を達成できることを見出し、本発明を完成するに至った。 That is, as a result of intensive experiments, the present inventors have found that only a certain improvement can be expected even if the cycle characteristics are improved by dispersing Si in the carbonaceous material of the negative electrode active material. As for the cause, it has been found that there is a causal relationship between the size of the dispersed Si crystal and the bonding property with the substrate around Si, and the microcrystalline Si is included in SiO 2 that is firmly bonded to Si. It has been found that high capacity and improved cycle characteristics can be achieved by dispersing the carbonaceous material in a retained state, and the present invention has been completed.
従来の非水電解質二次電池の負極活物質は、Si添加によっても一定の容量向上しか望めない非水電解質二次電池しか提供できないと言う問題があった。 The conventional negative electrode active material of a non-aqueous electrolyte secondary battery has a problem that it can provide only a non-aqueous electrolyte secondary battery that can be expected only to have a certain capacity increase even by addition of Si.
本発明は、上記問題点の解決を鑑みてなされたもので、Si添加によって従来実現していた電池よりもさらに高容量かつ高サイクル特性を達成可能な非水電解質二次電池用負極活物質及び非水電解質二次電池を提供することを課題とする。 The present invention was made in view of the solution of the above problems, and has a negative electrode active material for a non-aqueous electrolyte secondary battery that can achieve higher capacity and higher cycle characteristics than a battery that has been conventionally realized by adding Si, and It is an object to provide a non-aqueous electrolyte secondary battery.
本実施の形態の非水電解質二次電池用負極は、SiとSiO 2 と炭素質物の三相からなり前記SiO 2 相は前記Si相に結合しこれを包含しており、かつこれらが複合化された複合体を負極活物質とする非水電解質二次電池用負極において、集電体上に負極活物質と導電材と結着剤とで形成される負極活物質層の厚みが10μm以上150μm以下であり、前記負極活物質の粒径が5μm以上100μm以下で比表面積が0.5m 2 /g以上15.0m 2 /g以下であり、かつ、前記負極活物質のSi(220)XRDピークの半価幅が1.5°以上、8°以下であることを特徴とする。
The negative electrode for a non-aqueous electrolyte secondary battery according to the present embodiment is composed of three phases of Si, SiO 2 and a carbonaceous material, and the SiO 2 phase is bonded to and includes the Si phase, and these are combined. In the negative electrode for a non-aqueous electrolyte secondary battery using the composite as a negative electrode active material, the thickness of the negative electrode active material layer formed of the negative electrode active material, the conductive material, and the binder on the current collector is 10 μm or more and 150 μm The negative electrode active material has a particle size of 5 μm or more and 100 μm or less, a specific surface area of 0.5 m 2 / g or more and 15.0 m 2 / g or less, and the Si (220) XRD peak of the negative electrode active material The full width at half maximum is 1.5 ° or more and 8 ° or less .
他の実施の形態は、前記実施の形態に記載の非水電解質二次電池用負極を有することを特徴とする非水電解質二次電池である。Another embodiment is a nonaqueous electrolyte secondary battery comprising the negative electrode for a nonaqueous electrolyte secondary battery described in the above embodiment.
本発明によれば、高容量である非水電解質二次電池の負極活物質を提供することができ、さらに高容量な非水電解質二次電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the negative electrode active material of the high capacity | capacitance nonaqueous electrolyte secondary battery can be provided, and a higher capacity | capacitance nonaqueous electrolyte secondary battery can be provided.
以下、本発明の負極活物質の詳細について記述する。 Hereinafter, the details of the negative electrode active material of the present invention will be described.
本発明の負極活物質の望ましい態様は、SiとSiO2と炭素質物の三相からなり、かつこれらが細かく複合化されたものである。Si相は多量のリチウムの挿入脱離し、負極活物質の容量を大きく増進させる。Si相への多量のリチウムの挿入脱離による膨張収縮を、Si相を他の2相のなかに分散することにより緩和して活物質粒子の微粉化を防ぐとともに、炭素質物相は負極活物質として重要な導電性を確保し、SiO2相はSiと強固に結合し微細化されたSiを保持するバッファーとして粒子構造の維持に大きな効果がある。 A desirable embodiment of the negative electrode active material of the present invention is composed of three phases of Si, SiO 2 and a carbonaceous material, and these are finely combined. The Si phase inserts and desorbs a large amount of lithium, greatly increasing the capacity of the negative electrode active material. The expansion and contraction due to the insertion and desorption of a large amount of lithium into and from the Si phase is mitigated by dispersing the Si phase in the other two phases to prevent the active material particles from being pulverized, and the carbonaceous material phase is a negative electrode active material. The SiO 2 phase has a great effect in maintaining the particle structure as a buffer that holds the refined Si firmly bonded to Si.
Si相はリチウムを吸蔵放出する際の膨張収縮が大きく、この応力を緩和するためにできるだけ微細化されて分散されていることが好ましい。具体的には数nmのクラスターから、大きくても300nm以下のサイズで分散されていることが好ましい。 The Si phase has a large expansion and contraction when occluding and releasing lithium, and it is preferable that the Si phase be dispersed as finely as possible in order to alleviate this stress. Specifically, it is preferably dispersed from a cluster of several nm to a size of 300 nm or less at the maximum.
SiO2相は非晶質、結晶質などの構造が採用できるが、Si相に結合しこれを包含または保持する形で活物質粒子中に偏りなく分散されていることが好ましい。 The SiO 2 phase can adopt an amorphous structure, a crystalline structure, or the like, but it is preferable that the SiO 2 phase is uniformly distributed in the active material particles so as to bind to and include or hold the Si phase.
炭素質物は、グラファイト、ハードカーボン、ソフトカーボン、アモルファス炭素またはアセチレンブラックなどが良く、1つ又は数種からなり、好ましくはグラファイトとハードカーボンまたはソフトカーボンの混合物が良い。グラファイトは活物質の導電性を高める点で好ましく、ハードカーボン、ソフトカーボンは活物質全体を被覆し膨張収縮を緩和する効果が大きい。炭素質物はSi相、SiO2相を内包する形状となっていることが好ましい。 The carbonaceous material may be graphite, hard carbon, soft carbon, amorphous carbon, acetylene black or the like, and may be composed of one or several kinds, and preferably a mixture of graphite and hard carbon or soft carbon. Graphite is preferable in terms of enhancing the conductivity of the active material, and hard carbon and soft carbon have a large effect of covering the entire active material and relaxing expansion and contraction. The carbonaceous material preferably has a shape that includes a Si phase and a SiO 2 phase.
負極活物質の粒径は5μm以上100μm以下、比表面積は0.5m2/g以上15.0m2/g以下であることが好ましい。活物質の粒径および比表面積はリチウムの挿入脱離反応の速度に影響し、負極特性に大きな影響をもつが、この範囲の値であれば安定して特性を発揮することができる。 The particle size of the negative electrode active material is preferably 5 μm or more and 100 μm or less, and the specific surface area is preferably 0.5 m 2 / g or more and 15.0 m 2 / g or less. The particle size and specific surface area of the active material affect the rate of lithium insertion and desorption reaction, and have a great influence on the negative electrode characteristics. However, values within this range can stably exhibit the characteristics.
また、活物質の粉末X線回折測定におけるSi(220)面の回折ピークの半値幅は、1.5°以上、8.0°以下であることが必要である。Si(220)面の回折ピーク半値幅はSi相の結晶粒が成長するほど小さくなり、Si相の結晶粒が大きく成長するとリチウムの挿入脱離に伴う膨張収縮に伴い活物質粒子に割れ等を生じやすくなるが、このため半値幅が1.5°以上、8.0°以下の範囲内であればこの様な問題が表面化することを避けられる。 In addition, the half width of the diffraction peak of the Si (220) plane in the powder X-ray diffraction measurement of the active material needs to be 1.5 ° or more and 8.0 ° or less. The diffraction peak half-width of the Si (220) surface becomes smaller as the Si phase crystal grains grow, and when the Si phase crystal grains grow larger, the active material particles crack and the like due to expansion and contraction accompanying lithium insertion and desorption. However, if the half width is in the range of 1.5 ° or more and 8.0 ° or less, it is possible to avoid such a problem from appearing on the surface.
Si相、SiO2相、炭素質物相の比率は、Siと炭素のモル比が0.2≦Si/炭素≦2の範囲であることが好ましい。Si相とSiO2相の量的関係はモル比が0.6≦Si/SiO2≦1.5であることが、負極活物質として大きな容量と良好なサイクル特性を得ることができるため望ましい。 As for the ratio of the Si phase, SiO 2 phase, and carbonaceous material phase, the molar ratio of Si and carbon is preferably in the range of 0.2 ≦ Si / carbon ≦ 2. The quantitative relationship between the Si phase and the SiO 2 phase is preferably such that the molar ratio is 0.6 ≦ Si / SiO 2 ≦ 1.5 because a large capacity and good cycle characteristics can be obtained as the negative electrode active material.
次に本実施の形態の非水二次電池用負極活物質材料の製造方法について説明する。 Next, the manufacturing method of the negative electrode active material for nonaqueous secondary batteries of this Embodiment is demonstrated.
Si原料はSiOx(0.8≦X≦1.5)を用いることが好ましい。特にSiO(x≒1)を用いることが、Si相とSiO2相の量的関係を好ましい比率とする上で望ましい。形状は粉体で、粒径は1μm以上50μm以下であることが好ましい。SiOxは後に述べる焼成工程において微小なSi相とSiO2相に分離するが、微小化し分散されたSi相への導電性を確保するために粒径は出来るだけ小さいことが好ましい。粒径が大きい場合、粒子中心部ではSi相を絶縁体のSiO2相が厚く覆うことになり活物質としてのリチウムの挿入脱離の機能が阻害されるためである。従ってSiOxの粒径は50μm以下であることが好ましい。しかしSiOxの大気に触れる表面は酸化されてSiO2となるため、粒径を極度に小さくした場合表面積が大きくなり表面がSiO2となることで組成が不安定となる。従って粒径は1μm以上である事が好ましい。 It is preferable to use SiOx (0.8 ≦ X ≦ 1.5) as the Si raw material. In particular, it is desirable to use SiO (x≈1) in order to obtain a preferable ratio of the quantitative relationship between the Si phase and the SiO 2 phase. The shape is powder and the particle size is preferably 1 μm or more and 50 μm or less. SiOx is separated into a fine Si phase and a SiO 2 phase in a baking step described later, but it is preferable that the particle size be as small as possible in order to ensure conductivity to the finely dispersed Si phase. This is because when the particle size is large, the Si phase is thickly covered with the SiO 2 phase of the insulator at the center of the particle, and the function of insertion / extraction of lithium as an active material is hindered. Accordingly, the particle size of SiOx is preferably 50 μm or less. However, the surface of SiOx that comes into contact with the atmosphere is oxidized to become SiO 2, and therefore, when the particle size is extremely reduced, the surface area becomes larger and the surface becomes SiO 2 , resulting in an unstable composition. Accordingly, the particle size is preferably 1 μm or more.
炭素質物の原料としては、グラファイト、アセチレンブラック、カーボンブラック、ハードカーボンなどすでに炭化されている材料の他に、ピッチ、樹脂、ポリマーなど不活性雰囲気下で加熱されて炭素質物となるものも用いることが出来る。炭素質物としてはグラファイト、アセチレンブラックなど高い電気伝導性を持つ材料とポリマー、ピッチなどの炭化されていない材料を組み合わせて用いることが好ましい。ピッチ、ポリマーなどの材料は焼成前の段階でSiOxと共に溶融または重合を行なうことでSiOxを炭素質物内に内包する形状にすることが可能である。本発明の製造方法における炭化焼成温度は800℃〜1400℃と比較的低温であるため炭化されたピッチまたはポリマーなどの黒鉛化は高くならず、活物質の導電性を高めるためにグラファイト、アセチレンブラック等が必要である。 As materials for carbonaceous materials, in addition to carbonized materials such as graphite, acetylene black, carbon black, and hard carbon, those that become carbonaceous materials when heated in an inert atmosphere, such as pitch, resin, and polymer, should be used. I can do it. As the carbonaceous material, it is preferable to use a combination of a material having high electrical conductivity such as graphite and acetylene black and a non-carbonized material such as polymer and pitch. The material such as pitch and polymer can be made into a shape in which SiOx is included in the carbonaceous material by melting or polymerizing with SiOx in a stage before firing. The carbonization firing temperature in the production method of the present invention is a relatively low temperature of 800 ° C. to 1400 ° C., so graphitization of carbonized pitch or polymer is not high, and graphite and acetylene black are used to increase the conductivity of the active material. Etc. are necessary.
炭化前の前駆体はSiOxおよび炭素質物を混合し調製するが、炭素質物としてピッチを用いる際には溶融ピッチ中にSiOxおよびグラファイト等を混合し冷却固化後、粉砕して表面を酸化し不融化した後、炭化焼成に供する。また、ポリマーを用いる場合にはモノマー中にグラファイト等およびSiOxを分散した状態で重合し固化したものを炭化焼成に供する。 The precursor before carbonization is prepared by mixing SiOx and carbonaceous material. When pitch is used as the carbonaceous material, SiOx and graphite are mixed in the molten pitch, solidified by cooling, and then pulverized to oxidize and infusibilize the surface. And then subjected to carbonization firing. When a polymer is used, a polymerized and solidified polymer in a state where graphite or the like and SiOx are dispersed in a monomer is subjected to carbonization firing.
炭化焼成は、Ar中等の不活性雰囲気下にて行なわれる。炭化焼成においては、ポリマーまたはピッチが炭化されると共に、SiOxは不均化反応によりSiとSiO2の2相に分離する。x=1のとき反応は下の式(1)で表される。 The carbonization firing is performed in an inert atmosphere such as in Ar. In the carbonization firing, the polymer or pitch is carbonized, and SiOx is separated into two phases of Si and SiO 2 by a disproportionation reaction. When x = 1, the reaction is represented by the following formula (1).
2SiO → Si +SiO2 ・・・(1)
この不均化反応は800℃より高温で進行し、微小なSi相とSiO2相に分離する。反応温度が上がるほどSi相の結晶は大きくなり、Si(220)のピークの半値幅は小さくなる。好ましい範囲の半値幅が得られる焼成温度は850℃〜1600℃の範囲である。また、不均化反応により生成したSiは1400℃より高い温度では炭素と反応してSiCに変化する。SiCはリチウムの挿入に対して全く不活性であるためSiCが生成すると活物質の容量は低下する。従って、炭化焼成の温度は850℃以上1400℃以下であることが好ましく、さらに好ましくは900℃以上1100℃以下である。焼成時間は、3時間から12時間の範囲が好ましい。
2SiO → Si + SiO 2 (1)
This disproportionation reaction proceeds at a temperature higher than 800 ° C., and is separated into a fine Si phase and a SiO 2 phase. The higher the reaction temperature, the larger the Si phase crystals and the smaller the half width of the Si (220) peak. The firing temperature at which a half width in the preferred range is obtained is in the range of 850 ° C to 1600 ° C. Moreover, Si produced | generated by disproportionation reaction reacts with carbon at a temperature higher than 1400 degreeC, and changes to SiC. Since SiC is completely inactive with respect to insertion of lithium, the capacity of the active material decreases when SiC is generated. Therefore, it is preferable that the temperature of carbonization baking is 850 degreeC or more and 1400 degrees C or less, More preferably, it is 900 degreeC or more and 1100 degrees C or less. The firing time is preferably in the range of 3 hours to 12 hours.
以上のような合成方法により本発明の負極活物質が得られる。炭化焼成後の生成物は各種ミル、粉砕装置、グラインダー等を用いて粒径、比表面積等を調製し、活物質として供される。 The negative electrode active material of the present invention can be obtained by the synthesis method as described above. The product after the carbonization firing is used as an active material by adjusting the particle size, specific surface area and the like using various mills, pulverizers, grinders and the like.
以下、本発明の負極活物質を用いた非水電解質二次電池の作製について詳述する。
1)正極
正極は、活物質を含む正極活物質層が正極集電体の片面もしくは両面に担持された構造を有する。
Hereinafter, the production of a nonaqueous electrolyte secondary battery using the negative electrode active material of the present invention will be described in detail.
1) Positive electrode The positive electrode has a structure in which a positive electrode active material layer containing an active material is supported on one or both surfaces of a positive electrode current collector.
前記正極活物質層の片面の厚さは10μm〜150μmの範囲であることが電池の大電流放電特性とサイクル寿命の保持の点から望ましい。従って正極集電体の両面に担持されている場合は正極活物質層の合計の厚さは20μm〜300μmの範囲となることが望ましい。片面のより好ましい範囲は30μm〜120μmである。この範囲であると大電流放電特性とサイクル寿命は向上する。
The thickness of one surface of the positive electrode active material layer is preferably in the range of 10 μm to 150 μm from the viewpoint of maintaining the large current discharge characteristics and cycle life of the battery. Therefore, when the positive electrode current collector is supported on both surfaces, the total thickness of the positive electrode active material layer is desirably in the range of 20 μm to 300 μm. A more preferable range on one side is 30 μm to 120 μm. Within this range, large current discharge characteristics and cycle life are improved.
正極活物質層は、正極活物質の他に導電剤を含んでいてもよい。 The positive electrode active material layer may contain a conductive agent in addition to the positive electrode active material.
また、正極活物質層は正極材料同士を結着する結着剤を含んでいてもよい。 The positive electrode active material layer may include a binder that binds the positive electrode materials to each other.
正極活物質としては、種々の酸化物、例えば二酸化マンガン、リチウムマンガン複合酸化物、リチウム含有ニッケルコバルト酸化物(例えばLiCOO2)、リチウム含有ニッケルコバルト酸化物(例えばLiNi0.8CO0.2O2)、リチウムマンガン複合酸化物(例えばLiMn2O4、LiMnO2)を用いると高電圧が得られるために好ましい。 Examples of the positive electrode active material include various oxides such as manganese dioxide, lithium manganese composite oxide, lithium-containing nickel cobalt oxide (for example, LiCOO 2 ), lithium-containing nickel cobalt oxide (for example, LiNi 0.8 CO 0.2 O). 2 ) and a lithium manganese composite oxide (for example, LiMn 2 O 4 , LiMnO 2 ) are preferable because a high voltage can be obtained.
導電剤としてはアセチレンブラック、カーボンブラック、黒鉛などを挙げることができる。 Examples of the conductive agent include acetylene black, carbon black, and graphite.
結着材の具体例としては例えばポリテトラフルオロエチレン(PTFE)、ポリ弗化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等を用いることができる。 Specific examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), and the like. .
正極活物質、導電剤および結着剤の配合割合は、正極活物質80〜95重量%、導電剤3〜20%、結着剤2〜7重量%の範囲にすることが、良好な大電流放電特性とサイクル寿命を得られるために好ましい。 It is preferable that the positive electrode active material, the conductive agent and the binder are mixed in a range of 80 to 95% by weight of the positive electrode active material, 3 to 20% of the conductive agent, and 2 to 7% by weight of the binder. It is preferable because discharge characteristics and cycle life can be obtained.
集電体としては、多孔質構造の導電性基板かあるいは無孔の導電性基板を用いることができる。集電体の厚さは5〜20μmであることが望ましい。この範囲であると電極強度と軽量化のバランスがとれるからである。
2)負極
負極は、負極材料を含む負極活物質が負極集電体の片面もしくは両面に担持された構造を有する。
As the current collector, a conductive substrate having a porous structure or a non-porous conductive substrate can be used. The thickness of the current collector is preferably 5 to 20 μm. This is because within this range, the electrode strength and weight reduction can be balanced.
2) Negative electrode The negative electrode has a structure in which a negative electrode active material containing a negative electrode material is supported on one side or both sides of a negative electrode current collector.
前記負極活物質層の厚さは10〜150μmの範囲であることが望ましい。従って負極集電体の両面に担持されている場合は負極活物質層の合計の厚さは20〜300μmの範囲となる。片面の厚さのより好ましい範囲は30〜100μmである。この範囲であると大電流放電特性とサイクル寿命は大幅に向上する。
The thickness of the negative electrode active material layer is preferably in the range of 10 to 150 μm. Therefore, when the negative electrode current collector is supported on both surfaces, the total thickness of the negative electrode active material layer is in the range of 20 to 300 μm. A more preferable range of the thickness of one side is 30 to 100 μm. Within this range, the large current discharge characteristics and cycle life are greatly improved.
負極活物質層は負極材料同士を結着する結着剤を含んでいてもよい。結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリ弗化ビニリデン(PVdF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等を用いることができる。 The negative electrode active material layer may include a binder that binds the negative electrode materials. As the binder, for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), or the like can be used.
また、負極活物質層は導電剤を含んでいてもよい。導電剤としてはアセチレンブラック、カーボンブラック、黒鉛などを挙げることができる。 The negative electrode active material layer may contain a conductive agent. Examples of the conductive agent include acetylene black, carbon black, and graphite.
集電体としては、多孔質構造の導電性基板か、あるいは無孔の導電性基板を用いることができる。これら導電性基板は、例えば、銅、ステンレスまたはニッケルから形成することができる。集電体の厚さは5〜20μmであることが望ましい。この範囲であると電極強度と軽量化のバランスがとれるからである。
3)電解質
電解質としては非水電解液、電解質含浸型ポリマー電解質、高分子電解質、あるいは無機固体電解質を用いることができる。
As the current collector, a conductive substrate having a porous structure or a nonporous conductive substrate can be used. These conductive substrates can be formed from, for example, copper, stainless steel, or nickel. The thickness of the current collector is preferably 5 to 20 μm. This is because within this range, the electrode strength and weight reduction can be balanced.
3) Electrolyte As the electrolyte, a non-aqueous electrolyte, an electrolyte-impregnated polymer electrolyte, a polymer electrolyte, or an inorganic solid electrolyte can be used.
非水電解液は、非水溶媒に電解質を溶解することにより調製される液体状電解液で、電極群中の空隙に保持される。 The non-aqueous electrolyte is a liquid electrolyte prepared by dissolving an electrolyte in a non-aqueous solvent, and is held in the voids in the electrode group.
非水溶媒としては、プロピレンカーボネート(PC)やエチレンカーボネート(EC)とPCやECより低粘度である非水溶媒(以下第2溶媒と称す)との混合溶媒を主体とする非水溶媒を用いることが好ましい。 As the non-aqueous solvent, a non-aqueous solvent mainly composed of a mixed solvent of propylene carbonate (PC) or ethylene carbonate (EC) and a non-aqueous solvent having a viscosity lower than that of PC or EC (hereinafter referred to as a second solvent) is used. It is preferable.
第2溶媒としては、例えば鎖状カーボンが好ましく、中でもジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、プロピオン酸エチル、プロピオン酸メチル、γ−ブチロラクトン(BL)、アセトニトリル(AN)、酢酸エチル(EA)、トルエン、キシレンまたは、酢酸メチル(MA)等が挙げられる。これらの第2溶媒は、単独または2種以上の混合物の形態で用いることができる。特に、第2溶媒はドナー数が16.5以下であることがより好ましい。 As the second solvent, for example, chain carbon is preferable, among which dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), ethyl propionate, methyl propionate, γ-butyrolactone (BL), acetonitrile ( AN), ethyl acetate (EA), toluene, xylene or methyl acetate (MA). These second solvents can be used alone or in the form of a mixture of two or more. In particular, the second solvent preferably has a donor number of 16.5 or less.
第2溶媒の粘度は、25℃において2.8cmp以下であることが好ましい。混合溶媒中のエチレンカーボネートまたはプロピレンカーボネートの配合量は、体積比率で1.0%〜80%であることが好ましい。より好ましいエチレンカーボネートまたはプロピレンカーボネートの配合量は体積比率で20%〜75%である。 The viscosity of the second solvent is preferably 2.8 cmp or less at 25 ° C. The blending amount of ethylene carbonate or propylene carbonate in the mixed solvent is preferably 1.0% to 80% by volume ratio. The blending amount of ethylene carbonate or propylene carbonate is more preferably 20% to 75% by volume ratio.
非水電解液に含まれる電解質としては、例えば過塩素酸リチウム(LiClO4)、六弗化リン酸リチウム(LiPF6)、ホウ弗化リチウム(LiBF4)、六弗化砒素リチウム(LiAsF6)、トリフルオロメタスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CF3SO2)2]等のリチウム塩(電解質)が挙げられる。中でもLiPF6、LiBF4を用いるのが好ましい。 Examples of the electrolyte contained in the non-aqueous electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), and lithium arsenic hexafluoride (LiAsF 6 ). And lithium salts (electrolytes) such as lithium trifluorometasulfonate (LiCF 3 SO 3 ) and lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ]. Of these, LiPF 6 and LiBF 4 are preferably used.
電解質の非水溶媒に対する溶解量は、0.5〜2.0mol/Lとすることが望ましい。
3)セパレータ
非水電解液を用いる場合、および電解質含浸型ポリマー電解質を用いる場合においてはセパレータを用いることができる。セパレータは多孔質セパレータを用いる。セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン、またはポリ弗化ピニリデン(PVdF)を含む多孔質フィルム、合成樹脂製不織布等を用いることができる。中でも、ポリエチレンか、あるいはポリプロピレン、または両者からなる多孔質フィルムは、二次電池の安全性を向上できるため好ましい。
The amount of electrolyte dissolved in the non-aqueous solvent is preferably 0.5 to 2.0 mol / L.
3) Separator A separator can be used when a non-aqueous electrolyte is used and when an electrolyte-impregnated polymer electrolyte is used. A porous separator is used as the separator. As a material for the separator, for example, a porous film containing polyethylene, polypropylene, or polyvinylidene fluoride (PVdF), a synthetic resin nonwoven fabric, or the like can be used. Among these, a porous film made of polyethylene, polypropylene, or both is preferable because it can improve the safety of the secondary battery.
セパレータの厚さは、30μm以下にすることが好ましい。厚さが30μmを越えると、正負極間の距離が大きくなって内部抵抗が大きくなる恐れがある。また、厚さの下限値は、5μmにすることが好ましい。厚さを5μm未満にすると、セパレータの強度が著しく低下して内部ショートが生じやすくなる恐れがある。厚さの上限値は、25μmにすることがより好ましく、また、下限値は1.0μmにすることがより好ましい。 The thickness of the separator is preferably 30 μm or less. If the thickness exceeds 30 μm, the distance between the positive and negative electrodes may be increased and the internal resistance may be increased. Further, the lower limit value of the thickness is preferably 5 μm. If the thickness is less than 5 μm, the strength of the separator is remarkably lowered and an internal short circuit is likely to occur. The upper limit value of the thickness is more preferably 25 μm, and the lower limit value is more preferably 1.0 μm.
セパレータは、120℃の条件で1時間おいたときの熱収縮率が20%以下であることが好ましい。熱収縮率が20%を超えると、加熱により短絡が起こる可能性が大きくなる。熱収縮率は、15%以下にすることがより好ましい。 The separator preferably has a heat shrinkage rate of 20% or less when kept at 120 ° C. for 1 hour. If the heat shrinkage rate exceeds 20%, the possibility of a short circuit due to heating increases. The thermal shrinkage rate is more preferably 15% or less.
セパレータは、多孔度が30〜70%の範囲であることが好ましい。これは次のような理由によるものである。多孔度を30%未満にすると、セパレータにおいて高い電解質保持性を得ることが困難になる恐れがある。一方、多孔度が60%を超えると十分なセパレータ強度を得られなくなる恐れがある。多孔度のより好ましい範囲は、35〜70%である。 The separator preferably has a porosity in the range of 30 to 70%. This is due to the following reason. If the porosity is less than 30%, it may be difficult to obtain high electrolyte retention in the separator. On the other hand, if the porosity exceeds 60%, sufficient separator strength may not be obtained. A more preferable range of the porosity is 35 to 70%.
セパレータは、空気透過率が500秒/1.00cm3以下であると好ましい。空気透過率が500秒/1.00cm3を超えると、セパレータにおいて高いリチウムイオン移動度を得ることが困難になる恐れがある。また、空気透過率の下限値は、30秒/1.00cm3である。空気透過率を30秒/1.00cm3未満にすると、十分なセパレータ強度を得られなくなる恐れがあるからである。 The separator preferably has an air permeability of 500 seconds / 1.00 cm 3 or less. If the air permeability exceeds 500 seconds / 1.00 cm 3 , it may be difficult to obtain high lithium ion mobility in the separator. The lower limit of the air permeability is 30 seconds / 1.00 cm 3 . This is because if the air permeability is less than 30 seconds / 1.00 cm 3 , sufficient separator strength may not be obtained.
空気透過率の上限値は300秒/1.00cm3にすることがより好ましく、また、下限値は50秒/1.00cm3にするとより好ましい。 The upper limit value of the air permeability is more preferably 300 seconds / 1.00 cm 3 , and the lower limit value is more preferably 50 seconds / 1.00 cm 3 .
本発明に係わる非水電解質二次電池の一例である円筒形非水電解質二次電池を、図1を参照して詳細に説明する。 A cylindrical nonaqueous electrolyte secondary battery which is an example of a nonaqueous electrolyte secondary battery according to the present invention will be described in detail with reference to FIG.
例えば、ステンレスからなる有底円筒状の容器1は底部に絶縁体2が配置されている。電極群3は、前記容器1に収納されている。前記電極群3は、正極4、セパレータ5、負極6及びセパレータ5を積層した帯状物を前記セパレータ5が外側に位置するように渦巻状に捲回した構造になっている。
前記容器1内には、電解液が収容されている。中央部が開口された絶縁紙7は、前記容器1内の前記電極群3の上方に配置されている。絶縁封口板8は、前記容器1の上部開口部に配置され、かつ前記上部開口部付近を内側にかしめ加工することにより前記封口板8は前記容器1に固定されている。正極端子9は、前記絶縁封口板8の中央に嵌合されている。正極リード1.0の一端は、前記正極4に、他端は前記正極端子9にそれぞれ接続されている。前記負極6は、図示しない負極リードを介して負極端子である前記容器1に接続されている。
なお、前述した図1において、円筒形非水電解質二次電池に適用した例を説明したが、角型非水電解質二次電池にも同様に適用できる。また、前記電池の容器内に収納される電極群は、渦巻き系に限らず、正極、セパレータ及び負極をこの順序で複数積層した形態にしてもよい。
For example, a bottomed cylindrical container 1 made of stainless steel has an insulator 2 disposed at the bottom. The electrode group 3 is housed in the container 1. The electrode group 3 has a structure in which a belt-like material in which the positive electrode 4, the separator 5, the negative electrode 6, and the separator 5 are laminated is wound in a spiral shape so that the separator 5 is located outside.
An electrolytic solution is accommodated in the container 1. The insulating paper 7 having an open center is disposed above the electrode group 3 in the container 1. The insulating sealing plate 8 is disposed in the upper opening of the container 1, and the sealing plate 8 is fixed to the container 1 by caulking the vicinity of the upper opening. The positive terminal 9 is fitted in the center of the insulating sealing plate 8. One end of the positive electrode lead 1.0 is connected to the positive electrode 4, and the other end is connected to the positive electrode terminal 9. The negative electrode 6 is connected to the container 1 which is a negative electrode terminal via a negative electrode lead (not shown).
In addition, in FIG. 1 mentioned above, although the example applied to the cylindrical nonaqueous electrolyte secondary battery was demonstrated, it can apply similarly to a square type nonaqueous electrolyte secondary battery. The electrode group housed in the battery container is not limited to the spiral system, and a plurality of positive electrodes, separators, and negative electrodes may be stacked in this order.
また、前述した図1においては、金属缶からなる外装体を使用した非水電解質二次電池に適用した例を説明したが、フィルム材からなる外装体を使用した非水電解質二次電池にも同様に適用することができる。フィルム材としては、熱可塑性樹脂とアルミニウム層を含むラミネートフィルムが好ましい。
以上説明した本発明に係わる非水電解質二次電池用負極活物質は、SiとSiO2と炭素質物の三相を含む化合物であることを特徴とするものである。
このような負極活物質は高い充放電容量と長いサイクル寿命を同時に達成することができるため、放電容量が向上された長寿命な非水電解質二次電池を実現することができる。
Moreover, in FIG. 1 mentioned above, although the example applied to the nonaqueous electrolyte secondary battery using the exterior body which consists of metal cans was demonstrated, the nonaqueous electrolyte secondary battery using the exterior body which consists of film materials is also demonstrated. The same can be applied. As the film material, a laminate film including a thermoplastic resin and an aluminum layer is preferable.
The negative electrode active material for a non-aqueous electrolyte secondary battery according to the present invention described above is a compound containing three phases of Si, SiO 2 and a carbonaceous material.
Since such a negative electrode active material can simultaneously achieve a high charge / discharge capacity and a long cycle life, a long-life nonaqueous electrolyte secondary battery with an improved discharge capacity can be realized.
以下に本発明の具体的な実施例を挙げ、その効果について述べる。但し、本発明は実施例に限定されるものではない。 Hereinafter, specific examples of the present invention will be given and the effects thereof will be described. However, the present invention is not limited to the examples.
原料にはSiOxとして、平均粒径30μmの非晶質SiO、炭素質物として平均粒径6μmのグラファイトおよびフルフリルアルコールを用いた。混合比は重量比でSiO:グラファイト:フルフリルアルコールを3:0.5:5とした。フルフリルアルコールに対してその1/10重量の水を加えグラファイト、次いでSiOを加えてそれぞれ撹拌した。その後、希塩酸をフルフリルアルコールの1/10重量加え撹拌後放置し重合固化させた。 As raw materials, amorphous SiO having an average particle diameter of 30 μm was used as SiOx, and graphite and furfuryl alcohol having an average particle diameter of 6 μm were used as carbonaceous materials. The mixing ratio of SiO: graphite: furfuryl alcohol was 3: 0.5: 5 by weight. 1/10 weight of water was added to furfuryl alcohol, graphite and then SiO were added, and each was stirred. Thereafter, 1/10 weight of furfuryl alcohol was added to dilute hydrochloric acid, and the mixture was allowed to stand after stirring to polymerize and solidify.
得られた固形物を表1に示す温度・時間でAr中にて焼成し室温まで冷却後、粉砕機により粉砕し30μm径のふるいをかけて活物質を得た。この活物質について、後述するX線回折試験を行った。また、得られた活物質について負極活物質として、後述する充放電試験を行なった。 The obtained solid was fired in Ar at the temperature and time shown in Table 1, cooled to room temperature, pulverized by a pulverizer, and sieved with a 30 μm diameter to obtain an active material. This active material was subjected to the X-ray diffraction test described later. Moreover, the charging / discharging test mentioned later was done as a negative electrode active material about the obtained active material.
(充放電試験)
得られた試料にアセチレンブラック5wt%、 ポリテトラフルオロエチレン3wt%を加えシート状としステンレスメッシュに圧着し、150℃で真空乾燥し試験電極とした。対極および参照極を金属Li、電解液を1MLiPF6のEC・MEC(体積比1:2)溶液とした電池をアルゴン雰囲気中で作製し充放電試験を行った。充放電試験の条件は、参照極と試験電極間の電位差0.01Vまで1mA/cm2の電流密度で充電、さらに0.01Vで8時間の定電圧充電を行い、放電は1mA/cm2の電流密度で3Vまで行った。
(X線回折測定)
得られた粉末試料について粉末X線回折測定を行い、Si(220)面のピークの半値幅を測定した。測定は株式会社マック・サイエンス社製X線回折測定装置(型式M18XHF22)を用い、以下の条件で行った。
(Charge / discharge test)
Acetylene black 5 wt% and polytetrafluoroethylene 3 wt% were added to the obtained sample to form a sheet, pressure-bonded to a stainless steel mesh, and vacuum dried at 150 ° C. to obtain a test electrode. A battery having a counter electrode and a reference electrode made of metallic Li and an electrolytic solution of 1M LiPF 6 in EC / MEC (volume ratio 1: 2) was prepared in an argon atmosphere and subjected to a charge / discharge test. Conditions of the charge and discharge test, between the reference electrode test electrode potential charging at a current density of 1 mA / cm 2 to 0.01 V, further subjected to constant-voltage charging for 8 hours at 0.01 V, discharge of 1 mA / cm 2 The current density was up to 3V.
(X-ray diffraction measurement)
Powder X-ray diffraction measurement was performed on the obtained powder sample, and the half width of the peak of the Si (220) plane was measured. The measurement was performed under the following conditions using an X-ray diffractometer (model M18XHF22) manufactured by Mac Science Co., Ltd.
対陰極:Cu
管電圧:50kv
管電流:300mA
走査速度:1°(2θ)/min
時定数:1sec
受光スリット:0.15mm
発散スリット:0.5°
散乱スリット:0.5°
回折パターンより、d=1.92Å(2θ=47.2°)に現れるSiの面指数(220)のピークの半値幅(°(2θ))を測定した。また、Si(220)のピークが活物質中に含有される他の物質のピークと重なりをもつ場合には、ピークを単離し半値幅を測定した。
(比較例3)
実施例2におけるSiOを平均粒径0.5μmのSi粉末とし、Si:グラファイト:フルフリルアルコールを1:0.5:5の重量比で実施例と同様に合成した。この際、焼成温度は1000℃とした。得られた試料について、充放電試験およびX線回折測定を行なった。この得られた資料を負極活物質として使用した対極Li試験電池を実施例と同様に形成した。
Counter cathode: Cu
Tube voltage: 50 kv
Tube current: 300mA
Scanning speed: 1 ° (2θ) / min
Time constant: 1 sec
Receiving slit: 0.15mm
Divergent slit: 0.5 °
Scattering slit: 0.5 °
From the diffraction pattern, the half-value width (° (2θ)) of the peak of the Si surface index (220) appearing at d = 1.92 ° (2θ = 47.2 °) was measured. Moreover, when the peak of Si (220) overlapped with the peaks of other substances contained in the active material, the peak was isolated and the half width was measured.
(Comparative Example 3)
The SiO in Example 2 was made into Si powder having an average particle diameter of 0.5 μm, and Si: graphite: furfuryl alcohol was synthesized in a weight ratio of 1: 0.5: 5 in the same manner as in the example. At this time, the firing temperature was 1000 ° C. The obtained sample was subjected to a charge / discharge test and X-ray diffraction measurement. A counter electrode Li test battery using the obtained material as a negative electrode active material was formed in the same manner as in the example.
表2に充放電試験における1サイクル目の放電容量および50サイクル後の放電容量維持率、粉末X線回折から得たSi(220)ピークの半値幅を示す。 Table 2 shows the discharge capacity at the first cycle in the charge / discharge test, the discharge capacity retention after 50 cycles, and the half width of the Si (220) peak obtained from powder X-ray diffraction.
表2に挙げた結果から本発明の負極活物質は大きな放電容量および良好なサイクル特性を有することが理解される。すなわち、比較例1では焼成温度を700℃としたためSiOはSiとSiO2に分離せず、そのため容量およびサイクル特性も低下した。比較例2では焼成温度を1400℃としたため、Si(220)ピークの半値幅は小さくなりサイクル特性が低下するとともに、生成したSiがCと反応しLiを吸蔵しないSiCとなったため容量が大幅に低下した。比較例3ではSi粒子が大きく小さい半値幅を有し、またSiO2が存在しないためにサイクル特性が大幅に低下した。 From the results listed in Table 2, it is understood that the negative electrode active material of the present invention has a large discharge capacity and good cycle characteristics. That is, in Comparative Example 1, since the firing temperature was set to 700 ° C., SiO was not separated into Si and SiO 2, and thus capacity and cycle characteristics were also lowered. In Comparative Example 2, since the firing temperature was set to 1400 ° C., the half width of the Si (220) peak was reduced, the cycle characteristics were lowered, and the generated Si reacted with C to become SiC that did not occlude Li, so the capacity was greatly increased. Declined. In Comparative Example 3, the Si characteristics were large and the half width was small, and since no SiO 2 was present, the cycle characteristics were greatly deteriorated.
1・・・外装体、
3・・・電極群、
4・・・正極、
5・・・セパレータ、
6・・・負極、
8・・・封口板、
9・・・正極端子。
1 ... exterior body,
3 ... Electrode group,
4 ... positive electrode,
5 ... Separator,
6 ... negative electrode,
8: Sealing plate,
9: Positive terminal.
Claims (3)
負極集電体が多孔質構造あるいは無孔の銅、ステンレス、ニッケルの導電性基板のいずれかであり、厚みが5μm以上、20μm以下であることを特徴とする非水電解質二次電池用負極。 The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1,
A negative electrode for a non-aqueous electrolyte secondary battery, wherein the negative electrode current collector is a porous substrate or a nonporous copper, stainless steel, or nickel conductive substrate, and has a thickness of 5 μm or more and 20 μm or less.
Non-aqueous electrolyte secondary battery characterized by having a negative electrode according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012106011A JP5992198B2 (en) | 2012-05-07 | 2012-05-07 | Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012106011A JP5992198B2 (en) | 2012-05-07 | 2012-05-07 | Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008180598A Division JP5329858B2 (en) | 2008-07-10 | 2008-07-10 | Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013165956A Division JP5992376B2 (en) | 2013-08-09 | 2013-08-09 | Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012151129A JP2012151129A (en) | 2012-08-09 |
JP5992198B2 true JP5992198B2 (en) | 2016-09-14 |
Family
ID=46793161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012106011A Expired - Fee Related JP5992198B2 (en) | 2012-05-07 | 2012-05-07 | Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5992198B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10892482B2 (en) | 2012-10-26 | 2021-01-12 | Showa Denko Materials Co., Ltd. | Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery |
KR102084496B1 (en) * | 2013-05-23 | 2020-03-04 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery |
JP6239326B2 (en) | 2013-09-20 | 2017-11-29 | 株式会社東芝 | Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack |
JP2015064988A (en) | 2013-09-24 | 2015-04-09 | 株式会社東芝 | Nonaqueous electrolyte secondary battery and battery pack |
JP6275822B2 (en) | 2014-03-20 | 2018-02-07 | 株式会社東芝 | Non-aqueous electrolyte battery active material, non-aqueous electrolyte battery electrode, non-aqueous electrolyte secondary battery, battery pack, and method for producing non-aqueous electrolyte battery active material |
WO2015145521A1 (en) | 2014-03-24 | 2015-10-01 | 株式会社 東芝 | Negative electrode active material for non-aqueous electrolyte cell, negative electrode for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and cell pack |
JP2016062810A (en) | 2014-09-19 | 2016-04-25 | 株式会社東芝 | Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3973300B2 (en) * | 1998-09-10 | 2007-09-12 | 三菱化学株式会社 | Non-aqueous secondary battery |
JP2000243396A (en) * | 1999-02-23 | 2000-09-08 | Hitachi Ltd | Lithium secondary battery and its manufacture and its negative electrode material and electric apparatus |
JP2000268879A (en) * | 1999-03-18 | 2000-09-29 | Hitachi Ltd | Lithium secondary battery |
JP4104830B2 (en) * | 2001-03-02 | 2008-06-18 | 三星エスディアイ株式会社 | Carbonaceous material, lithium secondary battery, and method for producing carbonaceous material |
JP4308446B2 (en) * | 2001-03-02 | 2009-08-05 | 三星エスディアイ株式会社 | Carbonaceous material and lithium secondary battery |
JP2004071542A (en) * | 2002-06-14 | 2004-03-04 | Japan Storage Battery Co Ltd | Negative electrode active material, negative electrode using same, nonaqueous electrolyte battery using same, and manufacture of negative electrode active material |
JP2004119176A (en) * | 2002-09-26 | 2004-04-15 | Toshiba Corp | Negative electrode active material for nonaqueous electrolyte rechargeable battery, and nonaqueous electrolyte rechargeable battery |
JP5329858B2 (en) * | 2008-07-10 | 2013-10-30 | 株式会社東芝 | Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby |
-
2012
- 2012-05-07 JP JP2012106011A patent/JP5992198B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012151129A (en) | 2012-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5329858B2 (en) | Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby | |
JP4519592B2 (en) | Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
JP5503858B2 (en) | Negative electrode active material for non-aqueous electrolyte battery and non-aqueous electrolyte battery | |
JP7157252B2 (en) | Positive electrode additive for lithium secondary battery, manufacturing method thereof, positive electrode for lithium secondary battery containing same, and lithium secondary battery containing same | |
TWI697148B (en) | Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery | |
JP5851541B2 (en) | Non-aqueous electrolyte battery | |
JP2004119176A (en) | Negative electrode active material for nonaqueous electrolyte rechargeable battery, and nonaqueous electrolyte rechargeable battery | |
US7833662B2 (en) | Anode active material, method of preparing the same, and anode and lithium battery containing the material | |
JP5636351B2 (en) | Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack, and method for producing negative electrode active material for nonaqueous electrolyte secondary battery | |
JP3726958B2 (en) | battery | |
TWI691115B (en) | Negative electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and method for producing non-aqueous electrolyte secondary battery and negative electrode material for non-aqueous electrolyte secondary battery using the negative electrode active material | |
JP5172564B2 (en) | Nonaqueous electrolyte secondary battery | |
WO2015198511A1 (en) | Negative electrode material for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and method for producing negative electrode active material particles | |
TWI797075B (en) | Negative electrode active material, mixed negative electrode active material material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery | |
JP5992198B2 (en) | Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby | |
JP5601536B2 (en) | Nonaqueous electrolyte secondary battery | |
CN111668473A (en) | Nonaqueous electrolyte secondary battery | |
TWI709274B (en) | Method for manufacturing negative electrode active material and method for manufacturing non-aqueous electrolyte secondary battery | |
JP2015088466A (en) | Negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and battery pack | |
JP2015064983A (en) | Nonaqueous electrolyte secondary battery and battery pack | |
WO2016132662A1 (en) | Carbon coating treatment device, negative-electrode active material for nonaqueous electrolyte secondary battery, manufacturing method therefor, lithium-ion secondary battery, and electrochemical capacitor | |
JP2013110105A (en) | Negative electrode for lithium ion secondary battery, and lithium ion secondary battery including the negative electrode | |
WO2015140984A1 (en) | Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte secondary battery and battery pack | |
WO2016031085A1 (en) | Anode material for lithium ion battery | |
JPH10312807A (en) | Lithium secondary battery and manufacture of negative electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120606 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140324 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140805 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141105 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20141125 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20150123 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160817 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5992198 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |
|
LAPS | Cancellation because of no payment of annual fees |