JP5953952B2 - Steel material excellent in impact resistance and method for producing the same - Google Patents
Steel material excellent in impact resistance and method for producing the same Download PDFInfo
- Publication number
- JP5953952B2 JP5953952B2 JP2012128483A JP2012128483A JP5953952B2 JP 5953952 B2 JP5953952 B2 JP 5953952B2 JP 2012128483 A JP2012128483 A JP 2012128483A JP 2012128483 A JP2012128483 A JP 2012128483A JP 5953952 B2 JP5953952 B2 JP 5953952B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- cooling
- steel material
- less
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 154
- 239000010959 steel Substances 0.000 title claims description 154
- 239000000463 material Substances 0.000 title claims description 66
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 238000001816 cooling Methods 0.000 claims description 117
- 229910000859 α-Fe Inorganic materials 0.000 claims description 95
- 238000005096 rolling process Methods 0.000 claims description 28
- 239000002344 surface layer Substances 0.000 claims description 26
- 239000013078 crystal Substances 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 7
- 230000001186 cumulative effect Effects 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 230000009466 transformation Effects 0.000 description 25
- 238000000034 method Methods 0.000 description 16
- 230000000694 effects Effects 0.000 description 15
- 230000007423 decrease Effects 0.000 description 12
- 229910001566 austenite Inorganic materials 0.000 description 11
- 239000002436 steel type Substances 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 8
- 229910001563 bainite Inorganic materials 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910000734 martensite Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 238000001953 recrystallisation Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910001562 pearlite Inorganic materials 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、船舶等の大型構造物に使用される鋼材およびその製造方法に関し、特に船舶の衝突時等の損害抑制に効果がある高い一様伸びを有する、耐衝突性に優れた鋼材およびその製造方法に関するものである。 The present invention relates to a steel material used for a large structure such as a ship and a method for producing the same, and particularly to a steel material having a high uniform elongation that is effective in suppressing damage during a ship collision and the like, and an excellent impact resistance. It relates to a manufacturing method.
近年、大型タンカーの座礁や衝突による油流出による環境汚染が問題となっている。これらの事故による油流出を防止するために、船殻の二重構造化等の船体構造面からの取り組みは行われているが、船体用鋼材については十分な対応策が検討されていない。その中でも、船体用鋼材面からの取り組みとして、衝突時のエネルギーを鋼材自体に多く吸収させることが提案されているが、未だ十分な実用段階には達していない。 In recent years, environmental pollution due to oil spills caused by landing of large tankers and collisions has become a problem. In order to prevent oil spills due to these accidents, efforts have been made from the hull structure side such as double hull structure, but sufficient countermeasures have not been studied for steel for hulls. Among them, as an approach from the steel material side of the hull, it has been proposed that the steel material itself absorbs a lot of energy at the time of collision, but has not yet reached a sufficient practical stage.
衝突時のエネルギー吸収能カを向上させる方法としては、鋼板の組織をフェライト主体とし、かつフェライト相を強化する技術が特許文献1に提案されている。この技術は、フェライト分率Fが80%以上であり、かつフェライトの硬さHについては下限値(H≧400−2.6×F)を規定することを特徴としている。 As a method for improving the energy absorption capacity at the time of collision, Patent Document 1 proposes a technique in which the structure of a steel sheet is mainly composed of ferrite and the ferrite phase is strengthened. This technique is characterized in that the ferrite fraction F is 80% or more, and the ferrite hardness H defines a lower limit value (H ≧ 400−2.6 × F).
また、鋼板の表裏層に残留γ相を含ませる技術が特許文献2に提案されている。この技術は、C、Si、Mn、Alを含有し、さらに必要に応じて強化元素を含有し、鋼板の少なくとも板厚の1/8以上の表裏層に面積率で1.0〜20%の残留γを含むというものである。
これらの技術においては、衝突時のエネルギー吸収を、鋼材の強度(降伏応力と破断応力の平均)と全伸びの積として評価している。そのため、強度と全伸びの両者の向上により吸収エネルギーの増加を図っている。
Further, Patent Document 2 proposes a technique for including a residual γ phase in the front and back layers of a steel plate. This technique contains C, Si, Mn, and Al, and further contains a strengthening element as necessary. The front and back layers of at least 1/8 or more of the plate thickness of the steel plate have an area ratio of 1.0 to 20%. It contains residual γ.
In these technologies, energy absorption at the time of collision is evaluated as a product of the strength (average of yield stress and rupture stress) of steel material and total elongation. Therefore, the absorption energy is increased by improving both strength and total elongation.
これらの他に、特許文献3には、鋼板金属組織中のフェライト相の相分率を板厚中央部で70%以上、板厚表層部で50%以上とし、一様伸びを増加させることにより、耐衝突性を向上させる技術が開示されている。 In addition to these, Patent Document 3 discloses that the phase fraction of the ferrite phase in the steel sheet metallographic structure is 70% or more at the plate thickness center part and 50% or more at the plate thickness surface layer part to increase the uniform elongation. A technique for improving collision resistance is disclosed.
さらに、特許文献4に、鋼板の全金属組織に占めるフェライトの面積分率を90%以上、その平均フェライト粒径を3〜12μm、最大フェライト粒径を40μm以下、第2相の平均円相当径を0.8μm以下とし、一様伸びと破断応力の積を大きくすることにより、衝突吸収性を向上させる技術が提案されている。 Further, in Patent Document 4, the area fraction of ferrite in the total metal structure of the steel sheet is 90% or more, the average ferrite grain size is 3 to 12 μm, the maximum ferrite grain size is 40 μm or less, the average equivalent circle diameter of the second phase Has been proposed to improve the impact absorption by increasing the product of the uniform elongation and the breaking stress to 0.8 .mu.m or less.
上記の特許文献1と特許文献2で用いられている全伸びによる吸収エネルギーの評価は、必ずしも船体構造の安全性の評価に繋がるとはかぎらず、耐衝突性を議論する場合には相応しくない。すなわち、引張試験における標点距離とは比べものにならない長大なスパンで防撓材に支えられている船体外板の伸び変形を評価するには、試験片形状の影響を受ける局部伸びを含んだ全伸びの評価は適していない。そこで、衝突時の吸収エネルギーを考える場合には、船体外板の伸び特性と相関が高いと判断される一様伸びで評価する必要がある。 The evaluation of the absorbed energy based on the total elongation used in Patent Document 1 and Patent Document 2 described above does not necessarily lead to the evaluation of the safety of the hull structure, and is not appropriate when discussing collision resistance. In other words, in order to evaluate the elongation deformation of a hull outer plate supported by a stiffener with a long span that cannot be compared with the gauge distance in a tensile test, the total elongation including the local elongation affected by the shape of the specimen is used. Evaluation of elongation is not suitable. Therefore, when considering the absorbed energy at the time of collision, it is necessary to evaluate with uniform elongation which is judged to be highly correlated with the elongation characteristics of the hull skin.
例えば、特許文献1の技術では、フェライト粒径が5μm以下で、フェライトの硬さは実施例(同文献、表2)ではHv160〜190であり高めとなっている。そのため、全伸び(同表のEL)でも23〜32%であり、一様伸びはこれより高くなり得ないので、せいぜい全伸びの半分程度に止まるものと推定される。 For example, in the technique of Patent Document 1, the ferrite particle size is 5 μm or less, and the hardness of the ferrite is Hv 160 to 190 in the example (the same document, Table 2), which is high. Therefore, the total elongation (EL in the same table) is 23 to 32%, and the uniform elongation cannot be higher than this, so it is estimated that the total elongation is only about half of the total elongation.
また、特許文献2の技術では、組織に残留γを含むようにするため、合金元素が多目に添加されており、実施例の鋼は炭素等量(Ceq)が高いか、Siが高い鋼種となっている。 Further, in the technique of Patent Document 2, alloy elements are added in many cases so that the structure contains residual γ, and the steel of the examples has a high carbon equivalent (Ceq) or a steel type with high Si. It has become.
例えば同文献の表1を見ると、鋼種AではCeqを計算すると約0.38であり、鋼種B〜FではSiが0.55〜1.94%であり、いずれも高目となっている。そのため、全般に延性が低く、表層だけ残留γにより一様伸びを高くしても、一様伸びは延性の低い部分で律則されるため、一様伸びを向上させることが困難であるものと推測される。 For example, when looking at Table 1 of the same literature, Ceq is calculated to be about 0.38 for steel type A, and Si is 0.55 to 1.94% for steel types B to F, both of which are high. . Therefore, the ductility is generally low, and even if the uniform elongation is increased only by the residual γ on the surface layer, the uniform elongation is regulated by the portion with low ductility, so it is difficult to improve the uniform elongation. Guessed.
これらの鋼種については、靭性あるいは溶接性に関する試験結果が、全く開示されていない。なお、同文献で衝撃吸収エネルギーというのは、表2のEL×(YP+TS/2)であり、全伸びと強度の積のことである。そこで、これらの鋼種の材質について、通常の厚鋼板の材質から考えると、Siが高めの鋼種は靭性が低く、Ceqが高めの鋼種は溶接性に問題があると推測される。
一般に、船体用鋼材においては設計上の要求から必要な降伏応力が決められており、使用する部位に応じて鋼材の強度等級が変更されるため必要以上の強度は特に必要とされないこと、および強度を向上させるためには合金元素の添加等によるコスト上昇や溶接性の劣化を生じるため、強度増加による吸収エネルギーの向上は好ましくない。
For these steel types, no test results relating to toughness or weldability are disclosed. In this document, the impact absorption energy is EL × (YP + TS / 2) in Table 2 and is the product of total elongation and strength. Therefore, considering the materials of these steel types from the normal thick steel plate materials, it is presumed that the steel types with high Si have low toughness and the steel types with high Ceq have problems in weldability.
In general, the necessary yield stress is determined by design requirements for steel for hulls, and the strength grade of the steel is changed according to the part to be used. In order to improve this, the cost increases due to the addition of alloy elements and the like, and the weldability deteriorates. Therefore, it is not preferable to improve the absorbed energy by increasing the strength.
一方、特許文献3の技術では、合金元素添加量を低目に抑え、かつ硬度が低く延性の高いフェライト相の組織分率を高くすることにより、一様伸びの向上を図っているが、板厚表層部のフェライト相分率を板厚中央部と同じ程度まで増加させる製造方法の開発にまでは至っていない。また、実施例では、板厚が比較的小さい25mm以下のものしか開示されていないが、板厚が大きくなるとともに製造時の制御冷却の水量と時間が増加するために、板厚表層部のフェライト分率を確保することは著しく困難となる。 On the other hand, in the technology of Patent Document 3, uniform elongation is improved by suppressing the addition amount of the alloy element to a low level and increasing the structure fraction of the ferrite phase having low hardness and high ductility. Development of a manufacturing method for increasing the ferrite phase fraction of the thick surface layer portion to the same extent as that of the central portion of the plate thickness has not been achieved. In the examples, only a comparatively small plate thickness of 25 mm or less is disclosed. However, since the plate thickness increases and the amount and time of controlled cooling at the time of manufacture increase, It is extremely difficult to secure the fraction.
特許文献4では、鋼材の化学成分と金属組織の情報は開示されているが、製造方法において実用上不確実な点が多い。すなわち、詳細な説明に記されている製造方法は、熱間圧延、冷却後に再加熱を推奨しているが、廉価かつ大量生産が必須の造船用鋼板において、再加熱のようなプロセスは生産コストと製造工期の観点から実用化が懸念される。また、圧延後の冷却においては、板厚方向の特性差が生じ易いことは特許文献3で示唆されているが、本技術においては考慮されておらず、実施例の特性評価も板厚1/4部位のみであり、最も特性が懸念される板厚表層部の特性が開示されていない。 Patent Document 4 discloses information on chemical components and metal structures of steel materials, but there are many practically uncertain points in the manufacturing method. In other words, the manufacturing method described in the detailed description recommends reheating after hot rolling and cooling. However, in steel sheets for shipbuilding that are indispensable for low-priced and mass production, processes such as reheating are the production costs. And there is concern about practical application from the viewpoint of manufacturing construction period. Further, although it is suggested in Patent Document 3 that a characteristic difference in the sheet thickness direction is likely to occur in cooling after rolling, this technique is not considered, and the characteristic evaluation of the example is also performed in the sheet thickness 1 / There are only four parts, and the characteristics of the plate thickness surface layer part where the characteristics are most concerned are not disclosed.
以上を鑑みると、船舶の衝突時のエネルギー吸収性能に優れた鋼材は、未だ性能向上の必要があるとともに、製造可能板厚拡大の余地もあると考えられる。特に、板厚表層部も含めた板厚全体を考慮した理想的な金属ミクロ組織の確立およびその製造方法のブレークスルーが必要である。 In view of the above, it is considered that a steel material excellent in energy absorption performance at the time of collision of a ship still needs to be improved, and there is room for expansion of the manufacturable plate thickness. In particular, it is necessary to establish an ideal metal microstructure in consideration of the entire plate thickness including the plate thickness surface layer portion and to break through the manufacturing method thereof.
本発明は、現状用いられている鋼材に対して合金元素の添加等によるコス卜の増加や、船体構造設計の変更なしに、現状提案されている鋼材に比べて衝突時のエネルギー吸収能を増加させることが可能な耐衝突性に優れた鋼材およびその製造方法を提供することを目的とする。 The present invention increases the energy absorption capacity at the time of collision compared to the steel materials currently proposed without increasing the cost by adding alloying elements to the steel materials currently used and without changing the hull structure design. It is an object of the present invention to provide a steel material excellent in impact resistance that can be produced and a method for producing the same.
このような課題を解決するための本発明の特徴は以下のとおりである。 The features of the present invention for solving such problems are as follows.
本発明の鋼材は、強度を低下させることなく、一様伸びを向上させるために、軟質相であるフェライトと硬質相であるパーライト、ベイナイト、マルテンサイト等の2相以上の組織からなる鋼とする。なお、この鋼材の組織は、それぞれの相の機械的性質を最適化するとともに、その組み合わせを最適化することを基本方針に検討を行う中で得られたものであり、以下の知見に基づいている。 In order to improve the uniform elongation without reducing the strength, the steel material of the present invention is a steel having a structure of two or more phases such as ferrite, which is a soft phase, and pearlite, bainite, martensite, which are hard phases. . The structure of this steel material was obtained while studying the basic policy of optimizing the mechanical properties of each phase and optimizing the combination, and based on the following knowledge Yes.
一般に2相以上の組織を有する鋼においては、軟質相が主に延靭性向上の役割を担い、硬質相が主に強度向上の役割を担う。そこで、まず一様伸びを向上させるために軟質相であるフェライト相の性質を検討した。一様伸びは軟質材ほど優れていることは明らかであるが、他に硬質相が存在する場合は、両相の差がある程度大きい方が軟質相への歪の集中が大きくなり、一様伸びに対する軟質相の寄与が大きくなる。硬質相として比較的強度の低いベイナイト相を考えた場合、フェライト相への歪集中を大きくするためには、フェライト相の硬度をHv160以下にしなければならない。なお、引張強度490MPa以上とするためには、Hv140以上が必要である。 In general, in a steel having a structure of two or more phases, the soft phase mainly plays a role of improving ductility, and the hard phase mainly plays a role of improving strength. Therefore, in order to improve the uniform elongation, the properties of the ferrite phase, which is a soft phase, were examined. It is clear that the uniform elongation is better for soft materials, but when there is another hard phase, the larger the difference between the two phases, the greater the concentration of strain on the soft phase, and the uniform elongation. The contribution of the soft phase to increases. When a bainite phase having a relatively low strength is considered as the hard phase, the hardness of the ferrite phase must be Hv 160 or less in order to increase the strain concentration on the ferrite phase. In order to obtain a tensile strength of 490 MPa or higher, Hv 140 or higher is required.
また、一様伸びは結晶粒径が小さくなるほど低下するため、複相鋼のフェライト結晶粒径の影響を調査したところ、平均結晶粒径が2μm未満になると急速に一様伸びが低下することを確認した。ここで、局部伸びは結晶粒径の影響を比較的受けないため、結晶粒径の減少による全伸びの低下は、一様伸びの低下に比べ相対的に小さいことも確認した。よって、このことからも、延性を評価する場合には、一様伸びと全伸びを区別して考える必要がある。 In addition, since the uniform elongation decreases as the crystal grain size decreases, the influence of the ferrite crystal grain size of the duplex steel is investigated, and when the average crystal grain size is less than 2 μm, the uniform elongation decreases rapidly. confirmed. Here, since the local elongation is relatively unaffected by the crystal grain size, it was also confirmed that the decrease in the total elongation due to the decrease in the crystal grain size was relatively small compared to the decrease in the uniform elongation. Therefore, also from this, when evaluating ductility, it is necessary to distinguish between uniform elongation and total elongation.
さらに、軟質相と硬質相の割合と一様伸びの関係を検討したところ、フェライト相の分率が高いほど一様伸びの向上が見られ、特にフェライト相分率が板厚全体で75%以上で、一様伸びに優れることを見出した。フェライト相の硬度がHv140以上160以下の場合には、特に板厚表層部の影響も大きいことを知見し、板厚全体としてのフェライト相分率の増加が重要であることが明らかになった。 Further, when the relationship between the ratio of the soft phase and the hard phase and the uniform elongation was examined, the higher the fraction of the ferrite phase, the greater the uniform elongation was improved. In particular, the ferrite phase fraction was 75% or more of the entire plate thickness. And found that it is excellent in uniform elongation. When the hardness of the ferrite phase is Hv 140 or more and 160 or less, it was found that the influence of the surface layer portion of the plate thickness is particularly large, and it became clear that an increase in the ferrite phase fraction as a whole plate thickness is important.
このようにフェライト相分率を所定割合確保するには、冷却条件を適切に調節しなければならない。すなわち、冷却工程を圧延終了時のオーステナイト相組織からフェライト相への変態に主眼を置いた前段と、硬質相への変態を起させる後段とに、大きく2つに分ける。 Thus, in order to ensure a predetermined ratio of the ferrite phase fraction, the cooling conditions must be adjusted appropriately. That is, the cooling process is roughly divided into two stages, a first stage focusing on transformation from the austenite phase structure to the ferrite phase at the end of rolling and a second stage causing transformation to the hard phase.
前段の冷却では、鋼板平均温度をフェライト変態が比較的進み難い(Ar3−50)℃以上の温度から、フェライト変態が相平衡の観点から分率的にも、速度論の観点から時間的にも進行し易い(Ar3−150)℃以上(Ar3−50)℃以下の鋼板平均温度に速やかに冷却することが理想である。ただし、冷却速度を速くするにしたがい、鋼板板厚方向での冷却速度の差が大きくなるため、冷却速度の速い板厚表層部でフェライト変態に代わりベイナイトやマルテンサイト等の硬質相への変態が起こるようになってしまう。そこで、この硬質相への変態を抑制する必要があり、鋼板表面の冷却速度を100℃/秒以上とした場合、鋼板表面の温度が400℃未満にならないように制御すれば、硬質相の生成を抑えることができる。 In the first stage cooling, the average temperature of the steel plate is relatively difficult to undergo the ferrite transformation (Ar 3 -50) ° C. or higher, and the ferrite transformation is fractional from the viewpoint of phase equilibrium and temporally from the viewpoint of kinetics. It is ideal to quickly cool the steel sheet to an average temperature of (Ar 3 -150) ° C. or more and (Ar 3 -50) ° C. However, as the cooling rate increases, the difference in the cooling rate in the thickness direction of the steel plate increases, so that the transformation to the hard phase such as bainite or martensite occurs in place of the ferrite transformation at the plate thickness surface layer where the cooling rate is fast. It will happen. Therefore, it is necessary to suppress the transformation to the hard phase. When the cooling rate of the steel sheet surface is set to 100 ° C./second or more, if the temperature of the steel sheet surface is controlled to be less than 400 ° C., the generation of the hard phase Can be suppressed.
また、冷却後に鋼板表面の温度が板厚中央部の熱により復熱する過程でフェライト相の生成が起きる。なお、この場合、板厚が厚い等により、1回の冷却で鋼板平均の冷却温度を(Ar3−150)℃以上(Ar3−50)℃以下にできないことも考えられるが、冷却を複数回繰り返すこともできる。 In addition, the ferrite phase is generated in the process where the surface temperature of the steel sheet is reheated by the heat at the center of the plate thickness after cooling. In this case, it is conceivable that the average cooling temperature of the steel sheet cannot be set to (Ar 3 -150) ° C. or more and (Ar 3 −50) ° C. or less by one cooling because the plate thickness is thick. It can be repeated once.
一方、冷却速度を遅くして鋼板表層部の硬質相の生成を抑制する方法も考えられるが、冷却に時間が掛かり生産効率を下げてしまうと同時に、冷却速度が100℃/秒未満であると冷却速度と硬質相生成の上限温度の関係も複雑に変化してしまい制御が難しい。冷却速度が100℃/秒以上であれば、400℃以下にならなければ硬質相への変態を抑制することができるので、制御は容易である。 On the other hand, a method of slowing the cooling rate to suppress the formation of the hard phase of the steel sheet surface layer part is also conceivable, but at the same time it takes a long time for cooling and lowers the production efficiency. The relationship between the cooling rate and the upper limit temperature for hard phase formation also changes in a complicated manner and is difficult to control. If the cooling rate is 100 ° C./second or higher, the transformation to the hard phase can be suppressed unless the cooling rate is 400 ° C. or lower, and control is easy.
上記の冷却方法により、所定の温度に冷却した後は、板厚中央部のフェライト変態を速やかに進行させることができる。相分率を75%以上とするには10秒以上の時間が必要である。 After cooling to a predetermined temperature by the above cooling method, the ferrite transformation at the center of the plate thickness can be rapidly advanced. A time of 10 seconds or more is required to make the phase fraction 75% or more.
次に、硬質相を生成させる後段の冷却について、強度に対する組織の影響の観点から検討した。強度は、硬質相の強度と分率に大きく影響を受けるが、鋼の成分組成が一定の場合は、たとえ組織が変化しても、製造条件の選択により、任意の強度を得る制御ができることを確認した。 Next, the latter stage cooling for generating the hard phase was examined from the viewpoint of the influence of the structure on the strength. The strength is greatly influenced by the strength and fraction of the hard phase, but if the composition of steel is constant, it can be controlled to obtain an arbitrary strength by selecting the manufacturing conditions even if the structure changes. confirmed.
すなわち、硬質相の体積分率が比較的大きい場合には、圧延後の冷却停止温度を高めにしたり、冷却速度を低目にして硬質相の強度を低目とすることにより、所定の強度を得ることが可能である。 That is, when the volume fraction of the hard phase is relatively large, a predetermined strength can be obtained by increasing the cooling stop temperature after rolling, or lowering the cooling rate to lower the strength of the hard phase. It is possible to obtain.
一方、硬質相の体積分率が比較的小さい場合には、逆に圧延後の冷却停止温度を低目にしたり、冷却速度を高目にして硬質相の強度を高くすることにより、所定の強度を得ることが可能である。 On the other hand, when the volume fraction of the hard phase is relatively small, conversely, by lowering the cooling stop temperature after rolling or by increasing the cooling rate to increase the strength of the hard phase, the predetermined strength It is possible to obtain
なお、このような強度の制御は、硬質相の分率が小さい場合には、フェライト相から変態時に排出され硬質相に濃化する炭素濃度が高くなり、硬質相がより硬化し易くなるという原理から、比較的容易に達成される。 Such strength control is based on the principle that when the fraction of the hard phase is small, the concentration of carbon that is discharged from the ferrite phase during the transformation and becomes concentrated in the hard phase increases, and the hard phase becomes easier to harden. Therefore, it can be achieved relatively easily.
また、冷却速度の制御方法は、所定の条件を満たせば放冷でもかまわないが、保温する場合は鋼材の上に断熱カバーを設けたり、冷却速度を上げる場合には水冷することが考えられる。 The cooling rate control method may be allowed to cool as long as a predetermined condition is satisfied. However, it is conceivable that a heat insulating cover is provided on the steel material when keeping the temperature, or water cooling is performed when the cooling rate is increased.
最後に、船舶等に使用される鋼材においては、靭性も重要な機械的性質の一つであるが、本発明が対象にしているフェライト主体の組織の鋼材においては、靭性は主にフェライト結晶粒径の影響を受けるため、望ましくは結晶粒径を40μm以下にすることが必要である。結晶粒径の制御は、圧延工程で圧下率を一定値以上にすること等により可能である。 Finally, in steel materials used in ships and the like, toughness is one of the important mechanical properties, but in steel materials of a ferrite-based structure that is the subject of the present invention, toughness is mainly composed of ferrite crystal grains. Since it is affected by the diameter, it is desirable that the crystal grain size should be 40 μm or less. The grain size can be controlled by making the rolling reduction a certain value or more in the rolling process.
上記知見に基づく本発明の特徴は以下のとおりである。 The features of the present invention based on the above findings are as follows.
第一の発明は、鋼組成がCeq≦0.36%を満たし、組織がフェライト相と硬質相からなり、前記フェライト相の体積分率が板厚全体で75%以上、硬さがHv140以上160以下、平均結晶粒径が2μm以上であることを特徴とする耐衝突性に優れた鋼材である。 In the first invention, the steel composition satisfies Ceq ≦ 0.36%, the structure is composed of a ferrite phase and a hard phase, the volume fraction of the ferrite phase is 75% or more in the whole plate thickness, and the hardness is Hv 140 or more and 160. Hereinafter, the steel material is excellent in collision resistance, characterized in that the average crystal grain size is 2 μm or more.
ただし、Ceqは下記式(1)で表される。 However, Ceq is represented by the following formula (1).
第二の発明は、板厚中央部におけるフェライト相の体積分率に対する板厚表層部におけるフェライト相の体積分率の割合が0.925以上1.000以下であることを特徴とする第一の発明に記載の耐衝突性に優れた鋼材である。 The second invention is characterized in that the ratio of the volume fraction of the ferrite phase in the plate thickness surface layer portion to the volume fraction of the ferrite phase in the plate thickness central portion is 0.925 or more and 1.000 or less. It is a steel material excellent in impact resistance described in the invention.
第三の発明は、鋼組成として、質量%で、C:0.05〜0.16%、Si:0.1〜0.5%、Mn:0.8〜1.6%、Sol.Al:0.002〜0.07%を含み、残部が鉄および不可避不純物からなることを特徴とする第一または第二の発明に記載の耐衝突性に優れた鋼材である。 3rd invention is mass% as steel composition, C: 0.05-0.16%, Si: 0.1-0.5%, Mn: 0.8-1.6%, Sol. The steel material having excellent collision resistance according to the first or second invention, wherein Al: 0.002 to 0.07% is included, and the balance is made of iron and inevitable impurities.
第四の発明は、鋼組成として、さらに、質量%で、Ti:0.003〜0.03%を含有することを特徴とする第三の発明に記載の耐衝突性に優れた鋼材である。 4th invention is steel material excellent in the collision resistance as described in 3rd invention characterized by containing Ti: 0.003-0.03% by mass% further as steel composition. .
第五の発明は、鋼組成として、さらに、質量%で、Nb:0.005〜0.05%を含有することを特徴とする第三または第四の発明に記載の耐衝突性に優れた鋼材である。 According to a fifth aspect of the present invention, the steel composition further includes Nb: 0.005 to 0.05% by mass%, and is excellent in collision resistance according to the third or fourth aspect. It is a steel material.
第六の発明は、鋼組成として、さらに、質量%で、Cr:0.1〜0.5%、Mo:0.02〜0.3%、V:0.01〜0.08%、Cu:0.1〜0.6%の中から選ばれる1種または2種以上を含有することを特徴とする第三乃至第五の発明のいずれかに記載の耐衝突性に優れた鋼材である。 According to a sixth aspect of the present invention, the steel composition further includes, in mass%, Cr: 0.1 to 0.5%, Mo: 0.02 to 0.3%, V: 0.01 to 0.08%, Cu : It is a steel material excellent in impact resistance according to any one of the third to fifth inventions, characterized by containing one or more selected from 0.1 to 0.6% .
第七の発明は、鋼組成として、さらに、質量%で、Ni:0.1〜0.5%を含有することを特徴とする第三乃至第六の発明のいずれかに記載の耐衝突性に優れた鋼材である。 The seventh aspect of the invention is the collision resistance according to any one of the third to sixth aspects of the invention, further comprising, as a steel composition, Ni: 0.1 to 0.5% by mass%. It is an excellent steel material.
第八の発明は、第一の発明、または、第三乃至第七の発明のいずれかに記載の鋼組成を有する鋼素材を加熱後、Ar3点以上850℃以下の温度域で累積圧下率50%以上の圧延を行い、その後、前段冷却を鋼材平均温度が(Ar3−50)℃以上から開始し、鋼材表面の冷却速度が100℃/秒以上で、鋼材表面温度が400℃以上(Ar3−50)℃以下の温度域まで、1回または2回以上の冷却を、鋼材平均温度が(Ar3−150)℃以上(Ar3−50)℃以下となるまで行い、その後、10秒以上の放冷を行い、鋼材平均温度(Ar3−150)℃以上から10℃/秒以上の鋼材平均冷却速度で鋼材平均温度が300℃以上600℃以下となるまで後段冷却を行うことを特徴とする耐衝突性に優れた鋼材の製造方法である。 The eighth invention is the cumulative reduction ratio in the temperature range of Ar 3 to 850 ° C. after heating the steel material having the steel composition according to any of the first invention or the third to seventh inventions. 50% or more rolling is performed, and then the pre-stage cooling is started at an average steel temperature of (Ar 3 -50) ° C. or higher, the cooling speed of the steel surface is 100 ° C./second or higher, and the steel surface temperature is 400 ° C. or higher ( Ar 3 -50) ° C. to below the temperature range, once or twice or more cooling is performed until the steel average temperature is (Ar 3 -150) ℃ than (Ar 3 -50) ℃ or less, then 10 perform cooling over seconds, to carry out subsequent cooling of steel average temperature (Ar 3 -150) ℃ 10 ℃ / sec or more from the above steel average cooling rate until the steel material average temperature is 300 ° C. or higher 600 ° C. or less This is a method for producing a steel material with excellent impact resistance. .
ただし、Ar3点は下記式(2)で表される。 However, Ar 3 point is represented by the following formula (2).
本発明によれば、通常の船体用鋼材とほぼ同じ成分で、軟質相であるフェライトと硬質相の2相以上の組織からなる鋼を用い、それぞれの相の機械的性質を最適化し、その組み合わせを最適化することにより、一様伸びが高く耐衝突性に優れた鋼材を得ることが可能である。また、製造方法も、通常の船体用鋼材の製造方法と比較して、効率の低下や、制御性の特段の難しさがないので、効率良く安定した製造が可能である。 According to the present invention, steel having two or more phases of ferrite and hard phase, which are substantially the same components as ordinary ship hull steel materials, is optimized, and the mechanical properties of each phase are optimized. It is possible to obtain a steel material having a high uniform elongation and excellent impact resistance. In addition, the production method can be efficiently and stably produced because there is no decrease in efficiency and no particular difficulty in controllability as compared with the usual method for producing steel for hulls.
その結果、現状用いられている鋼材に対して合金元素の添加等によるコストの増加なしに、また特別な製造設備の追加なしに、船舶の衝突時のエネルギー吸収性能に優れた鋼材が提供可能で、産業上その効果は極めて大きい。また、大型タンカーの座礁や衝突による油流出を防止するという観点から、環境保護の効果も極めて大きい。 As a result, it is possible to provide steel materials with excellent energy absorption performance in the event of a ship collision without increasing costs due to the addition of alloying elements to the steel materials currently in use and without adding special production equipment. Industrially, the effect is extremely large. In addition, from the viewpoint of preventing oil spills caused by large tankers aground and collision, the environmental protection effect is also extremely large.
以下に本発明の各構成要件の限定理由について説明する。 The reasons for limiting the respective constituent requirements of the present invention will be described below.
1.金属組織について
本発明の鋼材は、通常の船体用鋼材とほぼ同じ成分で、耐衝突性に優れた、すなわち一様伸び性に優れた鋼材である。すなわち、強度を低下させることなく、一様伸びを向上させるために、軟質相であるフェライトと硬質相であるパーライト、ベイナイト、マルテンサイト等の2相以上の組織からなる鋼を用い、それぞれの相の機械的性質を最適化するとともに、その組み合わせを最適化している。
1. Regarding the metal structure The steel material of the present invention is a steel material having substantially the same components as those of a normal hull steel material and excellent in impact resistance, that is, excellent in uniform elongation. That is, in order to improve the uniform elongation without reducing the strength, steel composed of two or more phases such as ferrite, which is a soft phase, and pearlite, bainite, martensite, etc., which are hard phases, are used. In addition to optimizing the mechanical properties, the combination is optimized.
本発明の鋼材の組織は、フェライト相と硬質相からなる。硬質相は、パーライト、ベイナイト、マルテンサイト等のフェライト相に比べて硬度の高い組織により構成される。 The structure of the steel material of the present invention consists of a ferrite phase and a hard phase. The hard phase is composed of a structure having a higher hardness than ferrite phases such as pearlite, bainite, and martensite.
フェライト相体積分率:板厚全体で75%以上
フェライト相の体積分率(相分率)が高くなるほど、一様伸びが向上する。金属組織は板厚方向で多少変化するが、十分な一様伸びを得るには板厚全体でフェライト相の体積分率は75%以上とすることが必要である。
なお、本発明では、板厚表層部を板の表面から板厚の1/10程度の深さまでの領域とする。この板厚表層部は、冷却時において、板厚中央部に比べて相対的に冷却速度が速くなり、硬質相が生成しやすく、一様伸びが低下しやすい領域である。板厚全体を考慮した場合、分率的にはさほど大きくなく、特性的にもその影響はある程度は許容できるが、板厚中央部との特性差が大きくなると影響を無視できなくなってくる。そのため、板厚表層部についても、このようにフェライト相分率を確保する必要がある。
Ferrite phase volume fraction: Uniform elongation improves as the volume fraction (phase fraction) of the ferrite phase increases by 75% or more in the entire plate thickness. Although the metal structure slightly changes in the plate thickness direction, it is necessary that the volume fraction of the ferrite phase is 75% or more over the entire plate thickness in order to obtain sufficient uniform elongation.
In the present invention, the plate thickness surface layer portion is a region from the surface of the plate to a depth of about 1/10 of the plate thickness. The plate thickness surface layer portion is a region where the cooling rate is relatively faster than that of the plate thickness center portion during cooling, a hard phase is easily generated, and uniform elongation is likely to be reduced. In consideration of the entire plate thickness, the fraction is not so large and its influence can be allowed to some extent in terms of characteristics, but if the characteristic difference from the central portion of the plate thickness increases, the influence cannot be ignored. Therefore, it is necessary to secure the ferrite phase fraction in this way also for the plate thickness surface layer portion.
なお、上述のように、フェライト相体積分率に影響を及ぼす主要因子は冷却速度であることから、板厚全体でフェライト相の体積分率が本発明の範囲内にあるか否かを確認するには、板厚方向で冷却速度がもっとも小さい板厚中央部と、板厚方向で冷却速度がもっとも大きい板厚表層部とについてフェライト相の体積分率を測定し確認すればよい。 As described above, since the main factor affecting the ferrite phase volume fraction is the cooling rate, it is confirmed whether the ferrite phase volume fraction is within the range of the present invention over the entire plate thickness. For this, the volume fraction of the ferrite phase may be measured and confirmed for the central portion of the plate thickness having the smallest cooling rate in the plate thickness direction and the plate thickness surface layer portion having the largest cooling rate in the plate thickness direction.
板厚中央部におけるフェライト相の体積分率に対する板厚表層部におけるフェライト相の体積分率の割合:0.925以上1.000以下
前述の、板厚全体でのフェライト相分率の規定に加え、板厚中央部におけるフェライト相の体積分率に対する板厚表層部におけるフェライト相の体積分率の割合(以下、単に、体積分率比とも称する)を0.925以上1.000以下とすることが好ましい。体積分率比を0.925以上とすれば、板厚表層部と板厚中央部との材質差、特に一様伸びの差が十分に小さくなり、板厚方向に実質的に均質な組織とみなすことができるようになるため、耐衝突性の観点から好ましい。さらに、体積分率比を0.935以上とすることが好ましい。なお、前述のように、板厚表層部は、冷却時において、板厚中央部に比べて相対的に冷却速度が速くなり、硬質相が生成しやすいので、板厚中央部の方が板厚表層部よりフェライト分率が高くなる。このため、体積分率比は1.000を上限とする。
Ratio of the volume fraction of the ferrite phase in the surface portion of the plate thickness to the volume fraction of the ferrite phase in the center portion of the plate thickness: 0.925 or more and 1.000 or less The ratio of the volume fraction of the ferrite phase in the plate thickness surface layer portion to the volume fraction of the ferrite phase in the center portion of the plate thickness (hereinafter also simply referred to as volume fraction ratio) is 0.925 or more and 1.000 or less. Is preferred. If the volume fraction ratio is 0.925 or more, the material difference between the plate thickness surface layer portion and the plate thickness center portion, particularly the difference in uniform elongation, is sufficiently small, and the structure that is substantially homogeneous in the plate thickness direction. This is preferable from the viewpoint of collision resistance. Furthermore, the volume fraction ratio is preferably 0.935 or more. In addition, as described above, the plate thickness surface layer portion has a cooling rate relatively faster than that of the plate thickness central portion during cooling, and a hard phase is easily generated. The ferrite fraction is higher than the surface layer. For this reason, the upper limit of the volume fraction ratio is 1.000.
フェライト相の硬さ: Hvで140以上160以下
フェライト相の硬さが低いほど、一様伸びが向上する。フェライト相の硬さがHvで160以下で一様伸びが優れるため、Hvで160以下とする。一方、TS490MPa以上の強度を得るために、Hv140以上とする。
Hardness of ferrite phase: 140 to 160 in Hv The lower the hardness of the ferrite phase, the more uniform elongation improves. Since the hardness of the ferrite phase is 160 or less at Hv and uniform elongation is excellent, it is 160 or less at Hv. On the other hand, in order to obtain a strength of TS490 MPa or more, it is set to Hv140 or more.
フェライト相の平均結晶粒径: 2μm以上
フェライト相の平均結晶粒径が小さいほど、一様伸びは低下する。特に平均結晶粒径が2μm未満になると一様伸びが急激に劣化するため、2μm以上とする。フェライト相の平均結晶粒径を2μm以上とすることにより、高い一様伸びを安定して得ることができる。フェライト相の平均結晶粒径は、4μm以上であることが好ましい。なお、フェライト組織が過度に大きい場合には、鋼が軟質化するおそれがあるので、490MPa以上の引張強さを安定して得るために、フェライト相の平均結晶粒径は、40μm以下であることが好ましい。
Average crystal grain size of ferrite phase: 2 μm or more The smaller the average crystal grain size of the ferrite phase, the lower the uniform elongation. In particular, when the average crystal grain size is less than 2 μm, the uniform elongation deteriorates abruptly. By setting the average crystal grain size of the ferrite phase to 2 μm or more, high uniform elongation can be stably obtained. The average crystal grain size of the ferrite phase is preferably 4 μm or more. If the ferrite structure is excessively large, the steel may be softened. Therefore, in order to stably obtain a tensile strength of 490 MPa or more, the average crystal grain size of the ferrite phase should be 40 μm or less. Is preferred.
2.成分組成
本鋼材の成分組成を規定した理由について説明する。なお、成分%は、すべて質量%を意味する。
2. Component Composition The reason for defining the component composition of the steel material will be described. In addition, all component% means the mass%.
Ceq: 0.36以下
Ceqは高いほど強度が上がり、フェライトの強度も高くなるため一様伸びが低下し、0.36を超えると一様伸びの低下が著しい。また、Ceqは溶接熱影響部の靭性の指標で、0.36を超えた場合、大入熱溶接の熱影響部靭性が低下する。このため、Ceqは0.36以下とする。ここで、Ceqは下記式(1)により求める。
Ceq: 0.36 or less The higher the Ceq, the higher the strength and the higher the strength of the ferrite, so that the uniform elongation decreases. When the Ceq exceeds 0.36, the uniform elongation decreases remarkably. Ceq is an index of the toughness of the heat affected zone, and if it exceeds 0.36, the heat affected zone toughness of the high heat input welding decreases. For this reason, Ceq is set to 0.36 or less. Here, Ceq is obtained by the following equation (1).
C: 0.05〜0.16%
Cは強度を確保するため含有するが、0.05%未満ではその効果が十分でなく、0.16%を超えるとフェライト主体の組織が得られず一様伸びが低下するため、C量は0.05〜0.16%の範囲とする。
C: 0.05 to 0.16%
C is contained to ensure strength. However, if it is less than 0.05%, the effect is not sufficient, and if it exceeds 0.16%, a structure mainly composed of ferrite cannot be obtained and the uniform elongation is reduced. The range is 0.05 to 0.16%.
Si: 0.1〜0.5%
Siは製鋼段階の脱酸材および強度向上元素として含有するが、0.1%未満ではその効果が不十分で、0.5%を超えると延性を低下させるため、Si量は0.1〜0.5%の範囲とする。
Si: 0.1 to 0.5%
Si is contained as a deoxidizing material and a strength improving element in the steelmaking stage, but if less than 0.1%, the effect is insufficient, and if it exceeds 0.5%, the ductility is lowered. The range is 0.5%.
Mn: 0.8〜1.6%
Mnは強度を確保するため含有するが、0.8%未満ではその効果が不十分で、1.6%を超えて含有するとフェライト主体の組織が得られないため、Mn量は0.8〜1.6%
の範囲とする。
Mn: 0.8 to 1.6%
Mn is contained to ensure strength, but if less than 0.8%, the effect is insufficient, and if it exceeds 1.6%, a ferrite-based structure cannot be obtained. 1.6%
The range.
Sol.Al: 0.002〜0.07%
Alは脱酸のため含有する。Sol.Al量で0.002%未満の場合はその効果が十分でなく、0.07%を超えて含有すると鋼材の表面疵が発生し易くなるため、Sol.Al量は0.002〜0.07%の範囲とする。好ましくは、0.01〜0.05%の範囲である。
Sol. Al: 0.002 to 0.07%
Al is contained for deoxidation. Sol. When the amount of Al is less than 0.002%, the effect is not sufficient, and when it exceeds 0.07%, surface flaws of the steel material are likely to occur. The Al content is in the range of 0.002 to 0.07%. Preferably, it is 0.01 to 0.05% of range.
以上が本発明の基本化学成分であり、残部Fe及び不可避的不純物からなるが、更に、強度、靭性を改善するために、Ti、Nbを選択元素として含有することができる。 The above is the basic chemical component of the present invention, which consists of the balance Fe and unavoidable impurities, but can further contain Ti and Nb as selective elements in order to improve strength and toughness.
Ti: 0.003〜0.03%
靭性をより向上させるために、Tiを含有することができる。Tiは圧延加熱時あるいは溶接時、TiNを生成し、オーステナイト粒径を微細化し、母材靭性ならびに溶接熱影響部の靭性を向上させる。その含有量が、0.003%未満ではその効果が十分でなく、0.03%を超えて含有すると溶接熱影響部の靭性を低下させるため、Tiを含有する場合は、その量は0.003〜0.03%の範囲とすることが好ましい。さらに好適には0.005〜0.02%の範囲である。
Ti: 0.003 to 0.03%
In order to further improve toughness, Ti can be contained. Ti generates TiN during rolling heating or welding, refines the austenite grain size, and improves the base metal toughness and the toughness of the weld heat affected zone. If the content is less than 0.003%, the effect is not sufficient. If the content exceeds 0.03%, the toughness of the weld heat affected zone is lowered. A range of 003 to 0.03% is preferable. More preferably, it is 0.005 to 0.02% of range.
Nb: 0.005〜0.05%
強度を向上させるために、Nbを含有することができる。その含有量が0.005%未満ではその効果が十分でなく、0.05%を超えると溶接熱影響部の靭性を低下させるため、Nbを含有する場合は、その量は0.005〜0.05%の範囲とすることが好ましい。さらに好適には0.005〜0.03%の範囲である。
Nb: 0.005 to 0.05%
In order to improve the strength, Nb can be contained. If the content is less than 0.005%, the effect is not sufficient, and if it exceeds 0.05%, the toughness of the weld heat affected zone is lowered. Therefore, when Nb is contained, the amount is 0.005 to 0. A range of 0.05% is preferable. More preferably, it is 0.005 to 0.03% of range.
さらに、強度を向上させるためにCr、Mo、V、Cuの1種または2種以上を含有することができる。 Furthermore, in order to improve an intensity | strength, 1 type (s) or 2 or more types of Cr, Mo, V, and Cu can be contained.
Cr: 0.1〜0.5%
Crは、0.1%未満ではその効果が不十分で、0.5%を超えると溶接性および溶接影響部の靭性が低下するため、Crを含有する場合は0.1〜0.5%の範囲とすることが好ましい。
Cr: 0.1 to 0.5%
If Cr is less than 0.1%, the effect is insufficient, and if it exceeds 0.5%, the weldability and the toughness of the weld-affected zone decrease. Therefore, when Cr is contained, 0.1 to 0.5% It is preferable to set it as the range.
Mo: 0.02〜0.3%
Moは、0.02%未満ではその効果が不十分で、0.3%を超えると溶接性および溶接熱影響部の靭性が著しく低下するため、Moを含有する場合は0.02〜0.3%の範囲とすることが好ましい。
Mo: 0.02-0.3%
If the content of Mo is less than 0.02%, the effect is insufficient. If the content exceeds 0.3%, the weldability and the toughness of the heat affected zone are significantly reduced. A range of 3% is preferable.
V: 0.01〜0.08%
Vは、0.01%未満ではその効果が不十分で、0.08%超えでは著しく靭性が低下するため、Vを含有する場合は0.01〜0.08%の範囲とすることが好ましい。
V: 0.01 to 0.08%
When V is less than 0.01%, the effect is insufficient, and when it exceeds 0.08%, the toughness is remarkably lowered. Therefore, when V is contained, the content is preferably in the range of 0.01 to 0.08%. .
Cu: 0.1〜0.6%
Cuは、0.1%未満ではその効果が十分でなく、0.6%を超えて添加するとCu割れの懸念が高まるため、Cuを含有する場合は0.1〜0.6%の範囲とすることが好ましい。さらに好適には0.1〜0.3%の範囲である。
Cu: 0.1 to 0.6%
The effect of Cu is not sufficient if it is less than 0.1%, and if it is added in excess of 0.6%, the concern about Cu cracking increases. Therefore, when Cu is contained, the range is from 0.1 to 0.6%. It is preferable to do. More preferably, it is 0.1 to 0.3% of range.
さらに、靭性を向上させるために、Niを含有することもできる。 Furthermore, in order to improve toughness, Ni can also be contained.
Ni:0.1〜0.5%
Niの含有量が0.1%未満ではその効果が十分でなく、0.5%を超えると鋼材コストの上昇が著しいため、Niを含有する場合は0.1〜0.5%の範囲とすることが好ましい。
Ni: 0.1 to 0.5%
If the Ni content is less than 0.1%, the effect is not sufficient. If the Ni content exceeds 0.5%, the cost of the steel material is remarkably increased. It is preferable to do.
3.製造条件について
本発明に係る耐衝突性に優れた鋼材は、以下に示す製造条件で製造することができる。
3. About manufacturing conditions The steel material excellent in the collision resistance which concerns on this invention can be manufactured on the manufacturing conditions shown below.
まず、上記した組成の溶鋼を、転炉等で溶製し、連続鋳造等で鋼素材(スラブ)とし、次いで、鋼素材を、900〜1150℃の温度に加熱してから熱間圧延を行うことが好ましい。 First, molten steel having the above composition is melted in a converter or the like, and is made into a steel material (slab) by continuous casting or the like, and then the steel material is heated to a temperature of 900 to 1150 ° C. and then hot-rolled. It is preferable.
良好な靭性を得るには加熱温度を低くし、圧延前の結晶粒径を小さくすることが有効であるが、加熱温度が900℃未満では圧延荷重が過大となり、また、また1150℃超えではオーステナイト粒が粗大化し靭性の低下を招くばかりか、酸化ロスが顕著となり歩留が低下するおそれがある。加熱温度は900〜1150℃とすることにより、安定した圧延が可能となり、また、良好な靭性が得られるので、好ましい。靭性の観点からより好ましい加熱温度の範囲は1000〜1100℃である。 In order to obtain good toughness, it is effective to lower the heating temperature and reduce the crystal grain size before rolling, but if the heating temperature is less than 900 ° C, the rolling load becomes excessive, and if it exceeds 1150 ° C, austenite In addition to coarsening of the grains and a reduction in toughness, there is a possibility that the oxidation loss becomes remarkable and the yield decreases. A heating temperature of 900 to 1150 ° C. is preferable because stable rolling is possible and good toughness is obtained. The range of more preferable heating temperature from a viewpoint of toughness is 1000-1100 degreeC.
圧延条件:Ar3点以上850℃以下の温度域で50%以上の累積圧下率
鋼素材を熱間圧延することにより、所望の板厚の鋼板を製造する。熱間圧延の開始温度については、特に限定されるものではない。また、後述のオーステナイトの未再結晶温度域での圧延の条件以外に、圧延条件として特に制約を設ける必要はない。なお、後述のオーステナイトの未再結晶温度域での圧延に先立ち、オーステナイト再結晶組織を細粒化・整粒化しておくため、オーステナイト再結晶温度域において累積圧下率30%以上の圧延を実施することが好ましい。
Rolling conditions: Ar 3 points or more and 850 ° C. or less, cumulative reduction ratio of 50% or more A steel sheet having a desired thickness is produced by hot rolling a steel material. The start temperature of hot rolling is not particularly limited. Moreover, it is not necessary to provide a restriction in particular as rolling conditions other than the rolling conditions in the non-recrystallization temperature range of austenite described later. Prior to rolling in the non-recrystallization temperature range of austenite, which will be described later, the austenite recrystallization structure is refined and sized so that rolling with a cumulative reduction rate of 30% or more is performed in the austenite recrystallization temperature range. It is preferable.
圧延においては、靭性を向上させるため、オーステナイトの未再結晶温度域であるAr3点以上850℃以下の温度域で加工歪を導入する。累積圧下率については、50%以上で、変態後のフェライト結晶粒径が十分微細化して靭性向上が図られる。従って、圧延中の累積圧下率をAr3点以上850℃以下の温度域で50%以上とする。好ましくは55%以上である。累積圧下率の上限は特に規定する必要がないものの、工業的には、80%以下とすることが好ましい。なお、Ar3点は、下記式(2)で求められる。 In rolling, in order to improve toughness, work strain is introduced in the temperature range of Ar 3 point or higher and 850 ° C. or lower, which is the non-recrystallization temperature range of austenite. The cumulative rolling reduction is 50% or more, and the ferrite crystal grain size after transformation is sufficiently refined to improve toughness. Therefore, the cumulative rolling reduction during rolling is set to 50% or more in a temperature range of Ar 3 points or more and 850 ° C. or less. Preferably it is 55% or more. Although the upper limit of the cumulative rolling reduction need not be specified, it is preferably set to 80% or less industrially. Incidentally, Ar 3 point is calculated by the following formula (2).
圧延終了温度は、Ar3点以上であることが好ましい。圧延終了温度がAr3点を下回ると加工フェライト組織が残存することにより、最終的に得られる鋼の伸びが低下するおそれがあるので、圧延終了温度は、Ar3点以上であることが好ましい。 The rolling end temperature is preferably Ar 3 points or more. If the rolling end temperature is lower than the Ar 3 point, the processed ferrite structure remains, which may reduce the elongation of the steel finally obtained. Therefore, the rolling end temperature is preferably Ar 3 point or higher.
本発明においては、熱間圧延後の鋼板に対して、第1段の冷却である前段冷却を実施し、その後に放冷し、ついで第2段の冷却である後段冷却を実施する。 In the present invention, the first stage cooling, which is the first stage cooling, is performed on the steel sheet after the hot rolling, and then the second stage cooling, which is the second stage cooling, is performed.
放冷前の第1段の冷却である前段冷却は、圧延終了時のオーステナイト相組織からフェライト相への変態に主眼を置いたもので、それに続く放冷により、フェライト相の体積分率、硬さ、結晶粒径を所定のものにするために行う。このため、前段冷却は、鋼材平均温度が(Ar3−50)℃以上の温度から開始し、放冷中にフェライト変態が相平衡の観点から分率的にも速度論の観点から時間的にも進行し易く、変態の制御が行い易い(Ar3−150)℃以上(Ar3−50)℃以下の温度範囲まで冷却をおこなう。 The first stage cooling, which is the first stage cooling before cooling, focuses on the transformation from the austenite phase structure to the ferrite phase at the end of rolling, and the subsequent cooling allows the volume fraction of the ferrite phase, Now, it is performed in order to make the crystal grain size predetermined. Therefore, pre-cool the steel material average temperature starting from (Ar 3 -50) ℃ temperatures above in terms in terms of ferrite transformation phase equilibrium fraction manner kinetically also temporally cool The cooling is performed to a temperature range of (Ar 3 −150) ° C. or higher and (Ar 3 −50) ° C. or lower.
前段の冷却では、鋼板平均温度を(Ar3−50)℃以上の温度から、(Ar3−150)℃以上(Ar3−50)℃以下の鋼板平均温度に速やかに冷却することが理想であるので、冷却速度は鋼材表面冷却速度で100℃/秒以上とする。ただし、冷却速度を速くするにしたがい、鋼板板厚方向での冷却速度の差が大きくなるため、冷却速度の速い板厚表層部でフェライト変態に代わりベイナイトやマルテンサイト等の硬質相への変態が起こるようになってしまう。そこで、この硬質相への変態を抑制する必要があり、鋼板表面の冷却速度を100℃/秒以上とした場合、後述のように、前段冷却の終了時の鋼板表面の温度が400℃未満にならないように制御すれば、前段冷却工程における硬質相の生成を抑えることができる。冷却速度は、鋼材表面冷却速度で100℃/秒未満であると、フェライト変態と硬質相の変態が複雑に進行して放冷中の変態制御が難しくなるため、100℃/秒以上とする。鋼材表面冷却速度で100℃/秒以上の冷却速度を確保して所定の温度域まで一気に冷却することにより、前段冷却後の放冷工程におけるフェライト変態の駆動力を増加させることができ、当該放冷工程において生成するフェライト相の体積分率、硬さ、および結晶粒径を、本願発明で規定するものとすることができる。 In front of the cooling, the steel sheet average temperature from (Ar 3 -50) ℃ temperatures above, (Ar 3 -150) ℃ than (Ar 3 -50) ℃ in the ideal by rapidly cooling to below the steel sheet average temperature Therefore, the cooling rate is a steel surface cooling rate of 100 ° C./second or more. However, as the cooling rate increases, the difference in the cooling rate in the thickness direction of the steel plate increases, so that the transformation to the hard phase such as bainite or martensite occurs in place of the ferrite transformation at the plate thickness surface layer where the cooling rate is fast. It will happen. Therefore, it is necessary to suppress the transformation to the hard phase, and when the cooling rate of the steel sheet surface is set to 100 ° C./second or more, as described later, the temperature of the steel sheet surface at the end of the previous stage cooling is less than 400 ° C. If it controls so that it may not become, the production | generation of the hard phase in a pre-stage cooling process can be suppressed. When the cooling rate is less than 100 ° C./second in terms of the steel material surface cooling rate, the ferrite transformation and the transformation of the hard phase progress in a complicated manner, making it difficult to control the transformation during cooling. By securing a cooling rate of 100 ° C./second or more at the steel surface cooling rate and cooling to a predetermined temperature range at once, the driving force of the ferrite transformation in the cooling process after the previous stage cooling can be increased. The volume fraction, hardness, and crystal grain size of the ferrite phase generated in the cooling step can be specified in the present invention.
前段冷却の冷却方法は、鋼板表面温度で400℃以上(Ar3−50)℃以下の温度域まで1回または2回以上の冷却を行う。 The cooling method of the first stage cooling is performed once or twice to a temperature range of 400 ° C. or more (Ar 3 -50) ° C. or less at the steel sheet surface temperature.
これは、鋼板表面温度が400℃未満になると硬質相への変態が急激に進んでしまい、所定のフェライト相体積分率が得られなくなり、一方(Ar3−50)℃超えでは板厚全体に対しての冷却効果がほとんどなくなってしまうためである。よって、前段冷却の鋼板表面温度の条件としては、鋼板表面温度で400℃以上(Ar3−50)℃以下の温度域まで冷却すれば、板厚全体への冷却効果を確保しつつ、かつ、鋼板表層部においても所定の体積分率のフェライト相を得ることができる。また、1回の冷却で鋼板平均温度が所定の温度に達しない場合は、鋼板表面を板厚中央部の熱で復熱させた後に繰り返し同じ条件で冷却することができる。ここで、鋼板表面を復熱させた後に2回目以降の冷却を実施するのは、鋼板表層部のみが過剰に冷却されることを防ぐためであり、こうすることにより、板厚中央部を含めた鋼板全体の冷却挙動と鋼板表層部の冷却挙動とのバランスをとることができる。 This transformation will proceed rapidly to hard phase when the steel sheet surface temperature is less than 400 ° C., the predetermined ferrite phase volume fraction can not be obtained, whereas (Ar 3 -50) ℃ The exceed the overall thickness This is because the cooling effect is almost lost. Therefore, as the condition of the steel sheet surface temperature of the pre-cool, if cooled to 400 ° C. or higher at the steel sheet surface temperature (Ar 3 -50) ℃ below the temperature range, while securing the cooling effect on the overall thickness plate, and, A ferrite phase having a predetermined volume fraction can also be obtained in the steel sheet surface layer portion. Moreover, when the steel plate average temperature does not reach a predetermined temperature by one cooling, the steel plate surface can be reheated with the heat at the center of the plate thickness and then repeatedly cooled under the same conditions. Here, after reheating the steel plate surface, the second and subsequent cooling is performed to prevent only the steel plate surface layer portion from being excessively cooled, and by doing so, including the central portion of the plate thickness. It is possible to balance the cooling behavior of the whole steel plate and the cooling behavior of the surface layer portion of the steel plate.
前段冷却後の放冷は、鋼材平均温度で(Ar3−150)〜(Ar3−50)℃の温度範囲で10秒以上行う。 Cooling after the former stage cooling is performed for 10 seconds or more in a temperature range of (Ar 3 -150) to (Ar 3 -50) ° C. at an average steel temperature.
前段冷却後の放冷は、フェライト相の体積分率、硬さ、結晶粒径を所定のものにするために行う。放冷温度域については、鋼材平均温度が(Ar3−150)℃未満ではフェライト変態を進行させるのに長時間を要し、(Ar3−50)℃を超える温度ではフェライトの変態率が所定の分率に達しない。したがって、放冷温度域を鋼材平均温度で(Ar3−150)℃以上(Ar3−50)℃以下とする。放冷時間については、10秒未満であるとフェライト変態が十分に進行しないため所望のフェライト相の分散制御(フェライト分率:75%以上、平均結晶粒径:2μm以上)が達成できず、またCのフェライト相からオーステナイト相への拡散が十分に進行せずフェライト相の硬さがHv160以下にならない。したがって、放冷時間を10秒以上とする。このように、鋼材平均温度で(Ar3−150)〜(Ar3−50)℃の温度範囲で10秒以上の放冷を行うことにより、フェライト相の体積分率、硬さ、結晶粒径を所定のものとすることができる。 Cooling after the pre-stage cooling is performed in order to make the ferrite phase volume fraction, hardness, and crystal grain size predetermined. Regarding the cooling temperature range, when the average steel temperature is less than (Ar 3 −150) ° C., it takes a long time to advance the ferrite transformation, and at a temperature exceeding (Ar 3 −50) ° C., the ferrite transformation rate is predetermined. The fraction of is not reached. Therefore, the cooling temperature range is set to (Ar 3 -150) ° C. or more and (Ar 3 −50) ° C. or less in terms of the average steel material temperature. When the cooling time is less than 10 seconds, since ferrite transformation does not proceed sufficiently, desired dispersion control of ferrite phase (ferrite fraction: 75% or more, average crystal grain size: 2 μm or more) cannot be achieved. Diffusion from the ferrite phase of C to the austenite phase does not proceed sufficiently, and the hardness of the ferrite phase does not become Hv160 or less. Therefore, the cooling time is set to 10 seconds or more. In this way, by allowing to cool for 10 seconds or more in the temperature range of (Ar 3 -150) to (Ar 3 -50) ° C. at the steel material average temperature, the volume fraction of the ferrite phase, hardness, crystal grain size Can be predetermined.
なお、鋼材の平均温度は、鋼材の形状と表面温度、冷却条件等が与えられた場合に、シミュレーション計算等により求められたものを用いることができる。 In addition, the average temperature of steel materials can use what was calculated | required by simulation calculation etc., when the shape of steel materials, surface temperature, cooling conditions, etc. were given.
第2段の冷却である後段冷却では、鋼材平均温度で(Ar3−150)℃以上の温度から10℃/秒以上の冷却速度で300℃〜600℃まで冷却する。 In the latter stage cooling, which is the second stage cooling, the steel material is cooled from a temperature of (Ar 3 -150) ° C. or higher to 300 ° C. to 600 ° C. at a cooling rate of 10 ° C./second or higher.
第2段の冷却である後段冷却は、オーステナイト相組織から硬質相への変態を起こさせることにより所定の強度を確保するために冷却開始温度・冷却速度・冷却終了温度を制御する。冷却開始温度は、低いほど強度が低下し、鋼材平均温度が(Ar3−150)℃未満になると所定の強度が得られなくなるため、所定の強度を確保する目的で冷却開始温度を(Ar3−150)℃以上とする。 The latter stage cooling, which is the second stage cooling, controls the cooling start temperature, the cooling rate, and the cooling end temperature in order to secure a predetermined strength by causing the transformation from the austenite phase structure to the hard phase. Cooling start temperature is lower as the intensity is lowered, the steel material average temperature (Ar 3 -150) for the less than ℃ not predetermined strength can be obtained, the cooling start temperature in order to secure a predetermined strength (Ar 3 −150) C or higher.
鋼材平均冷却速度は、速いほど強度が向上するが、鋼材平均冷却速度で10℃/秒未満では所定の強度が得られないので、所定の強度を確保する目的で鋼材平均冷却速度を10℃/秒以上とする。
冷却終了温度は、低いほど強度が向上するが、300℃未満まで冷却すると延靭性が劣化する。逆に、600℃を超える温度で冷却を停止すると所定の強度が得られないので、強度と延靭性との適正化の観点から冷却終了温度を鋼材平均温度で300℃以上600℃以下とする。
The higher the steel average cooling rate, the higher the strength. However, when the steel average cooling rate is less than 10 ° C./second, the predetermined strength cannot be obtained. Therefore, in order to ensure the predetermined strength, the steel average cooling rate is 10 ° C. / More than a second.
The lower the cooling end temperature, the higher the strength, but the ductility deteriorates when cooled to below 300 ° C. Conversely, if the cooling is stopped at a temperature exceeding 600 ° C., a predetermined strength cannot be obtained. Therefore, the cooling end temperature is set to 300 ° C. or more and 600 ° C. or less in terms of the steel material average temperature from the viewpoint of optimization of strength and ductility.
以下、実施例について説明する。表1に実施例に用いた供試鋼の成分を示す。表示しない残部は、鉄および不可避不純物よりなる。表1における鋼種A〜Hは本発明を満足する成分組成の鋼で、鋼種IはCeqが発明の範囲外(上限0.36%超)となっている。 Examples will be described below. Table 1 shows the components of the test steel used in the examples. The remainder not shown consists of iron and inevitable impurities. Steel types A to H in Table 1 are steels having a component composition that satisfies the present invention, and steel type I has Ceq outside the scope of the invention (upper limit of more than 0.36%).
これらの鋼組成を有する鋳片を加熱後、板厚12〜50mmの鋼板に圧延して種々の冷却パターンで冷却した。表2に製造条件を示す。鋼番1〜10は本発明の成分組成および製造条件を満足する発明例、鋼番11〜16は製造条件又は成分組成が本発明範囲から外れている比較例である。 The slab having these steel compositions was heated and then rolled into a steel plate having a thickness of 12 to 50 mm and cooled with various cooling patterns. Table 2 shows the manufacturing conditions. Steel numbers 1 to 10 are invention examples satisfying the component composition and production conditions of the present invention, and steel numbers 11 to 16 are comparative examples where production conditions or component compositions are outside the scope of the present invention.
これらの鋼板のミクロ組織を光学顕微鏡により観察し、板厚中央部、板厚表層部のフェライト相の分率、フェライトの結晶粒径(平均結晶粒径)を測定した。フェライト相の硬さは、板厚中央部および板厚表層部についてマイクロビッカース硬度計(荷重:25gf)により測定し、その平均値とした。 The microstructures of these steel plates were observed with an optical microscope, and the ferrite phase fraction and the ferrite crystal grain size (average crystal grain size) in the plate thickness center part and plate thickness surface layer part were measured. The hardness of the ferrite phase was measured with a micro Vickers hardness meter (load: 25 gf) for the plate thickness center portion and the plate thickness surface layer portion, and the average value thereof was taken.
また、機械的特性として、強度、一様伸び、靭性を求めた。引張試験は、全厚のJIS1B号試験片を、鋼板の圧延方向と直角の方向に採取して試験した。一様伸びは、最大応力時の伸びとして評価した。衝撃試験は、JIS 4号標準試験片を、圧延方向と平行に、かつ表層に寄せて(鋼材の表面と試験片の端面との間隔が2mm以下)採取して試験した。靭性は、vTrs(脆性延性遷移温度)により評価した。 Further, as mechanical properties, strength, uniform elongation, and toughness were obtained. In the tensile test, a full-thick JIS1B test piece was sampled in the direction perpendicular to the rolling direction of the steel sheet and tested. Uniform elongation was evaluated as elongation at maximum stress. In the impact test, a JIS No. 4 standard test piece was taken in parallel with the rolling direction and brought close to the surface layer (the distance between the surface of the steel material and the end face of the test piece was 2 mm or less) and tested. Toughness was evaluated by vTrs (brittle ductile transition temperature).
表3に鋼板のミクロ組織および機械的特性等の試験結果を示す。 Table 3 shows the test results of the microstructure and mechanical properties of the steel sheet.
表3に示すように、発明例である鋼番1〜10は、いずれもTS(引張強さ)が520MPa以上で、一様伸びが22%以上の優れた特性が得られている。また、鋼番1〜10のYS(降伏強度)は390MPa以上、vTrsは−40℃より低く、いずれも目標特性とするYS≧355MPa、TS≧490MPa、一様伸び≧20%、vTrs≦0℃を満足している。 As shown in Table 3, the steel numbers 1 to 10, which are invention examples, all have excellent characteristics such that TS (tensile strength) is 520 MPa or more and uniform elongation is 22% or more. Moreover, YS (yield strength) of steel Nos. 1 to 10 is 390 MPa or more, vTrs is lower than −40 ° C., and all target properties are YS ≧ 355 MPa, TS ≧ 490 MPa, uniform elongation ≧ 20%, vTrs ≦ 0 ° C. Is satisfied.
これに対して、鋼番11〜16は比較例であり、鋼番11は、Ceqが高く、製造条件を工夫しても、所定の特性を得ることができず、板厚表層部のフェライト相の体積分率が小さく、一様伸びが劣っている。鋼番12は、前段の冷却開始温度が低すぎるため、板厚中央部および板厚表層部のフェライト相の体積分率がいずれも小さくなり、一様伸びが劣っている。鋼番13は、前段冷却の規定冷却速度(100℃/s以上)に対して冷却速度が遅いため、フェライト相の体積分率が小さくなり、一様伸びが劣っている。 On the other hand, Steel Nos. 11 to 16 are comparative examples, and Steel No. 11 has a high Ceq, and even if the manufacturing conditions are devised, a predetermined characteristic cannot be obtained. The volume fraction of is small and the uniform elongation is inferior. In Steel No. 12, since the cooling start temperature in the previous stage is too low, the volume fraction of the ferrite phase in the center portion of the plate thickness and the surface layer portion of the plate thickness is small, and the uniform elongation is inferior. Steel No. 13 has a slow cooling rate with respect to the prescribed cooling rate (100 ° C./s or more) of the preceding stage cooling, so the volume fraction of the ferrite phase is small and the uniform elongation is inferior.
鋼番14は、前段冷却の停止温度が低すぎるため、フェライト相体積分率が小さくなり、一様伸びが劣っている。鋼番15は、前段冷却の終了温度が低すぎるため、フェライト相体積分率が小さくなり、一様伸びが劣っている。鋼番16は、前段冷却と後段冷却の間の放冷時間が短かったため、フェライト相体積分率が低くなり、一様伸びが劣っている。 In Steel No. 14, the stop temperature of the pre-cooling is too low, so the ferrite phase volume fraction is small and the uniform elongation is inferior. In Steel No. 15, the end temperature of the pre-cooling is too low, so the ferrite phase volume fraction is small and the uniform elongation is inferior. Steel No. 16 had a short cooling time between the former stage cooling and the latter stage cooling, so the ferrite phase volume fraction was low and the uniform elongation was inferior.
Claims (6)
組織がフェライト相と硬質相からなり、前記フェライト相の体積分率が板厚全体で75%以上、硬さがHv140以上160以下、平均結晶粒径が2μm以上40μm以下であり、
板厚中央部におけるフェライト相の体積分率に対する板厚表層部におけるフェライト相の体積分率の割合が0.925以上1.000以下であり、
板厚が12〜50mmであることを特徴とする耐衝突性に優れた鋼材。
ただし、Ceqは下記式(1)で表される。
Structure becomes ferrite phase and a hard phase, the volume fraction of ferrite phase thickness total 75% or more, hardness is Hv140 or more 160 or less, the average crystal grain size Ri der least 40μm or less 2 [mu] m,
Der ratio 0.925 or 1.000 volume fraction of the ferrite phase in the sheet thickness surface layer portion to the volume fraction of the ferrite phase in the sheet thickness center portion is,
A steel material excellent in collision resistance, characterized in that the plate thickness is 12 to 50 mm .
However, Ceq is represented by the following formula (1).
鋼素材を加熱後、Ar3点以上850℃以下の温度域で累積圧下率50%以上の圧延を行い、その後、前段冷却を鋼材平均温度が(Ar3−50)℃以上から開始し、鋼材表面の冷却速度が100℃/秒以上で、鋼材表面温度が400℃以上(Ar3−50)℃以下の温度域まで、1回または2回以上の冷却を、鋼材平均温度が(Ar3−150)℃以上(Ar3−50)℃以下となるまで行い、その後、10秒以上の放冷を行い、鋼材平均温度(Ar3−150)℃以上から10℃/秒以上の鋼材平均冷却速度で鋼材平均温度が300℃以上600℃以下となるまで後段冷却を行うことを特徴とする耐衝突性に優れた鋼材の製造方法。
ただし、Ar3点は下記式(2)で表される。
After heating the steel material, rolling is performed at a cumulative reduction ratio of 50% or more in a temperature range of Ar 3 points or more and 850 ° C. or less, and then the former stage cooling is started from the steel material average temperature (Ar 3 −50) ° C. or more. at a cooling rate of the surface 100 ° C. / sec or more, the steel material surface temperature 400 ° C. or higher (Ar 3 -50) ℃ to below the temperature range, once or twice or more cooling, the steel material average temperature (Ar 3 - performed until 0.99) ° C. or higher (Ar 3 -50) ℃ or less, Thereafter, the cooling of more than 10 seconds, the steel average temperature (Ar 3 -150) steel average cooling rate of 10 ° C. / sec or more from the above ° C. In the method for producing a steel material having excellent collision resistance, the latter stage cooling is performed until the average temperature of the steel material becomes 300 ° C. or more and 600 ° C. or less.
However, Ar 3 point is represented by the following formula (2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012128483A JP5953952B2 (en) | 2011-11-30 | 2012-06-06 | Steel material excellent in impact resistance and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011261604 | 2011-11-30 | ||
JP2011261604 | 2011-11-30 | ||
JP2012128483A JP5953952B2 (en) | 2011-11-30 | 2012-06-06 | Steel material excellent in impact resistance and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013136829A JP2013136829A (en) | 2013-07-11 |
JP5953952B2 true JP5953952B2 (en) | 2016-07-20 |
Family
ID=48534907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012128483A Active JP5953952B2 (en) | 2011-11-30 | 2012-06-06 | Steel material excellent in impact resistance and method for producing the same |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2787098B1 (en) |
JP (1) | JP5953952B2 (en) |
KR (2) | KR20140091745A (en) |
CN (1) | CN103958716B (en) |
WO (1) | WO2013080398A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12083568B2 (en) | 2019-01-17 | 2024-09-10 | Jfe Steel Corporation | Production specification determination method, production method, and production specification determination apparatus for metal material |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6354065B2 (en) * | 2014-10-30 | 2018-07-11 | Jfeスチール株式会社 | Thick steel plate and manufacturing method thereof |
JP6007968B2 (en) * | 2014-12-26 | 2016-10-19 | 新日鐵住金株式会社 | High-strength and highly ductile steel plate and its manufacturing method |
JP6477020B2 (en) * | 2015-02-27 | 2019-03-06 | 新日鐵住金株式会社 | Hot rolled steel sheet and manufacturing method thereof |
KR102164112B1 (en) | 2018-11-29 | 2020-10-12 | 주식회사 포스코 | High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof |
KR102296840B1 (en) | 2019-12-16 | 2021-09-01 | 주식회사 포스코 | High strength steel material having excellent ductility and manufacturing method for the same |
KR102236853B1 (en) | 2019-12-18 | 2021-04-06 | 주식회사 포스코 | Steel material having excellent strength and ductility and manufacturing method for the same |
KR102484998B1 (en) | 2020-12-11 | 2023-01-05 | 주식회사 포스코 | High strength steel sheet having excellent ductility and method for manufacturing thereof |
JP7508026B2 (en) | 2021-11-19 | 2024-07-01 | Jfeスチール株式会社 | Heavy steel plate and its manufacturing method |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3231204B2 (en) * | 1995-01-04 | 2001-11-19 | 株式会社神戸製鋼所 | Composite structure steel sheet excellent in fatigue characteristics and method for producing the same |
JP3434431B2 (en) | 1997-04-28 | 2003-08-11 | 新日本製鐵株式会社 | Steel plate excellent in impact energy absorbing ability and method for producing the same |
JP3572894B2 (en) * | 1997-09-29 | 2004-10-06 | Jfeスチール株式会社 | Composite structure hot rolled steel sheet excellent in impact resistance and formability and method for producing the same |
JP3434444B2 (en) * | 1997-12-26 | 2003-08-11 | 新日本製鐵株式会社 | Steel plate for hull with excellent shock absorption capacity |
JP3499126B2 (en) | 1998-03-03 | 2004-02-23 | 新日本製鐵株式会社 | Steel plate for hull excellent in impact energy absorption capacity and method of manufacturing the same |
JP2000319752A (en) * | 1999-05-07 | 2000-11-21 | Nippon Steel Corp | Steel for structural purpose excellent in corrosion resistance and its production |
JP4291480B2 (en) * | 1999-12-03 | 2009-07-08 | 新日本製鐵株式会社 | Structural steel with excellent corrosion resistance and corrosion fatigue resistance |
JP3525849B2 (en) * | 2000-03-17 | 2004-05-10 | Jfeスチール株式会社 | Steel material excellent in collision resistance and method for producing the same |
JP2002105586A (en) * | 2000-09-29 | 2002-04-10 | Nkk Corp | Shape steel having excellent collision resistance and its production method |
JP3578126B2 (en) * | 2001-09-14 | 2004-10-20 | Jfeスチール株式会社 | Steel material excellent in collision resistance and method for producing the same |
JP4470701B2 (en) * | 2004-01-29 | 2010-06-02 | Jfeスチール株式会社 | High-strength thin steel sheet with excellent workability and surface properties and method for producing the same |
JP4476923B2 (en) * | 2005-12-15 | 2010-06-09 | 株式会社神戸製鋼所 | Steel sheet with excellent impact absorption and base metal toughness |
JP4653039B2 (en) * | 2006-08-21 | 2011-03-16 | 株式会社神戸製鋼所 | High tensile steel plate and method for manufacturing the same |
JP4984933B2 (en) * | 2007-02-02 | 2012-07-25 | 住友金属工業株式会社 | Hot rolled steel sheet for tailored blanks and tailored blanks |
JP4772932B2 (en) * | 2009-11-20 | 2011-09-14 | 新日本製鐵株式会社 | Thick steel plate for hull and manufacturing method thereof |
JP2011252201A (en) * | 2010-06-02 | 2011-12-15 | Jfe Steel Corp | High efficiency manufacturing method of steel excellent in impact resistance |
-
2012
- 2012-06-06 JP JP2012128483A patent/JP5953952B2/en active Active
- 2012-06-14 KR KR1020147015819A patent/KR20140091745A/en active Application Filing
- 2012-06-14 EP EP12853662.0A patent/EP2787098B1/en active Active
- 2012-06-14 KR KR1020167022453A patent/KR20160104077A/en active Search and Examination
- 2012-06-14 CN CN201280058550.8A patent/CN103958716B/en active Active
- 2012-06-14 WO PCT/JP2012/003883 patent/WO2013080398A1/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12083568B2 (en) | 2019-01-17 | 2024-09-10 | Jfe Steel Corporation | Production specification determination method, production method, and production specification determination apparatus for metal material |
Also Published As
Publication number | Publication date |
---|---|
JP2013136829A (en) | 2013-07-11 |
KR20140091745A (en) | 2014-07-22 |
EP2787098B1 (en) | 2018-09-05 |
CN103958716B (en) | 2016-08-24 |
EP2787098A1 (en) | 2014-10-08 |
CN103958716A (en) | 2014-07-30 |
KR20160104077A (en) | 2016-09-02 |
EP2787098A4 (en) | 2015-11-18 |
WO2013080398A1 (en) | 2013-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5953952B2 (en) | Steel material excellent in impact resistance and method for producing the same | |
JP5228062B2 (en) | High strength thin steel sheet with excellent weldability and method for producing the same | |
JP5079794B2 (en) | Steel material excellent in high-temperature strength and toughness and manufacturing method thereof | |
KR20190134704A (en) | High Mn steel and its manufacturing method | |
JP4946512B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP4325998B2 (en) | High-strength hot-dip galvanized steel sheet with excellent spot weldability and material stability | |
JP6616002B2 (en) | High-strength steel material with excellent low-temperature strain aging impact characteristics and method for producing the same | |
WO2006093282A1 (en) | High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof | |
JP2005320624A (en) | Thick high-strength steel plate having excellent low-temperature toughness in weld heat-affected zone effected by large heat input welding | |
JP5181460B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP5181496B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP6811854B2 (en) | Cold-rolled steel sheet for flux-cored wire and its manufacturing method | |
JP5181461B2 (en) | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same | |
JP7022822B2 (en) | Thick steel sheet with excellent low-temperature deformation aging impact characteristics and its manufacturing method | |
JP5716419B2 (en) | Steel plate with excellent fatigue resistance and method for producing the same | |
JP6926247B2 (en) | Cold-rolled steel sheet for flux-cored wire and its manufacturing method | |
JP4038166B2 (en) | Steel plate excellent in earthquake resistance and weldability and manufacturing method thereof | |
JP2007119861A (en) | Method for producing high tensile-strength steel for welding structure excellent in high temperature strength and low temperature toughness | |
JP3525849B2 (en) | Steel material excellent in collision resistance and method for producing the same | |
JP2002105586A (en) | Shape steel having excellent collision resistance and its production method | |
JP3578126B2 (en) | Steel material excellent in collision resistance and method for producing the same | |
JP5223295B2 (en) | Refractory H-shaped steel with excellent reheat embrittlement resistance and method for producing the same | |
JP2011252201A (en) | High efficiency manufacturing method of steel excellent in impact resistance | |
JP7550224B2 (en) | Cold-rolled steel sheet for flux cored wire and its manufacturing method | |
JP2005307313A (en) | Method for producing steel plate excellent in earthquake-proof and weldability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151124 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160517 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160530 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5953952 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |