JP5837390B2 - Conductive coating conjugated polymer and method for producing the same - Google Patents
Conductive coating conjugated polymer and method for producing the same Download PDFInfo
- Publication number
- JP5837390B2 JP5837390B2 JP2011235505A JP2011235505A JP5837390B2 JP 5837390 B2 JP5837390 B2 JP 5837390B2 JP 2011235505 A JP2011235505 A JP 2011235505A JP 2011235505 A JP2011235505 A JP 2011235505A JP 5837390 B2 JP5837390 B2 JP 5837390B2
- Authority
- JP
- Japan
- Prior art keywords
- structural formula
- conjugated polymer
- monomer
- mmol
- arh
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Description
本発明は、複数の有機環状化合物で被覆されたπ共役構造を有する導電性被覆共役ポリマーに関する。更には、複数の有機環状化合物で被覆されたπ共役構造を有する導電性被覆共役ポリマーの製造方法に関する。 The present invention relates to a conductive coated conjugated polymer having a π-conjugated structure coated with a plurality of organic cyclic compounds. Further, the present invention relates to a method for producing a conductive coated conjugated polymer having a π-conjugated structure coated with a plurality of organic cyclic compounds.
複数の有機環状化合物で被覆されたπ共役構造を有する導電性被覆共役ポリマーのひとつとして、特許文献1に示される有機重合体が知られているが、特許文献1には、導電性を示すデータは、全く示されていない。
特許文献1の代表的な導電性被覆共役ポリマーの導電性を示すデータは、非特許文献1として、特許文献1の発明者を含む著者により論文発表がなされており、そこには、導電性を示すデータとして、電荷移動度が0.5cm2/Vsであることが示されているが、このポリマーは、鎖状構造が直鎖構造をとっているため、分子素子を構成する有機半導体として使用するには十分な導電性が得られていない。
また、非特許文献2には、ポリピロールが鎖状構造をとるポリマーの導電性を示すデータとして、電荷移動度が0.9cm2/Vsであることが示されている。
しかし、これらの先行技術に示されている導電性では、分子素子を構成する有機半導体として使用するには不十分である。
As one of the conductive coated conjugated polymers having a π-conjugated structure coated with a plurality of organic cyclic compounds, the organic polymer shown in Patent Document 1 is known, but Patent Document 1 includes data indicating conductivity. Is not shown at all.
The data showing the conductivity of the representative conductive coated conjugated polymer of Patent Document 1 has been published as a non-patent document 1 by the authors including the inventor of Patent Document 1, and the data on conductivity The data shown show that the charge mobility is 0.5 cm 2 / Vs, but this polymer is used as an organic semiconductor that constitutes a molecular device because the chain structure has a linear structure. However, sufficient conductivity is not obtained.
Non-Patent Document 2 shows that the charge mobility is 0.9 cm 2 / Vs as data indicating the conductivity of a polymer in which polypyrrole has a chain structure.
However, the conductivity shown in these prior arts is insufficient for use as an organic semiconductor constituting a molecular device.
本発明は、このような実情に鑑み、より電荷移動度の大きな導電性被覆共役ポリマーを提供することを目的とする。すなわち、従来の導電性ポリマーよりは、ワンオーダー高い電荷移動度を有する導電性被覆共役ポリマーを提供することを目的とする。 An object of this invention is to provide the electroconductive coating conjugated polymer with a larger charge mobility in view of such a situation. That is, an object of the present invention is to provide a conductive coated conjugated polymer having a charge mobility one order higher than that of a conventional conductive polymer.
上記課題を解決するために検討を行った結果、従来、イオン性官能基を有さないフェニレンエチニレンユニットが直鎖状でπ共役構造とることが、電荷移動度を高めると考えられていたのに対して、鎖状構造にメタ結合を導入することにより、これまでになかった電荷移動度を有する導電性被覆共役ポリマーを見出し、以下に示す発明を完成するに至った。 As a result of investigations to solve the above problems, it has been conventionally considered that a phenylene ethynylene unit having no ionic functional group is linear and has a π-conjugated structure to increase charge mobility. On the other hand, by introducing a meta bond to the chain structure, a conductive coated conjugated polymer having a charge mobility that has not been obtained has been found, and the following invention has been completed.
〔1〕複数の有機環状化合物で被覆されたπ共役構造を有する導電性被覆共役ポリマーであって、前記π共役構造がフェニレンエチニレンユニットであり、下記構造式(1)及び構造式(2)を構造単位として、又は下記構造式(1)及び/又は構造式(2)及びメタジエチニレンフェニレン鎖を構造単位として有することを特徴とする導電性被覆共役ポリマー。
〔3〕前記有機環状化合物が、シクロデキストリン誘導体であり、前記シクロデキストリン誘導体の1つの−CH2OHが−CH2O−の形で鎖状構造中のフェニレン基と結合していることを特徴とする前記〔1〕又は〔2〕に記載の導電性被覆共役ポリマー。
〔4〕前記シクロデキストリン誘導体が、下記化学式(5)で表されるα−シクロデキストリン誘導体(Rは、H又はアルキル基)であることを特徴とする前記〔3〕に記載の導電性被覆共役ポリマー。
[3] The organic cyclic compound is a cyclodextrin derivative, and one —CH 2 OH of the cyclodextrin derivative is bonded to a phenylene group in a chain structure in the form of —CH 2 O—. The conductive coating conjugated polymer according to [1] or [2].
[4] The conductive coating conjugate according to [3], wherein the cyclodextrin derivative is an α-cyclodextrin derivative (R is H or an alkyl group) represented by the following chemical formula (5): polymer.
本発明の導電性被覆共役ポリマーは、フェニレン鎖の一部がメタ位による架橋構造を導入する事により、メタ架橋部に挟まれた部分のフェニレンエチレンユニットのエネルギーレベルのズレが少なくなり、各ユニット間でのポッピングによるエネルギーロスが少なくなり、高い電荷移動度の確保が可能となり、結果として高い導電性を確保することが可能になった。
そのことにより、本発明の導電性被覆共役ポリマーは、従来より知られている導電性ポリロタキサンに比べ大きな電荷移動度による優れた導電性を有しており、分子素子を構成する有機半導体への適用が可能である。
The conductive coated conjugated polymer of the present invention introduces a cross-linked structure in which a part of the phenylene chain is meta-positioned, thereby reducing the energy level deviation of the phenylene ethylene unit between the meta-cross-linked parts. Energy loss due to inter-popping is reduced, and high charge mobility can be secured. As a result, high conductivity can be secured.
As a result, the conductive coated conjugated polymer of the present invention has excellent conductivity due to a large charge mobility compared to the conventionally known conductive polyrotaxane, and is applied to an organic semiconductor constituting a molecular device. Is possible.
また、本発明の導電性被覆共役ポリマーの製造方法は、重合反応に有機溶媒を用いたとしても、非包接体の状態に戻ることなく重合反応を行うことができ、重合反応を進行させやすく、重合度の制御が容易になる等水溶液中ではなかった効果がある。 In addition, the method for producing a conductive coated conjugated polymer of the present invention allows the polymerization reaction to proceed without returning to the non-inclusion state even if an organic solvent is used for the polymerization reaction, and facilitates the progress of the polymerization reaction. There is an effect that was not in an aqueous solution, such as easy control of the degree of polymerization.
本発明の導電性被覆共役ポリマーは、複数の有機環状化合物で被覆されたπ共役構造を有する導電性被覆共役ポリマーであって、前記π共役構造がフェニレンエチニレンユニットであり、擬ロタキサン構造を有する自己包接錯体2分子をベンゼン環を介して結合した前記構造式(1)及び構造式(2)を構造単位として、又は前記構造式(1)及び/又は構造式(2)及びメタジエチニレンフェニレン鎖を構造単位として有している。 The conductive coated conjugated polymer of the present invention is a conductive coated conjugated polymer having a π-conjugated structure coated with a plurality of organic cyclic compounds, wherein the π-conjugated structure is a phenylene ethynylene unit and has a pseudo-rotaxane structure. The structural formula (1) and the structural formula (2) in which two molecules of a self-inclusion complex are bonded via a benzene ring, or the structural formula (1) and / or the structural formula (2) and metadietinylene. It has a phenylene chain as a structural unit.
前記構造式(1)〜(4)に示す有機環状化合物は、有機溶媒に可溶でπ共役分子と溶媒水溶液中(例えば、メタノール水溶液)で親水疎水相互作用により分子内自己包接するものであれば特にこだわらないが、通常は、シクロデキストリン誘導体、環状ポリエーテル誘導体、環状ポリシロキサン誘導体等から選ばれ、鎖状構造中のフェニレン基とエーテル結合により結合されている。 The organic cyclic compound represented by the structural formulas (1) to (4) is soluble in an organic solvent and self-inclusion within a molecule by hydrophilic-hydrophobic interaction in a π-conjugated molecule and an aqueous solvent solution (for example, aqueous methanol solution). Although not particularly limited, it is usually selected from cyclodextrin derivatives, cyclic polyether derivatives, cyclic polysiloxane derivatives and the like, and is bonded to the phenylene group in the chain structure by an ether bond.
前記の有機環状化合物の中でも、αシクロデキストリン誘導体は、π電子共役構造を持たず、有機環状化合物として好ましく、更に、完全メチル化αシクロデキストリン(PM α−CD)がより好ましい。 Among the above organic cyclic compounds, the α cyclodextrin derivative does not have a π-electron conjugated structure and is preferable as the organic cyclic compound, and more preferably a completely methylated α cyclodextrin (PM α-CD).
シクロデキストリン誘導体が、有機環状化合物である場合には、シクロデキストリンの1つの−CH2OHが−CH2O−の形で鎖状構造中のフェニレン基と結合している。 When the cyclodextrin derivative is an organic cyclic compound, one —CH 2 OH of the cyclodextrin is bonded to the phenylene group in the chain structure in the form of —CH 2 O—.
前記構造式(1)及び構造式(2)を構造単位とする本発明の導電性被覆共役ポリマーは、構造式(1)及び構造式(2)の構造単位を1以上のエチニレン鎖でもって結合した導電性被覆共役ポリマーとして得ることができる。構造式(1)及び構造式(2)の構造単位の比率及び前記エチニレン鎖の数を制御することにより各種の前記構造式(1)及び構造式(2)を構造単位とする本発明の導電性被覆共役ポリマーの生成が可能である。 In the conductive coated conjugated polymer of the present invention having the structural formula (1) and the structural formula (2) as structural units, the structural units of the structural formulas (1) and (2) are bonded with one or more ethynylene chains. Obtained as a conductive coated conjugated polymer. Conductivity of the present invention having various structural formulas (1) and (2) as structural units by controlling the ratio of structural units of structural formula (1) and structural formula (2) and the number of ethynylene chains. It is possible to produce a conductive coating conjugated polymer.
構造式(1)を有するモノマー及び構造式(2)を有するモノマーを1:1で重合させた導電性被覆共役ポリマーとしては、下記構造式(6)に示すものがあげられる。
前記構造式(1)及び/又は構造式(2)及びメタジエチニレンフェニレン鎖を構造単位とする本発明の導電性被覆共役ポリマーは、構造式(1)及び/又は構造式(2)の構造単位をメタジエチニレンフェニレン鎖でもって結合したメタジエチニレンフェニレン鎖を含む導電性被覆共役ポリマーとして得ることができる。 The conductive coating conjugated polymer of the present invention having the structural formula (1) and / or the structural formula (2) and a metadiethynylene phenylene chain as a structural unit has the structure of the structural formula (1) and / or the structural formula (2). It can be obtained as a conductive coated conjugated polymer comprising a metadiethynylene phenylene chain in which the units are linked with a metadiethylene phenylene chain.
前記メタジエチニレンフェニレン鎖を含む導電性被覆共役ポリマーは、(a)構造式(1)を有するモノマーをメタジエチニレンフェニレン鎖でもって重合させたもの、(b)構造式(2)を有するモノマーをメタジエチニレンフェニレン鎖でもって重合させたもの、(c)構造式(1)を有するモノマー及び構造式(2)を有するモノマーをメタジエチニレンフェニレン鎖でもって重合させたものに大別することができる。 The conductive coating conjugated polymer containing a metadiethylene alkylene chain is obtained by polymerizing a monomer having the structural formula (1) with a metadiethylene polyethylene chain, and (b) a monomer having the structural formula (2). And (c) a monomer having the structural formula (1) and a monomer having the structural formula (2) which are polymerized with the metadiethynylene phenylene chain. Can do.
前記(a)〜(c)の導電性被覆共役ポリマーは、構造式(1)及び/又は構造式(2)の構造単位の比率及びメタジエチニレンフェニレン鎖の数を制御することにより各種の導電性被覆共役ポリマーの生成が可能である。 The conductive coated conjugated polymers (a) to (c) can be used for various conductive materials by controlling the ratio of the structural units of the structural formula (1) and / or the structural formula (2) and the number of metadiethylene phenylene chains. It is possible to produce a conductive coating conjugated polymer.
構造式(1)を有するモノマーとメタジエチニレンフェニレン鎖が1:1になるように重合させた導電性被覆共役ポリマーとしては、下記構造式(3)に示すものがあげられる。
また、構造式(2)を有するモノマーとメタジエチニレンフェニレン鎖が1:1になるように重合させた導電性被覆共役ポリマーとしては、下記構造式(4)に示すものがあげられる。
次に、本発明の導電性被覆共役ポリマーの製造方法について説明する。 Next, the manufacturing method of the electroconductive coating conjugated polymer of this invention is demonstrated.
本発明の導電性被覆共役ポリマーは、前記構造式(1)と前記構造式(2)を有するモノマーを共重合すること、又は、前記構造式(1)若しくは前記構造式(2)を有するモノマーとm−ジハライドベンゼン若しくはm−ジエチニルベンゼンを共重合することにより製造することができる。 The conductive coating conjugated polymer of the present invention is obtained by copolymerizing a monomer having the structural formula (1) and the structural formula (2), or a monomer having the structural formula (1) or the structural formula (2). And m-dihalidebenzene or m-diethynylbenzene can be copolymerized.
本発明の導電性被覆共役ポリマーの製造方法は、前記構造式(1)と前記構造式(2)を有するモノマーを使用して重合反応させることを特徴としている。前記構造式(1)と前記構造式(2)を有するモノマーは、擬ロタキサン構造を有する自己包接錯体2分子をベンゼン環を介して結合させているため包接構造を維持することができる特徴を有する被覆型π共役モノマーである。 The method for producing a conductive coated conjugated polymer of the present invention is characterized in that a polymerization reaction is carried out using a monomer having the structural formula (1) and the structural formula (2). The monomer having the structural formula (1) and the structural formula (2) can maintain the inclusion structure because two molecules of the self-inclusion complex having a pseudorotaxane structure are bonded via a benzene ring. Is a coated π-conjugated monomer having
そのため、重合反応に有機溶媒を用いたとしても、非包接体の状態に戻ることなく重合反応を行うことができるという効果を発揮することができる。
また、有機溶媒中で反応させることにより、重合反応を進行させやすく、重合度の制御が容易になる等水溶液中ではなかった効果もある。(その他の利点があれば追加してください。)
Therefore, even if an organic solvent is used for the polymerization reaction, the effect that the polymerization reaction can be performed without returning to the non-inclusion body state can be exhibited.
In addition, by reacting in an organic solvent, there is an effect that was not in an aqueous solution, for example, the polymerization reaction can easily proceed and the degree of polymerization can be easily controlled. (Add any other benefits.)
まず、構造式(1)及び構造式(2)を構造単位とする本発明の導電性被覆共役ポリマーは、両端がエチニル基である構造式(1)又は構造式(2)を有するモノマーを両端がハロゲン基である構造式(1)又は構造式(2)を有するモノマーを共重合することによって、又は、一端がエチニル基で他端がハロゲン基をある構造式(1)及び構造式(2)を有するモノマーを共重合することによって製造することができる。 First, the conductive coating conjugated polymer of the present invention having the structural formula (1) and the structural formula (2) as structural units has both ends of a monomer having the structural formula (1) or the structural formula (2) having both ends of an ethynyl group. Is copolymerized with a monomer having the structural formula (1) or structural formula (2), or the structural formula (1) and structural formula (2) having one end having an ethynyl group and the other end having a halogen group. ).
上記の場合、構造式(1)を有するモノマーと構造式(2)を有するモノマーのモル比を制御することで、鎖状部分の直線性に変化をもたせた各種の導電性被覆共役ポリマーを製造することが可能である。 In the above case, various conductive coated conjugated polymers with varying linearity of the chain portion are produced by controlling the molar ratio of the monomer having the structural formula (1) and the monomer having the structural formula (2). Is possible.
次に、構造式(1)及び/又は構造式(2)及びメタジエチニレンフェニレン鎖を構造単位とする本発明の導電性被覆共役ポリマーは、両端がエチニル基である構造式(1)及び/又は構造式(2)を有するモノマーとm−ジハライドベンゼンを共重合することによって、又は、両端がハロゲン基である構造式(1)及び/又は構造式(2)を有するモノマーとm−ジエチニルベンゼンを両端がハロゲン基である構造式(1)又は構造式(2)を有するモノマーを共重合することによって、製造することができる。 Next, the conductive coating conjugated polymer of the present invention having the structural formula (1) and / or the structural formula (2) and the metadiethynylene phenylene chain as a structural unit includes the structural formulas (1) and / or Alternatively, a monomer having the structural formula (2) and m-dihalide benzene are copolymerized, or a monomer having the structural formula (1) and / or the structural formula (2) having both ends being halogen groups and m-di. Ethynylbenzene can be produced by copolymerizing a monomer having the structural formula (1) or the structural formula (2) in which both ends are halogen groups.
構造式(1)又は構造式(2)を有するモノマーは、既知の擬ロタキサン前駆物質(下記化合物(7))に1,4−ジヨードベンゼン又は1,3−ジヨードベンゼンを反応させることによって、製造することができる。
詳しくは、擬ロタキサン前駆物質(前記化合物(7))をメタノール−水混合溶媒中で、分子内自己包接させ、自己包接錯体2分子と1,4−ジヨードベンゼン又は1,3−ジヨードベンゼンとのクロスカップリング反応により製造することができる。 Specifically, the pseudorotaxane precursor (the compound (7)) is self-inclusion intramolecularly in a methanol-water mixed solvent, and two molecules of the self-inclusion complex and 1,4-diiodobenzene or 1,3-di- It can be produced by a cross-coupling reaction with iodobenzene.
製造された構造式(1)又は構造式(2)を有するモノマーは、両端がアセトアミド基として残るが、このアセトアミド基を、ハロゲン基(好ましくは、ヨード基)又はエチニル基に置換することによって、本発明の原料となる構造式(1)又は構造式(2)を有するモノマーとすることができる。 The produced monomer having the structural formula (1) or the structural formula (2) remains as an acetamide group at both ends, but by substituting the acetamide group with a halogen group (preferably an iodo group) or an ethynyl group, It can be set as the monomer which has Structural formula (1) or Structural formula (2) used as the raw material of this invention.
以下、本発明の実施形態を実施例により具体的に説明する。 Hereinafter, embodiments of the present invention will be specifically described by way of examples.
〔構造式(1)又は構造式(2)を有するモノマーの前駆物資の合成〕
図1に実施例で用いたモノマー前駆物質の合成方法を示す。
アルゴン置換した50ml 二口ナスフラスコに、5−Acetoamide−2−iodo phenol(1.67mmol),PM α−CD(1.52mmol),K2CO3(15.2mmol)を加え、脱水DMF10mlに溶解させ、100℃で16時間撹拌した。その後、炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出をし、飽和食塩水で洗浄、硫酸ナトリウムで乾燥させた後、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製をし、収率98%でヨウ素化PM α−CD誘導体を得た。
[Synthesis of Precursor Material for Monomer Having Structural Formula (1) or Structural Formula (2)]
FIG. 1 shows a method for synthesizing the monomer precursor used in the examples.
5-Acetoamide-2-iodophenol (1.67 mmol), PM α-CD (1.52 mmol), K 2 CO 3 (15.2 mmol) are added to a 50 ml two-necked eggplant flask purged with argon, and dissolved in 10 ml of dehydrated DMF. And stirred at 100 ° C. for 16 hours. Thereafter, an aqueous sodium hydrogen carbonate solution was added, the mixture was extracted with ethyl acetate, washed with saturated brine, dried over sodium sulfate, and the solvent was evaporated. Purification was performed by silica gel column chromatography to obtain iodinated PM α-CD derivative with a yield of 98%.
続いて、アルゴン置換した50ml二口ナスフラスコに、前述のヨウ素化PM α−CD誘導体(0.67mmol)を加え、ジイソプロピルアミン5mlに溶解させた。ジエチニルベンゼン誘導体(0.74mmol),Pd(PPh3)4 (0.00268mmol), CuI(0.0134mmol)を加え、45℃で16時間撹拌した。溶媒を留去した後、酢酸エチルで抽出をし、飽和食塩水で洗浄、硫酸ナトリウムで乾燥させた後、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製し、収率94%で[(4−エチニルフェニル)エチニル]トリメチルシリル化PM α−CD誘導体を得た。 Subsequently, the iodinated PM α-CD derivative (0.67 mmol) was added to a 50 ml two-necked eggplant flask substituted with argon and dissolved in 5 ml of diisopropylamine. Diethynylbenzene derivative (0.74 mmol), Pd (PPh 3 ) 4 (0.00268 mmol), CuI (0.0134 mmol) were added, and the mixture was stirred at 45 ° C. for 16 hours. After the solvent was distilled off, extraction was performed with ethyl acetate, washed with saturated brine and dried over sodium sulfate, and then the solvent was distilled off. Purification by silica gel column chromatography gave [(4-ethynylphenyl) ethynyl] trimethylsilylated PM α-CD derivative in 94% yield.
続いて、50mlナスフラスコに(4−エチニルフェニル)エチニル]トリメチルシリル化PM α−CD誘導体(0.448mmol)を加え、メタノール20mlに溶解させた。1M−K2CO32.5ml(2.24mmol)を加え、室温で2時間撹拌した。溶媒を留去した後、酢酸エチルで抽出をし、飽和食塩水で洗浄、硫酸ナトリウムで乾燥させた後、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製をし、収率95%でモノマー前駆物質であるエチニルトラン結合PM α−CD誘導体(7’)を得た。((7’)は、構造式(7)の有機環状化合物がPM α−CDである物質。) Subsequently, (4-ethynylphenyl) ethynyl] trimethylsilylated PM α-CD derivative (0.448 mmol) was added to a 50 ml eggplant flask and dissolved in 20 ml of methanol. 2.5 ml (2.24 mmol) of 1M-K 2 CO 3 was added and stirred at room temperature for 2 hours. After the solvent was distilled off, extraction was performed with ethyl acetate, washed with saturated brine and dried over sodium sulfate, and then the solvent was distilled off. Purification was performed by silica gel column chromatography to obtain ethynyltolane-linked PM α-CD derivative (7 ′) as a monomer precursor in a yield of 95%. ((7 ′) is a substance in which the organic cyclic compound of the structural formula (7) is PM α-CD.)
〔構造式(1)を有するモノマーの合成〕 [Synthesis of Monomer Having Structural Formula (1)]
図2に実施例で用いた構造式(1)を有するモノマーの合成方法を示した。
100mlナスフラスコ中で、モノマー前駆物質であるエチニルトラン結合PM α−CD誘導体(7’)(0.85mmol)とメタノール/水=30ml:30mlを混合した。60℃で1時間反応後室温まで冷却した。系内をアルゴン置換し、1,4−ヨードベンゼン(0.425mmol),Pd(OAc)2(0.18mmol),TXPTS(0.085mmol),CuI(0.0043mmol),炭酸ナトリウム(6.8mmol),トリエチルアミン3mlを加えた。室温で48時間撹拌した。酢酸エチルを加えて希釈し、飽和食塩水で洗浄、硫酸ナトリウムで乾燥させた後、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製をし、収率82%で末端にアセトアミド基を有する被覆モノマー(1’)を得た。((1’)は、構造式(1)の有機環状化合物がPM α−CDで、両末端にアセトアミド基が置換した物質。)
FIG. 2 shows a method for synthesizing a monomer having the structural formula (1) used in the examples.
In a 100 ml eggplant flask, ethynyltolane-bound PM α-CD derivative (7 ′) (0.85 mmol) as a monomer precursor and methanol / water = 30 ml: 30 ml were mixed. After reacting at 60 ° C. for 1 hour, it was cooled to room temperature. The system was purged with argon, and 1,4-iodobenzene (0.425 mmol), Pd (OAc) 2 (0.18 mmol), TXPTS (0.085 mmol), CuI (0.0043 mmol), sodium carbonate (6.8 mmol) ), 3 ml of triethylamine was added. Stir at room temperature for 48 hours. The mixture was diluted with ethyl acetate, washed with saturated brine, dried over sodium sulfate, and the solvent was evaporated. The product was purified by silica gel column chromatography to obtain a coating monomer (1 ′) having an acetamide group at the terminal in a yield of 82%. ((1 ′) is a substance in which the organic cyclic compound of the structural formula (1) is PM α-CD, and acetamido groups are substituted on both ends.)
MALDI-TOF MS(CHCA): m/z 3033 ([M+Na]+,
C148H212N2O62Na, cald 3034 ); 1H
NMR(400 MHz, CDCl3) : δH = 8.25 (d, J =8.2 Hz, 4H, ArH), 7.61 (d, J =8.2 Hz,
4H, ArH), 7.45-7.36 (m, 6H, ArH), 7.21 (s, 2H, NH), 5.10-4.96 (m, 12H, CD-H1),
4.87-2.83 (m, 174H, CD-H,OCH3), 2.22 (s, 6H, CH3CO); 13C
NMR (400MHz, CDCl3, r.t.): δc = 168.585, 162.453, 140.744, 139.643, 133.511-131.183(several peaks
overlapped), 123.212, 122.848, 113.891, 112.540, 111.563,
100.651-99.913(several peaks overlapped), 98.323, 93.418, 90.591,
83.607-80.781(several peaks overlapped), 83.783-81.167(several peaks
overlapped), 71.709-70.233(several peaks overlapped), 62.148,
59.321-57.606(several peaks overlapped); Anal. Calcd for C148H212N2O62・2H2O: C, 58.33; H, 7.14; N, 0.92; O, 33.60 %; Found: C,
57.01; H, 7.18; N, 0.87; O, 33.80 %.
MALDI-TOF MS (CHCA): m / z 3033 ([M + Na] + ,
C 148 H 212 N 2 O 62 Na, cald 3034); 1 H
NMR (400 MHz, CDCl 3 ): δ H = 8.25 (d, J = 8.2 Hz, 4H, ArH), 7.61 (d, J = 8.2 Hz,
4H, ArH), 7.45-7.36 (m, 6H, ArH), 7.21 (s, 2H, NH), 5.10-4.96 (m, 12H, CD-H 1 ),
4.87-2.83 (m, 174H, CD-H, OCH 3 ), 2.22 (s, 6H, CH 3 CO); 13 C
NMR (400MHz, CDCl 3 , rt): δ c = 168.585, 162.453, 140.744, 139.643, 133.511-131.183 (several peaks
overlapped), 123.212, 122.848, 113.891, 112.540, 111.563,
100.651-99.913 (several peaks overlapped), 98.323, 93.418, 90.591,
83.607-80.781 (several peaks overlapped), 83.783-81.167 (several peaks
overlapped), 71.709-70.233 (several peaks overlapped), 62.148,
59.321-57.606 (several peaks overlapped); Anal.Calcd for C 148 H 212 N 2 O 62・ 2H 2 O: C, 58.33; H, 7.14; N, 0.92; O, 33.60%; Found: C,
57.01; H, 7.18; N, 0.87; O, 33.80%.
〔構造式(2)を有するモノマーの合成〕
図3に実施例で用いた構造式(2)を有するモノマーの合成方法を示した。
50mlナスフラスコ中で、モノマー前駆物質であるエチニルトラン結合PM α−CD誘導体(7’)(0.48mmol)とメタノール/水=15ml:15mlを混合した。65℃で1時間反応後室温まで冷却した。系内をアルゴン置換し、1,3−ヨードベンゼン(0.24mmol),Pd(OAc)2(0.24mmol),TXPTS(0.096mmol),CuI(0.0024mmol),炭酸ナトリウム(3.84mmol),トリエチルアミン3mlを加えた。室温で24時間撹拌した。酢酸エチルを加えて希釈し、飽和食塩水で洗浄、硫酸ナトリウムで乾燥させた後、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製をし、収率82%で末端にアセトアミド基を有する被覆モノマー(2’)を得た。((2’)は、構造式(2)の有機環状化合物がPM α−CDで、両末端にアセトアミド基が置換した物質。)
[Synthesis of Monomer Having Structural Formula (2)]
FIG. 3 shows a method for synthesizing the monomer having the structural formula (2) used in the examples.
In a 50 ml eggplant flask, the monomer precursor ethynyltolane-bound PM α-CD derivative (7 ′) (0.48 mmol) and methanol / water = 15 ml: 15 ml were mixed. After reacting at 65 ° C. for 1 hour, it was cooled to room temperature. The system was purged with argon, and 1,3-iodobenzene (0.24 mmol), Pd (OAc) 2 (0.24 mmol), TXPTS (0.096 mmol), CuI (0.0024 mmol), sodium carbonate (3.84 mmol) ), 3 ml of triethylamine was added. Stir at room temperature for 24 hours. The mixture was diluted with ethyl acetate, washed with saturated brine, dried over sodium sulfate, and the solvent was evaporated. The product was purified by silica gel column chromatography to obtain a coating monomer (2 ′) having an acetamide group at the terminal in a yield of 82%. ((2 ′) is a substance in which the organic cyclic compound of the structural formula (2) is PM α-CD, and acetamido groups are substituted on both ends.)
MALDI-TOF MS(CHCA): m/z 3033 ([M+Na]+,
C148H212N2O62Na, cald 3034 ); 1H
NMR(400 MHz, CDCl3) : δH = 8.05 (d, J =8.2 Hz, 4H, ArH), 7.62-7.61 (m, 5H, ArH),
7.45-7.35 (m, 9H, ArH), 5.01-4.96 (m, 12H, CD-H1), 4.87-2.83 (m, 174H,
CD-H,OCH3), 2.22 (s, 6H, CH3CO); 13C NMR
(400MHz, CDCl3, r.t.): δc = 162.58, 139.77, 133.76-131.31 (several peaks overlapped), 123.46,
122.85, 113.90, 112.54, 111.56, 101.88-98.22 (several peaks overlapped),
93.418, 90.23, 83.97-80.91 (several peaks overlapped), 72.57-69.87 (several
peaks overlapped), 62.02, 59.45-57.48 (several peaks overlapped); Anal. Calcd
for C148H212N2O62・2H2O: C, 58.33; H, 7.14; N, 0.92; O, 33.60 %; Found: C,
58.05; H, 7.02; N, 0.98; O, 33.21 %.
MALDI-TOF MS (CHCA): m / z 3033 ([M + Na] + ,
C 148 H 212 N 2 O 62 Na, cald 3034); 1 H
NMR (400 MHz, CDCl 3 ): δ H = 8.05 (d, J = 8.2 Hz, 4H, ArH), 7.62-7.61 (m, 5H, ArH),
7.45-7.35 (m, 9H, ArH), 5.01-4.96 (m, 12H, CD-H 1 ), 4.87-2.83 (m, 174H,
CD-H, OCH 3 ), 2.22 (s, 6H, CH 3 CO); 13 C NMR
(400MHz, CDCl 3 , rt): δ c = 162.58, 139.77, 133.76-131.31 (several peaks overlapped), 123.46,
122.85, 113.90, 112.54, 111.56, 101.88-98.22 (several peaks overlapped),
93.418, 90.23, 83.97-80.91 (several peaks overlapped), 72.57-69.87 (several
peaks overlapped), 62.02, 59.45-57.48 (several peaks overlapped); Anal. Calcd
for C 148 H 212 N 2 O 62・ 2H 2 O: C, 58.33; H, 7.14; N, 0.92; O, 33.60%; Found: C,
58.05; H, 7.02; N, 0.98; O, 33.21%.
(実施例1)
図4に実施例1で用いた構造式(3)を有するメタ架橋被覆ポリマーの合成方法を示した。
1Lナスフラスコに、テトラヒドロフラン100mlと1M−HCl水溶液500mlを入れ、被覆モノマー(1’) (0.332mmol)を加えた。 系内を窒素置換し、40℃で24時間撹拌した。酢酸エチルで希釈し、飽和炭酸水素ナトリウムおよび飽和食塩水で洗浄、硫酸ナトリウムで乾燥させた後、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製をし、収率70%で末端のアセトアミド基が加水分解されたアミン誘導体を得た。
Example 1
FIG. 4 shows a method for synthesizing the meta-crosslinking coating polymer having the structural formula (3) used in Example 1.
To a 1 L eggplant flask, 100 ml of tetrahydrofuran and 500 ml of 1M HCl aqueous solution were added, and the coating monomer (1 ′) (0.332 mmol) was added. The system was purged with nitrogen and stirred at 40 ° C. for 24 hours. The mixture was diluted with ethyl acetate, washed with saturated sodium hydrogen carbonate and saturated brine, dried over sodium sulfate, and the solvent was evaporated. Purification by silica gel column chromatography gave an amine derivative in which the terminal acetamide group was hydrolyzed in a yield of 70%.
MALDI-TOF MS: (m/z) 2949 ([M+Na]+,
C144H208N2O60Na, calcd. 2950); 1H
NMR (400MHz, CDCl3, r.t.): δH = 8.01 (d, J
= 8.2 Hz, 4H, ArH), 7.60 (d, J = 8.2 Hz, 4H, ArH), 7.44 (s, 4H,
ArH), 7.22 (d, J = 8.2 Hz, 2H, ArH), 6.44 (m, 4H, ArH), 5.10-4.96 (m,
12H, CD-H1), 4.87-2.85 (d, 178H, NH, CD-H, OCH3); 13C
NMR (400MHz, CDCl3, r.t.): δc = 163.367,
160.560, 148.795, 148.393, 134.194, 132.077-131.158(several peaks overlapped),
124.384, 123.206, 122.976, 122.775, 109.870, 107.983, 107.523, 105.367,
102.618, 100.721-98.000(several peaks overlapped),
83.783-81.167(several peaks overlapped), 72.095-70.083(several peaks
overlapped), 61.767, 59.018-57.351(several peaks overlapped); Anal. Calcd for C144H208N2O60・2H2O:
C, 58.37; H, 7.21; N, 0.95; O, 33.48 %; Found: C, 58.01; H, 7.18; N, 0.87; O,
33.82 %.
MALDI-TOF MS: (m / z) 2949 ([M + Na] + ,
C 144 H 208 N 2 O 60 Na, calcd. 2950); 1 H
NMR (400MHz, CDCl 3 , rt): δ H = 8.01 (d, J
= 8.2 Hz, 4H, ArH), 7.60 (d, J = 8.2 Hz, 4H, ArH), 7.44 (s, 4H,
ArH), 7.22 (d, J = 8.2 Hz, 2H, ArH), 6.44 (m, 4H, ArH), 5.10-4.96 (m,
12H, CD-H 1 ), 4.87-2.85 (d, 178H, NH, CD-H, OCH 3 ); 13 C
NMR (400MHz, CDCl 3 , rt): δ c = 163.367,
160.560, 148.795, 148.393, 134.194, 132.077-131.158 (several peaks overlapped),
124.384, 123.206, 122.976, 122.775, 109.870, 107.983, 107.523, 105.367,
102.618, 100.721-98.000 (several peaks overlapped),
83.783-81.167 (several peaks overlapped), 72.095-70.083 (several peaks
overlapped), 61.767, 59.018-57.351 (several peaks overlapped); Anal.Calcd for C 144 H 208 N 2 O 60・ 2H 2 O:
C, 58.37; H, 7.21; N, 0.95; O, 33.48%; Found: C, 58.01; H, 7.18; N, 0.87; O,
33.82%.
50mlナスフラスコに、前述の両末端アミン誘導体(0.102mmol)と20%硫酸20mlを入れ、0〜5℃に冷却した。この溶液を、NaNO2(0.306mmol)を水0.5mlに溶解して0〜5℃に冷却した中に滴下した。反応液を0〜5℃で1時間撹拌した後、KI(1.00mmol)溶液中に加え、室温で1時間撹拌した。酢酸エチルを加えて希釈し、飽和食塩水で洗浄、硫酸ナトリウムで乾燥させた後、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製をし、収率60%で両末端ヨウ化誘導体を得た。 A 50 ml eggplant-shaped flask was charged with the above-described both-terminal amine derivative (0.102 mmol) and 20 ml of 20% sulfuric acid and cooled to 0 to 5 ° C. This solution was added dropwise to NaNO 2 (0.306 mmol) dissolved in 0.5 ml of water and cooled to 0-5 ° C. The reaction solution was stirred at 0 to 5 ° C. for 1 hour, then added to a KI (1.00 mmol) solution, and stirred at room temperature for 1 hour. The mixture was diluted with ethyl acetate, washed with saturated brine, dried over sodium sulfate, and the solvent was evaporated. Purification by silica gel column chromatography gave iodinated derivatives at both ends in a yield of 60%.
MALDI-TOF MS: (m/z) 3172 ([M+Na]+,
C144H204I2O60Na, calcd. 3172); 1H
NMR (400MHz, CDCl3, r.t.): δH = 8.07 (d, J
= 8.3 Hz, 4H, ArH), 7.62 (d, J = 8.3 Hz, 4H, ArH), 7.54 (s, 2H, ArH),
7.50 (d, J = 8.6 Hz, 2H, ArH), 7.44 (s, 2H, ArH), 7.24 (d, J =
8.3 Hz, 2H, ArH), 5.09-4.96 (m, 12H, CD-H1), 4.82-2.90 (m, 174H,
CD-H, OCH3); 13C NMR (400MHz, CDCl3, r.t.): δc = 163.367,
132.077-131.158(several peaks overlapped), 124.384, 123.206, 122.976,
100.721-98.000(several peaks overlapped), 83.783-81.167(several peaks
overlapped), 72.095-70.083(several peaks overlapped), 61.767,
59.018-57.351(several peaks overlapped); Anal. Calcd for C144H204I2O60・H2O:
C, 54.61; H, 6.56; I, 8.01; O, 30.82 %; Found: C, 53.98; H, 7.02; O, 31.94 %.
MALDI-TOF MS: (m / z) 3172 ([M + Na] + ,
C 144 H 204 I 2 O 60 Na, calcd. 3172); 1 H
NMR (400MHz, CDCl 3 , rt): δ H = 8.07 (d, J
= 8.3 Hz, 4H, ArH), 7.62 (d, J = 8.3 Hz, 4H, ArH), 7.54 (s, 2H, ArH),
7.50 (d, J = 8.6 Hz, 2H, ArH), 7.44 (s, 2H, ArH), 7.24 (d, J =
8.3 Hz, 2H, ArH), 5.09-4.96 (m, 12H, CD-H 1 ), 4.82-2.90 (m, 174H,
CD-H, OCH 3 ); 13 C NMR (400 MHz, CDCl 3 , rt): δ c = 163.367,
132.077-131.158 (several peaks overlapped), 124.384, 123.206, 122.976,
100.721-98.000 (several peaks overlapped), 83.783-81.167 (several peaks
overlapped), 72.095-70.083 (several peaks overlapped), 61.767,
59.018-57.351 (several peaks overlapped); Anal.Calcd for C 144 H 204 I 2 O 60・ H 2 O:
C, 54.61; H, 6.56; I, 8.01; O, 30.82%; Found: C, 53.98; H, 7.02; O, 31.94%.
次に、30mlのナスフラスコに、両末端ヨウ化誘導体(9.53μmol)と1,3−ジエチルベンゼン(9.53μmol),Pd(PPh3)4 (1.91μmol)を入れ、ピペリジンに溶解した。 室温で24時間撹拌した後、酢酸エチルを加えて希釈し、飽和食塩水で洗浄、硫酸ナトリウムで乾燥させた後、溶媒を留去した。分取用薄相クロマトグラフィーにより精製をし、メタ架橋被覆ポリマー(3’’)を得た。((3’’)は、構造式(3)の有機環状化合物がPM α−CDであるポリマー。) Then, in a recovery flask of 30 ml, both ends iodide derivative (9.53μmol) and 1,3-diethylbenzene (9.53μmol), placed Pd (PPh 3) 4 (1.91μmol ), was dissolved in piperidine. After stirring at room temperature for 24 hours, the mixture was diluted with ethyl acetate, washed with saturated brine, dried over sodium sulfate, and the solvent was evaporated. Purification by preparative thin phase chromatography gave a meta-crosslinked coating polymer (3 ″). ((3 ″) is a polymer in which the organic cyclic compound of the structural formula (3) is PM α-CD.)
1H NMR (400MHz, CDCl3,
r.t.): δH = 8.18-8.02 (br, ArH), 7.74-7.58
(br, ArH), 7.57-7.38 (br, ArH), 5.18-4.93 (m, CD-H1), 4.90-2.80 (m,
CD-H, OCH3).
1 H NMR (400MHz, CDCl 3 ,
rt): δ H = 8.18-8.02 (br, ArH), 7.74-7.58
(br, ArH), 7.57-7.38 (br, ArH), 5.18-4.93 (m, CD-H 1 ), 4.90-2.80 (m,
CD-H, OCH 3 ).
(実施例2)
図5に実施例2で用いた構造式(4)を有するメタ−メタ架橋被覆ポリマーの合成方法を示した。
500mlナスフラスコに、テトラヒドロフラン40mlと1M−HCl水溶液200mlを入れ、被覆モノマー(2’) (0.10mmol)を加えた。 系内を窒素置換し、40℃で24時間撹拌した。酢酸エチルで希釈し、飽和炭酸水素ナトリウムおよび飽和食塩水で洗浄、硫酸ナトリウムで乾燥させた後、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製をし、収率68%で末端のアセトアミド基が加水分解されたアミン誘導体を得た。
(Example 2)
FIG. 5 shows a method for synthesizing a meta-meta crosslinked coating polymer having the structural formula (4) used in Example 2.
To a 500 ml eggplant flask, 40 ml of tetrahydrofuran and 200 ml of 1M HCl aqueous solution were added, and the coating monomer (2 ′) (0.10 mmol) was added. The system was purged with nitrogen and stirred at 40 ° C. for 24 hours. The mixture was diluted with ethyl acetate, washed with saturated sodium hydrogen carbonate and saturated brine, dried over sodium sulfate, and the solvent was evaporated. Purification by silica gel column chromatography gave an amine derivative in which the terminal acetamide group was hydrolyzed in a yield of 68%.
MALDI-TOF MS: (m/z) 2949 ([M+Na]+,
C144H208N2O60Na, calcd. 2950); 1H
NMR (400MHz, CDCl3, r.t.): δH = 7.95 (d, J = 8.2 Hz, 4H, ArH), 7.53-7.51 (m, 5H,
ArH), 7.38-7.14 (m, 9H, ArH), 6.37 (m, 4H, ArH), 5.04-4.90 (m, 12H, CD-H1),
4.86-2.78 (d, 178H, NH, CD-H, OCH3); 13C NMR (400MHz,
CDCl3, r.t.): δc = 1638.92, 154.33, 139.74, 139.37, 137.78, 136.80, 134.10,
128.95-128.34 (several peaks overlapped), 115.47, 113.63, 111.05, 106.63-105.41
(several peaks overlapped), 103.69, 97.19, 95.35-93.73 (several peaks
overlapped), 89.71-86.40 (several peaks overlapped), 78.06-75.49 (several peaks
overlapped), 67.88-66.90 (several peaks overlapped), 64.69-62.61 (several peaks
overlapped); Anal. Calcd for C144H208N2O60・3H2O: C, 58.01; H, 7.24; N, 0.94; O, 33.81 %; Found: C,
58.11; H, 7.02; N, 0.94; O, 33.88 %.
MALDI-TOF MS: (m / z) 2949 ([M + Na] + ,
C 144 H 208 N 2 O 60 Na, calcd. 2950); 1 H
NMR (400MHz, CDCl 3 , rt): δ H = 7.95 (d, J = 8.2 Hz, 4H, ArH), 7.53-7.51 (m, 5H,
ArH), 7.38-7.14 (m, 9H, ArH), 6.37 (m, 4H, ArH), 5.04-4.90 (m, 12H, CD-H 1 ),
4.86-2.78 (d, 178H, NH, CD-H, OCH 3 ); 13 C NMR (400 MHz,
CDCl 3 , rt): δ c = 1638.92, 154.33, 139.74, 139.37, 137.78, 136.80, 134.10,
128.95-128.34 (several peaks overlapped), 115.47, 113.63, 111.05, 106.63-105.41
(several peaks overlapped), 103.69, 97.19, 95.35-93.73 (several peaks
overlapped), 89.71-86.40 (several peaks overlapped), 78.06-75.49 (several peaks
overlapped), 67.88-66.90 (several peaks overlapped), 64.69-62.61 (several peaks
Analped Calcd for C 144 H 208 N 2 O 60・ 3H 2 O: C, 58.01; H, 7.24; N, 0.94; O, 33.81%; Found: C,
58.11; H, 7.02; N, 0.94; O, 33.88%.
20mlナスフラスコに、前述の両末端アミン誘導体(0.0684mmol)と20%硫酸10mlを入れ、0〜5℃に冷却した。この溶液を、NaNO2(0.202mmol)を水0.5mlに溶解して0〜5℃に冷却した中に滴下した。反応液を0〜5℃で1時間撹拌した後、KI(0.682mmol)溶液中に加え、室温で1時間撹拌した。酢酸エチルを加えて希釈し、飽和食塩水で洗浄、硫酸ナトリウムで乾燥させた後、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製をし、収率71%で両末端ヨウ化誘導体を得た。 A 20 ml eggplant-shaped flask was charged with the above-mentioned amine derivative at both ends (0.0684 mmol) and 10 ml of 20% sulfuric acid, and cooled to 0-5 ° C. This solution was added dropwise to NaNO 2 (0.202 mmol) dissolved in 0.5 ml of water and cooled to 0-5 ° C. The reaction solution was stirred at 0 to 5 ° C. for 1 hour, then added to a KI (0.682 mmol) solution, and stirred at room temperature for 1 hour. The mixture was diluted with ethyl acetate, washed with saturated brine, dried over sodium sulfate, and the solvent was evaporated. Purification by silica gel column chromatography gave a iodinated derivative at both ends in a yield of 71%.
MALDI-TOF MS: (m/z) 3172 ([M+Na]+,
C144H204I2O60Na, calcd. 3172); 1H
NMR (400MHz, CDCl3, r.t.):δH = 8.06 (d, J = 8.3 Hz, 4H, ArH), 7.62-7.61 (m, 5H, ArH),
7.54-7.35 (m, 9H, ArH), 5.09-4.95 (m, 12H, CD-H1), 4.81-2.89 (m,
174H, CD-H, OCH3); 13C NMR (400MHz, CDCl3,
r.t.): δc = 159.51,
132.07-131.15(several peaks overlapped), 124.38, 123.20, 122.97, 100.53-99.3
(several peaks overlapped), 82.01-81.03 (several peaks overlapped), 72.1-71.5
(several peaks overlapped), 62.06, 60.55, 59.08-57.86 (several peaks
overlapped); Anal. Calcd for C144H208I2O60・3H2O: C, 54.00; H, 6.61; I, 7.92; O, 31.47 %; Found: C,
53.59; H, 7.45; O, 30.99 %.
MALDI-TOF MS: (m / z) 3172 ([M + Na] + ,
C 144 H 204 I 2 O 60 Na, calcd. 3172); 1 H
NMR (400MHz, CDCl 3 , rt): δ H = 8.06 (d, J = 8.3 Hz, 4H, ArH), 7.62-7.61 (m, 5H, ArH),
7.54-7.35 (m, 9H, ArH), 5.09-4.95 (m, 12H, CD-H 1 ), 4.81-2.89 (m,
174H, CD-H, OCH 3 ); 13 C NMR (400 MHz, CDCl 3 ,
rt): δ c = 159.51,
132.07-131.15 (several peaks overlapped), 124.38, 123.20, 122.97, 100.53-99.3
(several peaks overlapped), 82.01-81.03 (several peaks overlapped), 72.1-71.5
(several peaks overlapped), 62.06, 60.55, 59.08-57.86 (several peaks
Analped Calcd for C 144 H 208 I 2 O 60・ 3H 2 O: C, 54.00; H, 6.61; I, 7.92; O, 31.47%; Found: C,
53.59; H, 7.45; O, 30.99%.
次に、アルゴン置換した20mlのナスフラスコに、両末端ヨウ化誘導体(0.048mmol)を入れ、ジイソプロピルアミン1ml,テトラヒドロフラン5mlを加えた。Trimethylsilylacetylene(0.144mmol),Pd(PPh3)2Cl(0.0051mmol),CuI(0.0010mmol)を入れ、室温で5時間撹拌した。反応液はセライトろ過し、濃縮した。シリカゲルカラムクロマトグラフィーにより精製をし、収率66%で両末端TMS誘導体を得た。 Next, an iodine substituted derivative (0.048 mmol) was added to a 20 ml eggplant flask purged with argon, and 1 ml of diisopropylamine and 5 ml of tetrahydrofuran were added. Trimethylsilylacetylene (0.144 mmol), Pd (PPh 3 ) 2 Cl (0.0051 mmol), and CuI (0.0010 mmol) were added and stirred at room temperature for 5 hours. The reaction solution was filtered through celite and concentrated. Purification was performed by silica gel column chromatography to obtain a TMS derivative at both ends in a yield of 66%.
MALDI-TOF MS: (m/z) 3111 ([M+Na]+,
C154H222O60Si2Na, calcd. 3111).
MALDI-TOF MS: (m / z) 3111 ([M + Na] +,
C154H222O60Si2Na, calcd. 3111).
次に、20mlのナスフラスコに、両末端TMS誘導体(0.032mmol)を入れ、テトラヒドロフラン5mlを加えた。TBAFテトラヒドロフラン溶液を添加し、室温で30分撹拌した。反応液にメタノール5mlを加え、溶媒を留去した。分取用薄層クロマトグラフィーにより精製をし、収率62%でトリメチルシリル基が脱保護された、両末端エチニル誘導体(メタ架橋被覆型π共役モノマー)を得た。 Next, a TMS derivative (0.032 mmol) at both ends was placed in a 20 ml eggplant flask, and 5 ml of tetrahydrofuran was added. TBAF tetrahydrofuran solution was added and stirred at room temperature for 30 minutes. 5 ml of methanol was added to the reaction solution, and the solvent was distilled off. Purification by preparative thin-layer chromatography yielded a biterminal ethynyl derivative (meta-crosslinking coated π-conjugated monomer) in which the trimethylsilyl group was deprotected in a yield of 62%.
MALDI-TOF MS: (m/z) 2967 ([M+Na]+,
C148H206O60Na, calcd. 2968); 1H NMR
(400MHz, CDCl3, r.t.): δH = 8.05 (d, J = 8.3 Hz, 4H, ArH), 7.63-7.61 (m, 5H,
ArH), 7.48-7.35 (m, 9H, ArH), 5.01-4.96 (m, 12H, CD-H1),
4.80-2.87 (m, 174H, CD-H, OCH3); 13C NMR (400MHz, CDCl3,
r.t.): δc = 167.03,
139.42, 138.69-134.08 (several peaks overlapped), 132.40, 130.98, 129.45,
128.71, 127.67, 122.94, 106.19, 106.19-103.53 (several peaks overlapped),
100.70, 95.75, 94.80, 93.72, 89.31-85.22 (several peaks overlapped),
77.80-75.73 (several peaks overlapped), 67.35, 63.00-562.01 (several peaks
overlapped); Anal. Calcd for C148H206O60・H2O: C, 59.99; H, 7.08; O, 32.94 %; Found: C, 60.17; H,
7.30; O, 33.32 %
MALDI-TOF MS: (m / z) 2967 ([M + Na] + ,
C 148 H 206 O 60 Na, calcd. 2968); 1 H NMR
(400MHz, CDCl 3 , rt): δ H = 8.05 (d, J = 8.3 Hz, 4H, ArH), 7.63-7.61 (m, 5H,
ArH), 7.48-7.35 (m, 9H, ArH), 5.01-4.96 (m, 12H, CD-H 1 ),
4.80-2.87 (m, 174H, CD-H, OCH 3 ); 13 C NMR (400 MHz, CDCl 3 ,
rt): δ c = 167.03,
139.42, 138.69-134.08 (several peaks overlapped), 132.40, 130.98, 129.45,
128.71, 127.67, 122.94, 106.19, 106.19-103.53 (several peaks overlapped),
100.70, 95.75, 94.80, 93.72, 89.31-85.22 (several peaks overlapped),
77.80-75.73 (several peaks overlapped), 67.35, 63.00-562.01 (several peaks
Analped Calcd for C 148 H 206 O 60・ H 2 O: C, 59.99; H, 7.08; O, 32.94%; Found: C, 60.17; H,
7.30; O, 33.32%
次に、20mlのナスフラスコに、両末端エチニル誘導体(0.012mmol)と1,3−ジヨードベンゼン(0.012mmol),Pd2(dba)3 (0.0024mmol),PPh3 (0.0048mmol),CuI(0.6μmol)を入れ、テトラヒドロフラン2.5mlに溶解した。トリエチルアミン0.5mlを添加し、アルゴン雰囲気下、室温で24時間撹拌した後、酢酸エチルを加えて希釈し、飽和食塩水で洗浄、硫酸ナトリウムで乾燥させた後、溶媒を留去した。分取用薄層クロマトグラフィーにより精製をし、メタ−メタ架橋被覆ポリマー(4’)を得た。((4’)は、構造式(4)の有機環状化合物がPM α−CDであるポリマー。) Next, both ends of the ethynyl derivative (0.012 mmol), 1,3-diiodobenzene (0.012 mmol), Pd 2 (dba) 3 (0.0024 mmol), PPh 3 (0.0048 mmol) were placed in a 20 ml eggplant flask. ), CuI (0.6 μmol) was added and dissolved in 2.5 ml of tetrahydrofuran. After adding 0.5 ml of triethylamine and stirring at room temperature for 24 hours under an argon atmosphere, the mixture was diluted with ethyl acetate, washed with saturated brine and dried over sodium sulfate, and then the solvent was distilled off. Purification by preparative thin layer chromatography gave a meta-meta cross-linked coating polymer (4 ′). ((4 ′) is a polymer in which the organic cyclic compound of the structural formula (4) is PM α-CD.)
1H NMR (400MHz, CDCl3, r.t.): δHδH = 8.05 (br, ArH),
7.63-7.61 (br, ArH), 7.55-7.44 (br, ArH), 7.30 (br, ArH), 5.01-4.96 (m, CD-H1),
4.80-2.87 (m, CD-H, OCH3).
1H NMR (400MHz, CDCl3, rt): δ H δ H = 8.05 (br, ArH),
7.63-7.61 (br, ArH), 7.55-7.44 (br, ArH), 7.30 (br, ArH), 5.01-4.96 (m, CD-H1),
4.80-2.87 (m, CD-H, OCH 3 ).
(比較例1)
図6に比較例1で用いた被覆ポリマー(8)の合成方法を示した。
両末端ヨウ化誘導体の合成までは、実施例1に同じ。
引き続き、20mlのナスフラスコに、両末端ヨウ化誘導体(6.67μmol)と1,4−ジエチニルベンゼン(6.67μmol),Pd(PPh3)4 (1.33μmol)を入れ、ピペリジン2mlに溶解した。 室温で24時間撹拌した後、酢酸エチルを加えて希釈し、飽和食塩水で洗浄、硫酸ナトリウムで乾燥させた後、溶媒を留去した。分取用薄相クロマトグラフィーにより精製をし、被覆ポリマー(8)を得た。
FIG. 6 shows a method for synthesizing the coating polymer (8) used in Comparative Example 1.
The process up to the synthesis of the iodinated derivatives at both ends is the same as in Example 1.
Subsequently, both ends of the iodinated derivative (6.67 μmol), 1,4-diethynylbenzene (6.67 μmol), and Pd (PPh 3 ) 4 (1.33 μmol) were placed in a 20 ml eggplant flask and dissolved in 2 ml of piperidine. did. After stirring at room temperature for 24 hours, the mixture was diluted with ethyl acetate, washed with saturated brine, dried over sodium sulfate, and the solvent was evaporated. Purification by preparative thin phase chromatography gave the coated polymer (8).
1H NMR (400MHz, CDCl3, r.t.): δH = 8.13-7.88 (br, ArH), 7.68-7.23
(br, ArH), 5.16-4.83 (m, CD-H1), 4.70-2.81 (m, CD-H, OCH3).
1H NMR (400MHz, CDCl3, rt): δ H = 8.13-7.88 (br, ArH), 7.68-7.23
(br, ArH), 5.16-4.83 (m, CD-H1), 4.70-2.81 (m, CD-H, OCH3).
〔TRMC-TAS法による分子内電荷移動度測定〕
メタ架橋被覆ポリマーに関してTRMC−TAS法により固体状態での分子内電荷移動度の測定を行った。(TRMC−TAS法は、文献:Proceedings of the 1st Annual Meeting of Particle Accelerator Meeting in Japan (August 4−6,2004,Funabashi Japan)に発表されている手法で、電極作製することなくバルク体、液体中の電荷移動度を測定できる。)
TRMC−TAS測定から求められる伝導度と電荷分離効率φの値を用いて分子内電荷移動度の値を求めた。
[Intramolecular charge mobility measurement by TRMC-TAS method]
Intramolecular charge mobility in the solid state was measured by the TRMC-TAS method for the meta-crosslinked coating polymer. (The TRMC-TAS method is a method published in the literature: Proceedings of the 1st Annual Meeting of Participant Accelerator Meeting in Japan (August 4-6, 2004, Funabashi Japan), without producing a bulk material in the body. Can be measured.)
The value of intramolecular charge mobility was determined using the conductivity determined from TRMC-TAS measurement and the value of charge separation efficiency φ.
その結果、メタ架橋することによりパラ架橋被覆ポリマー(8)の移動度の値0.7cm2/Vsより飛躍的に向上し、メタ架橋被覆ポリマー(3’’)が3.0cm2/Vs、メタ−メタ架橋被覆ポリマー(4’)2.1cm2/Vsとなった。
これは、現在報告されている共役ポリマー類の分子内電荷移動度としては最も高い値である。
As a result, remarkably improved than the value 0.7 cm 2 / Vs mobility para crosslinked coating polymer (8) by meta-crosslinked, meta crosslinked coating polymer (3 '') is 3.0 cm 2 / Vs, Meta-meta cross-linking coating polymer (4 ′) was 2.1 cm 2 / Vs.
This is the highest value of intramolecular charge mobility of conjugated polymers currently reported.
TMRC測定:時間分解誘電吸収測定(Time−Resolved Microwave Conductivity)。電極作製することなくバルク固体、液体中で伝導度を測定可能。
TAS:光過渡吸収分光(Transient Absorption Spektroscopy)。活性種の電子準位を調べる方法。
TMRC measurement: Time-resolved dielectric absorption measurement (Time-Resolved Microwave Conductivity). Conductivity can be measured in bulk solids and liquids without electrode preparation.
TAS: Transient Absorption Spectroscopy. A method for examining the electronic level of active species.
本発明の導電性被覆共役ポリマーは、従来より知られている導電性ポリロタキサンに比べ大きな電荷移動度による優れた導電性を有しており、分子素子を構成する有機半導体への適用が可能である。
The conductive coated conjugated polymer of the present invention has excellent conductivity due to a large charge mobility compared to conventionally known conductive polyrotaxanes, and can be applied to organic semiconductors constituting molecular devices. .
Claims (5)
Copolymerizing a monomer having the structural formula (1) and the structural formula (2), or a monomer having the structural formula (1) or the structural formula (2) and m-dihalidebenzene or m-di The method for producing a conductive coated conjugated polymer according to claim 1, wherein ethynylbenzene is copolymerized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011235505A JP5837390B2 (en) | 2011-10-26 | 2011-10-26 | Conductive coating conjugated polymer and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011235505A JP5837390B2 (en) | 2011-10-26 | 2011-10-26 | Conductive coating conjugated polymer and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013091738A JP2013091738A (en) | 2013-05-16 |
JP5837390B2 true JP5837390B2 (en) | 2015-12-24 |
Family
ID=48615130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011235505A Expired - Fee Related JP5837390B2 (en) | 2011-10-26 | 2011-10-26 | Conductive coating conjugated polymer and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5837390B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3882073A (en) * | 1972-12-18 | 1975-05-06 | Hercules Inc | Thermosetting compositions containing poly(arylacetylenes) |
JP2004091539A (en) * | 2002-08-29 | 2004-03-25 | Nippon Telegr & Teleph Corp <Ntt> | Terminally modified conjugated polymer and polymer connection substrate |
JP4654568B2 (en) * | 2003-06-17 | 2011-03-23 | 日本電気株式会社 | Secondary battery |
EP1740655A1 (en) * | 2004-04-13 | 2007-01-10 | Zyvex Corporation | Methods for the synthesis of modular poly(phenyleneethynylenes) and fine tuning the electronic properties thereof for the functionalization of nanomaterials |
WO2008069274A1 (en) * | 2006-12-08 | 2008-06-12 | Panasonic Corporation | Organic polymer bearing plural organic ring structures and a chain structute passing through the ring structures, and process for the production thereof |
-
2011
- 2011-10-26 JP JP2011235505A patent/JP5837390B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013091738A (en) | 2013-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62501557A (en) | Surface treatment agents and polymers | |
CN104672434A (en) | Organic semiconductor material and preparation method and application thereof | |
Song et al. | A bridge-like polymer synthesized by tandem metathesis cyclopolymerization and acyclic diene metathesis polymerization | |
JP2013140923A (en) | Organic semiconductor thin film and organic thin-film solar cell | |
JP5837390B2 (en) | Conductive coating conjugated polymer and method for producing the same | |
JP2009108333A (en) | Organic polymer comprising plural organic ring structures and a chain structure passing through the ring structures, and method for the production thereof | |
JP6664710B2 (en) | Polymer and method for producing the same | |
CN112409374B (en) | Preparation method of rigid core direct-connected graphene-like benzophenanthrene discotic liquid crystal and mesomorphism | |
JP2013170134A (en) | Method for producing aromatic compound, aromatic compound and macromolecular compound | |
Otep et al. | Coil–rod–coil triblock copolymers synthesized by macromolecular clicking and their compatibilizer effects in all-polymer solar cells | |
JP4014960B2 (en) | Molecular wire and manufacturing method thereof | |
JP2007211138A (en) | Alicyclic polyether, its production method, and its use | |
JP7150265B2 (en) | Method for producing single-end modified polythiophene | |
JP4873570B2 (en) | POLY [2] CATENAN COMPOUND AND MONOMER THEREOF AND METHOD FOR PRODUCING THEM | |
WO2024111519A1 (en) | Polyorganosiloxane | |
CN110256455A (en) | A kind of small organic molecule and its preparation method and application for sending bridge containing asymmetry | |
Pavlović et al. | Controlled synthesis of unsubstituted high molecular weight poly (para-phenylene) via Suzuki polycondensation-thermal aromatization methodology | |
KR20030065339A (en) | Coating solution for forming insulating film | |
CN103012246B (en) | Double-branched chain aromatic amine and derivative and preparation method thereof | |
JP2009263605A (en) | Molecular capsule and its producing method | |
JP5730150B2 (en) | Polymerization initiator and production method thereof, and star polymer and production method thereof | |
JP2011236333A (en) | Block copolymer | |
JP2011153117A (en) | Fused ring aromatic polymer, and method for producing the same | |
JP4743467B2 (en) | Dendrimers with alkoxysilyl groups at the branch ends | |
Yang | Synthesis of Novel Polydiacetylenes Towards Topochemical Polymerization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141020 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20141112 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20141112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150917 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151027 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151105 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5837390 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |