JP5942563B2 - Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed - Google Patents
Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed Download PDFInfo
- Publication number
- JP5942563B2 JP5942563B2 JP2012094934A JP2012094934A JP5942563B2 JP 5942563 B2 JP5942563 B2 JP 5942563B2 JP 2012094934 A JP2012094934 A JP 2012094934A JP 2012094934 A JP2012094934 A JP 2012094934A JP 5942563 B2 JP5942563 B2 JP 5942563B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- polymerization
- monomer
- polymer
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Materials For Photolithography (AREA)
- Polymerisation Methods In General (AREA)
Description
本発明は重合体の製造方法、該製造方法により得られる重合体を用いてレジスト組成物を製造する方法、及び該レジスト組成物を用いて、パターンが形成された基板を製造する方法に関する。 The present invention relates to a method for producing a polymer, a method for producing a resist composition using a polymer obtained by the production method, and a method for producing a substrate on which a pattern is formed using the resist composition.
近年、半導体素子、液晶素子等の製造工程において形成されるレジストパターンは、半導体リソグラフィー技術の進歩により急速に微細化が進んでいる。微細化の手法としては、照射光の短波長化がある。具体的には、従来のg線(波長:438nm)、i線(波長:365nm)に代表される紫外線から、より短波長のDUV(Deep Ultra Violet)へと照射光が短波長化してきている。
最近では、KrFエキシマレーザー(波長:248nm)リソグラフィー技術が導入され、さらなる短波長化を図ったArFエキシマレーザー(波長:193nm)リソグラフィー技術及びEUV(波長:13.5nm)リソグラフィー技術が研究されている。さらに、これらの液浸リソグラフィー技術も研究されている。また、これらとは異なるタイプのリソグラフィー技術として、電子線リソグラフィー技術についても精力的に研究されている。
In recent years, a resist pattern formed in a manufacturing process of a semiconductor element, a liquid crystal element, or the like has been rapidly miniaturized due to advances in semiconductor lithography technology. As a technique for miniaturization, there is a reduction in wavelength of irradiation light. Specifically, the irradiation light has become shorter in wavelength from ultraviolet rays typified by conventional g-line (wavelength: 438 nm) and i-line (wavelength: 365 nm) to a shorter wavelength DUV (Deep Ultra Violet). .
Recently, KrF excimer laser (wavelength: 248 nm) lithography technology has been introduced, and ArF excimer laser (wavelength: 193 nm) lithography technology and EUV (wavelength: 13.5 nm) lithography technology for further shortening the wavelength have been studied. . Furthermore, these immersion lithography techniques are also being studied. Also, as a different type of lithography technology, electron beam lithography technology has been energetically studied.
該短波長の照射光又は電子線を用いたレジストパターンの形成に用いられる高感度のレジスト組成物として、光酸発生剤を含有する「化学増幅型レジスト組成物」が提唱され、現在、該化学増幅型レジスト組成物の改良及び開発が進められている。
例えば、ArFエキシマレーザーリソグラフィーにおいて用いられる化学増幅型レジスト用重合体として、波長193nmの光に対して透明なアクリル系重合体が注目されている。該アクリル系重合体としては、例えば、エステル部にアダマンタン骨格を有する(メタ)アクリル酸エステルとエステル部にラクトン骨格を有する(メタ)アクリル酸エステルとの重合体が提案されている(特許文献1等)。
A “chemically amplified resist composition” containing a photoacid generator has been proposed as a highly sensitive resist composition used for forming a resist pattern using the irradiation light or electron beam of the short wavelength. Improvement and development of the amplified resist composition are underway.
For example, as a chemically amplified resist polymer used in ArF excimer laser lithography, an acrylic polymer that is transparent with respect to light having a wavelength of 193 nm has attracted attention. As the acrylic polymer, for example, a polymer of (meth) acrylic acid ester having an adamantane skeleton in an ester portion and (meth) acrylic acid ester having a lactone skeleton in an ester portion has been proposed (Patent Document 1). etc).
レジストパターンの微細化に伴って、半導体リソグラフィー用重合体の品質への要求も厳しくなっている。例えば、半導体リソグラフィー用重合体の製造上のロット間でのバラツキが現像時に微少な欠陥を発生させ、デバイス設計における欠陥の原因となる場合がある。
下記特許文献2には、ロットの違いによる分子量分布の変動を小さくする方法として、リビングラジカル重合開始剤を用いて、酸解離性基を有する樹脂を合成する方法が記載されている。
With the miniaturization of resist patterns, demands for quality of polymers for semiconductor lithography have become stricter. For example, variations between production lots of polymers for semiconductor lithography may cause minute defects during development, which may cause defects in device design.
Patent Document 2 listed below describes a method of synthesizing a resin having an acid-dissociable group using a living radical polymerization initiator as a method for reducing fluctuations in molecular weight distribution due to lot differences.
下記特許文献3には、滴下重合における重合温度(反応温度)の振れ幅を小さくするために、フォトレジスト用樹脂を1バッチ当たり10kg以上のスケールで製造する際に、予め重合容器内の重合溶媒を重合温度よりも1〜5℃高くしておき、単量体と重合開始剤の滴下を開始したときに液温が低下するのに合わせて、重合容器の設定温度を所定の重合温度にまで徐々に下げる方法が記載されている。
下記特許文献4には、滴下重合においてマイクロゲルが生じるのを防ぐために、重合槽の外套缶に供給する熱媒の温度を、重合温度+10℃以下とする方法が記載されている。
In Patent Document 3 below, in order to reduce the fluctuation range of the polymerization temperature (reaction temperature) in the drop polymerization, when the photoresist resin is produced on a scale of 10 kg or more per batch, the polymerization solvent in the polymerization vessel is previously stored. Is set to 1 to 5 ° C. higher than the polymerization temperature, and when the dropping of the monomer and the polymerization initiator is started, the temperature of the polymerization vessel is lowered to the predetermined polymerization temperature as the liquid temperature decreases. A method of gradually lowering is described.
Patent Document 4 listed below describes a method in which the temperature of the heating medium supplied to the outer can of the polymerization tank is set to the polymerization temperature + 10 ° C. or less in order to prevent the formation of microgel in the drop polymerization.
しかしながら、近年、レジスト用重合体のロット間バラツキの低減に対する要求は益々厳しくなっており、従来の方法では必ずしも十分とは言えない。
本発明は前記事情に鑑みてなされたもので、重合体のロット間のバラツキをより低減することができる重合体の製造方法、該製造方法を用いたレジスト組成物の製造方法、及び該レジスト組成物の製造方法を用いた、パターンが形成された基板の製造方法を提供することを目的とする。
However, in recent years, the demand for reducing the lot-to-lot variation of resist polymers has become increasingly severe, and conventional methods are not necessarily sufficient.
The present invention has been made in view of the above circumstances, and a method for producing a polymer capable of further reducing variation between polymer lots, a method for producing a resist composition using the production method, and the resist composition An object of the present invention is to provide a method for manufacturing a substrate on which a pattern is formed, using the method for manufacturing an object.
本発明の重合体の製造方法は、反応容器内において、重合溶媒、単量体及び重合開始剤を含む反応液中で単量体を重合反応させる重合工程と、前記重合反応を停止させる反応停止工程を有し、前記重合反応が開始してから停止操作が開始されるまでの重合反応期間内に、前記反応容器内に単量体を連続的に又は滴下により供給する単量体供給工程を有し、前記単量体供給工程の開始から終了までの単量体供給期間中の前記反応液の温度を、該単量体供給期間中の該反応液の平均温度±1.0℃の範囲内に維持し、前記重合反応期間の終了時における前記反応液の質量に対して、前記反応器内に供給された単量体の合計質量を30質量%未満とし、かつ前記単量体供給期間を、前記重合反応期間の80%以上、90%以下とすることを特徴とする。 The method for producing a polymer of the present invention comprises a polymerization step in which a monomer is polymerized in a reaction solution containing a polymerization solvent, a monomer and a polymerization initiator in a reaction vessel, and a reaction termination in which the polymerization reaction is stopped. A monomer supply step of supplying a monomer continuously or dropwise into the reaction vessel within a polymerization reaction period from the start of the polymerization reaction to the start of a stop operation. And the temperature of the reaction solution during the monomer supply period from the start to the end of the monomer supply step is within the range of the average temperature of the reaction solution during the monomer supply period ± 1.0 ° C. The total mass of monomers supplied into the reactor is less than 30% by mass with respect to the mass of the reaction liquid at the end of the polymerization reaction period, and the monomer supply period Is not less than 80% and not more than 90% of the polymerization reaction period The
前記反応容器の内面の、少なくとも反応液が接触する部分が、ステンレス鋼からなることが好ましい。
本発明は、本発明の製造方法でレジスト用重合体を製造する工程と、得られたレジスト用重合体と、活性光線又は放射線の照射により酸を発生する化合物を混合する工程を有するレジスト組成物の製造方法を提供する。
本発明は、本発明の製造方法でレジスト組成物を製造する工程と、得られたレジスト組成物を、基板の被加工面上に塗布してレジスト膜を形成する工程と、該レジスト膜に対して露光する工程と、露光されたレジスト膜を現像液を用いて現像する工程を有する、パターンが形成された基板の製造方法を提供する。
It is preferable that at least a portion of the inner surface of the reaction vessel that comes into contact with the reaction solution is made of stainless steel.
The present invention provides a resist composition comprising a step of producing a resist polymer by the production method of the present invention, and a step of mixing the obtained resist polymer and a compound that generates an acid upon irradiation with actinic rays or radiation. A manufacturing method is provided.
The present invention includes a step of producing a resist composition by the production method of the present invention, a step of coating the obtained resist composition on a work surface of a substrate to form a resist film, and the resist film There are provided a method for producing a substrate having a pattern, the method comprising: exposing the exposed resist film and developing the exposed resist film using a developer.
本発明によれば、ロット間バラツキが小さい重合体が得られる。
本発明の重合体の製造方法により得られる重合体を用いたレジスト組成物は、重合体のロット間バラツキが小さいため、性能の安定性に優れる。
本発明の基板の製造方法によれば、高精度の微細なパターンを安定して形成できる。
According to the present invention, a polymer having a small lot-to-lot variation can be obtained.
A resist composition using a polymer obtained by the method for producing a polymer of the present invention is excellent in stability of performance because the lot-to-lot variation of the polymer is small.
According to the substrate manufacturing method of the present invention, a highly accurate fine pattern can be stably formed.
本明細書において、「(メタ)アクリル酸」は、アクリル酸又はメタクリル酸を意味し、「(メタ)アクリロイルオキシ」は、アクリロイルオキシ又はメタクリロイルオキシを意味する。
<重合体>
本発明における重合体は特に限定されないが、好ましくは、ロット間のバラツキが問題になりやすい半導体リソグラフィー用重合体である。また半導体リソグラフィー用重合体のうちでもロット間バラツキの低減に対する要求が厳しいレジスト用重合体であることが特に好ましい。
半導体リソグラフィー用重合体は、極性基を有する構成単位(a)を有することが好ましく、レジスト用重合体は、該構成単位(a)のほかに、酸脱離性基を有する構成単位(b)を有することが好ましい。
半導体リソグラフィー用重合体の重量平均分子量は、特に限定されないが、一般的には1,000〜100,000が好ましく、3,000〜50,000がより好ましい。
In the present specification, “(meth) acrylic acid” means acrylic acid or methacrylic acid, and “(meth) acryloyloxy” means acryloyloxy or methacryloyloxy.
<Polymer>
The polymer in the present invention is not particularly limited, but is preferably a polymer for semiconductor lithography in which lot-to-lot variation is likely to be a problem. Further, among the polymers for semiconductor lithography, it is particularly preferable to be a resist polymer that has a strict demand for reduction in lot-to-lot variation.
The polymer for semiconductor lithography preferably has a structural unit (a) having a polar group, and the resist polymer has a structural unit (b) having an acid leaving group in addition to the structural unit (a). It is preferable to have.
The weight average molecular weight of the polymer for semiconductor lithography is not particularly limited, but generally 1,000 to 100,000 is preferable, and 3,000 to 50,000 is more preferable.
[構成単位(a)]
本発明における重合体は、極性基を有する構成単位(a)を有することが好ましい。
「極性基」とは、極性を持つ官能基又は極性を持つ原子団を有する基であり、具体例としては、ヒドロキシ基、シアノ基、アルコキシ基、カルボキシ基、アミノ基、カルボニル基、フッ素原子を含む基、硫黄原子を含む基、ラクトン骨格を含む基、アセタール構造を含む基、エーテル結合を含む基などが挙げられる。
これらのうちで、波長250nm以下の光で露光するパターン形成方法におけるレジスト組成物に用いられるレジスト用重合体は、極性基を有する構成単位として、ラクトン骨格を有する構成単位を有することが好ましく、さらに後述の親水性基を有する構成単位を有することが好ましい。
[Structural unit (a)]
The polymer in the present invention preferably has a structural unit (a) having a polar group.
The “polar group” is a group having a polar functional group or a polar atomic group. Specific examples include a hydroxy group, a cyano group, an alkoxy group, a carboxy group, an amino group, a carbonyl group, and a fluorine atom. A group containing a sulfur atom, a group containing a lactone skeleton, a group containing an acetal structure, a group containing an ether bond, and the like.
Among these, the resist polymer used in the resist composition in the pattern forming method of exposing with light having a wavelength of 250 nm or less preferably has a structural unit having a lactone skeleton as the structural unit having a polar group. It is preferable to have a structural unit having a hydrophilic group described later.
(ラクトン骨格を有する構成単位・単量体)
ラクトン骨格としては、例えば、4〜20員環程度のラクトン骨格が挙げられる。ラクトン骨格は、ラクトン環のみの単環であってもよく、ラクトン環に脂肪族又は芳香族の炭素環又は複素環が縮合していてもよい。
重合体がラクトン骨格を有する構成単位を含む場合、その含有量は、基板等への密着性の点から、全構成単位(100モル%)のうち、20モル%以上が好ましく、25モル%以上がより好ましい。また、感度及び解像度の点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。
(Constitutional unit / monomer having a lactone skeleton)
Examples of the lactone skeleton include a lactone skeleton having about 4 to 20 members. The lactone skeleton may be a monocycle having only a lactone ring, or an aliphatic or aromatic carbon ring or a heterocyclic ring may be condensed with the lactone ring.
In the case where the polymer contains a structural unit having a lactone skeleton, the content thereof is preferably 20 mol% or more, more preferably 25 mol% or more of all structural units (100 mol%) from the viewpoint of adhesion to a substrate or the like. Is more preferable. Moreover, from the point of a sensitivity and resolution, 60 mol% or less is preferable, 55 mol% or less is more preferable, and 50 mol% or less is more preferable.
ラクトン骨格を有する単量体としては、基板等への密着性に優れる点から、置換あるいは無置換のδ−バレロラクトン環を有する(メタ)アクリル酸エステル、置換あるいは無置換のγ−ブチロラクトン環を有する単量体からなる群から選ばれる少なくとも1種が好ましく、無置換のγ−ブチロラクトン環を有する単量体が特に好ましい。 As a monomer having a lactone skeleton, a (meth) acrylic acid ester having a substituted or unsubstituted δ-valerolactone ring, a substituted or unsubstituted γ-butyrolactone ring is used because of its excellent adhesion to a substrate or the like. Preferably, at least one selected from the group consisting of monomers having it is preferred, and monomers having an unsubstituted γ-butyrolactone ring are particularly preferred.
ラクトン骨格を有する単量体の具体例としては、β−(メタ)アクリロイルオキシ−β−メチル−δ−バレロラクトン、4,4−ジメチル−2−メチレン−γ−ブチロラクトン、β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、β−(メタ)アクリロイルオキシ−β−メチル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−γ−ブチロラクトン、2−(1−(メタ)アクリロイルオキシ)エチル−4−ブタノリド、(メタ)アクリル酸パントイルラクトン、5−(メタ)アクリロイルオキシ−2,6−ノルボルナンカルボラクトン、8−メタクリロキシ−4−オキサトリシクロ[5.2.1.02,6 ]デカン−3−オン、9−メタクリロキシ−4−オキサトリシクロ[5.2.1.02,6 ]デカン−3−オン等が挙げられる。また、類似構造を持つ単量体として、メタクリロイルオキシこはく酸無水物等も挙げられる。
ラクトン骨格を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the monomer having a lactone skeleton include β- (meth) acryloyloxy-β-methyl-δ-valerolactone, 4,4-dimethyl-2-methylene-γ-butyrolactone, β- (meth) acryloyl. Oxy-γ-butyrolactone, β- (meth) acryloyloxy-β-methyl-γ-butyrolactone, α- (meth) acryloyloxy-γ-butyrolactone, 2- (1- (meth) acryloyloxy) ethyl-4-butanolide , (Meth) acrylic acid pantoyl lactone, 5- (meth) acryloyloxy-2,6-norbornanecarbolactone, 8-methacryloxy-4-oxatricyclo [5.2.1.0 2,6 ] decane-3 - one, 9-methacryloxy-4-oxatricyclo [5.2.1.0 2, 6] cited decan-3-one and the like . Examples of the monomer having a similar structure include methacryloyloxysuccinic anhydride.
Monomers having a lactone skeleton may be used alone or in combination of two or more.
(親水性基を有する構成単位・単量体)
本明細書における「親水性基」とは、−C(CF3)2−OH、ヒドロキシ基、シアノ基、メトキシ基、カルボキシ基及びアミノ基の少なくとも1種である。
これらのうちで、波長250nm以下の光で露光するパターン形成方法におけるレジスト組成物に用いられるレジスト用重合体は、親水性基としてヒドロキシ基又はシアノ基を有することが好ましい。
重合体における親水性基を有する構成単位の含有量は、レジストパターン矩形性の点から、全構成単位(100モル%)のうち、5〜30モル%が好ましく、10〜25モル%がより好ましい。
(Structural unit / monomer having a hydrophilic group)
The “hydrophilic group” in the present specification is at least one of —C (CF 3 ) 2 —OH, hydroxy group, cyano group, methoxy group, carboxy group, and amino group.
Among these, it is preferable that the resist polymer used for the resist composition in the pattern forming method in which exposure is performed with light having a wavelength of 250 nm or less has a hydroxy group or a cyano group as a hydrophilic group.
The content of the structural unit having a hydrophilic group in the polymer is preferably from 5 to 30 mol%, more preferably from 10 to 25 mol%, of the total structural units (100 mol%) from the viewpoint of the resist pattern rectangularity. .
親水性基を有する単量体としては、例えば、末端ヒドロキシ基を有する(メタ)アクリ酸エステル;単量体の親水性基上にアルキル基、ヒドロキシ基、カルボキシ基等の置換基を有する誘導体;環式炭化水素基を有する単量体(例えば(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸1−イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸ジシクロペンチル、(メタ)アクリル酸2−メチル−2−アダマンチル、(メタ)アクリル酸2−エチル−2−アダマンチル等。)が置換基としてヒドロキシ基、カルボキシ基等の親水性基を有するもの;が挙げられる。 Examples of the monomer having a hydrophilic group include a (meth) acrylic acid ester having a terminal hydroxy group; a derivative having a substituent such as an alkyl group, a hydroxy group, or a carboxy group on the hydrophilic group of the monomer; Monomers having a cyclic hydrocarbon group (for example, cyclohexyl (meth) acrylate, 1-isobornyl (meth) acrylate, adamantyl (meth) acrylate, tricyclodecanyl (meth) acrylate, (meth) acrylic acid) Dicyclopentyl, 2-methyl-2-adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, etc.) having a hydrophilic group such as a hydroxy group or a carboxy group as a substituent; Can be mentioned.
親水性基を有する単量体の具体例としては、(メタ)アクリル酸、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2−ヒドロキシ−n−プロピル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸3−ヒドロキシアダマンチル、2−又は3−シアノ−5−ノルボルニル(メタ)アクリレート、2−シアノメチル−2−アダマンチル(メタ)アクリレート等が挙げられる。基板等に対する密着性の点から、(メタ)アクリル酸3−ヒドロキシアダマンチル、2−又は3−シアノ−5−ノルボルニル(メタ)アクリレート、2−シアノメチル−2−アダマンチル(メタ)アクリレート等が好ましい。
親水性基を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the monomer having a hydrophilic group include (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxy- (meth) acrylate. -Propyl, 4-hydroxybutyl (meth) acrylate, 3-hydroxyadamantyl (meth) acrylate, 2- or 3-cyano-5-norbornyl (meth) acrylate, 2-cyanomethyl-2-adamantyl (meth) acrylate, etc. Is mentioned. From the viewpoint of adhesiveness to a substrate or the like, 3-hydroxyadamantyl (meth) acrylate, 2- or 3-cyano-5-norbornyl (meth) acrylate, 2-cyanomethyl-2-adamantyl (meth) acrylate, and the like are preferable.
The monomer which has a hydrophilic group may be used individually by 1 type, and may be used in combination of 2 or more type.
[構成単位(b)]
本発明における重合体は、レジスト用途に用いる場合は上述した極性基を有する構成単位(a)以外に酸脱離性基を有する構成単位(b)を有することが好ましく、この他に、必要に応じて公知の構成単位を有していてもよい。
「酸脱離性基」とは、酸により開裂する結合を有する基であり、該結合の開裂により酸脱離性基の一部又は全部が重合体の主鎖から脱離する基である。
レジスト組成物において、酸脱離性基を有する構成単位を有する重合体は、酸成分と反応してアルカリ性溶液に可溶となり、レジストパターン形成を可能とする作用を奏する。
酸脱離性基を有する構成単位の割合は、感度及び解像度の点から、重合体を構成する全構成単位(100モル%)のうち、20モル%以上が好ましく、25モル%以上がより好ましい。また、基板等への密着性の点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。
[Structural unit (b)]
The polymer in the present invention preferably has a structural unit (b) having an acid-eliminable group in addition to the above-mentioned structural unit (a) having a polar group when used for resist applications. Accordingly, it may have a known structural unit.
The “acid leaving group” is a group having a bond that is cleaved by an acid, and a part or all of the acid leaving group is removed from the main chain of the polymer by cleavage of the bond.
In the resist composition, a polymer having a structural unit having an acid-eliminable group reacts with an acid component to become soluble in an alkaline solution, and has an effect of enabling formation of a resist pattern.
The proportion of the structural unit having an acid leaving group is preferably 20 mol% or more, more preferably 25 mol% or more, of all the structural units (100 mol%) constituting the polymer from the viewpoint of sensitivity and resolution. . Moreover, 60 mol% or less is preferable from the point of the adhesiveness to a board | substrate etc., 55 mol% or less is more preferable, and 50 mol% or less is further more preferable.
酸脱離性基を有する単量体は、酸脱離性基及び重合性多重結合を有する化合物であればよく、公知のものを使用できる。重合性多重結合とは重合反応時に開裂して共重合鎖を形成する多重結合であり、エチレン性二重結合が好ましい。
酸脱離性基を有する単量体の具体例として、炭素数6〜20の脂環式炭化水素基を有し、かつ酸脱離性基を有している(メタ)アクリル酸エステルが挙げられる。該脂環式炭化水素基は、(メタ)アクリル酸エステルのエステル結合を構成する酸素原子と直接結合していてもよく、アルキレン基等の連結基を介して結合していてもよい。
該(メタ)アクリル酸エステルには、炭素数6〜20の脂環式炭化水素基を有するとともに、(メタ)アクリル酸エステルのエステル結合を構成する酸素原子との結合部位に第3級炭素原子を有する(メタ)アクリル酸エステル、又は、炭素数6〜20の脂環式炭化水素基を有するとともに、該脂環式炭化水素基に−COOR基(Rは置換基を有していてもよい第3級炭化水素基、テトラヒドロフラニル基、テトラヒドロピラニル基、又はオキセパニル基を表す。)が直接又は連結基を介して結合している(メタ)アクリル酸エステルが含まれる。
The monomer having an acid leaving group may be a compound having an acid leaving group and a polymerizable multiple bond, and known ones can be used. The polymerizable multiple bond is a multiple bond that is cleaved during the polymerization reaction to form a copolymer chain, and an ethylenic double bond is preferable.
Specific examples of the monomer having an acid leaving group include (meth) acrylic acid esters having an alicyclic hydrocarbon group having 6 to 20 carbon atoms and having an acid leaving group. It is done. The alicyclic hydrocarbon group may be directly bonded to an oxygen atom constituting an ester bond of (meth) acrylic acid ester, or may be bonded via a linking group such as an alkylene group.
The (meth) acrylic acid ester has an alicyclic hydrocarbon group having 6 to 20 carbon atoms, and a tertiary carbon atom at the bonding site with the oxygen atom constituting the ester bond of the (meth) acrylic acid ester. A (meth) acrylic acid ester having an alicyclic hydrocarbon group or an alicyclic hydrocarbon group having 6 to 20 carbon atoms and a -COOR group (R may have a substituent) on the alicyclic hydrocarbon group. (Represents a tertiary hydrocarbon group, a tetrahydrofuranyl group, a tetrahydropyranyl group, or an oxepanyl group.) (Meth) acrylic acid ester bonded directly or through a linking group.
特に、波長250nm以下の光で露光するパターン形成方法に適用されるレジスト組成物に用いられるレジスト用重合体を製造する場合には、酸脱離性基を有する単量体の好ましい例として、例えば、2−メチル−2−アダマンチル(メタ)アクリレート、2−エチル−2−アダマンチル(メタ)アクリレート、1−(1’−アダマンチル)−1−メチルエチル(メタ)アクリレート、1−メチルシクロヘキシル(メタ)アクリレート、1−エチルシクロヘキシル(メタ)アクリレート、1−メチルシクロペンチル(メタ)アクリレート、1−エチルシクロペンチル(メタ)アクリレート、イソプロピルアダマンチル(メタ)アクリレート、1−エチルシクロオクチル(メタ)アクリレート等が挙げられる。
酸脱離性基を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In particular, in the case of producing a resist polymer used in a resist composition applied to a pattern forming method that is exposed to light having a wavelength of 250 nm or less, as a preferred example of a monomer having an acid leaving group, for example, 2-methyl-2-adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, 1- (1′-adamantyl) -1-methylethyl (meth) acrylate, 1-methylcyclohexyl (meth) Examples include acrylate, 1-ethylcyclohexyl (meth) acrylate, 1-methylcyclopentyl (meth) acrylate, 1-ethylcyclopentyl (meth) acrylate, isopropyl adamantyl (meth) acrylate, 1-ethylcyclooctyl (meth) acrylate, and the like.
As the monomer having an acid leaving group, one type may be used alone, or two or more types may be used in combination.
<重合体の製造方法>
本発明の重合体の製造方法は、反応容器内に重合溶媒、単量体及び重合開始剤を供給して、該反応容器内の液(反応液)中で単量体を重合反応させる重合工程と、前記重合反応を停止させる反応停止工程を有する。
本発明において、重合反応が開始してから重合反応を停止させる操作(停止操作)が開始されるまでの期間を重合反応期間という。
本発明における重合工程は、重合溶媒の存在下に重合開始剤を使用して、単量体をラジカル重合させる溶液重合法である。
<Method for producing polymer>
The method for producing a polymer of the present invention comprises a polymerization step in which a polymerization solvent, a monomer and a polymerization initiator are supplied into a reaction vessel and the monomer is polymerized in a liquid (reaction solution) in the reaction vessel. And a reaction stopping step for stopping the polymerization reaction.
In the present invention, the period from the start of the polymerization reaction to the start of the operation for stopping the polymerization reaction (stopping operation) is referred to as the polymerization reaction period.
The polymerization step in the present invention is a solution polymerization method in which a monomer is radically polymerized using a polymerization initiator in the presence of a polymerization solvent.
重合溶媒としては、例えば、下記のものが挙げられる。
エーテル類:鎖状エーテル(ジエチルエーテル、プロピレングリコールモノメチルエーテル(以下、「PGME」と記す。)等。)、環状エーテル(テトラヒドロフラン(以下、「THF」と記す。)、1,4−ジオキサン等。)等。
エステル類:酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテルアセテート(以下、「PGMEA」と記す。)、γ−ブチロラクトン等。
ケトン類:アセトン、メチルエチルケトン(以下、「MEK」と記す。)、メチルイソブチルケトン(以下、「MIBK」と記す。)等。
アミド類:N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等。
スルホキシド類:ジメチルスルホキシド等。
芳香族炭化水素:ベンゼン、トルエン、キシレン等。
脂肪族炭化水素:ヘキサン等。
脂環式炭化水素:シクロヘキサン等。
重合溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
Examples of the polymerization solvent include the following.
Ethers: chain ether (diethyl ether, propylene glycol monomethyl ether (hereinafter referred to as “PGME”), etc.), cyclic ether (tetrahydrofuran (hereinafter referred to as “THF”), 1,4-dioxane, etc. )etc.
Esters: methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, butyl lactate, propylene glycol monomethyl ether acetate (hereinafter referred to as “PGMEA”), γ-butyrolactone, and the like.
Ketones: acetone, methyl ethyl ketone (hereinafter referred to as “MEK”), methyl isobutyl ketone (hereinafter referred to as “MIBK”), and the like.
Amides: N, N-dimethylacetamide, N, N-dimethylformamide and the like.
Sulfoxides: dimethyl sulfoxide and the like.
Aromatic hydrocarbons: benzene, toluene, xylene and the like.
Aliphatic hydrocarbon: hexane and the like.
Alicyclic hydrocarbons: cyclohexane and the like.
A polymerization solvent may be used individually by 1 type, and may use 2 or more types together.
重合開始剤としては、熱により効率的にラジカルを発生するものが好ましい。該重合開始剤としては、例えば、アゾ化合物(2,2’−アゾビスイソブチロニトリル、ジメチル−2,2’−アゾビスイソブチレート、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]等。)、有機過酸化物(2,5−ジメチル−2,5−ビス(tert−ブチルパーオキシ)ヘキサン、ジ(4−tert−ブチルシクロヘキシル)パーオキシジカーボネート等。)等が挙げられる。 As the polymerization initiator, those that generate radicals efficiently by heat are preferable. Examples of the polymerization initiator include azo compounds (2,2′-azobisisobutyronitrile, dimethyl-2,2′-azobisisobutyrate, 2,2′-azobis [2- (2-imidazoline). -2-yl) propane], etc.), organic peroxides (2,5-dimethyl-2,5-bis (tert-butylperoxy) hexane, di (4-tert-butylcyclohexyl) peroxydicarbonate, etc. Etc.).
本発明において、重合反応期間の終了時における、反応容器内の反応液の質量に対して、該反応器内に供給された単量体の合計質量が30質量%未満である。具体的には、反応容器に供給される全原料(少なくとも重合溶媒、単量体、重合開始剤を含む)のうち、単量体の合計量が30質量%未満となるように、重合溶媒の使用量を設定する。
重合反応期間の終了時の反応液に対する、該反応液に供給された単量体の合計の割合が30質量%未満であると、同じ製造工程で目的の重合体を繰り返し製造する際の、各ロット間における分子量のバラツキを効果的に低減することができる。該ロット間における分子量のバラツキをより小さくするうえで、該単量体の合計の割合が25質量%以下であることが好ましく、24.5質量%以下がより好ましい。該単量体の合計の割合の下限値は特に限定されないが、製造の効率の点では5質量%以上が好ましく、10質量%以上がより好ましい。
また、重合反応期間中は、反応容器内の反応液の質量に対して、それまでに反応器内に供給された単量体の合計質量が30質量%未満であることが好ましい。
In the present invention, the total mass of the monomers supplied into the reactor is less than 30% by mass with respect to the mass of the reaction liquid in the reaction vessel at the end of the polymerization reaction period. Specifically, of all the raw materials (including at least the polymerization solvent, the monomer, and the polymerization initiator) supplied to the reaction vessel, the polymerization solvent is adjusted so that the total amount of monomers is less than 30% by mass. Set usage.
When the ratio of the total amount of monomers supplied to the reaction liquid with respect to the reaction liquid at the end of the polymerization reaction period is less than 30% by mass, Variation in molecular weight between lots can be effectively reduced. In order to further reduce the variation in molecular weight between the lots, the total proportion of the monomers is preferably 25% by mass or less, and more preferably 24.5% by mass or less. The lower limit of the total ratio of the monomers is not particularly limited, but is preferably 5% by mass or more and more preferably 10% by mass or more from the viewpoint of production efficiency.
Further, during the polymerization reaction period, it is preferable that the total mass of the monomers supplied to the reactor so far is less than 30% by mass with respect to the mass of the reaction liquid in the reaction vessel.
重合工程において、重合反応の開始前に、反応容器内に予め重合溶媒の少なくとも一部及び/又は単量体の一部を供給しておくことが好ましい。
重合反応の開始前に、重合溶媒の一部を反応容器内に供給し、残りを重合反応の開始後に反応容器内に供給することが好ましい。
重合反応の開始前に、重合反応に用いる全単量体のうちの一部を反応容器内に供給し、残りを重合反応の開始後に反応容器内に供給してもよく、重合反応の開始後に全単量体を反応容器内に供給してもよい。
In the polymerization step, it is preferable to supply at least a part of the polymerization solvent and / or a part of the monomer in advance into the reaction vessel before the start of the polymerization reaction.
It is preferable that a part of the polymerization solvent is supplied into the reaction vessel before the start of the polymerization reaction, and the rest is supplied into the reaction vessel after the start of the polymerization reaction.
Before starting the polymerization reaction, a part of all monomers used for the polymerization reaction may be supplied into the reaction vessel, and the remainder may be supplied into the reaction vessel after the start of the polymerization reaction. All monomers may be fed into the reaction vessel.
反応容器内に予め重合溶媒を供給する場合、重合反応の開始前に該重合溶媒を予め設定された重合温度まで加熱することが好ましい。ここに単量体及び重合開始剤が供給されると重合反応が開始する。この場合、反応容器内に単量体及び重合開始剤の両方が供給された時点が重合反応期間の開始時点となる。
反応容器内に予め重合溶媒及び単量体を供給する場合、該反応容器内の液を予め設定された重合温度まで加熱することが好ましい。ここに重合開始剤が供給されると、重合反応が開始する。この場合、反応容器内に重合開始剤が供給された時点が重合反応期間の開始時点となる。
反応容器内に重合開始剤を供給する方法は、連続的に供給する方法であってもよく、滴下により供給する方法であってもよい。製造ロットの違いによる平均分子量、分子量分布等のばらつきをより小さくしやすい点で、滴下により供給する方法がより好ましい。
When the polymerization solvent is supplied in advance into the reaction vessel, it is preferable to heat the polymerization solvent to a preset polymerization temperature before the start of the polymerization reaction. If a monomer and a polymerization initiator are supplied here, a polymerization reaction will start. In this case, the time when both the monomer and the polymerization initiator are supplied into the reaction vessel is the start time of the polymerization reaction period.
When the polymerization solvent and the monomer are supplied into the reaction vessel in advance, it is preferable to heat the liquid in the reaction vessel to a preset polymerization temperature. When a polymerization initiator is supplied here, a polymerization reaction starts. In this case, the time when the polymerization initiator is supplied into the reaction vessel is the start time of the polymerization reaction period.
The method of supplying the polymerization initiator into the reaction vessel may be a method of supplying continuously or a method of supplying by dropping. The method of supplying by dropping is more preferable in that the variation in average molecular weight, molecular weight distribution, and the like due to differences in production lots can be easily reduced.
重合反応が開始してから(重合開始剤が供給された時点から)、重合反応の停止操作が開始される時点までが重合反応期間である。重合反応の停止操作とは、ラジカル重合反応の停止、又は成長反応速度の低下を引き起こす操作を意味し、具体的には反応容器内の温度を低下させる操作、重合禁止剤や酸素といったラジカル反応の阻害剤を反応容器内へ供給する操作を挙げることができる。 The polymerization reaction period is from the start of the polymerization reaction (from the time when the polymerization initiator is supplied) to the time when the polymerization reaction is stopped. The operation for stopping the polymerization reaction means an operation for stopping the radical polymerization reaction or causing a decrease in the growth reaction rate. An operation for supplying the inhibitor into the reaction vessel can be mentioned.
本発明は、重合反応期間内に、反応容器内に単量体を連続的に又は滴下により供給する単量体供給工程を有する。単量体供給工程では、重合溶媒及び重合開始剤の存在下で、単量体を反応容器内に供給しながら、重合反応させる。製造ロットの違いによる平均分子量、分子量分布等のばらつきをより小さくしやすい点で、反応容器内に単量体を滴下により供給する滴下重合法がより好ましい。
滴下重合法において、単量体を滴下する方法は、単量体のみで滴下してもよく、単量体を重合溶媒に溶解させた単量体溶液として滴下してもよい。
重合開始剤を滴下により供給する場合、単量体に直接に溶解させて滴下してもよく、単量体溶液に溶解させて滴下してもよく、重合溶媒のみに溶解させて滴下してもよい。
単量体及び重合開始剤を、同じ貯槽内で混合した後、反応容器中に滴下してもよく;それぞれ独立した貯槽から反応容器中に滴下してもよく;それぞれ独立した貯槽から反応容器に供給する直前で混合し、反応容器中に滴下してもよい。
単量体及び重合開始剤は、一方を先に滴下した後、遅れて他方を滴下してもよく、両方を同じタイミングで滴下してもよい。
滴下速度は、滴下終了まで一定であってもよく、単量体又は重合開始剤の消費速度に応じて、多段階に変化させてもよい。
滴下は、連続的に行ってもよく、間欠的に行ってもよい。
The present invention has a monomer supply step of supplying the monomer continuously or dropwise into the reaction vessel within the polymerization reaction period. In the monomer supply step, the polymerization reaction is performed while supplying the monomer into the reaction vessel in the presence of the polymerization solvent and the polymerization initiator. The drop polymerization method in which the monomer is dropped into the reaction vessel by dropping is more preferable in that the dispersion of the average molecular weight, the molecular weight distribution, etc. due to the difference in the production lot is easily reduced.
In the dropping polymerization method, the monomer may be dropped only with the monomer or may be dropped as a monomer solution in which the monomer is dissolved in the polymerization solvent.
When supplying the polymerization initiator by dropping, it may be directly dissolved in the monomer and dropped, or it may be dropped in the monomer solution, or only dissolved in the polymerization solvent and dropped. Good.
After the monomer and the polymerization initiator are mixed in the same storage tank, they may be dropped into the reaction vessel; they may be dropped from the independent storage tank into the reaction vessel; respectively, from the independent storage tank to the reaction vessel. They may be mixed immediately before feeding and dropped into the reaction vessel.
One of the monomer and the polymerization initiator may be dropped first, and then the other may be dropped with a delay, or both may be dropped at the same timing.
The dropping speed may be constant until the dropping is completed, or may be changed in multiple stages according to the consumption speed of the monomer or the polymerization initiator.
The dripping may be performed continuously or intermittently.
単量体供給工程の開始時点は、重合反応期間の開始時点以降に、最初に反応容器内に単量体が供給された時点である。単量体供給工程の終了時点は、重合反応に用いられる全単量体を反応容器内に供給し終えた時点である。
反応容器内に全単量体を供給し終えた直後に重合反応を停止させてもよいが、反応容器内に全単量体を供給した後、反応容器内の反応液を予め設定された重合温度に保って重合反応を進行させる熟成工程を行うことが好ましい。
本発明において、単量体供給期間は重合反応期間の70%以上である。重合反応期間の70%以上にわたって単量体を供給することにより、得られる重合体の分子量のロット間バラツキを効果的に抑制することができる。該ロット間における分子量のバラツキがより抑制されやすい点で、単量体供給期間は、重合反応期間の75%以上がより好ましく、80%以上がさらに好ましい。該単量体供給期間の重合反応期間に対する割合は100%でもよいが、単量体の反応率が高くなり、良好な生産性が得られやすい点で95%以下が好ましく、90%以下がより好ましい。
重合反応期間は、短すぎると重合反応が不十分となり、未反応の単量体が多く残ってしまい、長すぎると製造効率が悪くなるため、これらの点を加味して設定することができる。重合反応期間は、重合反応で製造される重合体の組成や生成量にもよるが、例えば3〜15時間が好ましく、4〜12時間がより好ましい。
The start time of the monomer supply step is the time when the monomer is first supplied into the reaction vessel after the start time of the polymerization reaction period. The end point of the monomer supply step is the time point when all the monomers used for the polymerization reaction have been supplied into the reaction vessel.
The polymerization reaction may be stopped immediately after supplying all the monomers in the reaction vessel, but after supplying all the monomers in the reaction vessel, the reaction solution in the reaction vessel is set in advance by polymerization. It is preferable to carry out an aging step in which the polymerization reaction proceeds while maintaining the temperature.
In the present invention, the monomer supply period is 70% or more of the polymerization reaction period. By supplying the monomer over 70% or more of the polymerization reaction period, the lot-to-lot variation in the molecular weight of the resulting polymer can be effectively suppressed. The monomer supply period is more preferably 75% or more, and more preferably 80% or more of the polymerization reaction period, in that molecular weight variation among the lots is more easily suppressed. The ratio of the monomer supply period to the polymerization reaction period may be 100%, but is preferably 95% or less, more preferably 90% or less in that the monomer reaction rate increases and good productivity is easily obtained. preferable.
If the polymerization reaction period is too short, the polymerization reaction becomes insufficient, and a large amount of unreacted monomer remains. If the polymerization reaction period is too long, the production efficiency deteriorates. Therefore, the polymerization reaction period can be set in consideration of these points. The polymerization reaction period is preferably 3 to 15 hours, and more preferably 4 to 12 hours, although it depends on the composition and production amount of the polymer produced by the polymerization reaction.
重合反応において予め設定される重合温度は、重合開始剤の分解温度に応じて決められる。ラジカル重合開始剤を用いる場合の重合温度は、一般的には50〜150℃の範囲内である。
本発明では、単量体供給期間中の反応容器内の反応液の温度が、該単量体供給期間における該反応液の平均温度±1.5℃の範囲内に維持されるように、反応液の温度変動を抑える。反応液の温度の変動を上記の範囲内とすることにより、得られる重合体の分子量のロット間バラツキを効果的に抑制することができる。該反応液の平均温度±1.2℃の範囲内に維持されることが好ましく、該反応液の平均温度±1.0℃の範囲内に維持されることが好ましい。
単量体供給期間における該反応液の平均温度は、必ずしも予め設定された重合温度と一致しなくてもよいが、該重合温度に近いことが好ましい。具体的には該平均温度が該重合温度±1.2℃の範囲内であることが好ましい。
The polymerization temperature set in advance in the polymerization reaction is determined according to the decomposition temperature of the polymerization initiator. The polymerization temperature in the case of using a radical polymerization initiator is generally in the range of 50 to 150 ° C.
In the present invention, the reaction is carried out so that the temperature of the reaction liquid in the reaction vessel during the monomer supply period is maintained within the range of the average temperature of the reaction liquid ± 1.5 ° C. during the monomer supply period. Reduce liquid temperature fluctuations. By setting the temperature fluctuation of the reaction solution within the above range, it is possible to effectively suppress the lot-to-lot variation in the molecular weight of the obtained polymer. The average temperature of the reaction solution is preferably maintained within a range of ± 1.2 ° C., and the average temperature of the reaction solution is preferably maintained within a range of ± 1.0 ° C.
The average temperature of the reaction liquid during the monomer supply period does not necessarily coincide with a preset polymerization temperature, but is preferably close to the polymerization temperature. Specifically, the average temperature is preferably within the range of the polymerization temperature ± 1.2 ° C.
反応液の温度は単量体供給期間の開始時点、及びその後、予め設定された一定の間隔時間が経過する毎に測定して取得する。そして、単量体供給期間の開始時点から4分間経過する毎に、該4分間の間に取得した反応液の温度データの平均値を求め、該平均値を温度変動を評価するための代表値とする。反応液の温度データを取得(測定)する間隔時間は1分以内とし、15秒〜1分が好ましい。
例えば、該間隔時間が1分である場合、反応開始から1分ごとに反応液の温度を測定し、反応開始から1分、2分、3分、及び4分後の4点の温度データの平均値をその4分間の代表値x1とする。また、5分、6分、7分、及び8分後の4点の温度データの平均値をその4分間の代表値x2とする。以後単量体供給期間の終了時点まで同様にして代表値x3、x4…を求め、全部の代表値x1、x2、x3、x4…の平均値を、単量体供給期間における反応液の平均温度Xとする。各代表値x1、x2…の全部が、該平均温度Xより1.5℃低い温度から、該平均温度Xよりも1.5℃高い温度までの範囲内であれば、本発明における「単量体供給期間中の反応液の温度が、該単量体供給期間における反応液の平均温度±1.5℃の範囲内である」を満たす。
The temperature of the reaction solution is measured and acquired at the start of the monomer supply period and thereafter every time a predetermined interval time elapses. Then, every 4 minutes from the start of the monomer supply period, an average value of the temperature data of the reaction liquid obtained during the 4 minutes is obtained, and the average value is a representative value for evaluating temperature fluctuations. And The interval time for acquiring (measuring) the temperature data of the reaction solution is within 1 minute, and preferably 15 seconds to 1 minute.
For example, when the interval time is 1 minute, the temperature of the reaction solution is measured every minute from the start of the reaction, and 4 points of temperature data of 1 minute, 2 minutes, 3 minutes, and 4 minutes after the start of the reaction are measured. The average value is set as the representative value x1 for 4 minutes. Further, the average value of the temperature data at 4 points after 5 minutes, 6 minutes, 7 minutes, and 8 minutes is set as the representative value x2 for the 4 minutes. Thereafter, the representative values x3, x4,... Are similarly obtained until the end of the monomer supply period, and the average value of all the representative values x1, x2, x3, x4,. Let X be. If all the representative values x1, x2,... Are within a range from a temperature 1.5 ° C. lower than the average temperature X to a temperature 1.5 ° C. higher than the average temperature X, The temperature of the reaction liquid during the body supply period is within the range of the average temperature of the reaction liquid ± 1.5 ° C. during the monomer supply period ”.
また、例えば、温度データを取得する間隔時間が30秒である場合、反応開始から30秒ごとに反応液の温度を測定し、反応開始から0.5分、1分、1.5分、2分、2.5分、3分、3.5分、及び4分後の8点の温度データの平均値をその4分間の代表値x1とする。また、4.5分、5分、5.5分、6分、6.5分、7分、7.5分、及び8分後の8点の温度データの平均値をその4分間の代表値x2とする。以後単量体供給期間の終了時点まで同様にして代表値x3、x4…を求め、全部の代表値x1、x2、x3、x4…の平均値を、単量体供給期間における反応液の平均温度Xとする。 For example, when the interval time for acquiring temperature data is 30 seconds, the temperature of the reaction solution is measured every 30 seconds from the start of the reaction, and 0.5 minutes, 1 minute, 1.5 minutes, 2 minutes from the start of the reaction. The average value of the temperature data of 8 points after minutes, 2.5 minutes, 3 minutes, 3.5 minutes, and 4 minutes is taken as the representative value x1 for the 4 minutes. In addition, the average value of the temperature data of 8 points after 4.5 minutes, 5.5 minutes, 5.5 minutes, 6 minutes, 6.5 minutes, 7 minutes, 7.5 minutes, and 8 minutes is the representative for the 4 minutes. Value x2. Thereafter, the representative values x3, x4,... Are similarly obtained until the end of the monomer supply period, and the average value of all the representative values x1, x2, x3, x4,. Let X be.
本発明において、重合反応工程中は反応容器内の反応液を撹拌して、重合反応の均一性を向上させることが好ましい。また、反応容器内の圧力制御ができ、熱伝導性に優れ反応温度制御が容易になる点で、耐圧製金属反応容器を用いることが好ましい。金属としては耐食性が高く、重合体への金属不純物の混入が低減しやすい点でステンレス鋼(以下SUSとも言う)が好ましい。反応容器の内面のうち、少なくとも反応液が接触する部分が、ステンレス鋼からなることが好ましい。 In the present invention, it is preferable to improve the uniformity of the polymerization reaction by stirring the reaction solution in the reaction vessel during the polymerization reaction step. Moreover, it is preferable to use a pressure-resistant metal reaction vessel in that the pressure in the reaction vessel can be controlled and the reaction temperature can be easily controlled with excellent thermal conductivity. As the metal, stainless steel (hereinafter also referred to as SUS) is preferable because it has high corrosion resistance and can easily reduce the mixing of metal impurities into the polymer. Of the inner surface of the reaction vessel, at least the portion with which the reaction solution comes into contact is preferably made of stainless steel.
重合工程の好ましい一実施態様は、反応容器に予め重合溶媒を供給し、これを予め設定された重合温度に加温し、該重合温度が維持されるように温度制御しつつ、単量体及び/又は重合開始剤と重合溶媒との混合物からなる滴下溶液を滴下する方法で、単量体と重合開始剤を供給し、全部の単量体を供給し終えた後、熟成工程を行い、その後に重合反応を停止させる。
本実施態様において、重合溶媒の全使用量は、反応容器に供給される全原料(重合溶媒と単量体と重合開始剤の合計)のうち、単量体の合計量が25質量%以下、好ましくは5〜25質量%となるように設定する。この重合溶媒の全使用量の一部を反応容器に予め供給し、残りを滴下溶液に使用することが好ましい。滴下溶液における単量体の濃度は15〜50質量%が好ましく、25〜40質量%がより好ましい。
In a preferred embodiment of the polymerization step, a polymerization solvent is supplied to the reaction vessel in advance, and the polymerization solvent is heated to a preset polymerization temperature, and the temperature and the temperature are controlled so that the polymerization temperature is maintained. / Or a method of dropping a dropping solution composed of a mixture of a polymerization initiator and a polymerization solvent, supplying a monomer and a polymerization initiator, and after completing the supply of all the monomers, performing an aging step, The polymerization reaction is stopped.
In this embodiment, the total amount of polymerization solvent used is 25% by mass or less of the total amount of monomers out of all raw materials (total of polymerization solvent, monomer, and polymerization initiator) supplied to the reaction vessel. Preferably it sets so that it may become 5-25 mass%. It is preferable to supply a part of the total amount of the polymerization solvent to the reaction vessel in advance and use the rest for the dropping solution. 15-50 mass% is preferable and, as for the density | concentration of the monomer in a dripping solution, 25-40 mass% is more preferable.
重合工程の好ましい他の実施態様は、反応容器に予め単量体の一部及び重合溶媒を供給し、これを予め設定された重合温度に加温し、該重合温度が維持されるように温度制御しつつ、単量体及び/又は重合開始剤と重合溶媒との混合物からなる滴下溶液を滴下する方法で、単量体の残りと重合開始剤を供給し、全部の単量体を供給し終えた後、熟成工程を行い、その後に重合反応を停止させる。
本実施態様において、重合溶媒の全使用量は、反応容器に供給される全原料(重合溶媒と単量体と重合開始剤の合計)のうち、単量体の合計量が30質量%未満、好ましくは5〜25質量%となるように設定する。この重合溶媒の全使用量の一部を反応容器に予め供給し、残りを滴下溶液に使用することが好ましい。重合開始剤が滴下される直前の反応容器内の液(重合溶媒と単量体の混合物)における単量体の濃度は0〜30質量%が好ましく、3〜20質量%がより好ましい。滴下溶液における単量体の濃度は15〜50質量%が好ましく、25〜40質量%がより好ましい。
In another preferred embodiment of the polymerization step, a part of the monomer and the polymerization solvent are supplied to the reaction vessel in advance, and this is heated to a preset polymerization temperature, and the temperature is maintained so that the polymerization temperature is maintained. In a controlled manner, a dropping solution consisting of a monomer and / or a mixture of a polymerization initiator and a polymerization solvent is added dropwise to supply the remainder of the monomer and the polymerization initiator, and supply all the monomers. After finishing, an aging step is performed, and then the polymerization reaction is stopped.
In this embodiment, the total amount of polymerization solvent used is less than 30% by mass of the total amount of monomers out of all raw materials (total of polymerization solvent, monomer and polymerization initiator) supplied to the reaction vessel. Preferably it sets so that it may become 5-25 mass%. It is preferable to supply a part of the total amount of the polymerization solvent to the reaction vessel in advance and use the rest for the dropping solution. 0-30 mass% is preferable and, as for the density | concentration of the monomer in the liquid (mixture of a polymerization solvent and a monomer) in the reaction container immediately before a polymerization initiator is dripped, 3-20 mass% is more preferable. 15-50 mass% is preferable and, as for the density | concentration of the monomer in a dripping solution, 25-40 mass% is more preferable.
反応停止工程において重合反応を停止させて得られる重合体溶液は、必要に応じて精製を行う。例えば、1,4−ジオキサン、アセトン、THF、MEK、MIBK、γ−ブチロラクトン、PGMEA、PGME、乳酸エチル等の希釈溶媒で適当な溶液粘度に希釈した後、メタノール、エタノール、イソプロピルアルコール、水、ヘキサン、ヘプタン、ジイソプロピルエーテル、又はそれらの混合溶媒等の貧溶媒中に滴下し、重合体を析出させる。この工程は再沈殿工程と呼ばれ、重合体溶液中に残存する未反応の単量体、重合開始剤等を取り除くために非常に有効である。未反応単量体は、そのまま残存しているとレジスト組成物として用いた場合に感度が低下するため、できるだけ取り除くことが好ましい。重合体中の不純物としての単量体含有量は2.0質量%以下がより好ましく、1.0質量%以下がさらに好ましく、0.29質量%以下が特に好ましく、0.25質量%以下が最も好ましい。 The polymer solution obtained by stopping the polymerization reaction in the reaction stopping step is purified as necessary. For example, after diluting to an appropriate solution viscosity with a diluting solvent such as 1,4-dioxane, acetone, THF, MEK, MIBK, γ-butyrolactone, PGMEA, PGME, ethyl lactate, methanol, ethanol, isopropyl alcohol, water, hexane In a poor solvent such as heptane, diisopropyl ether, or a mixed solvent thereof, the polymer is precipitated. This process is called a reprecipitation process, and is very effective for removing unreacted monomers, polymerization initiators and the like remaining in the polymer solution. If the unreacted monomer remains as it is, the sensitivity decreases when used as a resist composition, so it is preferable to remove it as much as possible. The monomer content as an impurity in the polymer is more preferably 2.0% by mass or less, further preferably 1.0% by mass or less, particularly preferably 0.29% by mass or less, and 0.25% by mass or less. Most preferred.
貧溶媒としては、製造する重合体が溶解せずに析出する溶媒であればよく、公知のものを使用できるが、半導体リソグラフィー用重合体に用いられる未反応の単量体、重合開始剤等を効率的に取り除くことができる点で、メタノール、イソプロピルアルコール、ジイソプロピルエーテル、ヘプタン、水、又はそれらの混合溶媒が好ましい。
使用する貧溶媒の量は残存する未反応単量体をより低減できるため、重合体溶液と同質量以上用いることができ、3倍以上が好ましく、4倍以上がより好ましく、5倍以上がさらに好ましく、6倍以上が特に好ましい。
As the poor solvent, any solvent may be used as long as the polymer to be produced is not dissolved, and any known solvent can be used, but unreacted monomers, polymerization initiators and the like used in the polymer for semiconductor lithography can be used. In view of efficient removal, methanol, isopropyl alcohol, diisopropyl ether, heptane, water, or a mixed solvent thereof is preferable.
Since the amount of the poor solvent used can further reduce the remaining unreacted monomer, it can be used in the same mass or more as the polymer solution, preferably 3 times or more, more preferably 4 times or more, and further more preferably 5 times or more. Preferably, 6 times or more is particularly preferable.
その後、析出物をろ別し、湿粉を得る。
また、湿粉を再び貧溶媒に分散させて重合体分散液を得た後、重合体をろ別する操作を繰り返すこともできる。この工程は、リスラリ工程と呼ばれ、重合体湿粉中に残存する未反応の単量体、重合開始剤等をより低減させるために非常に有効である。
重合体を高い生産性を維持したまま取得できる点ではリスラリ工程を行わず、再沈殿工程のみで重合体を精製することが好ましい。
Thereafter, the precipitate is filtered off to obtain a wet powder.
Further, after the wet powder is dispersed again in a poor solvent to obtain a polymer dispersion, an operation of filtering the polymer can be repeated. This step is called a restructuring step and is very effective for further reducing unreacted monomers, polymerization initiators and the like remaining in the polymer wet powder.
It is preferable to purify the polymer only by the reprecipitation step without performing the restructuring step in that the polymer can be obtained while maintaining high productivity.
得られた湿粉は、十分に乾燥して、乾燥粉末状の重合体を得ることができる。
また、ろ別した後、乾燥せずに湿粉のまま適当な溶媒に溶解させてリソグラフィー用組成物として用いてもよく、濃縮して低沸点化合物を除去してからリソグラフィー用組成物として用いてもよい。その際、保存安定剤等の添加剤を適宜添加してもよい。
また、乾燥させた後に適当な溶媒に溶解させ、さらに濃縮して低沸点化合物を除去してからリソグラフィー用組成物として用いてもよい。その際、保存安定剤等の添加剤を適宜添加してもよい。
The obtained wet powder can be sufficiently dried to obtain a dry powder polymer.
In addition, after filtering off, it may be used as a lithographic composition by dissolving it in a suitable solvent without drying and using it as a lithographic composition. Also good. At that time, additives such as a storage stabilizer may be appropriately added.
Further, after drying, it may be dissolved in a suitable solvent and further concentrated to remove the low boiling point compound, and then used as a composition for lithography. At that time, additives such as a storage stabilizer may be appropriately added.
<レジスト組成物の製造方法>
本発明のレジスト組成物の製造方法は、本発明の製造方法でレジスト用重合体を製造し、得られたレジスト用重合体と、活性光線又は放射線の照射により酸を発生する化合物(以下、「光酸発生剤」ということもある。)を混合する工程を有するレジスト組成物の製造方法。好ましくは該重合体と、光酸発生剤とをレジスト溶媒に溶解させてレジスト組成物を製造する。
レジスト用重合体を製造する際は、単量体として、上述した構成単位(a)を導く単量体(極性基を有する単量体)及び上述した構成単位(b)を導く単量体(酸脱離性基を有する単量体)を用いることが好ましい
得られるレジスト組成物は、本発明の製造方法で得られるレジスト用重合体と、活性光線又は放射線の照射により酸を発生する化合物とを含有する、化学増幅型レジスト組成物である。
<Method for producing resist composition>
The method for producing a resist composition of the present invention comprises producing a resist polymer by the production method of the present invention, and the resulting resist polymer and a compound that generates an acid upon irradiation with actinic rays or radiation (hereinafter referred to as “ A method for producing a resist composition comprising a step of mixing a photoacid generator ”. Preferably, the polymer and the photoacid generator are dissolved in a resist solvent to produce a resist composition.
When the resist polymer is produced, as the monomer, the monomer that leads the structural unit (a) described above (monomer having a polar group) and the monomer that leads the structural unit (b) described above ( It is preferable to use a monomer having an acid leaving group. The obtained resist composition includes a resist polymer obtained by the production method of the present invention, and a compound that generates an acid upon irradiation with actinic rays or radiation. Is a chemically amplified resist composition.
[レジスト溶媒]
レジスト溶媒としては、前記重合溶媒と同様の溶媒が挙げられる。
[活性光線又は放射線の照射により酸を発生する化合物(光酸発生剤)]
光酸発生剤は、化学増幅型レジスト組成物の光酸発生剤として公知のものを適宜選択して用いることができる。光酸発生剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
光酸発生剤としては、例えば、オニウム塩化合物、スルホンイミド化合物、スルホン化合物、スルホン酸エステル化合物、キノンジアジド化合物、ジアゾメタン化合物等が挙げられる。
レジスト組成物における光酸発生剤の含有量は、重合体100質量部に対して、0.1〜20質量部が好ましく、0.5〜10質量部がより好ましい。
[Resist solvent]
Examples of the resist solvent include the same solvents as the polymerization solvent.
[Compound that generates acid upon irradiation with actinic ray or radiation (photoacid generator)]
As the photoacid generator, known photoacid generators for the chemically amplified resist composition can be appropriately selected and used. A photo-acid generator may be used individually by 1 type, and may use 2 or more types together.
Examples of the photoacid generator include onium salt compounds, sulfonimide compounds, sulfone compounds, sulfonic acid ester compounds, quinone diazide compounds, diazomethane compounds, and the like.
0.1-20 mass parts is preferable with respect to 100 mass parts of polymers, and, as for content of the photo-acid generator in a resist composition, 0.5-10 mass parts is more preferable.
[含窒素化合物]
化学増幅型レジスト組成物は、含窒素化合物を含んでいてもよい。含窒素化合物を含むことにより、レジストパターン形状、引き置き経時安定性等がさらに向上する。つまり、レジストパターンの断面形状が矩形により近くなり、また、レジスト膜に光を照射し、ついでベーク(PEB)した後、次の現像処理までの間に数時間放置されることが半導体素子の量産ラインではあるが、そのような放置(経時)したときにレジストパターンの断面形状の劣化の発生がより抑制される。
[Nitrogen-containing compounds]
The chemically amplified resist composition may contain a nitrogen-containing compound. By including the nitrogen-containing compound, the resist pattern shape, the stability over time, and the like are further improved. That is, the cross-sectional shape of the resist pattern becomes closer to a rectangle, and the resist film is irradiated with light, then baked (PEB), and then left for several hours before the next development process. Although it is a line, the occurrence of the deterioration of the cross-sectional shape of the resist pattern is further suppressed when left as such (timed).
含窒素化合物としては、アミンが好ましく、第2級低級脂肪族アミン、第3級低級脂肪族アミンがより好ましい。
含窒素化合物の量は、重合体100質量部に対して、0.01〜2質量部が好ましい。
The nitrogen-containing compound is preferably an amine, more preferably a secondary lower aliphatic amine or a tertiary lower aliphatic amine.
As for the quantity of a nitrogen-containing compound, 0.01-2 mass parts is preferable with respect to 100 mass parts of polymers.
[有機カルボン酸、リンのオキソ酸又はその誘導体]
化学増幅型レジスト組成物は、有機カルボン酸、リンのオキソ酸又はその誘導体(以下、これらをまとめて酸化合物と記す。)を含んでいてもよい。酸化合物を含むことにより、含窒素化合物の配合による感度劣化を抑えることができ、また、レジストパターン形状、引き置き経時安定性等がさらに向上する。
[Organic carboxylic acid, phosphorus oxo acid or derivative thereof]
The chemically amplified resist composition may contain an organic carboxylic acid, an oxo acid of phosphorus, or a derivative thereof (hereinafter collectively referred to as an acid compound). By including an acid compound, it is possible to suppress deterioration in sensitivity due to the blending of the nitrogen-containing compound, and further improve the resist pattern shape, stability with time of leaving, and the like.
有機カルボン酸としては、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸等が挙げられる。
リンのオキソ酸又はその誘導体としては、リン酸又はその誘導体、ホスホン酸又はその誘導体、ホスフィン酸又はその誘導体等が挙げられる。
酸化合物の量は、重合体100質量部に対して、0.01〜5質量部が好ましい。
Examples of the organic carboxylic acid include malonic acid, citric acid, malic acid, succinic acid, benzoic acid, and salicylic acid.
Examples of phosphorus oxo acids or derivatives thereof include phosphoric acid or derivatives thereof, phosphonic acid or derivatives thereof, phosphinic acid or derivatives thereof, and the like.
The amount of the acid compound is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the polymer.
[添加剤]
レジスト組成物は、必要に応じて、界面活性剤、その他のクエンチャー、増感剤、ハレーション防止剤、保存安定剤、消泡剤等の各種添加剤を含んでいてもよい。該添加剤は、当該分野で公知のものであればいずれも使用可能である。また、これら添加剤の量は、特に限定されず、適宜決めればよい。
[Additive]
The resist composition may contain various additives such as a surfactant, other quenchers, sensitizers, antihalation agents, storage stabilizers, and antifoaming agents as necessary. Any additive can be used as long as it is known in the art. Further, the amount of these additives is not particularly limited, and may be determined as appropriate.
<微細パターンが形成された基板の製造方法>
本発明の、微細パターンが形成された基板の製造方法は、本発明の製造方法でレジスト組成物を製造する工程と、得られたレジスト組成物を、基板の被加工面上に塗布してレジスト膜を形成する工程と、該レジスト膜に対して露光する工程と、露光されたレジスト膜を現像液を用いて現像する工程を有する。
以下、該基板の製造方法の一例について説明する。
<Manufacturing method of substrate on which fine pattern is formed>
The method for producing a substrate on which a fine pattern is formed according to the present invention comprises a step of producing a resist composition by the production method of the present invention, and applying the obtained resist composition onto a work surface of the substrate to form a resist. A step of forming a film, a step of exposing the resist film, and a step of developing the exposed resist film using a developer.
Hereinafter, an example of the manufacturing method of the substrate will be described.
まず、所望の微細パターンを形成しようとするシリコンウエハー等の被加工基板の表面(被加工面)に、レジスト組成物をスピンコート等により塗布する。そして、該レジスト組成物が塗布された被加工基板を、ベーキング処理(プリベーク)等で乾燥することにより、基板上にレジスト膜を形成する。 First, a resist composition is applied by spin coating or the like to the surface (processed surface) of a substrate to be processed such as a silicon wafer on which a desired fine pattern is to be formed. And the resist film is formed on a board | substrate by drying the to-be-processed board | substrate with which this resist composition was apply | coated by baking process (prebaking) etc.
次いで、レジスト膜に、フォトマスクを介して、250nm以下の波長の光を照射して潜像を形成する(露光)。照射光としては、KrFエキシマレーザー、ArFエキシマレーザー、F2エキシマレーザー、EUVエキシマレーザーが好ましく、ArFエキシマレーザーが特に好ましい。また、電子線を照射してもよい。
また、該レジスト膜と露光装置の最終レンズとの間に、純水、パーフルオロ−2−ブチルテトラヒドロフラン、パーフルオロトリアルキルアミン等の高屈折率液体を介在させた状態で光を照射する液浸露光を行ってもよい。
Next, the resist film is irradiated with light having a wavelength of 250 nm or less through a photomask to form a latent image (exposure). As irradiation light, a KrF excimer laser, an ArF excimer laser, an F 2 excimer laser, and an EUV excimer laser are preferable, and an ArF excimer laser is particularly preferable. Moreover, you may irradiate an electron beam.
In addition, immersion in which light is irradiated with a high refractive index liquid such as pure water, perfluoro-2-butyltetrahydrofuran, or perfluorotrialkylamine interposed between the resist film and the final lens of the exposure apparatus. Exposure may be performed.
露光後、適宜熱処理(露光後ベーク、PEB)し、レジスト膜にアルカリ現像液を接触させ、露光部分を現像液に溶解させ、除去する(現像)。アルカリ現像液としては、公知のものを用いることができる。
現像後、基板を純水等で適宜リンス処理する。このようにして被加工基板上にレジストパターンが形成される。
After the exposure, heat treatment is appropriately performed (post-exposure baking, PEB), an alkali developer is brought into contact with the resist film, and the exposed portion is dissolved in the developer and removed (development). A well-known thing can be used as an alkali developing solution.
After development, the substrate is appropriately rinsed with pure water or the like. In this way, a resist pattern is formed on the substrate to be processed.
レジストパターンが形成された基板は、適宜熱処理(ポストベーク)してレジストを強化し、レジストのない部分を選択的にエッチングする。
エッチング後、レジストを剥離剤によって除去することによって、パターンが形成された基板が得られる。
The substrate on which the resist pattern is formed is appropriately heat-treated (post-baked) to strengthen the resist and selectively etch the portion without the resist.
After the etching, the resist is removed with a release agent to obtain a substrate on which a pattern is formed.
本発明の製造方法によれば、単量体供給期間中の反応液の温度を、該単量体供給期間中の反応液の平均温度±1.5℃の範囲内に維持するとともに、重合反応期間の終了時における反応液の質量に対して、反応器内に供給された単量体の合計質量を25質量%以下とし、かつ単量体供給期間を、重合反応期間の70%以上とすることにより、ロット間における分子量のばらつきが、従来には無い高度なレベルで小さく抑えられた重合体が得られる。
特に重合反応終了時の反応液に対する、該反応液に供給された単量体の合計質量を上記の範囲に小さくすることにより、反応容器内の反応液の単位容積当たりの重合反応による発熱量が十分に低減される。
また、重合反応期間の70%以上にわたって単量体が供給されることにより、単位時間当たりの重合反応による発熱量が十分に低減される。
このように、重合反応による単位容積当たりの発熱量及び単位時間当たりの発熱量を同時に低減させることにより、重合工程において反応容器内の反応液の温度がほとんど変動しないように制御することの困難性が緩和され、その結果、重合反応時の反応液の温度均一性を向上させて、分子量のロット間バラツキを極めて小さくできると考えられる。
According to the production method of the present invention, the temperature of the reaction solution during the monomer supply period is maintained within the range of the average temperature ± 1.5 ° C. of the reaction solution during the monomer supply period, and the polymerization reaction The total mass of the monomers supplied into the reactor is 25% by mass or less with respect to the mass of the reaction liquid at the end of the period, and the monomer supply period is 70% or more of the polymerization reaction period. As a result, a polymer can be obtained in which the variation in molecular weight between lots is suppressed to a small level at a high level that has not existed before.
In particular, by reducing the total mass of the monomers supplied to the reaction liquid to the reaction liquid at the end of the polymerization reaction in the above range, the amount of heat generated by the polymerization reaction per unit volume of the reaction liquid in the reaction vessel can be reduced. It is sufficiently reduced.
In addition, the amount of heat generated by the polymerization reaction per unit time is sufficiently reduced by supplying the monomer over 70% of the polymerization reaction period.
In this way, it is difficult to control the temperature of the reaction liquid in the reaction vessel to hardly fluctuate in the polymerization process by simultaneously reducing the heat generation amount per unit volume and the heat generation amount per unit time due to the polymerization reaction. As a result, it is considered that the temperature uniformity of the reaction solution during the polymerization reaction can be improved and the variation in molecular weight between lots can be extremely reduced.
本発明により得られるレジスト組成物は、該レジスト組成物に含まれる半導体リソグラフィー用重合体の分子量バラツキが小さいため、感度及び現像コントラスト等のレジスト性能の安定性に優れる。
したがって本発明の基板の製造方法によれば、本発明にかかるレジスト組成物を用いることによって、高精度の微細なレジストパターンを安定して形成できる。また、高感度のレジスト組成物の使用が要求される、波長250nm以下の露光光を用いるフォトリソグラフィー又は電子線リソグラフィー、例えばArFエキシマレーザー(193nm)を使用するリソグラフィーによる、パターン形成にも好適に用いることができる。
The resist composition obtained by the present invention is excellent in stability of resist performance such as sensitivity and development contrast since the molecular weight variation of the polymer for semiconductor lithography contained in the resist composition is small.
Therefore, according to the manufacturing method of the board | substrate of this invention, a highly accurate fine resist pattern can be formed stably by using the resist composition concerning this invention. In addition, it is also suitable for pattern formation by photolithography using exposure light having a wavelength of 250 nm or less or lithography using electron beam lithography, for example, ArF excimer laser (193 nm), which requires use of a highly sensitive resist composition. be able to.
以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
各例において「部」とあるのは、特に断りのない限り「質量部」を示す。測定方法及び評価方法は以下の方法を用いた。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
In each example, “part” means “part by mass” unless otherwise specified. The measuring method and the evaluation method used the following methods.
<重量平均分子量の測定>
重合体の重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、下記の条件(GPC条件)でゲル・パーミエーション・クロマトグラフィーにより、ポリスチレン換算で求めた。
[GPC条件]
装置:東ソー社製、東ソー高速GPC装置 HLC−8220GPC(商品名)、
分離カラム:昭和電工社製、Shodex GPC K−805L(商品名)を3本直列に連結したもの、
測定温度:40℃、
溶離液:テトラヒドロフラン(THF)、
試料:重合体の約20mgを5mLのTHFに溶解し、0.5μmメンブレンフィルターで濾過した溶液、
流量:1mL/分、
注入量:0.1mL、
検出器:示差屈折計。
<Measurement of weight average molecular weight>
The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polymer were determined in terms of polystyrene by gel permeation chromatography under the following conditions (GPC conditions).
[GPC conditions]
Equipment: Tosoh Corporation, Tosoh High Speed GPC Equipment HLC-8220GPC (trade name),
Separation column: manufactured by Showa Denko, Shodex GPC K-805L (trade name) connected in series,
Measurement temperature: 40 ° C.
Eluent: Tetrahydrofuran (THF)
Sample: A solution in which about 20 mg of a polymer is dissolved in 5 mL of THF and filtered through a 0.5 μm membrane filter.
Flow rate: 1 mL / min,
Injection volume: 0.1 mL,
Detector: differential refractometer.
検量線I:標準ポリスチレンの約20mgを5mLのTHFに溶解し、0.5μmメンブレンフィルターで濾過した溶液を用いて、上記の条件で分離カラムに注入し、溶出時間と分子量の関係を求めた。標準ポリスチレンは、下記の東ソー社製の標準ポリスチレン(いずれも商品名)を用いた。
F−80(Mw=706,000)、
F−20(Mw=190,000)、
F−4(Mw=37,900)、
F−1(Mw=10,200)、
A−2500(Mw=2,630)、
A−500(Mw=682、578、474、370、260の混合物)。
Calibration curve I: About 20 mg of standard polystyrene was dissolved in 5 mL of THF, and the solution was filtered through a 0.5 μm membrane filter and injected into a separation column under the above conditions, and the relationship between elution time and molecular weight was determined. As the standard polystyrene, the following standard polystyrene manufactured by Tosoh Corporation (both trade names) were used.
F-80 (Mw = 706,000),
F-20 (Mw = 190,000),
F-4 (Mw = 37,900),
F-1 (Mw = 10,200),
A-2500 (Mw = 2,630),
A-500 (mixture of Mw = 682, 578, 474, 370, 260).
<感度、現像コントラスト測定>
レジスト組成物を、6インチシリコンウエハー上に回転塗布し、ホットプレート上で120℃、60秒間プリベーク(PAB)して、厚さ300nmの薄膜を形成した。ArFエキシマレーザー露光装置(リソテックジャパン製 VUVES−4500)を用い、露光量を変えて10mm×10mm2の18ショットを露光した。次いで110℃、60秒間ポストベーク(PEB)した後、レジスト現像アナライザー(リソテックジャパン製RDA−800)を用い、23℃にて2.38質量%テトラメチルアンモニウムヒドロキシド水溶液で65秒間現像し、各露光量における現像中のレジスト膜厚の経時変化を測定した。
<Sensitivity and development contrast measurement>
The resist composition was spin-coated on a 6-inch silicon wafer and prebaked (PAB) at 120 ° C. for 60 seconds on a hot plate to form a thin film having a thickness of 300 nm. Using an ArF excimer laser exposure apparatus (VUVES-4500, manufactured by RISOTEC Japan), 18 shots of 10 mm × 10 mm 2 were exposed while changing the exposure amount. Next, after post-baking (PEB) at 110 ° C. for 60 seconds, using a resist development analyzer (RDA-800 manufactured by RISOTEC Japan), development is performed with an aqueous 2.38 mass% tetramethylammonium hydroxide solution at 23 ° C. for 65 seconds. The change with time of the resist film thickness during development at each exposure amount was measured.
[解析]
得られたデータを基に、露光量(mJ/cm2)の対数と、初期膜厚に対する60秒間現像した時点での残存膜厚率(以下、残膜率という)(%)をプロットした曲線(以下、露光量−残膜率曲線という)を作成し、Eth感度(残膜率0%とするための必要露光量であり、感度を表す。)を以下の通り求めた。
Eth感度:露光量−残膜率曲線が残膜率0%と交わる露光量(mJ/cm2)
[analysis]
A curve plotting the logarithm of the exposure amount (mJ / cm 2 ) and the residual film thickness ratio (hereinafter referred to as the residual film ratio) (%) when developed for 60 seconds with respect to the initial film thickness, based on the obtained data (Hereinafter, exposure amount-residual film rate curve) was prepared, and Eth sensitivity (required exposure amount for setting the residual film rate to 0%, which represents sensitivity) was determined as follows.
Eth sensitivity: exposure amount (mJ / cm 2 ) at which the exposure amount-residual film rate curve intersects with a residual film rate of 0%
<単量体供給期間中の反応液の温度>
反応開始から30秒ごとに反応液の温度を測定し、反応開始から0.5分、1分、1.5分、2分、2.5分、3分、3.5分、及び4分後の8点の温度データの平均値をその4分間の代表値x1とする。また、4.5分、5分、5.5分、6分、6.5分、7分、7.5分、及び8分後の8点の温度データの平均値をその4分間の代表値x2とする。以後単量体供給期間の終了時点まで同様にして代表値x3、x4…を求め、全部の代表値x1、x2、x3、x4…の平均値を、単量体供給期間における反応液の平均温度Xとする。平均温度Xと、各代表値x1、x2、x3、x4…との差の絶対値のうち、最も大きい値を反応液温度の変動幅(単位:℃)として表に示す。
<Temperature of reaction liquid during monomer supply period>
The temperature of the reaction solution is measured every 30 seconds from the start of the reaction, and 0.5 minutes, 1 minute, 1.5 minutes, 2 minutes, 2.5 minutes, 3 minutes, 3.5 minutes, and 4 minutes from the start of the reaction. The average value of the temperature data of the subsequent 8 points is taken as the representative value x1 for 4 minutes. In addition, the average value of the temperature data of 8 points after 4.5 minutes, 5.5 minutes, 5.5 minutes, 6 minutes, 6.5 minutes, 7 minutes, 7.5 minutes, and 8 minutes is the representative for the 4 minutes. Value x2. Thereafter, the representative values x3, x4,... Are similarly obtained until the end of the monomer supply period, and the average value of all the representative values x1, x2, x3, x4,. Let X be. Among the absolute values of the differences between the average temperature X and the representative values x1, x2, x3, x4..., The largest value is shown in the table as the fluctuation width (unit: ° C.) of the reaction solution temperature.
<重量平均分子量のロット間差>
各実施例において、同一の条件で重合体を5回合成し、それぞれ得られた重合体の重量平均分子量を測定した。測定数5の標準偏差を求め、重量平均分子量のロット間差とした。該ロット間差の値が小さいほど、重合反応の再現性に優れ、重量平均分子量のロット間バラツキが小さいことを示す。
<Lot difference in weight average molecular weight>
In each example, the polymer was synthesized five times under the same conditions, and the weight average molecular weight of each polymer obtained was measured. The standard deviation of the number of measurements 5 was determined and used as the difference between the lots in the weight average molecular weight. The smaller the difference between lots, the better the reproducibility of the polymerization reaction, and the smaller the lot-to-lot variation in the weight average molecular weight.
[実施例1]
実施例1は参考例である。
窒素導入口、攪拌機、コンデンサー、滴下漏斗1個、及び温度計を備えた容量1LのSUS製のフラスコに、重合溶媒として乳酸エチル258.9gを入れた。フラスコ内を18kPa(到達減圧度)まで減圧した後、窒素ガスを供給して101kPaまで昇圧した(ガスパージ工程)。すなわち、反応容器内を減圧した後不活性ガスを供給する操作(以下、減圧後パージ操作という)を2回行った。重合圧力は常圧(101kPa)である。
次いで、フラスコ内を窒素雰囲気下に保ったままフラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を81℃に上げ、フラスコの内温を80℃にした。
続いて、フラスコ内の溶液(反応液)の温度の取得(確認)を30秒ごとに実施しながら、下記混合物1(単量体溶液)を滴下漏斗より、5時間かけて一定速度でフラスコ内に滴下した。また、湯浴の温度をヒーターで加熱しながら81℃に保った。
滴下中(単量体供給期間中)の反応液の平均温度は80.0℃であり、反応液温度の変動幅(最大値)は1.0℃であった。すなわち、反応液の温度は常に80.0±1.0℃以内に制御されていた。反応液温度の変動幅を表1に示す(以下、同様)。
滴下終了後、反応液を80℃の温度で2時間保持した(熟成工程)。その後、反応停止操作である反応液の冷却を開始し、25℃まで反応液を冷却し、重合反応を停止させて、重合体溶液を得た。滴下時間と熟成工程の時間の合計が重合反応期間であり、滴下時間が単量体供給期間である。これらの値から重合反応期間中の単量体供給期間の割合を求めた。結果を表1に示す(以下、同様)。
重合反応期間の終了時における反応液の質量は、予め反応容器に仕込んだ液(本例では重合溶媒)の質量、ならびに滴下により供給した単量体、重合開始剤、及び重合溶媒の質量を合計した値として求め、該反応液の質量に対する供給された単量体の合計量の割合を算出した。結果を表1に示す(以下、同様)。
[Example 1]
Example 1 is a reference example.
258.9 g of ethyl lactate was added as a polymerization solvent to a 1 L SUS flask equipped with a nitrogen inlet, a stirrer, a condenser, one dropping funnel, and a thermometer. After reducing the pressure in the flask to 18 kPa (final pressure reduction degree), nitrogen gas was supplied to increase the pressure to 101 kPa (gas purge step). That is, an operation of supplying an inert gas after depressurizing the inside of the reaction vessel (hereinafter referred to as a purge operation after depressurization) was performed twice. The polymerization pressure is normal pressure (101 kPa).
Next, the flask was placed in a hot water bath while keeping the inside of the flask in a nitrogen atmosphere, the temperature of the hot water bath was raised to 81 ° C. while stirring the flask, and the internal temperature of the flask was set to 80 ° C.
Subsequently, while obtaining (checking) the temperature of the solution (reaction solution) in the flask every 30 seconds, the following mixture 1 (monomer solution) was placed in the flask at a constant rate over 5 hours from the dropping funnel. It was dripped in. Further, the temperature of the hot water bath was kept at 81 ° C. while being heated with a heater.
The average temperature of the reaction liquid during dropping (during the monomer supply period) was 80.0 ° C., and the fluctuation width (maximum value) of the reaction liquid temperature was 1.0 ° C. That is, the temperature of the reaction solution was always controlled within 80.0 ± 1.0 ° C. The fluctuation range of the reaction solution temperature is shown in Table 1 (hereinafter the same).
After completion of the dropping, the reaction solution was kept at a temperature of 80 ° C. for 2 hours (aging process). Then, cooling of the reaction liquid which is reaction stop operation was started, the reaction liquid was cooled to 25 degreeC, the polymerization reaction was stopped, and the polymer solution was obtained. The total of the dropping time and the aging time is the polymerization reaction period, and the dropping time is the monomer supply period. From these values, the ratio of the monomer supply period during the polymerization reaction period was determined. The results are shown in Table 1 (hereinafter the same).
The mass of the reaction liquid at the end of the polymerization reaction period is the sum of the mass of the liquid (polymerization solvent in this example) previously charged in the reaction vessel and the mass of the monomer, polymerization initiator, and polymerization solvent supplied dropwise. The ratio of the total amount of monomers supplied to the mass of the reaction solution was calculated. The results are shown in Table 1 (hereinafter the same).
(混合物1)
下記式(m1)の単量体を81.60g、
下記式(m2)の単量体を94.08g、
下記式(m3)の単量体を56.64g、
乳酸エチル431.5g、
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))6.624g。
混合物1における単量体の組成(モル%)を表1に示す。
(Mixture 1)
81.60 g of a monomer of the following formula (m1),
94.08 g of a monomer of the following formula (m2),
56.64 g of a monomer of the following formula (m3),
431.5 g of ethyl lactate,
6.624 g of dimethyl-2,2′-azobisisobutyrate (Wako Pure Chemical Industries, V601 (trade name)).
The composition (mol%) of the monomer in the mixture 1 is shown in Table 1.
得られた重合体溶液を7.0倍量の、メタノール及び水の混合溶媒(メタノール/水=80/20容量比)に撹拌しながら滴下し、白色の析出物(重合体P1)の沈殿を得た。沈殿を濾別し、重合体湿粉を得た。重合体湿粉を減圧下40℃で約40時間乾燥した。得られた重合体P1(製造1−1とする)の重量平均分子量(Mw)、分子量分布(Mw/Mn)を表1に示す(以下、同様)。 The obtained polymer solution was added dropwise to a 7.0 times amount of a mixed solvent of methanol and water (methanol / water = 80/20 volume ratio) while stirring to precipitate a white precipitate (polymer P1). Obtained. The precipitate was filtered off to obtain a polymer wet powder. The polymer powder was dried at 40 ° C. under reduced pressure for about 40 hours. The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the obtained polymer P1 (referred to as Production 1-1) are shown in Table 1 (hereinafter the same).
重合体P1の100部と、光酸発生剤であるトリフェニルスルホニウムトリフレートの2部と、溶媒であるPGMEAとを、重合体濃度が12.5質量%になるように混合して均一溶液とした後、孔径0.1μmのメンブレンフィルターで濾過し、レジスト組成物を得た。得られたレジスト組成物の感度(Eth)を評価した。結果を表1に示す(以下、同様)。 100 parts of the polymer P1, 2 parts of triphenylsulfonium triflate as a photoacid generator, and PGMEA as a solvent are mixed so that the polymer concentration becomes 12.5% by mass to obtain a uniform solution. And filtered through a membrane filter having a pore size of 0.1 μm to obtain a resist composition. The sensitivity (Eth) of the obtained resist composition was evaluated. The results are shown in Table 1 (hereinafter the same).
同一の条件で重合体P1の製造をさらに4回(製造1−2〜1−5)行った。各回で得られた重合体の重量平均分子量(Mw)、分子量分布(Mw/Mn)を測定した。製造1−2〜1−5の重合平均分子量の標準偏差を求め、重量平均分子量(Mw)のロット間差とした。結果を表1に示す(以下、同様)。
各回で得られた重合体をそれぞれ用い、同一の条件でレジスト組成物を調製し、感度(Eth)を評価した。結果を表1に示す(以下、同様)。
Production of polymer P1 was further performed 4 times (production 1-2 to 1-5) under the same conditions. The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polymer obtained each time were measured. The standard deviation of the polymerization average molecular weight of production 1-2 to 1-5 was determined, and the difference between lots in the weight average molecular weight (Mw) was determined. The results are shown in Table 1 (hereinafter the same).
A resist composition was prepared under the same conditions using the polymers obtained each time, and the sensitivity (Eth) was evaluated. The results are shown in Table 1 (hereinafter the same).
[比較例2]
表1に示す通りに条件を変えたほかは、実施例1と同様にして重合体を製造し、評価した。結果を表1に示す。
実施例1と異なる点は以下の点である。すなわち混合物1を4時間かけて一定速度でフラスコ内に滴下した。この時、滴下中(単量体供給期間中)の反応液の平均温度は80.0℃であり、反応液温度の変動幅(最大値)は1.3℃であった。すなわち、反応液の温度は常に80.0±1.3℃以内に制御されていた。滴下終了後、反応液を80℃の温度で3時間保持した。
[Comparative Example 2]
A polymer was produced and evaluated in the same manner as in Example 1 except that the conditions were changed as shown in Table 1. The results are shown in Table 1.
The differences from the first embodiment are as follows. That is, the mixture 1 was dropped into the flask at a constant rate over 4 hours. At this time, the average temperature of the reaction liquid during dropping (during the monomer supply period) was 80.0 ° C., and the fluctuation range (maximum value) of the reaction liquid temperature was 1.3 ° C. That is, the temperature of the reaction solution was always controlled within 80.0 ± 1.3 ° C. After completion of dropping, the reaction solution was kept at a temperature of 80 ° C. for 3 hours.
[比較例3]
表1に示す通りに条件を変えたほかは、実施例1と同様にして重合体を製造し、評価した。結果を表1に示す。
実施例1と異なる点は以下の点である。すなわち、実施例1と同じSUS製のフラスコに予め供給する重合溶媒(乳酸エチル)の量を233.7gに変更した。滴下する単量体溶液を下記混合物3に変更した。滴下中(単量体供給期間中)の反応液の平均温度は80.0℃であり、反応液温度の変動幅(最大値)は1.3℃であった。すなわち、反応液の温度は常に80.0±1.3℃以内に制御されていた。
[Comparative Example 3]
A polymer was produced and evaluated in the same manner as in Example 1 except that the conditions were changed as shown in Table 1. The results are shown in Table 1.
The differences from the first embodiment are as follows. That is, the amount of the polymerization solvent (ethyl lactate) supplied in advance to the same SUS flask as in Example 1 was changed to 233.7 g. The monomer solution to be dropped was changed to the following mixture 3. The average temperature of the reaction liquid during dropping (during the monomer supply period) was 80.0 ° C., and the fluctuation width (maximum value) of the reaction liquid temperature was 1.3 ° C. That is, the temperature of the reaction solution was always controlled within 80.0 ± 1.3 ° C.
(混合物3)
前記式(m1)の単量体を102.00g、
前記式(m2)の単量体を117.60g、
前記式(m3)の単量体を70.80g、
乳酸エチル435.6g、
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))8.280g。
(Mixture 3)
102.00 g of the monomer of the formula (m1),
117.60 g of the monomer of the formula (m2),
70.80 g of the monomer of the formula (m3),
435.6 g of ethyl lactate,
Dimethyl-2,2'-azobisisobutyrate (Wako Pure Chemical Industries, V601 (trade name)) 8.280 g.
[実施例4]
本例では、重合反応の開始前に反応容器内に単量体と重合溶媒を供給した。
窒素導入口、攪拌機、コンデンサー、滴下漏斗2個、及び温度計を備えた容量1LのSUS製のフラスコに、下記混合物4−1を入れた。フラスコ内を18kPa(到達減圧度)まで減圧した後、窒素ガスを供給して101kPaまで昇圧した(ガスパージ工程)。すなわち、反応容器内を減圧した後不活性ガスを供給する操作(以下、減圧後パージ操作という)を2回行った。重合圧力は常圧(101kPa)である。
次いで、フラスコ内を窒素雰囲気下に保ったままフラスコを湯浴に入れ、フラスコ内を攪拌しながら湯浴の温度を81℃に上げ、フラスコの内温を80℃にした。
続いて、フラスコ内の溶液温度の取得を30秒ごとに実施しながら下記混合物4−2を滴下漏斗より6時間かけて、下記混合物4−3をもう一方の滴下漏斗より20分間かけて一定速度でフラスコ内に滴下した。混合物4−2と混合物4−3は同時に滴下を開始し、混合物4−3の滴下が終了してから5時間40分後に混合物4−2の滴下が終了した。
滴下中(単量体供給期間中)の反応液の平均温度は80.0℃であり、反応液温度の変動幅(最大値)は0.7℃であった。すなわち、反応液の温度は常に80.0±0.7℃以内に制御されていた。
混合物4−2の滴下終了後、80℃の温度で1時間保持した(熟成工程)。その後、反応停止操作である反応液の冷却を開始し、25℃まで反応液を冷却し、重合反応を停止させて、重合体溶液を得た。
得られた重合体溶液は、実施例1と同様にして重合体を製造し、評価した。
[Example 4]
In this example, the monomer and the polymerization solvent were supplied into the reaction vessel before the start of the polymerization reaction.
The following mixture 4-1 was placed in a 1 L SUS flask equipped with a nitrogen inlet, a stirrer, a condenser, two dropping funnels, and a thermometer. After reducing the pressure in the flask to 18 kPa (final pressure reduction degree), nitrogen gas was supplied to increase the pressure to 101 kPa (gas purge step). That is, an operation of supplying an inert gas after depressurizing the inside of the reaction vessel (hereinafter referred to as a purge operation after depressurization) was performed twice. The polymerization pressure is normal pressure (101 kPa).
Next, the flask was placed in a hot water bath while keeping the inside of the flask in a nitrogen atmosphere, the temperature of the hot water bath was raised to 81 ° C. while stirring the flask, and the internal temperature of the flask was set to 80 ° C.
Subsequently, while obtaining the solution temperature in the flask every 30 seconds, the following mixture 4-2 was added from the dropping funnel over 6 hours, and the following mixture 4-3 was transferred from the other dropping funnel over 20 minutes at a constant rate. Was dropped into the flask. The mixture 4-2 and the mixture 4-3 started dropping at the same time, and the dropping of the mixture 4-2 was completed 5 hours and 40 minutes after the dropping of the mixture 4-3 was completed.
The average temperature of the reaction liquid during dropping (during the monomer supply period) was 80.0 ° C., and the fluctuation width (maximum value) of the reaction liquid temperature was 0.7 ° C. That is, the temperature of the reaction solution was always controlled within 80.0 ± 0.7 ° C.
After completion of the dropwise addition of the mixture 4-2, the mixture was kept at a temperature of 80 ° C. for 1 hour (aging process). Then, cooling of the reaction liquid which is reaction stop operation was started, the reaction liquid was cooled to 25 degreeC, the polymerization reaction was stopped, and the polymer solution was obtained.
The obtained polymer solution was produced and evaluated in the same manner as in Example 1.
(混合物4−1)
前記式(m1)の単量体を6.53g、
前記式(m2)の単量体を11.76g、
前記式(m3)の単量体を4.84g、
乳酸エチル170.4g、
PGMEA139.4g。
(Mixture 4-1)
6.53 g of the monomer of the formula (m1),
11.76 g of the monomer of the formula (m2),
4.84 g of the monomer of the formula (m3),
170.4 g of ethyl lactate,
PGMEA 139.4g.
(混合物4−2)
前記式(m1)の単量体を73.44g、
前記式(m2)の単量体を84.67g、
前記式(m3)の単量体を50.98g、
乳酸エチル232.4g、
PGMEA199.7g、
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))4.633g。
混合物4−2における単量体の組成(モル%)を表1に示す。
(Mixture 4-2)
73.44 g of the monomer of the formula (m1),
84.67 g of the monomer of the formula (m2),
50.98 g of the monomer of the formula (m3),
232.4 g of ethyl lactate,
PGMEA 199.7g,
4.633 g of dimethyl-2,2′-azobisisobutyrate (manufactured by Wako Pure Chemical Industries, Ltd., V601 (trade name)).
The composition (mol%) of the monomer in the mixture 4-2 is shown in Table 1.
(混合物4−3)
乳酸エチル11.7g、
ジメチル−2,2’−アゾビスイソブチレート(和光純薬工業社製、V601(商品名))1.158g。
(Mixture 4-3)
11.7 g of ethyl lactate,
1.158 g of dimethyl-2,2′-azobisisobutyrate (Wako Pure Chemical Industries, V601 (trade name)).
[比較例5]
反応液温度の変動幅が実施例1よりも大きい以外は、実施例1と同様にして重合体を製造し、評価した。結果を表2に示す。
滴下中(単量体供給期間中)の反応液の平均温度は80.0℃であり、反応液温度の変動幅(最大値)は1.7℃であった。
[Comparative Example 5]
A polymer was produced and evaluated in the same manner as in Example 1 except that the fluctuation range of the reaction solution temperature was larger than that in Example 1. The results are shown in Table 2.
The average temperature of the reaction liquid during dropping (during the monomer supply period) was 80.0 ° C., and the fluctuation width (maximum value) of the reaction liquid temperature was 1.7 ° C.
[比較例6]
反応液温度の変動幅が比較例2よりも大きい以外は、比較例2と同様にして重合体を製造し、評価した。結果を表2に示す。
滴下中(単量体供給期間中)の反応液の平均温度は80.0℃であり、反応液温度の変動幅(最大値)は1.8℃であった。
[Comparative Example 6]
A polymer was produced and evaluated in the same manner as in Comparative Example 2 except that the fluctuation range of the reaction solution temperature was larger than that in Comparative Example 2. The results are shown in Table 2.
The average temperature of the reaction liquid during dropping (during the monomer supply period) was 80.0 ° C., and the fluctuation width (maximum value) of the reaction liquid temperature was 1.8 ° C.
[比較例7]
反応液温度の変動幅が比較例3よりも大きい以外は、比較例3と同様にして重合体を製造し、評価した。結果を表2に示す。
滴下中(単量体供給期間中)の反応液の平均温度は80.0℃であり、反応液温度の変動幅(最大値)は1.9℃であった。
[Comparative Example 7]
A polymer was produced and evaluated in the same manner as in Comparative Example 3 except that the fluctuation range of the reaction solution temperature was larger than that in Comparative Example 3. The results are shown in Table 2.
The average temperature of the reaction liquid during dropping (during the monomer supply period) was 80.0 ° C., and the fluctuation width (maximum value) of the reaction liquid temperature was 1.9 ° C.
[比較例8]
比較例7において、単量体供給期間を4時間に変更し、熟成時間を3時間に変更した。その他は比較例7と同様にして重合体を製造し、評価した。結果を表2に示す。
すなわち、混合物3を4時間かけて一定速度でフラスコ内に滴下した。この時、滴下中(単量体供給期間中)の反応液の平均温度は80.0℃であり、反応液温度の変動幅(最大値)は2.1℃であった。滴下終了後、反応液を80℃の温度で3時間保持した(熟成工程)。
[Comparative Example 8]
In Comparative Example 7, the monomer supply period was changed to 4 hours, and the aging time was changed to 3 hours. Others were produced and evaluated in the same manner as in Comparative Example 7. The results are shown in Table 2.
That is, the mixture 3 was dropped into the flask at a constant rate over 4 hours. At this time, the average temperature of the reaction liquid during dropping (during the monomer supply period) was 80.0 ° C., and the fluctuation width (maximum value) of the reaction liquid temperature was 2.1 ° C. After completion of dropping, the reaction solution was kept at a temperature of 80 ° C. for 3 hours (aging step).
[比較例9]
反応容器をSUS製反応容器からガラス製反応容器に変更した以外は比較例8と同様にして重合体を製造し、評価した。結果を表2に示す。
滴下中(単量体供給期間中)の反応液の平均温度は80.0℃であり、反応液温度の変動幅(最大値)は2.4℃であった。
[Comparative Example 9]
A polymer was produced and evaluated in the same manner as in Comparative Example 8 except that the reaction vessel was changed from a SUS reaction vessel to a glass reaction vessel. The results are shown in Table 2.
The average temperature of the reaction liquid during dropping (during the monomer supply period) was 80.0 ° C., and the fluctuation width (maximum value) of the reaction liquid temperature was 2.4 ° C.
表1、2の結果より、単量体供給期間中の反応液の温度が、該単量体供給期間中の反応液の平均温度±1.5℃の範囲内に維持されるとともに、重合反応期間の終了時における反応液の質量に対して、反応器内に供給された単量体の合計質量が30質量%未満であり、かつ単量体供給期間が重合反応期間の70%以上である実施例1、4では、重量平均分子量のロット間差が非常に小さい重合体が得られた。また実施例1、4では、得られた重合体を用いて調製したレジスト組成物の感度がより向上し、該感度のロット間でのばらつきもより低減された。 From the results of Tables 1 and 2, the temperature of the reaction liquid during the monomer supply period is maintained within the range of the average temperature of the reaction liquid during the monomer supply period ± 1.5 ° C., and the polymerization reaction The total mass of the monomers supplied into the reactor is less than 30% by mass with respect to the mass of the reaction liquid at the end of the period, and the monomer supply period is 70% or more of the polymerization reaction period. In Examples 1 and 4, a polymer having a very small difference in weight average molecular weight between lots was obtained. In Examples 1 and 4, the sensitivity of the resist composition prepared using the obtained polymer was further improved, and the variation in sensitivity among lots was further reduced.
Claims (4)
前記重合反応が開始してから停止操作が開始されるまでの重合反応期間内に、前記反応容器内に単量体を連続的に又は滴下により供給する単量体供給工程を有し、
前記単量体供給工程の開始から終了までの単量体供給期間中の前記反応液の温度を、該単量体供給期間中の該反応液の平均温度±1.0℃の範囲内に維持し、
前記重合反応期間の終了時における前記反応液の質量に対して、前記反応器内に供給された単量体の合計質量を30質量%未満とし、かつ
前記単量体供給期間を、前記重合反応期間の80%以上、90%以下とする、重合体の製造方法。 In the reaction vessel, a polymerization step of polymerizing the monomer in a reaction solution containing a polymerization solvent, a monomer and a polymerization initiator, and a reaction stopping step of stopping the polymerization reaction,
In the polymerization reaction period from the start of the polymerization reaction to the start of the stop operation, a monomer supply step of supplying the monomer continuously or dropwise into the reaction vessel,
The temperature of the reaction liquid during the monomer supply period from the start to the end of the monomer supply process is maintained within the range of the average temperature of the reaction liquid during the monomer supply period ± 1.0 ° C. And
The total mass of the monomers supplied into the reactor is less than 30% by mass with respect to the mass of the reaction solution at the end of the polymerization reaction period, and the monomer supply period is the polymerization reaction. A method for producing a polymer , wherein the period is 80% or more and 90% or less .
得られたレジスト用重合体と、活性光線又は放射線の照射により酸を発生する化合物を混合する工程を有するレジスト組成物の製造方法。 A step of producing a resist polymer by the production method according to claim 1 or 2,
The manufacturing method of the resist composition which has the process of mixing the obtained polymer for resists, and the compound which generate | occur | produces an acid by irradiation of actinic light or a radiation.
得られたレジスト組成物を、基板の被加工面上に塗布してレジスト膜を形成する工程と、
該レジスト膜に対して露光する工程と、露光されたレジスト膜を現像液を用いて現像する工程を有する、パターンが形成された基板の製造方法。 A step of producing a resist composition by the production method according to claim 3;
Applying the obtained resist composition onto a work surface of a substrate to form a resist film;
A method for producing a substrate on which a pattern is formed, comprising a step of exposing the resist film and a step of developing the exposed resist film using a developer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012094934A JP5942563B2 (en) | 2012-04-18 | 2012-04-18 | Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012094934A JP5942563B2 (en) | 2012-04-18 | 2012-04-18 | Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013221126A JP2013221126A (en) | 2013-10-28 |
JP5942563B2 true JP5942563B2 (en) | 2016-06-29 |
Family
ID=49592345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012094934A Active JP5942563B2 (en) | 2012-04-18 | 2012-04-18 | Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5942563B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6314786B2 (en) * | 2014-10-20 | 2018-04-25 | 三菱ケミカル株式会社 | Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4484690B2 (en) * | 2004-12-21 | 2010-06-16 | ダイセル化学工業株式会社 | Manufacturing method of resin for photoresist |
JP4488906B2 (en) * | 2005-01-05 | 2010-06-23 | ダイセル化学工業株式会社 | Method for producing polymer compound for photoresist |
JP2006199764A (en) * | 2005-01-19 | 2006-08-03 | Daicel Chem Ind Ltd | Method for producing macromolecular compound for photoresist |
JP4808485B2 (en) * | 2005-12-07 | 2011-11-02 | ダイセル化学工業株式会社 | Manufacturing method of resin for photoresist |
JP2008248244A (en) * | 2007-03-08 | 2008-10-16 | Fujifilm Corp | Resin, method for producing the same, positive type photosensitive composition using the same and method for forming pattern |
-
2012
- 2012-04-18 JP JP2012094934A patent/JP5942563B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013221126A (en) | 2013-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6262416B2 (en) | Lithographic polymer solution manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method | |
JP5741814B2 (en) | Polymer for semiconductor lithography and method for producing the same, resist composition, and method for producing substrate | |
JP5942562B2 (en) | Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed | |
JP5942563B2 (en) | Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed | |
JP6520054B2 (en) | Purification method and manufacturing method of polymer for semiconductor lithography, manufacturing method of resist composition, and manufacturing method of substrate on which a pattern is formed | |
JP2015143363A (en) | Production method of polymer for semiconductor lithography, production method of resist composition, and production method of substrate | |
JP6244756B2 (en) | Lithographic copolymer production method, resist composition production method, and substrate production method | |
JP5716943B2 (en) | Polymer, resist composition, and method of manufacturing substrate on which pattern is formed | |
JP5821317B2 (en) | Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method | |
JP2012087186A (en) | Polymer for lithography and method for producing the same, and resist composition and method for producing substrate | |
JP5707699B2 (en) | Method for producing polymer, method for producing resist composition, and method for producing substrate | |
JP5696868B2 (en) | A method for producing a copolymer for resist. | |
JP5942564B2 (en) | Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed | |
JP6369103B2 (en) | Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method | |
JP6439278B2 (en) | Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method | |
JP5793825B2 (en) | Lithographic polymer manufacturing method, resist composition manufacturing method, and substrate manufacturing method | |
JP6657846B2 (en) | Method for producing polymer for semiconductor lithography, method for producing resist composition, and method for producing substrate on which pattern is formed | |
JP6299076B2 (en) | Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method | |
JP5660483B2 (en) | Resist polymer composition, resist composition, and method for producing substrate on which pattern is formed | |
JP2013127023A (en) | Method for producing polymer used for lithography, polymer for lithography, resist composition and method for producing substrate | |
JP6439270B2 (en) | Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method | |
JP7127267B2 (en) | Method for producing polymer solution for lithography, method for producing resist composition, and method for producing patterned substrate | |
JP5659570B2 (en) | Method for producing polymer, polymer for semiconductor lithography, resist composition, and method for producing substrate on which pattern is formed | |
JP6481334B2 (en) | Purification method and manufacturing method of polymer for semiconductor lithography, manufacturing method of resist composition, and manufacturing method of substrate on which pattern is formed | |
JP2023123014A (en) | Method for producing polymer, method for producing resist composition, and method for producing patterned substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150417 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160407 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160509 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5942563 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |