JP3572894B2 - Composite structure hot rolled steel sheet excellent in impact resistance and formability and method for producing the same - Google Patents
Composite structure hot rolled steel sheet excellent in impact resistance and formability and method for producing the same Download PDFInfo
- Publication number
- JP3572894B2 JP3572894B2 JP26368497A JP26368497A JP3572894B2 JP 3572894 B2 JP3572894 B2 JP 3572894B2 JP 26368497 A JP26368497 A JP 26368497A JP 26368497 A JP26368497 A JP 26368497A JP 3572894 B2 JP3572894 B2 JP 3572894B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- ferrite phase
- sec
- rate
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、主として自動車用部品で、高強度かつ高成形性が必要とされる部位の素材として、さらには、自動車が走行中に万一衝突した場合に優れた耐衝撃性(以下、単に「耐衝突特性」と略記する)が求められる部位の素材として用いて好適な複合組織熱延鋼板およびその製造方法に関するものである。
【0002】
【従来の技術】
最近の自動車車体の設計思想においては、単なる鋼板の高強度化のみでなく、走行中に万一衝突した場合において、耐衝撃性に優れた鋼板、すなわち高歪速度で変形した場合の変形抵抗が大きい鋼板の開発が、自動車の安全性の向上をもたらすとともに、車体の軽量化の実現に有効に寄与するものとして注目されている。
一方、近年の部材のコストダウン指向により、従来から用いられていた冷延鋼板に替えて、3.0mm 以下といった板厚の熱延鋼板を採用しようとする気運が高まりつつある。
このような最近の状況から、自動車の安全性向上とコストダウンの観点から、耐衝突特性に優れる熱延高張力鋼板が開発が熱望されている。
【0003】
ところで、従来、自動車用鋼板の材質強化は、フェライト単相組織では、主としてSi, Mn, Pといった置換型元素を添加することによる固溶強化、あるいはNb,Ti といった炭窒化物形成元素を添加することによる析出強化による方法が一般的であった。
例えば、特開昭56−139654号公報等では、極低炭素鋼に加工性、時効性を改善するためにTi、Nbを含有させ、さらにP等の強化成分を加工性を害しない範囲で含有させて高強度化を図った鋼板を提案している。また、例えば特開昭59−193221号公報には、極低炭素鋼にSiを添加して高強度化を図る方法の提案がなされている。
また、特開昭60−52528号公報には、低炭素鋼を高温で焼鈍し、冷却後にマルテンサイト相を析出させることにより、延性に優れた高強度鋼板の製造方法が提案されている。
【0004】
【発明が解決しようとする課題】
しかし、このような従来から提案されていた方法により高強度化を図った鋼板では、自動車ボディの板厚をある程度減少させることはできても、上記の耐衝突特性を本質的に改善するものではなかった。なぜなら、これらの提案は、鋼板強度の指標である降伏強度あるいは引張強度を、歪速度が10−3〜10−2(sec−1) と極めて遅い、いわゆる静的な評価方法のみに基づいて求めている。これに対し、実際の自動車ボディの設計では、このような静的な強度よりもむしろ、衝突時の安全性を考慮した、歪速度が10〜104 (sec−1) の衝撃的な変形を伴う、いわゆる動的な評価方法に基づく強度の方が重要となるからである。
従って、静的強度のみに着目して開発されている、上述した従来の各提案は、自動車車体の軽量化に対して根本的な指標たり得ないという問題があった。
【0005】
なお、特開平7−90482 号公報には鋼板の耐衝撃性を向上させることを目的として、マルテンサイトとフェライトの2相組織鋼板が提案されている。しかし、このフェライトとマルテンサイトの2相組織鋼板は、比較的優れた耐衝突特性を有するものの、今日の自動車メーカーが要求している、より一層高レベルの特性を満たすまでには至っていないのが現状である。
【0006】
そこで、本発明の目的は、従来の熱延鋼板よりもさらに優れた、耐衝突特性と成形性とを具えた複合組織熱延鋼板を提供することにある。
また本発明の他の目的は、歪速度0.02 sec−1の強度に対する歪速度2000 sec−1の強度上昇量の比で表す強度上昇率が真歪0.1 で35%以上、真歪0.25で25%以上である耐衝突特性に優れた複合組織熱延鋼板を提供することにある。
【0007】
【課題を解決するための手段】
発明者らは、上掲の目的の実現に向け、フェライトとマルテンサイトをはじめとする第2相とからなる2相組織鋼をベースに、熱延条件、金属組織などの影響について詳細に検討を行い本発明を完成するに到った。すなわち、本発明は、下記の内容を要旨構成とするものである。
【0008】
(1) C:0.02〜0.2wt%、Si:0.1〜1.5wt%、Mn:0.5〜3.0wt%、S:0.010wt%以下を含み、かつP:0.01〜0.15wt%、Cr:0.003〜2.0wt%、Mo:0.003〜2.0wt%から選ばれる1種以上を含有し、残部はFeおよび不可避的不純物からなり、かつ組織が、体積率で60〜97%のフェライト相と、残部はマルテンサイト、ベイナイト、オーステナイトのうちの1種以上の相で構成される第2相とからなり、しかもフェライト相および第2相の硬さが次式の関係を満足し、かつフェライト相の結晶粒径が4μm未満であり、歪速度 0.02sec -1 の強度に対する歪速度 2000sec -1 の強度上昇量の比で表す強度上昇率が真歪 0.1 で 35 %以上、真歪 0.25 で 25 %以上であることを特徴とする、耐衝突特性と成形性に優れる複合組織熱延鋼板。
HV2/3>HV1/3+20
ただし、HV1:フェライト相のビッカース硬さ
HV2:第2相領域のビッカース硬さ
【0009】
(2) C:0.02〜0.2wt%、Si:0.1〜1.5wt%、Mn:0.5〜3.0wt%、S:0.010wt%以下を含み、かつP:0.01〜0.15wt%、Cr:0.003〜2.0wt%、Mo:0.003〜2.0wt%から選ばれる1種以上を含有し、さらにTi:0.003〜1.0wt%、Nb:0.003〜0.5wt%、V:0.003〜1.0wt%から選ばれる1種以上を含有し、残部はFeおよび不可避的不純物からなり、かつ組織が、体積率で60〜97%のフェライト相と、残部はマルテンサイト、ベイナイト、オーステナイトのうちの1種以上の相で構成される第2相領域とからなり、しかもフェライト相および第2相の硬さが次式の関係を満足し、かつフェライト相の結晶粒径が4μm未満であり、歪速度 0.02sec -1 の強度に対する歪速度 2000sec -1 の強度上昇量の比で表す強度上昇率が真歪 0.1 で 35 %以上、真歪 0.25 で 25 %以上であることを特徴とする、耐衝突特性と成形性に優れる複合組織熱延鋼板。
HV2/3>HV1/3+20
ただし、HV1:フェライト相のビッカース硬さ
HV2:第2相領域のビッカース硬さ
【0010】
(3) C:0.02〜0.2wt%、Si:0.1〜1.5wt%、Mn:0.5〜3.0wt%、S:0.010wt%以下を含み、かつP:0.01〜0.15wt%、Cr:0.003〜2.0wt%、Mo:0.003〜2.0wt%から選ばれる1種以上を含有し、さらにNi:0.003〜3.0wt%、Cu:0.003〜3.0wt%、B:0.0005〜1.0wt%、N:0.003〜0.1wt%から選ばれる1種以上を含有し、残部はFeおよび不可避的不純物からなり、かつ組織が、体積率で60〜97%のフェライト相と、残部はマルテンサイト、ベイナイト、オーステナイトのうちの1種以上の相で構成される第2相領域とからなり、しかもフェライト相および第2相の硬さが次式の関係を満足し、かつフェライト相の結晶粒径が4μm未満であり、歪速度 0.02sec -1 の強度に対する歪速度 2000sec -1 の強度上昇量の比で表す強度上昇率が真歪 0.1 で 35 %以上、真歪 0.25 で 25 %以上であることを特徴とする、耐衝突特性と成形性に優れる複合組織熱延鋼板。
HV2/3>HV1/3+20
ただし、HV1:フェライト相のビッカース硬さ
HV2:第2相領域のビッカース硬さ
【0011】
(4) C:0.02〜0.2wt%、Si:0.1〜1.5wt%、Mn:0.5〜3.0wt%、S:0.010wt%以下を含み、かつP:0.01〜0.15wt%、Cr:0.003〜2.0wt%、Mo:0.003〜2.0wt%から選ばれる1種以上を含有し、さらにCa:0.0005〜1.0wt%、Zr:0.0005〜1.0wt%、REM:0.0005〜0.5wt%から選ばれる1種以上を含有し、残部はFeおよび不可避的不純物からなり、かつ組織が、体積率で60〜97%のフェライト相と、残部はマルテンサイト、ベイナイト、オーステナイトのうちの1種以上の相で構成される第2相領域とからなり、しかもフェライト相および第2相の硬さが次式の関係を満足し、かつフェライト相の結晶粒径が4μm未満であり、歪速度 0.02sec -1 の強度に対する歪速度 2000sec -1 の強度上昇量の比で表す強度上昇率が真歪 0.1 で 35 %以上、真歪 0.25 で 25 %以上であることを特徴とする、耐衝突特性と成形性に優れる複合組織熱延鋼板。
HV2/3>HV1/3+20
ただし、HV1:フェライト相のビッカース硬さ
HV2:第2相領域のビッカース硬さ
【0012】
(5) C:0.02〜0.2wt%、Si:0.1〜1.5wt%、Mn:0.5〜3.0wt%、S:0.010wt%以下を含み、かつP:0.01〜0.15wt%、Cr:0.003〜2.0wt%、Mo:0.003〜2.0wt%から選ばれる1種以上を含有し、さらにTi:0.003〜1.0wt%、Nb:0.003〜0.5wt%、V:0.003〜1.0wt%から選ばれる1種以上、およびNi:0.003〜3.0wt%、Cu:0.003〜3.0wt%、B:0.0005〜1.0wt%、N:0.003〜0.1wt%から選ばれる1種以上を含有し、残部はFeおよび不可避的不純物からなり、かつ組織が、体積率で60〜97%のフェライト相と、残部はマルテンサイト、ベイナイト、オーステナイトのうちの1種以上の相で構成される第2相領域とからなり、しかもフェライト相および第2相の硬さが次式の関係を満足し、かつフェライト相の結晶粒径が4μm未満であり、歪速度 0.02sec -1 の強度に対する歪速度 2000sec -1 の強度上昇量の比で表す強度上昇率が真歪 0.1 で 35 %以上、真歪 0.25 で 25 %以上であることを特徴とする、耐衝突特性と成形性に優れる複合組織熱延鋼板。
HV2/3>HV1/3+20
ただし、HV1:フェライト相のビッカース硬さ
HV2:第2相領域のビッカース硬さ
【0013】
(6) C:0.02〜0.2wt%、Si:0.1〜1.5wt%、Mn:0.5〜3.0wt%、S:0.010wt%以下を含み、かつP:0.01〜0.15wt%、Cr:0.003〜2.0wt%、Mo:0.003〜2.0wt%から選ばれる1種以上を含有し、さらにTi:0.003〜1.0wt%、Nb:0.003〜0.5wt%、V:0.003〜1.0wt%から選ばれる1種以上、およびCa:0.0005〜1.0wt%、Zr:0.0005〜1.0wt%、REM:0.0005〜0.5wt%から選ばれる1種以上を含有し、残部はFeおよび不可避的不純物からなり、かつ組織が、体積率で60〜97%のフェライト相と、残部はマルテンサイト、ベイナイト、オーステナイトのうちの1種以上の相で構成される第2相領域とからなり、しかもフェライト相および第2相の硬さが次式の関係を満足し、かつフェライト相の結晶粒径が4μm未満であり、歪速度 0.02sec -1 の強度に対する歪速度 2000sec -1 の強度上昇量の比で表す強度上昇率が真歪 0.1 で 35 %以上、真歪 0.25 で 25 %以上であることを特徴とする、耐衝突特性と成形性に優れる複合組織熱延鋼板。
HV2/3>HV1/3+20
ただし、HV1:フェライト相のビッカース硬さ
HV2:第2相領域のビッカース硬さ
【0014】
(7) C:0.02〜0.2wt%、Si:0.1〜1.5wt%、Mn:0.5〜3.0wt%、S:0.010wt%以下を含み、かつP:0.01〜0.15wt%、Cr:0.003〜2.0wt%、Mo:0.003〜2.0wt%から選ばれる1種以上を含有し、さらにNi:0.003〜3.0wt%、Cu:0.003〜3.0wt%、B:0.0005〜1.0wt%、N:0.003〜0.1wt%から選ばれる1種以上、およびCa:0.0005〜1.0wt%、Zr:0.0005〜1.0wt%、REM:0.0005〜0.5wt%から選ばれる1種以上を含有し、残部はFeおよび不可避的不純物からなり、かつ組織が、体積率で60〜97%のフェライト相と、残部はマルテンサイト、ベイナイト、オーステナイトのうちの1種以上の相で構成される第2相領域とからなり、しかもフェライト相および第2相の硬さが次式の関係を満足し、かつフェライト相の結晶粒径が4μm未満であり、歪速度 0.02sec -1 の強度に対する歪速度 2000sec -1 の強度上昇量の比で表す強度上昇率が真歪 0.1 で 35 %以上、真歪 0.25 で 25 %以上であることを特徴とする、耐衝突特性と成形性に優れる複合組織熱延鋼板。
HV2/3>HV1/3+20
ただし、HV1:フェライト相のビッカース硬さ
HV2:第2相領域のビッカース硬さ
【0015】
(8) C:0.02〜0.2wt%、Si:0.1〜1.5wt%、Mn:0.5〜3.0wt%、S:0.010wt%以下を含み、かつP:0.01〜0.15wt%、Cr:0.003〜2.0wt%、Mo:0.003〜2.0wt%から選ばれる1種以上を含有し、さらにTi:0.003〜1.0wt%、Nb:0.003〜0.5wt%、V:0.003〜1.0wt%から選ばれる1種以上、Ni:0.003〜3.0wt%、Cu:0.003〜3.0wt%、B:0.0005〜1.0wt%、N:0.003〜0.1wt%から選ばれる1種以上、およびCa:0.0005〜1.0wt%、Zr:0.0005〜1.0wt%、REM:0.0005〜0.5wt%から選ばれる1種以上を含有し、残部はFeおよび不可避的不純物からなり、かつ組織が、体積率で60〜97%のフェライト相と、残部はマルテンサイト、ベイナイト、オーステナイトのうちの1種以上の相で構成される第2相領域とからなり、しかもフェライト相および第2相の硬さが次式の関係を満足し、かつフェライト相の結晶粒径が4μm未満であり、歪速度 0.02sec -1 の強度に対する歪速度 2000sec -1 の強度上昇量の比で表す強度上昇率が真歪 0.1 で 35 %以上、真歪 0.25 で 25 %以上であることを特徴とする、耐衝突特性と成形性に優れる複合組織熱延鋼板。
HV2/3>HV1/3+20
ただし、HV1:フェライト相のビッカース硬さ
HV2:第2相領域のビッカース硬さ
【0016】
(9) C:0.02〜0.2 wt%、 Si:0.1 〜2.5 wt%、
Mn:0.5 〜3.0 wt%、 S:0.010 wt%以下
を含み、かつ
P:0.01〜0.15wt%、 Cr:0.003 〜2.0 wt%、
Mo:0.003 〜2.0 wt%
から選ばれる1種以上を含有する鋼素材を、(Ar3変態点−50℃)〜(Ar3変態点+150 ℃)で熱間圧延を終了し、その後0.1 〜5.0 秒の間に、次式を満たす速度で冷却を開始して、 820〜620 ℃まで冷却 (1次強制冷却) し、0.5 〜15sec 間空冷し、次いで30℃/sec 以上の冷却速度で、 570〜 300℃まで冷却 (2次強制冷却) し、巻き取ることを特徴とする、耐衝突特性と成形性に優れる複合組織熱延鋼板の製造方法。
v≧1000×t1 1/2 ÷h1/2 ÷t
ただし、v:冷却速度(℃/sec )
h:板厚(mm)
t1 :仕上圧延を終了してから1次強制冷却開始するまでの時間(sec)
t:1次強制冷却後、2次強制冷却を開始するまでの空冷時間(sec)
なお、HV2を第2相領域内のビッカース硬さとしたのは、複数の相が第2相に混在する場合には、その平均硬さを採用したためである。
【0017】
【発明の実施の形態】
次に、この発明において、鋼の化学成分、組織、製造条件等を要旨構成のとおりに限定した理由について説明する。
C:0.02〜0.2 wt%
Cは、2相組織中のマルテンサイトの強度と体積分率を高めるために必要な成分である。C量が0.02wt%未満では十分な量の炭化物およびマルテンサイトを主相とする第2相が得られない。一方、0.2 wt%を超えるとフェライト中に固溶Cが存在し、成形性を阻害する。よって、Cの含有量は0.02〜0.2 wt%とする。
【0018】
Si:0.1〜1.5wt%
Siは、フェライト中の固溶Cをオーステナイト中に濃化させ、鋼の焼き入れ性を向上させると共に、フェライトの純度を高めることにより鋼板の成形性を向上させる。この効果は、0.1wt%以上の添加で現われるが、1.5wt%を超えて含有させた場合には、熱延板の表面性状および表面処理性が顕著に劣化する。したがって、Siの含有量は0.1〜1.5wt%、好ましくは 0.8〜1.5wt%とする。
【0019】
Mn:0.5 〜3.0 wt%
Mnは、オーステナイト安定化型元素であり、0.5 wt%未満では、焼き入れ性が低下し、2相組織が得られにくくなる。また、3.0 wt%を超えると、鋼板が硬化し、成形性が低下する。従ってMn含有量は、0.5 〜3.0 wt%、好ましくは 0.8〜1.8 wt%とする。
【0020】
S:0.010 wt%以下
Sは、その含有量を低減することにより、鋼中の析出物が減少し、加工性が向上する。このような効果は、S量を0.010 wt%以下に制限することにより得られる。
【0021】
P:0.01〜0.15wt%
Pは、オーステナイトを安定化し、パーライトの生成を抑制する作用を有しているが、この効果は0.01wt%以上の添加により現れる。一方、0.15wt%を超えて含有させると、鋼板の硬化のため成形性が低下し、また表面処理性も劣化する。したがって、Pの含有量は0.01〜0.15wt%とする。
【0022】
Cr:0.003 〜2.0 wt%
Crは、パーライト生成を抑制する作用を有しており、その効果は0.003 wt%以上の添加で現れる。一方、2.0 wt%を超えて含有しても、その効果は飽和し、製造コストの上昇を招くことになる。従って、Crの含有量は0.003 〜2.0 wt%とする。
【0023】
Mo:0.003 〜2.0 wt%
Moは、パーライト生成を抑制する作用を有しており、その効果は0.003 wt%以上の添加で現れる。一方、2.0 wt%を超えて含有させてもその効果は飽和し、製造コストの上昇を招く。従って、Moの含有量は0.003 〜2.0 wt%とする。
【0024】
Ti:0.003 〜1.0 wt%
Tiは、高温に加熱したときの結晶粒径の粗大化を抑制する効果があるが、その効果は0.003 wt%以上で現れ、1.0 wt%で飽和する。
【0025】
Nb:0.003 〜0.5 wt%
Nbは、高温に加熱したときの結晶粒径の粗大化を抑制する効果があるが、その効果は0.003 wt%以上で現れ、0.5 wt%で飽和する。
【0026】
V:0.003 〜1.0 wt%
Vは、高温に加熱したときの結晶粒径の粗大化を抑制する効果があるが、その効果は0.003 wt%以上で現れ、1.0 wt%で飽和する。
【0027】
Ni:0.003 〜3.0 wt%
Niは、オーステナイトを安定化して、パーライト変態を抑制し、フェライト−マルテンサイトもしくはベイナイト, オーステナイト組織を得やすくする効果を有している。その効果は0.003 wt%以上で現れるが、3.0 wt%を超えると製造コストの上昇を招くので、0.003 〜3.0 wt%の範囲で添加する。
【0028】
Cu:0.003 〜3.0 wt%
Cuは、オーステナイトを安定化して、パーライト変態を抑制し、フェライト−マルテンサイトもしくはベイナイト, オーステナイト組織を得やすくする効果を有している。その効果は0.003 wt%以上で現れるが、3.0 wt%を超えると製造コストの上昇を招くので、0.003 〜3.0 wt%の範囲で添加する。
【0029】
B:0.0005〜1.0 wt%
Bは、パーライト変態を抑制し、フェライト−マルテンサイトもしくはベイナイト、オーステナイト組織を得やすくする効果を有している。その効果は0.0005wt%以上で現れるが、1.0 wt%を超えると窒化物の形成による組織の不均一性を増し、成形性を低下させるので、0.0005〜1.0 wt%の範囲で添加する。
【0030】
N:0.003 〜0.1 wt%
Nは、オーステナイトを安定化して、フェライト−マルテンサイトもしくはオーステナイト組織を得やすくする効果を有している。その効果は0.003 wt%以上で現れるが、0.1 wt%を超えると鋼中でN2 の気泡を生じて鋼板の表面性状を劣化させるので、0.003 〜0.1 とする。
【0031】
Ca:0.0005〜1.0 wt%
Caは、Sを固定することにより高速変形時の強度を上昇させる。その効果は0.0005wt%以上で現れるが、1.0 wt%で飽和するので、0.0005〜1.0 wt%とする。
【0032】
Zr:0.0005〜1.0 wt%
Zrは、高速変形時の強度を上昇させる。その効果は0.0005wt%以上で現れるが、1.0 wt%で飽和するので、0.0005〜1.0 wt%とする。
【0033】
REM :0.0005〜0.5 wt%
REM は、高速変形時の強度を上昇させる。その効果は0.0005wt%以上で現れるが、0.5 wt%で飽和するので、0.0005〜0.5 wt%とする。
【0034】
・鋼組織と硬さ
本発明における熱延鋼板は、前述したように、フェライトとマルテンサイト、ベイナイト、オーステナイトの1種類以上の相とからなる第2相とからなる複合組織であり、フェライトの体積率が60〜97%である必要がある。
フェライト相の体積率が60%未満では、硬質第2相が増加するため、成形性が低下し、一方、97%を超えると、逆に、硬質第2相が少なくなり、耐衝突性を低下させる。
さらに、フェライト相のビッカース硬さHV1と第2相領域のビッカース硬さとの間に、HV2/3>HV1/3+20の関係が満たされ、かつフェライト粒径が4μm未満であるときに、十分な耐衝突性が得られる。このような現象があらわれる理由は必ずしも明らかではないが、その一つとして、フェライトと第2相の硬度差に起因する変形の不均一性にともなう強度の上昇が歪速度が高いほど大きくなることと、組織 (特にフェライト粒径) の微細化により強度の歪速度依存性がおおきくなることが考えられる。
なお、上記硬さ要件を満たせば、第2相の構成にはとくに制限はないが、マルテンサイトは硬度を増大させ、ベイナイトは比較的低硬度であるから、ベイナイトよりマルテンサイトの形成を促進するのが有利である。
【0035】
次に、本発明に係る複合組織熱延鋼板の製造方法について説明する。この製造工程において、とくに、熱間圧延のあと巻き取りまでの冷却条件の制御が重要である。すなわち、(Ar3変態点−50℃)〜(Ar3変態点+150 ℃)で熱間圧延を終了し、その後0.1 〜5.0 秒の間に、下記式を満たす速度で冷却を開始して、 820〜620 ℃まで冷却(「1次強制冷却」と称す)し、0.5 〜15sec 間空冷し、次いで30℃/sec 以上の冷却速度で、 570〜 300℃まで冷却(「2次強制冷却」と称す)し、巻き取る必要がある。以下にその理由を説明する。
記
v≧1000×t1 1/2 ÷h1/2 ÷t
ただし、v:冷却速度(℃/sec )
h:板厚(mm)
t1 :仕上げ圧延終了から1次強制冷却を開始するまでの時間(sec)
t:1次強制冷却と2次強制冷却の間の空冷時間(sec)
【0036】
・熱間圧延終了温度
熱間仕上げ圧延を(Ar3変態点−50℃)以下で行うと、熱延板中のフェライトに歪みが蓄積され、成形性が著しく低下し、一方、(Ar3変態点+150 ℃)を超えて仕上げ圧延するとフェライト変態速度が低下して材料特性を満たすために必要な適正組織が得られなくなる。このため熱間圧延は、(Ar3変態点−50℃)〜(Ar3変態点+150 ℃)の範囲で終了する。
【0037】
・熱間圧延後の冷却と巻き取り
熱間圧延後0.1 〜5.0 秒の間に、1000×t1 1/2 ÷h1/2 ÷t(ここで、h:板厚(mm)、t1 :仕上げ圧延終了から1次冷却開始までの時間(sec) , t:1次強制冷却と2次強制冷却の間の空冷時間(sec) )以上の速度で1次強制冷却を開始する。その理由は、熱間圧延終了後1次強制冷却までの経過時間が、0.1 秒未満では、圧延終了温度の制御が難しくなり、一方、5.0 秒を超えると、オーステナイト粒の粗大化によりフェライト変態の遅延を招き、その結果オーステナイト中への炭素の濃化が阻害され、第2相がパーライトに変態し、成形性と耐衝突特性の低下を招くからである。また、1次強制冷却の冷却速度が1000×t1 1/2 ÷h1/2 ÷t未満の場合は、同様の理由に加えてフェライト粒径が粗大化し、耐衝突特性の低下を招くからである。
さらに、板厚3.0 mmt 以下の鋼板を製造する場合、その生産性の観点および仕上圧延温度を確保するために、圧延速度を速くすることが好ましい。そのため、仕上圧延終了から冷却までの時間は2sec 以下、空冷時間は12sec 以下として、圧延速度を確保することが好ましい。
【0038】
この1次強制冷却を 820〜620 ℃まで行うのは、冷却終了時の温度が820 ℃を超えた場合には、フェライト変態速度が遅いため、マルテンサイトを主相とする第2相が得られなくなり、成形性が劣化するからである。また、冷却終了時の温度が620 ℃未満になると、オーステナイトからパーライト変態が開始するため、耐衝突特性が劣化するからである。
【0039】
次いで、0.5 〜15sec の間空冷するのは、空冷時間が0.5sec未満では、フェライト変態する時間が短いため、フェライト析出量が少なく、成形性が劣化するからであり、一方、15秒を超えると、フェライト粒が粗大化して、耐衝突特性が低下するからである。好ましくは2秒以上空冷する。
【0040】
上記空冷を挟んで、30℃/sec 以上の冷却速度で、 570〜 300℃まで2次強制冷却を行うのは、冷却速度が30℃/sec 未満もしくは冷却停止温度が570 ℃を超えると、オーステナイトがパーライト変態を開始し、成形性が劣化するからである。また、冷却停止温度が300 ℃未満になると、フェライト中に固溶Cが残存し、成形性が劣化するからである。
【0041】
なお、以上の説明では、専ら自動車用の用途に用いる場合について述べたが、本発明による技術は、高歪速度下での強度を要求される他の用途にも同様に有効であることはいうまでもない。
【0042】
【実施例】
表1に示す化学組成の鋼を、転炉にて溶製した。これらのスラブを、表2に示す条件で、熱間圧延し、冷却ののち、コイルに巻き取り、板厚1.4 〜2.9 mmの熱延鋼板を製造した。
得られた鋼板から供試材を採取して、光学顕微鏡により構成組織を調査するとともに、荷重3gで各相の相内ビッカース硬さおよび第2相の体積率を測定した。また、歪速度を0.02 sec−1と2000 sec−1の2水準で引張試験を行って、真歪み0.1 および0.25における真応力を測定し、歪速度2000 sec−1のときの強度上昇率、すなわち(2000 sec−1での強度−0.02 sec−1での強度)/(0.02 sec−1での強度)を求めた。
なお、第2相の体積率は、画像処理により第1相および第2相の数と平均直径を求め、平均直径を下式により3次元の直径に換算し、第1相および第2相の数、平均3次元直径より体積率を求めた。
D=1.128 L
ただしD:平均直径(2次元)、L:平均3次元直径
【0043】
【表1】
【0044】
【表2】
【0045】
得られたこれらの結果を表3に示す。また、図1および図2は、強度上昇率と(HV2/3)/(HV1/3+20)との関係を示したものである。
【0046】
【表3】
【0047】
以上の試験結果から、本発明鋼板は、いずれも、所定の硬さを有するフェライトと第2相とを適正量比で含む複合組織であり、良好な耐衝突特性と成形性を併せ具えていることがわかる。その耐衝突特性は、真歪みが0.1 から0.25といった広い歪み域でも、高い強度上昇率が得られることがわかる。
【0048】
【発明の効果】
以上説明したように、本発明によれば、化学組成、金属組織および各相の硬さを適正に制御した複合組織にすることによって、従来よりも一段と優れた、耐衝突特性と成形性を具える熱延鋼板を提供することが可能となる。
また本発明によれば、低歪み域から高歪み域までの広い領域で強度上昇率が高く優れた耐衝突特性を有することがわかる。
したがって、本発明に従う熱延鋼板を自動車用に適用することによって、自動車車体の軽量化と安全性の向上を、一層経済的に達成することが可能になる。
【図面の簡単な説明】
【図1】低歪み域における強度上昇率と(HV2/3)/(HV1/3+20)との関係を示すグラフである。
【図2】高歪み域における強度上昇率と(HV2/3)/(HV1/3+20)との関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is mainly used as a material for a part of an automobile, in which high strength and high formability are required, and furthermore, excellent impact resistance (hereinafter simply referred to as "there is a simple" Abbreviated as "collision resistance") and a method for producing the same.
[0002]
[Prior art]
The recent design philosophy of the automobile body is not only to simply increase the strength of the steel sheet, but also in the event of a collision during running, the steel sheet has excellent impact resistance, that is, the deformation resistance when deformed at a high strain rate. The development of large steel sheets has attracted attention as a means of improving the safety of automobiles and effectively contributing to weight reduction of vehicle bodies.
On the other hand, due to the trend toward cost reduction of members in recent years, there is an increasing tendency to adopt a hot-rolled steel sheet having a thickness of 3.0 mm or less in place of a conventionally used cold-rolled steel sheet.
Under these recent circumstances, development of a hot-rolled high-strength steel sheet having excellent collision resistance has been eagerly desired from the viewpoints of improving the safety of automobiles and reducing costs.
[0003]
By the way, conventionally, in the ferrite single phase structure, solid-solution strengthening by adding a substitution element such as Si, Mn, or P, or carbonitride forming element such as Nb or Ti is added in the ferrite single phase structure. In general, a method based on precipitation strengthening was used.
For example, JP-A-56-139654 discloses that ultra-low carbon steel contains Ti and Nb in order to improve workability and aging, and further contains a reinforcing component such as P within a range that does not impair workability. We have proposed a steel sheet with high strength. Further, for example, Japanese Patent Application Laid-Open No. S59-193221 proposes a method of increasing the strength by adding Si to ultra-low carbon steel.
Japanese Patent Application Laid-Open No. 60-52528 proposes a method for producing a high-strength steel sheet having excellent ductility by annealing a low-carbon steel at a high temperature and precipitating a martensite phase after cooling.
[0004]
[Problems to be solved by the invention]
However, in steel sheets that have been strengthened by such a conventionally proposed method, although the thickness of the automobile body can be reduced to some extent, the above-mentioned collision-resistant characteristics are not essentially improved. Did not. The reason is that these proposals require that the yield strength or tensile strength, which is an indicator of the strength of a steel sheet, be changed to a strain rate of 10%.-3-10-2(Sec-1) And extremely slow, so-called static evaluation method only. On the other hand, in the design of the actual automobile body, the strain rate is 10 to 10 in consideration of the safety at the time of collision rather than the static strength.4(Sec-1This is because the strength based on the so-called dynamic evaluation method accompanied by the impact deformation of (1) becomes more important.
Therefore, the conventional proposals described above, which are developed focusing only on the static strength, have a problem that they cannot be used as a fundamental index for reducing the weight of an automobile body.
[0005]
JP-A-7-90482 proposes a two-phase structure steel sheet of martensite and ferrite for the purpose of improving the impact resistance of the steel sheet. However, although the two-phase steel sheet of ferrite and martensite has relatively excellent impact resistance, it has not yet fulfilled the higher level properties required by today's automobile manufacturers. It is the current situation.
[0006]
Therefore, an object of the present invention is to provide a composite structure hot-rolled steel sheet having more excellent impact resistance and formability than conventional hot-rolled steel sheets.
Another object of the present invention is to provide a strain rate of 0.02 sec.-1Strain rate 2000 sec with respect to strength-1It is an object of the present invention to provide a hot-rolled steel sheet having excellent impact resistance, wherein the rate of increase in strength expressed by the ratio of the increase in strength is 35% or more at a true strain of 0.1 and 25% or more at a true strain of 0.25. .
[0007]
[Means for Solving the Problems]
The present inventors have conducted detailed studies on the effects of hot rolling conditions, metallographic structure, and the like, based on a two-phase structure steel composed of ferrite and a second phase including martensite, in order to realize the above-mentioned object. As a result, the present invention has been completed. That is, the present invention has the following content as a gist configuration.
[0008]
(1) C: 0.02-0.2 wt%, Si: 0.1-1.5wt%, Mn: 0.5 to 3.0 wt%, S: 0.010 wt% or less, P: 0.01 to 0.15 wt%, Cr: 0.003 to 2.0 wt%, Mo: 0.003 to 2.0 wt% With the balance being Fe and unavoidable impurities and having a microstructure of 60-97% by volume in ferrite phase and the balance being at least one of martensite, bainite and austenite. The hardness of the ferrite phase and the second phase satisfies the relationship of the following formula, and the crystal grain size of the ferrite phase is less than 4 μm.Yes, strain rate 0.02sec -1 Rate versus strength of steel 2000sec -1 The rate of increase in intensity, expressed as the ratio of the amount of increase in 0.1 so 35 % Or more, true distortion 0.25 so twenty five % Or moreA hot-rolled steel sheet with a composite structure that is excellent in impact resistance and formability.
HV2/ 3> HV1/ 3 + 20
Where HV1: Vickers hardness of ferrite phase
HV2: Vickers hardness in the second phase region
[0009]
(2) C: 0.02-0.2 wt%, Si: 0.1-1.5wt%, Mn: 0.5 to 3.0 wt%, S: 0.010 wt% or less, P: 0.01 to 0.15 wt%, Cr: 0.003 to 2.0 wt%, Mo: 0.003 to 2.0 wt% And further contains at least one selected from the group consisting of Ti: 0.003 to 1.0 wt%, Nb: 0.003 to 0.5 wt%, and V: 0.003 to 1.0 wt%, with the balance being Fe and unavoidable impurities, and Is composed of a ferrite phase having a volume fraction of 60 to 97% and a second phase region composed of at least one phase of martensite, bainite, and austenite. When the hardness satisfies the relationship of the following formula, and the crystal grain size of the ferrite phase is less than 4 μm,Yes, strain rate 0.02sec -1 Rate versus strength of steel 2000sec -1 The rate of increase in intensity, expressed as the ratio of the amount of increase in 0.1 so 35 % Or more, true distortion 0.25 so twenty five % Or moreA hot-rolled steel sheet with a composite structure, which is excellent in impact resistance and formability.
HV2/ 3> HV1/ 3 + 20
Where HV1: Vickers hardness of ferrite phase
HV2: Vickers hardness in the second phase region
[0010]
(3) C: 0.02-0.2 wt%, Si: 0.1-1.5wt%, Mn: 0.5 to 3.0 wt%, S: 0.010 wt% or less, P: 0.01 to 0.15 wt%, Cr: 0.003 to 2.0 wt%, Mo: 0.003 to 2.0 wt% Ni: 0.003 to 3.0 wt%, Cu: 0.003 to 3.0 wt%, B: 0.0005 to 1.0 wt%, N: 0.003 to 0.1 wt%, the balance being Fe and A ferrite phase composed of unavoidable impurities and having a volume fraction of 60 to 97% by volume, and a balance comprising a second phase region composed of one or more phases of martensite, bainite, and austenite; In addition, the hardness of the ferrite phase and the second phase satisfy the relationship of the following formula, and the crystal grain size of the ferrite phase is less than 4 μm.Yes, strain rate 0.02sec -1 Rate versus strength of steel 2000sec -1 The rate of increase in intensity, expressed as the ratio of the amount of increase in 0.1 so 35 % Or more, true distortion 0.25 so twenty five % Or moreA hot-rolled steel sheet with a composite structure, which is excellent in impact resistance and formability.
HV2/ 3> HV1/ 3 + 20
Where HV1: Vickers hardness of ferrite phase
HV2: Vickers hardness in the second phase region
[0011]
(4) C: 0.02 to 0.2 wt%, Si: 0.1 to1.5wt%, Mn: 0.5 to 3.0 wt%, S: 0.010 wt% or less, P: 0.01 to 0.15 wt%, Cr: 0.003 to 2.0 wt%, Mo: 0.003 to 2.0 wt% And further contains at least one member selected from the group consisting of Ca: 0.0005 to 1.0 wt%, Zr: 0.0005 to 1.0 wt%, and REM: 0.0005 to 0.5 wt%, with the balance being Fe and unavoidable impurities. Is composed of a ferrite phase having a volume fraction of 60 to 97% and a second phase region composed of at least one phase of martensite, bainite, and austenite. When the hardness satisfies the relationship of the following formula, and the crystal grain size of the ferrite phase is less than 4 μm,Yes, strain rate 0.02sec -1 Rate versus strength of steel 2000sec -1 The rate of increase in intensity, expressed as the ratio of the amount of increase in 0.1 so 35 % Or more, true distortion 0.25 so twenty five % Or moreA hot-rolled steel sheet with a composite structure, which is excellent in impact resistance and formability.
HV2/ 3> HV1/ 3 + 20
Where HV1: Vickers hardness of ferrite phase
HV2: Vickers hardness in the second phase region
[0012]
(5) C: 0.02-0.2 wt%, Si: 0.1-1.5wt%, Mn: 0.5 to 3.0 wt%, S: 0.010 wt% or less, P: 0.01 to 0.15 wt%, Cr: 0.003 to 2.0 wt%, Mo: 0.003 to 2.0 wt% And at least one selected from the group consisting of Ti: 0.003 to 1.0 wt%, Nb: 0.003 to 0.5 wt%, V: 0.003 to 1.0 wt%, and Ni: 0.003 to 3.0 wt%, Cu: 0.003 to 3.0 wt%. %, B: 0.0005 to 1.0 wt%, N: at least one selected from 0.003 to 0.1 wt%, the balance being Fe and unavoidable impurities, and having a microstructure of 60 to 97% by volume. The phase and the remainder consist of a second phase region composed of one or more phases of martensite, bainite, and austenite, and the hardness of the ferrite phase and the second phase satisfy the following relationship: And the grain size of the ferrite phase is less than 4 μmYes, strain rate 0.02sec -1 Rate versus strength of steel 2000sec -1 The rate of increase in intensity, expressed as the ratio of the amount of increase in 0.1 so 35 % Or more, true distortion 0.25 so twenty five % Or moreA hot-rolled steel sheet with a composite structure, which is excellent in impact resistance and formability.
HV2/ 3> HV1/ 3 + 20
Where HV1: Vickers hardness of ferrite phase
HV2: Vickers hardness in the second phase region
[0013]
(6) C: 0.02-0.2 wt%, Si: 0.1-1.5wt%, Mn: 0.5 to 3.0 wt%, S: 0.010 wt% or less, P: 0.01 to 0.15 wt%, Cr: 0.003 to 2.0 wt%, Mo: 0.003 to 2.0 wt% And at least one selected from the group consisting of Ti: 0.003 to 1.0 wt%, Nb: 0.003 to 0.5 wt%, V: 0.003 to 1.0 wt%, and Ca: 0.0005 to 1.0 wt%, Zr: 0.0005 to 1.0 wt%. %, REM: at least one selected from 0.0005 to 0.5 wt%, the balance being Fe and unavoidable impurities, and the structure being a ferrite phase having a volume fraction of 60 to 97% and a martensite being a balance. A second phase region composed of one or more phases of bainite and austenite, and the ferrite phase and the hardness of the second phase satisfy the relationship of the following formula, and the crystal grain size of the ferrite phase is Less than 4μmYes, strain rate 0.02sec -1 Rate versus strength of steel 2000sec -1 The rate of increase in intensity, expressed as the ratio of the amount of increase in 0.1 so 35 % Or more, true distortion 0.25 so twenty five % Or moreA hot-rolled steel sheet with a composite structure, which is excellent in impact resistance and formability.
HV2/ 3> HV1/ 3 + 20
Where HV1: Vickers hardness of ferrite phase
HV2: Vickers hardness in the second phase region
[0014]
(7) C: 0.02-0.2 wt%, Si: 0.1-1.5wt%, Mn: 0.5 to 3.0 wt%, S: 0.010 wt% or less, and at least one selected from P: 0.01 to 0.15 wt%, Cr: 0.003 to 2.0 wt%, Mo: 0.003 to 2.0 wt% Ni: 0.003 to 3.0 wt%, Cu: 0.003 to 3.0 wt%, B: 0.0005 to 1.0 wt%, N: 0.003 to 0.1 wt%, and Ca: 0.0005 to 1.0 wt% %, Zr: 0.0005 to 1.0 wt%, REM: at least one selected from 0.0005 to 0.5 wt%, with the balance being Fe and unavoidable impurities, and the structure being 60 to 97% by volume of ferrite. The phase and the remainder consist of a second phase region composed of one or more phases of martensite, bainite, and austenite, and the hardness of the ferrite phase and the second phase satisfy the following relationship: And the grain size of the ferrite phase is less than 4 μmYes, strain rate 0.02sec -1 Rate versus strength of steel 2000sec -1 The rate of increase in intensity, expressed as the ratio of the amount of increase in 0.1 so 35 % Or more, true distortion 0.25 so twenty five % Or moreA hot-rolled steel sheet with a composite structure, which is excellent in impact resistance and formability.
HV2/ 3> HV1/ 3 + 20
Where HV1: Vickers hardness of ferrite phase
HV2: Vickers hardness in the second phase region
[0015]
(8) C: 0.02 to 0.2 wt%, Si: 0.1 to1.5wt%, Mn: 0.5 to 3.0 wt%, S: 0.010 wt% or less, P: 0.01 to 0.15 wt%, Cr: 0.003 to 2.0 wt%, Mo: 0.003 to 2.0 wt% And at least one selected from the group consisting of 0.003 to 1.0 wt% Ti: 0.003 to 0.5 wt%, Nb: 0.003 to 1.0 wt%, Ni: 0.003 to 3.0 wt%, and Cu: 0.003 to 3.0 wt%. , B: 0.0005 to 1.0 wt%, N: at least one selected from 0.003 to 0.1 wt%, and Ca: 0.0005 to 1.0 wt%, Zr: 0.0005 to 1.0 wt%, REM: selected from 0.0005 to 0.5 wt%. Containing at least one type, the balance being Fe and unavoidable impurities, and the structure being a ferrite phase having a volume fraction of 60 to 97%, and the balance being one or more phases of martensite, bainite, and austenite. When the ferrite phase and the hardness of the second phase satisfy the following relationship, and the crystal grain size of the ferrite phase is less than 4 μm,Yes, strain rate 0.02sec -1 Rate versus strength of steel 2000sec -1 The rate of increase in intensity, expressed as the ratio of the amount of increase in 0.1 so 35 % Or more, true distortion 0.25 so twenty five % Or moreA hot-rolled steel sheet with a composite structure, which is excellent in impact resistance and formability.
HV2/ 3> HV1/ 3 + 20
Where HV1: Vickers hardness of ferrite phase
HV2: Vickers hardness in the second phase region
[0016]
(9) C: 0.02 to 0.2 wt%, Si: 0.1 to 2.5 wt%,
Mn: 0.5 to 3.0 wt%, S: 0.010 wt% or less
And
P: 0.01 to 0.15 wt%, Cr: 0.003 to 2.0 wt%,
Mo: 0.003 to 2.0 wt%
Steel material containing at least one member selected from the group consisting of (Ar3Transformation point -50 ° C)-(Ar3The hot rolling is completed at the transformation point + 150 ° C), and then cooling is started at a rate satisfying the following formula within 0.1 to 5.0 seconds, and cooled to 820 to 620 ° C (first forced cooling). And then air-cooled for 0.5 to 15 seconds, then cooled to 570 to 300 ° C. (secondary forced cooling) at a cooling rate of 30 ° C./sec or more, and wound up. Method for producing a hot rolled steel sheet with a composite structure that is excellent in quality.
v ≧ 1000 × t1 1/2÷ h1/2÷ t
Here, v: cooling rate (° C./sec)
h: Plate thickness (mm)
t1: Time from completion of finish rolling to start of primary forced cooling (sec)
t: Air cooling time (sec) from the start of secondary forced cooling to the start of secondary forced cooling
Note that HV2Is set as the Vickers hardness in the second phase region because, when a plurality of phases are mixed in the second phase, the average hardness is adopted.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, in the present invention, the reason why the chemical composition, structure, manufacturing conditions, and the like of steel are limited as in the summary configuration will be described.
C: 0.02 to 0.2 wt%
C is a component necessary for increasing the strength and volume fraction of martensite in the two-phase structure. If the C content is less than 0.02 wt%, a sufficient amount of carbide and second phase mainly composed of martensite cannot be obtained. On the other hand, when the content exceeds 0.2 wt%, solid solution C exists in the ferrite, which impairs the formability. Therefore, the content of C is set to 0.02 to 0.2 wt%.
[0018]
Si: 0.1 ~1.5wt%
Si concentrates the solute C in ferrite in austenite to improve the hardenability of the steel, and also improves the formability of the steel sheet by increasing the purity of the ferrite. This effect appears when 0.1 wt% or more is added,1.5When the content exceeds wt%, the surface properties and surface treatment properties of the hot-rolled sheet are significantly deteriorated. Therefore, the content of Si is 0.1 ~1.5wt%, preferably 0.8 to 1.5 wt%.
[0019]
Mn: 0.5 to 3.0 wt%
Mn is an austenite-stabilizing element. If it is less than 0.5% by weight, hardenability is reduced, and it is difficult to obtain a two-phase structure. On the other hand, when the content exceeds 3.0% by weight, the steel sheet is hardened, and the formability decreases. Therefore, the Mn content is 0.5 to 3.0 wt%, preferably 0.8 to 1.8 wt%.
[0020]
S: 0.010 wt% or less
By reducing the content of S, precipitates in steel are reduced and workability is improved. Such an effect can be obtained by limiting the amount of S to 0.010 wt% or less.
[0021]
P: 0.01 to 0.15 wt%
P has the effect of stabilizing austenite and suppressing the production of pearlite, but this effect appears when added at 0.01 wt% or more. On the other hand, if the content exceeds 0.15 wt%, the formability is reduced due to the hardening of the steel sheet, and the surface treatment property is also deteriorated. Therefore, the content of P is set to 0.01 to 0.15 wt%.
[0022]
Cr: 0.003 to 2.0 wt%
Cr has an effect of suppressing pearlite formation, and its effect appears when added at 0.003 wt% or more. On the other hand, if the content exceeds 2.0 wt%, the effect is saturated and the production cost is increased. Therefore, the content of Cr is set to 0.003 to 2.0 wt%.
[0023]
Mo: 0.003 to 2.0 wt%
Mo has an effect of suppressing the generation of pearlite, and its effect appears when 0.003 wt% or more is added. On the other hand, even if the content exceeds 2.0 wt%, the effect is saturated and the production cost is increased. Therefore, the content of Mo is set to 0.003 to 2.0 wt%.
[0024]
Ti: 0.003 to 1.0 wt%
Ti has the effect of suppressing the coarsening of the crystal grain size when heated to a high temperature, but the effect appears at 0.003 wt% or more and saturates at 1.0 wt%.
[0025]
Nb: 0.003 to 0.5 wt%
Nb has an effect of suppressing coarsening of the crystal grain size when heated to a high temperature, but the effect appears at 0.003 wt% or more and saturates at 0.5 wt%.
[0026]
V: 0.003 to 1.0 wt%
V has the effect of suppressing the coarsening of the crystal grain size when heated to a high temperature, but the effect appears at 0.003 wt% or more and saturates at 1.0 wt%.
[0027]
Ni: 0.003 to 3.0 wt%
Ni has an effect of stabilizing austenite, suppressing pearlite transformation, and easily obtaining a ferrite-martensite or bainite or austenite structure. The effect appears at 0.003 wt% or more, but if it exceeds 3.0 wt%, the production cost is increased. Therefore, it is added in the range of 0.003 to 3.0 wt%.
[0028]
Cu: 0.003 to 3.0 wt%
Cu has an effect of stabilizing austenite, suppressing pearlite transformation, and easily obtaining a ferrite-martensite or bainite or austenite structure. The effect appears at 0.003 wt% or more, but if it exceeds 3.0 wt%, the production cost is increased. Therefore, it is added in the range of 0.003 to 3.0 wt%.
[0029]
B: 0.0005 to 1.0 wt%
B has the effect of suppressing the pearlite transformation and making it easier to obtain a ferrite-martensite or bainite or austenite structure. The effect appears at 0.0005 wt% or more, but if it exceeds 1.0 wt%, the non-uniformity of the structure due to the formation of nitrides increases and the formability decreases. Add in range.
[0030]
N: 0.003 to 0.1 wt%
N has the effect of stabilizing austenite and making it easier to obtain a ferrite-martensite or austenite structure. The effect appears at 0.003 wt% or more, but when it exceeds 0.1 wt%, N2Is generated, and the surface properties of the steel sheet are deteriorated.
[0031]
Ca: 0.0005 to 1.0 wt%
Ca increases the strength during high-speed deformation by fixing S. The effect appears at 0.0005 wt% or more, but saturates at 1.0 wt%, so it is set to 0.0005 to 1.0 wt%.
[0032]
Zr: 0.0005 to 1.0 wt%
Zr increases the strength during high-speed deformation. The effect appears at 0.0005 wt% or more, but saturates at 1.0 wt%, so it is set to 0.0005 to 1.0 wt%.
[0033]
REM: 0.0005-0.5 wt%
REM increases the strength during high speed deformation. The effect appears at 0.0005 wt% or more, but saturates at 0.5 wt%, so it is set to 0.0005 to 0.5 wt%.
[0034]
・ Steel structure and hardness
As described above, the hot-rolled steel sheet according to the present invention has a composite structure including ferrite and a second phase including at least one phase of martensite, bainite, and austenite, and has a ferrite volume fraction of 60 to 97%. Need to be
When the volume fraction of the ferrite phase is less than 60%, the hard second phase increases, and the formability decreases. On the other hand, when the volume ratio exceeds 97%, the hard second phase decreases, and the collision resistance decreases. Let it.
Furthermore, the Vickers hardness H of the ferrite phaseV1Between the Vickers hardness of the second phase region and HV2/ 3> HV1When the relationship of / 3 + 20 is satisfied and the ferrite particle size is less than 4 μm, sufficient collision resistance is obtained. The reason why such a phenomenon appears is not clear, but one of the reasons is that the increase in strength due to non-uniform deformation due to the difference in hardness between ferrite and the second phase increases as the strain rate increases. In addition, it is considered that the strain rate dependence of the strength is increased due to the refinement of the structure (particularly the ferrite grain size).
If the hardness requirement is satisfied, the composition of the second phase is not particularly limited. However, since martensite increases the hardness and bainite has a relatively low hardness, the formation of martensite is promoted more than bainite. Is advantageous.
[0035]
Next, a method for producing a hot-rolled steel sheet with a composite structure according to the present invention will be described. In this manufacturing process, it is particularly important to control the cooling conditions from hot rolling to winding. That is, (Ar3Transformation point -50 ° C)-(Ar3The hot rolling is completed at the transformation point + 150 ° C), and then cooling is started at a rate satisfying the following formula for 0.1 to 5.0 seconds, and then cooled to 820 to 620 ° C (“primary forced cooling”). ), Air cooling for 0.5 to 15 seconds, cooling to 570 to 300 ° C. at a cooling rate of 30 ° C./sec or more (referred to as “secondary forced cooling”), and winding. The reason will be described below.
Record
v ≧ 1000 × t1 1/2÷ h1/2÷ t
Here, v: cooling rate (° C./sec)
h: Plate thickness (mm)
t1: Time from the end of finish rolling to the start of primary forced cooling (sec)
t: Air cooling time (sec) between primary forced cooling and secondary forced cooling
[0036]
・ Hot rolling end temperature
Hot finishing rolling (Ar3When the temperature is lower than the transformation point (−50 ° C.), strain is accumulated in the ferrite in the hot-rolled sheet, and the formability is significantly reduced.3When the finish rolling exceeds the transformation point (+ 150 ° C.), the transformation speed of ferrite decreases, and the proper structure required to satisfy the material properties cannot be obtained. For this reason, hot rolling (Ar3Transformation point -50 ° C)-(Ar3(Transformation point + 150 ° C).
[0037]
・ Cooling and winding after hot rolling
During 0.1 to 5.0 seconds after hot rolling, 1000 × t1 1/2÷ h1/2÷ t (where h: plate thickness (mm), t1: The time from the end of the finish rolling to the start of the primary cooling (sec), t: The primary forced cooling is started at a speed equal to or longer than the air cooling time (sec) between the primary forced cooling and the secondary forced cooling. The reason is that if the elapsed time from the end of hot rolling to the first forced cooling is less than 0.1 second, it is difficult to control the temperature at the end of rolling, while if it exceeds 5.0 seconds, the austenite grains become coarse. This causes a delay in ferrite transformation, thereby inhibiting carbon concentration in austenite, transforming the second phase into pearlite, and lowering the formability and impact resistance. The cooling rate of the primary forced cooling is 1000 × t1 1/2÷ h1/2If it is less than Δt, in addition to the same reason, the ferrite grain size becomes coarse, which causes a decrease in impact resistance.
Furthermore, when manufacturing a steel sheet having a thickness of 3.0 mmt or less, it is preferable to increase the rolling speed in order to ensure the productivity and the finish rolling temperature. Therefore, it is preferable to secure the rolling speed by setting the time from the end of finish rolling to cooling to 2 sec or less and the air cooling time to 12 sec or less.
[0038]
This primary forced cooling is performed to 820 to 620 ° C. When the temperature at the end of cooling exceeds 820 ° C., the ferrite transformation rate is low, and a second phase having martensite as the main phase is obtained. This is because moldability deteriorates. Also, if the temperature at the end of cooling is lower than 620 ° C., pearlite transformation starts from austenite, so that the collision resistance deteriorates.
[0039]
Next, the air cooling for 0.5 to 15 seconds is because if the air cooling time is less than 0.5 seconds, the ferrite transformation time is short, so that the amount of ferrite precipitation is small and the formability is deteriorated. This is because, when the ratio exceeds 1, the ferrite grains are coarsened, and the collision resistance is reduced. Air cooling is preferably performed for 2 seconds or more.
[0040]
The secondary forced cooling from 570 to 300 ° C. at a cooling rate of 30 ° C./sec or more with the air cooling interposed is performed when the cooling rate is less than 30 ° C./sec or the cooling stop temperature exceeds 570 ° C. This is because pearlite transformation starts and the moldability deteriorates. Also, if the cooling stop temperature is lower than 300 ° C., solid solution C remains in the ferrite and the formability deteriorates.
[0041]
In the above description, the case where the present invention is exclusively used for an automobile is described. However, the technique according to the present invention is similarly effective for other applications that require strength under a high strain rate. Not even.
[0042]
【Example】
Steel having the chemical composition shown in Table 1 was melted in a converter. These slabs were hot-rolled under the conditions shown in Table 2, cooled, and wound around a coil to produce a hot-rolled steel sheet having a thickness of 1.4 to 2.9 mm.
A test material was sampled from the obtained steel sheet, the constitutional structure was examined by an optical microscope, and the in-phase Vickers hardness of each phase and the volume ratio of the second phase were measured under a load of 3 g. Further, the strain rate is set to 0.02 sec.-1And 2000 sec-1The tensile test was performed at two levels of true strain, true stress at true strains of 0.1 and 0.25 was measured, and the strain rate was 2000 sec.-1, Ie, (2000 sec.)-1Strength at -0.02 sec-1Strength) / (0.02 sec)-1Strength).
In addition, the volume ratio of the second phase is obtained by calculating the number and the average diameter of the first phase and the second phase by image processing, converting the average diameter into a three-dimensional diameter by the following equation, and calculating the first phase and the second phase. The volume ratio was determined from the number and the average three-dimensional diameter.
D = 1.128 L
Where D: average diameter (two-dimensional), L: average three-dimensional diameter
[0043]
[Table 1]
[0044]
[Table 2]
[0045]
Table 3 shows the obtained results. 1 and 2 show the strength increase rate and (HV2/ 3) / (HV1/ 3 + 20).
[0046]
[Table 3]
[0047]
From the above test results, each of the steel sheets of the present invention has a composite structure including ferrite having a predetermined hardness and the second phase at an appropriate ratio, and has both good impact resistance and formability. You can see that. It can be seen that the anti-collision property shows that a high strength increase rate can be obtained even in a wide strain range where the true strain is 0.1 to 0.25.
[0048]
【The invention's effect】
As described above, according to the present invention, by providing a composite structure in which the chemical composition, the metal structure, and the hardness of each phase are appropriately controlled, the impact resistance and the formability, which are far superior to those of the related art, are achieved. It is possible to provide a hot rolled steel sheet.
Further, according to the present invention, it can be seen that the strength increase rate is high in a wide region from a low strain region to a high strain region, and the device has excellent collision resistance.
Therefore, by applying the hot-rolled steel sheet according to the present invention to an automobile, it is possible to further reduce the weight and improve the safety of the automobile body more economically.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a rate of increase in intensity in a low strain region and (HV2/ 3) / (HV1/ 3 + 20).
FIG. 2 shows the strength increase rate and (HV2/ 3) / (HV1/ 3 + 20).
Claims (9)
HV2/3>HV1/3+20
ただし、HV1:フェライト相のビッカース硬さ
HV2:第2相領域のビッカース硬さC: 0.02 to 0.2 wt%, Si: 0.1 to 1.5 wt%, Mn: 0.5 to 3.0 wt%, S: 0.010 wt% or less, P: 0.01 to 0.15 wt%, Cr: 0.003 to 2.0 wt%, Mo: at least one selected from 0.003 to 2.0 wt%, the balance being Fe and unavoidable impurities, and the structure is a ferrite phase having a volume fraction of 60 to 97%, and the remainder is martensite, bainite, A ferrite phase and a second phase composed of at least one phase of austenite, and the hardness of the ferrite phase and the second phase satisfy the following relationship, and the crystal grain size of the ferrite phase is less than 4 μm. Yes , the rate of strength increase expressed as the ratio of the strength increase at a strain rate of 2000 sec -1 to the strength at a strain rate of 0.02 sec -1 is 35 % or more at a true strain of 0.1 , and 25 % or more at a true strain of 0.25. Composite structure hot rolled steel sheet with excellent impact resistance and formability.
H V2 / 3> H V1 / 3 + 20
Here, H V1 : Vickers hardness of ferrite phase H V2 : Vickers hardness of second phase region
HV2/3>HV1/3+20
ただし、HV1:フェライト相のビッカース硬さ
HV2:第2相領域のビッカース硬さC: 0.02 to 0.2 wt%, Si: 0.1 to 1.5 wt%, Mn: 0.5 to 3.0 wt%, S: 0.010 wt% or less, P: 0.01 to 0.15 wt%, Cr: 0.003 to 2.0 wt%, Mo: contains at least one selected from 0.003 to 2.0 wt%, further contains at least one selected from Ti: 0.003 to 1.0 wt%, Nb: 0.003 to 0.5 wt%, and V: 0.003 to 1.0 wt%. The balance is a second phase composed of Fe and unavoidable impurities and having a structure of a ferrite phase having a volume fraction of 60 to 97%, and the remainder being at least one phase of martensite, bainite, and austenite. It consists of a region, yet the hardness of the ferrite phase and the second phase satisfies the following relation, and less than the grain size of the ferrite phase is 4 [mu] m, the strain rate 2000sec to the intensity of the strain rate 0.02 sec -1 - 1 of the intensity increase of the intensity increase rate representing a ratio of 35% or more in true strain 0.1, characterized in that 25% or more in true strain 0.25, crashworthiness characteristics and growth Composite structure hot-rolled steel sheet excellent in resistance.
H V2 / 3> H V1 / 3 + 20
Here, H V1 : Vickers hardness of ferrite phase H V2 : Vickers hardness of second phase region
HV2/3>HV1/3+20
ただし、HV1:フェライト相のビッカース硬さ
HV2:第2相領域のビッカース硬さC: 0.02 to 0.2 wt%, Si: 0.1 to 1.5 wt%, Mn: 0.5 to 3.0 wt%, S: 0.010 wt% or less, P: 0.01 to 0.15 wt%, Cr: 0.003 to 2.0 wt%, Mo: contains at least one selected from 0.003 to 2.0 wt%, Ni: 0.003 to 3.0 wt%, Cu: 0.003 to 3.0 wt%, B: 0.0005 to 1.0 wt%, N: 0.003 to 0.1 wt% One or more selected from the group consisting of Fe and unavoidable impurities, the balance being a ferrite phase having a volume fraction of 60 to 97%, and the balance being at least one of martensite, bainite, and austenite. The ferrite phase and the hardness of the second phase satisfy the following relationship, the crystal grain size of the ferrite phase is less than 4 μm, and the strain rate is 0.02 sec − intensity increase rate expressed as the ratio of the intensity increase of strain rate 2000 sec -1 for the first intensity is 35% or more in true strain 0.1, to characterized in that 25% or more in true strain 0.25 , Composite structure hot-rolled steel sheet having excellent formability and crashworthiness characteristics.
H V2 / 3> H V1 / 3 + 20
Here, H V1 : Vickers hardness of ferrite phase H V2 : Vickers hardness of second phase region
HV2/3>HV1/3+20
ただし、HV1:フェライト相のビッカース硬さ
HV2:第2相領域のビッカース硬さC: 0.02 to 0.2 wt%, Si: 0.1 to 1.5 wt%, Mn: 0.5 to 3.0 wt%, S: 0.010 wt% or less, P: 0.01 to 0.15 wt%, Cr: 0.003 to 2.0 wt%, Mo: contains at least one selected from 0.003 to 2.0 wt%, further contains at least one selected from Ca: 0.0005 to 1.0 wt%, Zr: 0.0005 to 1.0 wt%, REM: 0.0005 to 0.5 wt%. The balance is a second phase composed of Fe and unavoidable impurities and having a structure of a ferrite phase having a volume fraction of 60 to 97%, and the remainder being at least one phase of martensite, bainite, and austenite. It consists of a region, yet the hardness of the ferrite phase and the second phase satisfies the following relation, and less than the grain size of the ferrite phase is 4 [mu] m, the strain rate 2000sec to the intensity of the strain rate 0.02 sec -1 - 1 of the intensity increase of the intensity increase rate representing a ratio of 35% or more in true strain 0.1, characterized in that 25% or more in true strain 0.25, and crashworthiness characteristics Composite structure hot-rolled steel sheet excellent in shape retention.
H V2 / 3> H V1 / 3 + 20
Here, H V1 : Vickers hardness of ferrite phase H V2 : Vickers hardness of second phase region
HV2/3>HV1/3+20
ただし、HV1:フェライト相のビッカース硬さ
HV2:第2相領域のビッカース硬さC: 0.02 to 0.2 wt%, Si: 0.1 to 1.5 wt%, Mn: 0.5 to 3.0 wt%, S: 0.010 wt% or less, P: 0.01 to 0.15 wt%, Cr: 0.003 to 2.0 wt%, Mo: contains at least one selected from 0.003 to 2.0 wt%, further contains at least one selected from Ti: 0.003 to 1.0 wt%, Nb: 0.003 to 0.5 wt%, V: 0.003 to 1.0 wt%, and Ni : 0.003 to 3.0 wt%, Cu: 0.003 to 3.0 wt%, B: 0.0005 to 1.0 wt%, N: 0.003 to 0.1 wt%, the balance consisting of Fe and inevitable impurities, In addition, the structure is composed of a ferrite phase having a volume fraction of 60 to 97% and a second phase region composed of at least one phase of martensite, bainite, and austenite. hardness phases satisfy the following relation, and less than 4μm crystal grain size of the ferrite phase, the increase in strength of strain rate 2000 sec -1 to the intensity of the strain rate 0.02 sec -1 Intensity increase rate representing more than 35% true strain 0.1 in, characterized in that 25% or more in true strain 0.25, composite structure hot-rolled steel sheet having excellent formability and crashworthiness characteristics.
H V2 / 3> H V1 / 3 + 20
Here, H V1 : Vickers hardness of ferrite phase H V2 : Vickers hardness of second phase region
HV2/3>HV1/3+20
ただし、HV1:フェライト相のビッカース硬さ
HV2:第2相領域のビッカース硬さC: 0.02 to 0.2 wt%, Si: 0.1 to 1.5 wt%, Mn: 0.5 to 3.0 wt%, S: 0.010 wt% or less, P: 0.01 to 0.15 wt%, Cr: 0.003 to 2.0 wt%, Mo: contains at least one selected from 0.003 to 2.0 wt%, and further contains at least one selected from Ti: 0.003 to 1.0 wt%, Nb: 0.003 to 0.5 wt%, V: 0.003 to 1.0 wt%, and Ca : 0.0005 to 1.0 wt%, Zr: 0.0005 to 1.0 wt%, REM: one or more selected from 0.0005 to 0.5 wt%, the balance being Fe and unavoidable impurities, and the structure having a volume fraction of 60 9797% of a ferrite phase and a balance of a second phase region composed of at least one phase of martensite, bainite, and austenite, and the hardness of the ferrite phase and the second phase is expressed by the following formula. satisfies the relationship, and the crystal grain size of the ferrite phase is less than 4 [mu] m, the strength increases represented by the intensity increase of the ratio of the strain rate 2000 sec -1 to the intensity of the strain rate 0.02 sec -1 There 35% or more in true strain 0.1, characterized in that 25% or more in true strain 0.25, composite structure hot-rolled steel sheet having excellent formability and crashworthiness characteristics.
H V2 / 3> H V1 / 3 + 20
Here, H V1 : Vickers hardness of ferrite phase H V2 : Vickers hardness of second phase region
HV2/3>HV1/3+20
ただし、HV1:フェライト相のビッカース硬さ
HV2:第2相領域のビッカース硬さC: 0.02 to 0.2 wt%, Si: 0.1 to 1.5 wt%, Mn: 0.5 to 3.0 wt%, S: 0.010 wt% or less, P: 0.01 to 0.15 wt%, Cr: 0.003 to 2.0 wt%, Mo: contains at least one selected from 0.003 to 2.0 wt%, Ni: 0.003 to 3.0 wt%, Cu: 0.003 to 3.0 wt%, B: 0.0005 to 1.0 wt%, N: 0.003 to 0.1 wt% At least one selected from the group consisting of Ca: 0.0005 to 1.0 wt%, Zr: 0.0005 to 1.0 wt%, and REM: 0.0005 to 0.5 wt%, with the balance being Fe and inevitable impurities; In addition, the structure is composed of a ferrite phase having a volume fraction of 60 to 97% and a second phase region composed of at least one phase of martensite, bainite, and austenite. hardness phases satisfy the following relation, and the crystal grain size of the ferrite phase is less than 4 [mu] m, the strength increases amount of strain rate 2000 sec -1 to the intensity of the strain rate 0.02 sec -1 Intensity increase rate representing more than 35% true strain 0.1 ratio, characterized in that at least 25% true strain 0.25, composite structure hot-rolled steel sheet having excellent formability and crashworthiness characteristics.
H V2 / 3> H V1 / 3 + 20
Here, H V1 : Vickers hardness of ferrite phase H V2 : Vickers hardness of second phase region
HV2/3>HV1/3+20
ただし、HV1:フェライト相のビッカース硬さ
HV2:第2相領域のビッカース硬さC: 0.02 to 0.2 wt%, Si: 0.1 to 1.5 wt%, Mn: 0.5 to 3.0 wt%, S: 0.010 wt% or less, P: 0.01 to 0.15 wt%, Cr: 0.003 to 2.0 wt%, Mo: contains at least one selected from 0.003 to 2.0 wt%, and further contains at least one selected from Ti: 0.003 to 1.0 wt%, Nb: 0.003 to 0.5 wt%, V: 0.003 to 1.0 wt%, Ni: 0.003 to 3.0 wt%, Cu: 0.003 to 3.0 wt%, B: 0.0005 to 1.0 wt%, N: at least one selected from 0.003 to 0.1 wt%, Ca: 0.0005 to 1.0 wt%, Zr: 0.0005 to 1.0 wt%, REM: at least one selected from 0.0005 to 0.5 wt%, the balance being Fe and unavoidable impurities, and the structure is a ferrite phase with a volume fraction of 60 to 97%, and the remainder is martensite. , A second phase region composed of at least one of bainite and austenite, and the ferrite phase and the hardness of the second phase satisfy the relationship of the following formula, and the crystal grain size of the ferrite phase: But less than [mu] m, the strength increase rate expressed as the ratio of the intensity increase of strain rate 2000 sec -1 to the intensity of the strain rate 0.02 sec -1 is 35% or more in true strain 0.1, 25% or more in true strain 0.25 Features Hot rolled composite structure steel sheet with excellent impact resistance and formability.
H V2 / 3> H V1 / 3 + 20
Here, H V1 : Vickers hardness of ferrite phase H V2 : Vickers hardness of second phase region
v≧1000×t1 1/2÷h1/2÷t
ただし、v:冷却速度(℃/sec)
h:板厚(mm)
t1:仕上げ圧延終了からはじめの冷却を開始するまでの時間(sec)
t:はじめの冷却後、次の冷却を開始するまでの空冷時間(sec)C: 0.02 to 0.2 wt%, Si: 0.1 to 1.5 wt%, Mn: 0.5 to 3.0 wt%, S: 0.010 wt% or less, P: 0.01 to 0.15 wt%, Cr: 0.003 to 2.0 wt%, Hot rolling of a steel material containing at least one selected from Mo: 0.003 to 2.0 wt% at (Ar 3 transformation point −50 ° C.) to (Ar 3 transformation point + 150 ° C.), and then 0.1 to 5.0 In seconds, start cooling at a rate that satisfies the following formula, cool to 820-620 ° C, air-cool for 0.5-15 seconds, and then cool to 570-300 ° C at a cooling rate of 30 ° C / sec or more. A method for producing a hot-rolled steel sheet having a composite structure excellent in impact resistance and formability, characterized by winding.
v ≧ 1000 × t 1 1/2 ÷ h 1/2 ÷ t
Where v: cooling rate (° C / sec)
h: Plate thickness (mm)
t 1 : Time from the end of finish rolling to the start of first cooling (sec)
t: Air cooling time (sec) from the first cooling to the start of the next cooling
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26368497A JP3572894B2 (en) | 1997-09-29 | 1997-09-29 | Composite structure hot rolled steel sheet excellent in impact resistance and formability and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26368497A JP3572894B2 (en) | 1997-09-29 | 1997-09-29 | Composite structure hot rolled steel sheet excellent in impact resistance and formability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11100641A JPH11100641A (en) | 1999-04-13 |
JP3572894B2 true JP3572894B2 (en) | 2004-10-06 |
Family
ID=17392910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26368497A Expired - Fee Related JP3572894B2 (en) | 1997-09-29 | 1997-09-29 | Composite structure hot rolled steel sheet excellent in impact resistance and formability and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3572894B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2787098B1 (en) * | 2011-11-30 | 2018-09-05 | JFE Steel Corporation | Steel material with excellent crashworthiness and manufacturing process therefor |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4543471B2 (en) * | 2000-01-14 | 2010-09-15 | Jfeスチール株式会社 | Manufacturing method of high-strength hot-rolled steel sheet with excellent plate shape and workability |
WO2001023625A1 (en) * | 1999-09-29 | 2001-04-05 | Nkk Corporation | Sheet steel and method for producing sheet steel |
DE60116765T2 (en) * | 2000-01-24 | 2006-11-02 | Jfe Steel Corp. | FIREPLATED STEEL PLATE AND METHOD OF MANUFACTURING THEREOF |
JP4783965B2 (en) * | 2000-06-21 | 2011-09-28 | Jfeスチール株式会社 | Manufacturing method of hot-rolled steel sheet |
CA2395901C (en) * | 2000-10-31 | 2006-07-18 | Nkk Corporation | High strength hot rolled steel sheet and method for manufacturing the same |
JP4848586B2 (en) * | 2000-12-28 | 2011-12-28 | Jfeスチール株式会社 | Method for producing high-tensile hot-rolled steel sheet for processing having microstructure |
JP5017751B2 (en) * | 2001-06-06 | 2012-09-05 | Jfeスチール株式会社 | Highly ductile hot-rolled steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same |
JP4062961B2 (en) * | 2001-06-07 | 2008-03-19 | Jfeスチール株式会社 | High tensile hot-rolled steel sheet excellent in mold galling resistance and fatigue resistance and method for producing the same |
JP4501699B2 (en) * | 2004-02-18 | 2010-07-14 | Jfeスチール株式会社 | High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same |
JP4543963B2 (en) * | 2004-03-18 | 2010-09-15 | Jfeスチール株式会社 | Hot-rolled steel sheet excellent in work hardenability and manufacturing method thereof |
JP4751087B2 (en) * | 2005-04-05 | 2011-08-17 | 新日本製鐵株式会社 | Design method of shock absorbing member with excellent dynamic deformation characteristics |
JP5339765B2 (en) * | 2007-04-17 | 2013-11-13 | 株式会社中山製鋼所 | High strength hot rolled steel sheet and method for producing the same |
JP5056771B2 (en) * | 2008-04-21 | 2012-10-24 | Jfeスチール株式会社 | Method for producing high-strength hot-rolled steel sheet having a tensile strength of 780 MPa or more |
JP5457920B2 (en) * | 2010-04-09 | 2014-04-02 | 株式会社神戸製鋼所 | Weld metal with excellent low temperature toughness and drop characteristics |
JP6468408B2 (en) * | 2016-12-21 | 2019-02-13 | 新日鐵住金株式会社 | H-section steel and its manufacturing method |
CN112746218B (en) * | 2019-12-30 | 2021-11-16 | 宝钢湛江钢铁有限公司 | Low-cost, high-crack-resistance and high-heat-input-welding YP 420-grade steel plate and manufacturing method thereof |
CN114752856B (en) * | 2022-04-14 | 2023-05-05 | 承德建龙特殊钢有限公司 | Continuous casting round billet and preparation method and application thereof |
-
1997
- 1997-09-29 JP JP26368497A patent/JP3572894B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2787098B1 (en) * | 2011-11-30 | 2018-09-05 | JFE Steel Corporation | Steel material with excellent crashworthiness and manufacturing process therefor |
Also Published As
Publication number | Publication date |
---|---|
JPH11100641A (en) | 1999-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3039862B1 (en) | Hot-rolled steel sheet for processing with ultra-fine grains | |
JP3572894B2 (en) | Composite structure hot rolled steel sheet excellent in impact resistance and formability and method for producing the same | |
JP5858174B2 (en) | Low yield ratio high strength cold-rolled steel sheet and method for producing the same | |
JP4161935B2 (en) | Hot-rolled steel sheet and manufacturing method thereof | |
JP5825082B2 (en) | High yield ratio high strength cold-rolled steel sheet with excellent elongation and stretch flangeability and its manufacturing method | |
KR20130121940A (en) | High-strength cold-rolled steel sheet having excellent processability and high yield ratio, and method for producing same | |
JP3551064B2 (en) | Ultra fine grain hot rolled steel sheet excellent in impact resistance and method for producing the same | |
JP3039842B2 (en) | Hot-rolled and cold-rolled steel sheets for automobiles having excellent impact resistance and methods for producing them | |
JP4424185B2 (en) | Hot rolled steel sheet and its manufacturing method | |
JP3231204B2 (en) | Composite structure steel sheet excellent in fatigue characteristics and method for producing the same | |
JP3253880B2 (en) | Hot-rolled high-strength steel sheet excellent in formability and collision resistance, and method for producing the same | |
JP2004043856A (en) | Low yield ratio type steel pipe | |
JP4650006B2 (en) | High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same | |
KR100903546B1 (en) | High tensile hot rolled steel sheet excellent in shape freezing property and endurance fatigue characteristics after forming | |
JP4513552B2 (en) | High-tensile hot-rolled steel sheet excellent in bake hardenability and room temperature aging resistance and method for producing the same | |
JP3458416B2 (en) | Cold rolled thin steel sheet excellent in impact resistance and method for producing the same | |
JP3539545B2 (en) | High-tensile steel sheet excellent in burring property and method for producing the same | |
JP3582182B2 (en) | Cold rolled steel sheet excellent in impact resistance and method for producing the same | |
CN111511935B (en) | Hot-rolled steel sheet having excellent durability and method for producing same | |
JP2013249501A (en) | High-strength cold-rolled steel plate with minimized dispersion of mechanical characteristics, and method for manufacturing the same | |
CN116368253A (en) | High-strength steel sheet excellent in heat stability and method for producing same | |
JP3945373B2 (en) | Method for producing cold-rolled steel sheet with fine grain structure and excellent fatigue characteristics | |
JP2718550B2 (en) | Method for producing high-strength hot-rolled steel sheet for strong working with excellent fatigue properties | |
JP4319940B2 (en) | High carbon steel plate with excellent workability, hardenability and toughness after heat treatment | |
JP4203396B2 (en) | High-strength hot-rolled steel sheet excellent in ductility and chemical conversion property and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20031205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20031224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040223 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040608 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040621 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080709 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090709 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100709 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100709 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110709 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110709 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120709 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120709 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |