[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5836178B2 - Alkaline battery - Google Patents

Alkaline battery Download PDF

Info

Publication number
JP5836178B2
JP5836178B2 JP2012074175A JP2012074175A JP5836178B2 JP 5836178 B2 JP5836178 B2 JP 5836178B2 JP 2012074175 A JP2012074175 A JP 2012074175A JP 2012074175 A JP2012074175 A JP 2012074175A JP 5836178 B2 JP5836178 B2 JP 5836178B2
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
gel
electrode current
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012074175A
Other languages
Japanese (ja)
Other versions
JP2013206698A (en
Inventor
優太 鈴木
優太 鈴木
山崎 龍也
龍也 山崎
秀典 都築
秀典 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Energy Co Ltd
Original Assignee
FDK Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Energy Co Ltd filed Critical FDK Energy Co Ltd
Priority to JP2012074175A priority Critical patent/JP5836178B2/en
Publication of JP2013206698A publication Critical patent/JP2013206698A/en
Application granted granted Critical
Publication of JP5836178B2 publication Critical patent/JP5836178B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

この発明はアルカリ電池に関する、具体的には、アルカリ電池の誤使用に基づく漏液や破裂を防止するための技術に関する。   The present invention relates to an alkaline battery, and more specifically to a technique for preventing leakage or rupture due to misuse of an alkaline battery.

LR6型などのアルカリ乾電池は、正極合剤、セパレータ、負極合剤からなるアルカリ発電要素が有底円筒状の金属製電池缶に収容されているとともに、その電池缶の開口部が樹脂製ガスケットを用いて気密封口された構造を基本としている。図1に、一般的なアルカリ電池1の構造を示した。図示したアルカリ電池1は、LR6型(単三型)の円筒形アルカリ電池1であり、円筒軸100を含む面で切断したときの縦断面図を示している。当該電池1は、底部を下方にした有底円筒状の金属製電池缶(正極缶)2、リング状のコアに成形された正極合剤3、この正極合剤3の内側に配設された有底円筒状のセパレータ4、亜鉛合金を含んでセパレータ4の内側に充填される負極ゲル5、この負極ゲル5中に挿入された負極集電子6、負極端子板7、封口ガスケット8などにより構成される。この構造において、正極合剤3、セパレータ4、負極ゲル5が、電解液の存在下でアルカリ乾電池1の発電要素を形成する。   An alkaline battery such as the LR6 type has an alkaline power generation element composed of a positive electrode mixture, a separator, and a negative electrode mixture housed in a bottomed cylindrical metal battery can, and the opening of the battery can has a resin gasket. It is based on a structure that is hermetically sealed using. FIG. 1 shows a structure of a general alkaline battery 1. The illustrated alkaline battery 1 is an LR6 type (AA type) cylindrical alkaline battery 1 and shows a longitudinal sectional view when cut along a plane including a cylindrical shaft 100. The battery 1 is disposed inside a bottomed cylindrical metal battery can (positive electrode can) 2 having a bottom portion, a positive electrode mixture 3 formed into a ring-shaped core, and the positive electrode mixture 3. Consists of a bottomed cylindrical separator 4, a negative electrode gel 5 containing a zinc alloy and filled inside the separator 4, a negative electrode current collector 6 inserted in the negative electrode gel 5, a negative electrode terminal plate 7, a sealing gasket 8, and the like. Is done. In this structure, the positive electrode mixture 3, the separator 4, and the negative electrode gel 5 form the power generation element of the alkaline dry battery 1 in the presence of the electrolytic solution.

正極缶2は電池ケースであるとともに、正極合剤3が圧入されることで、この正極合剤3と直接接触し、正極集電体を兼ねる。そして正極缶2の底面には、外方に突設する正極端子部9が形成されている。正極合剤3は、例えば、電解二酸化マンガンを活物質として、導電材(黒鉛など)、およびバインダー(ポリアクリル酸など)を加えて混練したものリング状のコアに成形したものである。   The positive electrode can 2 is a battery case, and when the positive electrode mixture 3 is press-fitted, it directly contacts the positive electrode mixture 3 and also serves as a positive electrode current collector. A positive electrode terminal portion 9 that protrudes outward is formed on the bottom surface of the positive electrode can 2. The positive electrode mixture 3 is formed, for example, into a ring-shaped core obtained by kneading a conductive material (such as graphite) and a binder (such as polyacrylic acid) using electrolytic manganese dioxide as an active material.

負極ゲル5は、普通、亜鉛粉、ゲル化剤、酸化亜鉛、水酸化カリウム水溶液からなる電解液を含んで構成されており、この負極ゲル5中に棒状の金属製負極集電子6が挿入されている。当該負極集電子6は、上端が皿状の金属製負極端子板7の内面に溶接されて立設固定されている。負極端子板7、負極集電子6および封口ガスケット8は、あらかじめ一体に組み合わせられている。そして、封口ガスケット8の外周部が、正極缶2の開口の下方に形成されたビーディング部10を座にして載置され、この状態で当該正極缶2の開口がかしめられることで、負極端子板7の周縁部がガスケット8の縁部を介して当該開口に嵌着される。それによって正極缶2が気密シールされる。   The negative electrode gel 5 is usually configured to include an electrolytic solution composed of zinc powder, a gelling agent, zinc oxide, and an aqueous potassium hydroxide solution, and a rod-shaped metal negative electrode current collector 6 is inserted into the negative electrode gel 5. ing. The negative electrode current collector 6 is fixed upright by being welded to the inner surface of a plate-shaped metal negative electrode terminal plate 7 at its upper end. The negative electrode terminal plate 7, the negative electrode current collector 6 and the sealing gasket 8 are combined together in advance. And the outer peripheral part of the sealing gasket 8 is mounted with the beading part 10 formed under the opening of the positive electrode can 2 as a seat, and the opening of the positive electrode can 2 is caulked in this state, so that the negative electrode terminal The peripheral edge of the plate 7 is fitted into the opening via the edge of the gasket 8. Thereby, the positive electrode can 2 is hermetically sealed.

ガスケット8は、円板状の上面形状を有し、その円板表面には、同心円状の起伏が形成されている。その円板の中心には負極集電子6を挿通するためのボス部11が形成されている。また、ボス部11から周縁部12に至る領域13には、例えば、溝などによって薄肉となる部位が形成されており、この薄肉部は、何らかの原因で電池1内部の圧力が上昇した際には、この薄肉部位が先行破断することで、内圧を負極端子板7に穿設された穴14から外部に開放して電池が破裂するのを防止する防爆安全機構として機能する。   The gasket 8 has a disk-like top surface shape, and concentric undulations are formed on the disk surface. A boss portion 11 for inserting the negative electrode current collector 6 is formed at the center of the disk. Further, in the region 13 from the boss portion 11 to the peripheral edge portion 12, for example, a portion that becomes thin due to a groove or the like is formed, and this thin portion is formed when the pressure inside the battery 1 rises for some reason. When the thin portion is preliminarily broken, it functions as an explosion-proof safety mechanism that prevents the battery from rupturing by releasing the internal pressure from the hole 14 formed in the negative electrode terminal plate 7 to the outside.

ところで、上述したようなアルカリ電池1では、周知のごとく、充電器により逆方向の電流を流したり、3本以上の電池1を直列接続して使用する電子機器において1本だけ正極と負極を逆にする「逆装」状態で接続したりして「充電」すると、電池1の内部でガスが発生する。そして、充電状態が継続すれば、発生したガスにより正極缶2の内圧が上昇し、ガスケット8の防爆安全機構が作動して漏液に至る。急激にガスが発生すれば、内容物が外方に噴出、飛散し、防爆安全機構が作動したとしても破裂と同じ状態となる。なお、以下の特許文献1に記載されているアルカリ電池では、電池内部にダイオードとして機能するダイオード板が組み込まれており、電池内部の逆電流を遮断し、充電状態にあるアルカリ電池の漏液や破裂を防止している。   By the way, in the alkaline battery 1 as described above, as is well known, only one positive electrode and one negative electrode are reversed in an electronic device in which a reverse current is passed by a charger or three or more batteries 1 are connected in series. When the battery is connected in the “reversed” state or “charged”, gas is generated inside the battery 1. And if a charge state continues, the internal pressure of the positive electrode can 2 will rise with the generated gas, the explosion-proof safety mechanism of the gasket 8 will act | operate, and it will lead to liquid leakage. If the gas is suddenly generated, the contents are ejected outward and scattered, and even if the explosion-proof safety mechanism is activated, the state is the same as the explosion. In addition, in the alkaline battery described in Patent Document 1 below, a diode plate that functions as a diode is incorporated inside the battery, blocking reverse current inside the battery, Prevents rupture.

特開2005−317317号公報JP 2005-317317 A

上記の特許文献1に記載の技術では、電極端子の表面にダイオード板を積層させることで、逆方向の電流を遮断している。しかしながら、このダイオード板は、それ自体が抵抗体であり、電池本来の放電性能を劣化させる。もちろん、ダイオード板は、通常の電池とは別の部品であり、また、単価自体が安価なアルカリ電池に取っては、高価な部品である。そのため、コストアップを招く。また、電池の組み立て工程において、ダイオード板を組み付ける手順が別途追加されることになり、組み立てに要するコストも増加する。   In the technique described in Patent Document 1, a reverse current is interrupted by laminating a diode plate on the surface of the electrode terminal. However, this diode plate itself is a resistor and deteriorates the original discharge performance of the battery. Of course, the diode plate is a separate part from a normal battery, and is an expensive part for an alkaline battery whose unit price is low. Therefore, the cost increases. Further, in the battery assembly process, a procedure for assembling the diode plate is added separately, and the cost required for the assembly also increases.

そこで本発明は、個別の部品を設けることなく、充電状態に置かれても逆電流に起因す漏液や破裂を防止できるアルカリ電池を提供することを主な目的としている。   Thus, the main object of the present invention is to provide an alkaline battery that can prevent leakage or rupture due to reverse current even if it is placed in a charged state without providing individual components.

上記目的を達成するための本発明は、上部が開口する有底円筒状の正極缶と、中空円筒状に成形されて当該正極缶内に挿嵌される正極合剤と、当該正極合剤の中空円筒内にセパレータを介して充填される負極ゲルと、前記正極缶の開口部にガスケットを介して嵌着される負極端子板と、下端を先端とした棒状金属で上端が前記負極端子板の下面にスポット溶接されているとともに先端側が前記負極ゲル内に挿入される負極集電子と、を備えたアルカリ電池であって、
前記ガスケットは、上面形状が円板状で、前記円板中心に前記負極集電子が圧入されるボス部を備え、
前記負極集電子には、前記負極ゲルとの接触界面に発生した気泡を捕捉するための凹部が前記先端から前記ボス部の下端までの領域に亘って分散配置され、
前記負極ゲルの粘度が87Pa・s以上、171Pa・s未満であり、
前記負極集電子の前記先端から前記ボス部の下端までの表面積に対する前記凹部の開口面積の占有率が20%より大きく、52%未満であり、
正立状態にある前記正極缶の底部内面から前記ボス部の下端までの高さを100%として、前記負極ゲルの充填量が96%未満である、
ことを特徴とするアルカリ電池としている。
あるいは、前記負極ゲルの粘度を90Pa・s以上、171Pa・s未満とし、前記負極集電子の前記先端から前記ボス部の下端までの表面積に対する前記凹部の開口面積の占有率を19%以上、52%未満としてもよい。
In order to achieve the above object, the present invention includes a bottomed cylindrical positive electrode can having an open top, a positive electrode mixture formed into a hollow cylindrical shape and inserted into the positive electrode can, and the positive electrode mixture A negative electrode gel filled via a separator in a hollow cylinder, a negative electrode terminal plate fitted via a gasket to the opening of the positive electrode can, and a rod-like metal having a lower end as a tip, the upper end of the negative electrode terminal plate A negative electrode current collector that is spot welded to the lower surface and the tip side is inserted into the negative electrode gel, and an alkaline battery comprising:
The gasket has a disc shape on the upper surface, and includes a boss portion into which the negative electrode current collector is press-fitted into the disc center,
In the negative electrode current collector, concave portions for capturing bubbles generated at the contact interface with the negative electrode gel are distributed and arranged over a region from the tip to the lower end of the boss portion ,
The negative electrode gel has a viscosity of 87 Pa · s or more and less than 171 Pa · s,
The occupation ratio of the opening area of the recess to the surface area from the tip of the negative electrode current collector to the lower end of the boss portion is greater than 20% and less than 52%,
The height from the bottom inner surface of the positive electrode can in the upright state to the lower end of the boss portion is 100%, and the filling amount of the negative electrode gel is less than 96%.
The alkaline battery is characterized by this.
Alternatively, the viscosity of the negative electrode gel is 90 Pa · s or more and less than 171 Pa · s, and the occupation ratio of the opening area of the concave portion to the surface area from the tip of the negative electrode current collector to the lower end of the boss portion is 19% or more, 52 It may be less than%.

本発明のアルカリ電池によれば、個別の部品を設けることなく、充電状態に置かれても逆電流に起因す漏液や破裂を防止できる。すなわち、コストアップを抑えて安全性を確保することができる。   According to the alkaline battery of the present invention, it is possible to prevent leakage and rupture due to the reverse current even if the battery is placed in a charged state without providing individual components. That is, safety can be ensured while suppressing an increase in cost.

一般的なアルカリ電池の構造図である。It is a structural diagram of a general alkaline battery. 本発明の一実施形態に係るアルカリ電池の構造図である。1 is a structural diagram of an alkaline battery according to an embodiment of the present invention. 上記実施形態に係るアルカリ電池を構成する負極集電子の断面図である。It is sectional drawing of the negative electrode current collector which comprises the alkaline battery which concerns on the said embodiment. 上記実施形態に係るアルカリ電池における漏液防止機能を説明するための図である。It is a figure for demonstrating the leak prevention function in the alkaline battery which concerns on the said embodiment. 上記実施形態に係るアルカリ電池を構成する負極ゲルの粘度と漏液防止効果との関係を説明するための図である。It is a figure for demonstrating the relationship between the viscosity of the negative electrode gel which comprises the alkaline battery which concerns on the said embodiment, and a liquid leakage prevention effect. 上記実施形態に係るアルカリ電池を構成する負極集電子のその他の例を示す図である。It is a figure which shows the other example of the negative electrode current collector which comprises the alkaline battery which concerns on the said embodiment.

===本発明の技術思想===
上述したように、アルカリ電池は、充電すると内部でガスが発生し、その充電状態が継続すると、ガスが発生し続け、正極缶内の圧力が上昇し、漏液や破裂に至る。従来のアルカリ電池では、充電に起因する漏液や破裂を防止するために、周知のPCT素子や上記特許文献1に記載されているダイオード板などをアルカリ電池に組み込んでいた。
=== Technical thought of the present invention ===
As described above, when the alkaline battery is charged, gas is generated inside, and when the charged state continues, gas is continuously generated, the pressure in the positive electrode can rises, leading to leakage or rupture. In a conventional alkaline battery, a well-known PCT element or a diode plate described in Patent Document 1 has been incorporated into an alkaline battery in order to prevent leakage or rupture due to charging.

PCT素子であれば、充電による逆電流によって発生する熱によって抵抗値が増大することで逆電流を遮断していた。ダイオード板については、それ自体が整流効果を有して、逆方向の電流が流れないようになっていた。すなわち、従来の技術思想は、充電状態が継続した場合に、その充電による電流自体を電気的に遮断することで、ガスの発生を抑制しようとするものであった。しかしながら、これらの技術では、放電性性能とは全く無縁の別部品をアルカリ電池に組み込むことになり、コストアップを招く。また、素子である以上、抵抗体であるため、電池本来の放電性能を発揮させることが難しくなる。   In the case of a PCT element, the reverse current is cut off by increasing the resistance value due to heat generated by the reverse current due to charging. The diode plate itself has a rectifying effect so that a reverse current does not flow. That is, the conventional technical idea has been to suppress the generation of gas by electrically cutting off the current itself due to the charging when the charged state continues. However, with these technologies, separate parts that are completely unrelated to the discharge performance are incorporated into the alkaline battery, resulting in an increase in cost. Moreover, since it is a resistor as long as it is an element, it is difficult to exhibit the battery's original discharge performance.

そこで本発明者は、充電によって電池内部で起こっている現象について考察してみた。そして、漏液や破裂の原因となるガスは、負極集電子と負極ゲルとの接触界面で発生し、そのガスが、負極集電子の表面から気泡として負極ゲル中に放出される、とうい現象に注目した。さらに、充電状態による逆電流を何らかの電気部品を用いて遮断するのではなく、ガス自体が抵抗体であるのだから、このガスによって逆電流を遮断できるのではないか、という発想に至った。さらに、この発想をさらに発展させて、ガスの発生場所である負極集電子の表面にガス(気泡)を捕捉することができれば、この気泡が絶縁膜として機能して逆電流を遮断できるのではないか、と考えた。本発明は、このような考察や発想の転換を出発点として鋭意研究を重ねた結果、想到したものである。   Therefore, the present inventor considered the phenomenon occurring inside the battery by charging. The gas causing leakage or rupture is generated at the contact interface between the negative electrode current collector and the negative electrode gel, and the gas is released as bubbles from the surface of the negative electrode current collector into the negative electrode gel. I paid attention to. Furthermore, the reverse current due to the charged state is not interrupted by using any electrical component, but the gas itself is a resistor, so that the idea is that the reverse current can be interrupted by this gas. Furthermore, if this idea is further developed and gas (bubbles) can be trapped on the surface of the negative electrode current collector where the gas is generated, the bubbles cannot function as an insulating film and block reverse current. I thought. The present invention has been conceived as a result of intensive investigations starting from such considerations and ideas.

===実施形態===
図2は、本発明の実施形態に係るアルカリ電池1aの構造図である。図2(A)は、その全体構造を示す縦断面図であり、(B)は、(A)における円101内を拡大した図である。(A)に示したように、当該アルカリ電池1aの全体構造は、先に図1に示した従来のアルカリ電池1とほぼ同様の構造である。しかし、(B)に示したように、負極集電子6aの構造が従来のものとは大きく異なっており、負極集電子6aにおいて、ボス部11の下端15から先端16に至る領域L1の表面に、多数の凹部20が形成されている。この凹部20は、充電により、負極集電子6aの表面にて発生したガスからなる気泡を捕捉するためのものである。そして、図3は、図2(B)におけるa−a矢視断面図であり、負極集電子6aの横断面形状を示している。この例では、円形断面に対して半球の内面形状となる凹部20が対向するように二つ形成されている。
=== Embodiment ===
FIG. 2 is a structural diagram of the alkaline battery 1a according to the embodiment of the present invention. 2A is a longitudinal sectional view showing the entire structure, and FIG. 2B is an enlarged view of a circle 101 in FIG. As shown to (A), the whole structure of the said alkaline battery 1a is a structure substantially the same as the conventional alkaline battery 1 previously shown in FIG. However, as shown in (B), the structure of the negative electrode current collector 6a is significantly different from that of the conventional one, and in the negative electrode current collector 6a, the surface of the region L1 extending from the lower end 15 to the tip end 16 of the boss part 11 A large number of recesses 20 are formed. The recess 20 is for capturing bubbles made of gas generated on the surface of the negative electrode current collector 6a by charging. FIG. 3 is a cross-sectional view taken along the line aa in FIG. 2B and shows the cross-sectional shape of the negative electrode current collector 6a. In this example, two concave portions 20 having a hemispheric inner surface shape are formed so as to face a circular cross section.

図4は、この凹部20による気泡の捕捉作用を説明するための図であり、図4(A)(B)は、従来のアルカリ電池1の負極集電子6、すなわち凹部20がない負極集電子6の表面における気泡30の振る舞いを示す図であり、(C)(D)は、本実施形態に係るアルカリ電池1aの負極集電子6a、すなわち凹部20が形成されている負極集電子6aの表面における気泡30の振る舞いを示す図である。そして、これらの図では、負極集電子(6,6a)の横断面を示している。   FIGS. 4A and 4B are diagrams for explaining the action of trapping bubbles by the concave portion 20. FIGS. 4A and 4B are negative electrode current collectors 6 of the conventional alkaline battery 1, that is, negative electrode current collectors without the concave portions 20. 6 (C) and 6 (D) show the behavior of the bubble 30 on the surface of the negative electrode current collector 6a of the alkaline battery 1a according to the present embodiment, that is, the surface of the negative electrode current collector 6a on which the recess 20 is formed. It is a figure which shows the behavior of the bubble 30 in. In these drawings, a cross section of the negative electrode current collector (6, 6a) is shown.

まず、(A)に示したように、従来のアルカリ電池1では、負極集電子6の表面で発生した気泡30は、負極ゲル5中で球状に成長していき、その球状の気泡30は、負極集電子6と一点で接触することになる。そのため、(B)に示したように、ある程度成長した気泡31は、振動や他の気泡30との衝突などがあると、負極集電子6との接触状態が維持できず、その気泡31は、容易に負極ゲル5中に放出される。そして、充電状態が継続している限り、気泡30が次々と発生しては、負極ゲル5中に放出され、正極缶2内の圧力が上昇し、最終的に漏液や破裂に至る。   First, as shown in (A), in the conventional alkaline battery 1, the bubbles 30 generated on the surface of the negative electrode current collector 6 grow in a spherical shape in the negative electrode gel 5, and the spherical bubbles 30 are It contacts with the negative electrode current collector 6 at one point. Therefore, as shown in (B), the bubble 31 that has grown to some extent cannot maintain the contact state with the negative electrode current collector 6 if vibration or collision with other bubbles 30 occurs, and the bubble 31 Easily released into the negative electrode gel 5. As long as the state of charge continues, the bubbles 30 are generated one after another and are released into the negative electrode gel 5, the pressure in the positive electrode can 2 rises, and eventually leaks or ruptures.

一方、本実施形態に係るアルカリ電池1aに組み込まれている負極集電子6aでは、表面に球の内面(ディンプル)状の凹部20が多数形成されており、(C)に示したように、気泡30は、その凹部20内でも発生する。そして(D)に示したように、凹部20内で発生した気泡32は、ある程度の大きさにまで成長すると、凹部20の壁面によって複数の点で接触する。この例では、凹部20の内面が球面であるので、面接触する。そのため、凹部20で発生した気泡32がこの凹部20によって捕捉され、一時的であっても負極集電子6aの表面が気泡(30,32)の膜で覆われることになる。そして、気泡(30,32)が膜状に負極集電子6aを覆った時点では、負極集電子6aの表面と負極ゲル5との接触が完全に断たれる。すなわち絶縁状態となり、逆電流が遮断される。一度逆電流が遮断されれば、それ以降は、ガスが発生しないため、気泡(30,32)による絶縁膜が負極集電子6aの表面に維持され、漏液や破裂を確実に防止することができる。   On the other hand, in the negative electrode current collector 6a incorporated in the alkaline battery 1a according to the present embodiment, a large number of spherical inner surface (dimple) concave portions 20 are formed on the surface, and as shown in FIG. 30 also occurs in the recess 20. And as shown to (D), the bubble 32 which generate | occur | produced in the recessed part 20 will contact at a some point with the wall surface of the recessed part 20, if it grows to a certain size. In this example, since the inner surface of the recess 20 is a spherical surface, it comes into surface contact. Therefore, the bubble 32 generated in the recess 20 is captured by the recess 20, and the surface of the negative electrode current collector 6a is covered with the bubble (30, 32) film even temporarily. When the bubbles (30, 32) cover the negative electrode current collector 6a in the form of a film, the contact between the surface of the negative electrode current collector 6a and the negative electrode gel 5 is completely cut off. That is, the insulation state is established and the reverse current is interrupted. Once the reverse current is interrupted, no gas is generated thereafter, so that the insulating film due to the bubbles (30, 32) is maintained on the surface of the negative electrode current collector 6a, and liquid leakage and rupture can be reliably prevented. it can.

===第1の実施例===
本発明の実施形態に係るアルカリ電池1aでは、図4に示した作用により、充電による漏液や破裂を防止することができる。そこで、その漏液や破裂の防止効果を確認するために、表面に凹部20が形成された負極集電子6aを組み込んだアルカリ電池1aや従来のアルカリ電池1をサンプルとして作製した。そして、作製したサンプルに対して充電を行い、漏液や破裂の有無を調べた。
=== First Embodiment ===
In the alkaline battery 1a according to the embodiment of the present invention, leakage and rupture due to charging can be prevented by the action shown in FIG. Therefore, in order to confirm the effect of preventing the leakage or rupture, an alkaline battery 1a incorporating a negative electrode current collector 6a having a concave portion 20 formed on the surface and a conventional alkaline battery 1 were prepared as samples. And the produced sample was charged and the presence or absence of liquid leakage or rupture was investigated.

<凹部の形成方法について>
上記実施形態に係るアルカリ電池1aにおいて、負極集電子6aの凹部20は、真鍮線を集電子形状に寸断した後にプレス加工することで形成している。もちろん、凹部20を転造することとしてもよい。そして、各サンプルにおいて実際に組み込まれている負極集電子(6,6a)は、凹部20の有無に拘わらず、集電子形状の真鍮線の表面に錫メッキを施したものである。
<About the formation method of a recessed part>
In the alkaline battery 1a according to the above embodiment, the concave portion 20 of the negative electrode current collector 6a is formed by pressing a brass wire after cutting it into a current collector shape. Of course, the recess 20 may be rolled. The negative electrode current collector (6, 6a) actually incorporated in each sample is obtained by tin-plating the surface of a current-collecting brass wire regardless of the presence or absence of the recess 20.

<充電以外の漏液について>
凹部20の形成部位については、充電のみを要因として漏液を発生させる必要があることから、あるいは、充電以外を要因とする漏液を防止することも必要であることから、各サンプルを充電して漏液の有無を確認する前に、ボス部11に挿入されている部位(図2(A)、符号L4)も含めて負極集電子6aの全領域(L1−L4)を凹部20の形成領域とすべきか、あるいはボス部11の下端15よりも下方の領域L1に限定すべきかを検討した。
<Leakage other than charging>
For the site where the recess 20 is formed, it is necessary to cause leakage due to charging alone, or it is necessary to prevent leakage due to factors other than charging. Before confirming the presence or absence of liquid leakage, the entire region (L1-L4) of the negative electrode current collector 6a including the portion inserted into the boss portion 11 (FIG. 2A, symbol L4) is formed in the recess 20. It was examined whether it should be a region or limited to a region L1 below the lower end 15 of the boss part 11.

具体的には、ボス部11との接触領域L4と、ボス部11の下方に露出している領域L1の双方に凹部20を形成した負極集電子を用いたアルカリ電池と、ボス部11の下方に露出している領域L1にのみ凹部20を形成した負極集電子6aを用いたアルカリ電池1aとをそれぞれ100個ずつ作製し、各アルカリ電池に対して、温度60℃、湿度50%の雰囲気下に放置する保存試験を行った。   Specifically, the alkaline battery using the negative electrode current collector in which the concave portion 20 is formed in both the contact region L4 with the boss portion 11 and the region L1 exposed below the boss portion 11, and the lower portion of the boss portion 11 100 alkaline batteries 1a each using the negative electrode current collector 6a in which the concave portions 20 are formed only in the region L1 exposed to the surface L1 are prepared, and each alkaline battery is subjected to an atmosphere of 60 ° C. and 50% humidity A storage test was conducted.

表1に当該保存試験の結果を示した。

Figure 0005836178
Table 1 shows the results of the storage test.
Figure 0005836178

表1は、負極集電子に凹部20を設けた領域が異なる二種類のアルカリ電池について、上記雰囲気下で保存したときの日数と漏液した個体数とを示している。当該表1より、接触領域L4にも凹部20を設けた負極集電子を用いたアルカリ電池では、60日目に1個が漏液に至り、その後、日数が経過するのに従って漏液した個体数が増加していった。なお、漏液の原因としては、領域L4にも凹部20があるため、ボス部11の内面と負極集電子の表面との間に空隙が生じ、ガスケット8の下面側から上面側へ電解液が這い上がったこと、などが考えられる。   Table 1 shows the number of days and the number of individuals that have leaked when stored in the above atmosphere for two types of alkaline batteries having different regions in which the recesses 20 are provided in the negative electrode current collector. According to Table 1, in the alkaline battery using the negative electrode current collector provided with the concave portion 20 also in the contact region L4, one battery leaked on the 60th day, and then the number of individuals leaked as the number of days passed. Increased. As a cause of leakage, since the recess L 20 is also present in the region L4, a gap is generated between the inner surface of the boss portion 11 and the surface of the negative electrode current collector, and the electrolyte solution flows from the lower surface side to the upper surface side of the gasket 8. It can be considered that it has crawled up.

一方、領域L1にのみ凹部20を設けた負極集電子6aを用いた本実施形態のアルカリ電池1aでは、100日後でも漏液した固体が無かった。したがって、本発明に係るアルカリ電池の負極集電子は、領域L4には凹部20が形成されていないことが条件となる。   On the other hand, in the alkaline battery 1a of the present embodiment using the negative electrode current collector 6a provided with the recess 20 only in the region L1, there was no solid leaked even after 100 days. Therefore, the negative electrode current collector of the alkaline battery according to the present invention is required to have no recess 20 formed in the region L4.

<凹部の形成領域と形成密度について>
上述したように、凹部20は、負極集電子6aにおいてボス部11の下端15より下方にあることが条件となる。そして、当該条件の下で充電による漏液や破裂の有無を確認するための充電試験を行うのに当たり、まず、その凹部20が形成されている領域(L1〜L3)に応じて充電に対する漏液や破裂の防止性能に差があるかどうかを調べた。
<Regarding formation region and formation density of recesses>
As described above, the condition is that the concave portion 20 is below the lower end 15 of the boss portion 11 in the negative electrode current collector 6a. Then, in conducting a charge test for confirming the presence or absence of leakage or rupture due to charging under the conditions, first, leakage due to charging depending on the region (L1 to L3) where the recess 20 is formed. And whether there was a difference in the ability to prevent bursting.

具体的には、図2(A)において、ボス部11の下端15から負極集電子6aの先端16までの長さに亘る全領域L1、ボス部11の下端15から領域L1の長さの半分となる中間点17までの領域L2、および当該中間点17から負極集電子6aの先端16までの領域L3のいずれに凹部20を形成した負極集電子6aを用いたサンプルを作製した。また、凹部20の形成密度については、従来のアルカリ電池の負極集電子6の表面積を100%とした場合に、凹部20の開口面積を差し引いた面積の割合(占有率)で評価した。なお、占有率は、サンプルに応じ、7%〜51%とした。   Specifically, in FIG. 2A, the entire region L1 extending from the lower end 15 of the boss portion 11 to the tip 16 of the negative electrode current collector 6a, and half the length of the region L1 from the lower end 15 of the boss portion 11. A sample was prepared using the negative electrode current collector 6a in which the recess 20 was formed in any of the region L2 up to the intermediate point 17 and the region L3 from the intermediate point 17 to the tip 16 of the negative electrode current collector 6a. Further, the formation density of the recesses 20 was evaluated by the ratio (occupancy) of the area obtained by subtracting the opening area of the recesses 20 when the surface area of the negative electrode current collector 6 of the conventional alkaline battery was 100%. Note that the occupation ratio was 7% to 51% depending on the sample.

<占有率の下限と上限について>
凹部20の占有率の下限である7%は、負極集電子6aの領域L1に凹部20を分散配置できる、ほぼ最低の数値である。すなわち、この下限より少ない面積に凹部20を分散配置したとしても、領域L2や領域L3など、負極集電子の限られた一部の領域に形成することと区別しにくくなる。いずれにしても、下限は、領域L1に凹部20を分散配置できるように設定されていればよい。
<About lower limit and upper limit of occupation ratio>
7% which is the lower limit of the occupation ratio of the recesses 20 is a substantially lowest value at which the recesses 20 can be dispersedly arranged in the region L1 of the negative electrode current collector 6a. That is, even if the concave portions 20 are dispersedly arranged in an area smaller than the lower limit, it is difficult to distinguish from forming the concave portions 20 in a limited partial region of the negative electrode current collector such as the region L2 and the region L3. In any case, the lower limit only needs to be set so that the recesses 20 can be dispersedly arranged in the region L1.

一方、上限については、アルカリ電池1aの組み立て工程において、負極集電子6aをガスケット8のボス部11に挿入する際、負極集電子6aが折れたり曲がったりしないための強度に基づいて51%とした。具体的には、領域L1に占有率を変えて凹部20を形成した各種負極集電子6aを50個ずつ作製し、それらの負極集電子6aを市販のアルカリ電池1を製造するための設備を用いてガスケット8のボス部11に挿入してみた。そして、折れや曲がりが発生した負極集電子6aの数を調べた。   On the other hand, the upper limit is 51% based on the strength for preventing the negative electrode current collector 6a from being bent or bent when the negative electrode current collector 6a is inserted into the boss portion 11 of the gasket 8 in the assembly process of the alkaline battery 1a. . Specifically, 50 negative electrode current collectors 6a each having a recess 20 formed by changing the occupation ratio in the region L1 are prepared, and the negative electrode current collectors 6a are prepared using equipment for manufacturing a commercially available alkaline battery 1. I tried inserting it into the boss 11 of the gasket 8. Then, the number of negative electrode current collectors 6a in which bending or bending occurred was examined.

表2に、ガスケット8への挿入に際して折れたり曲がったりした負極集電子6aの数を示した。

Figure 0005836178
Table 2 shows the number of negative electrode current collectors 6 a that were broken or bent when inserted into the gasket 8.
Figure 0005836178

表2に示したように、52%以上で曲がりが確認された。以上より、ここでは、凹部20の上限占有率を51%として充電試験を行うこととした。もちろん、ボス部11に負極集電子6aを挿入する際の速度を調整するなど、製造工程や設備を見直せば、52%以上でも折れや曲がりを防止することが可能である。   As shown in Table 2, bending was confirmed at 52% or more. From the above, the charging test was performed here with the upper limit occupation ratio of the recess 20 set to 51%. Of course, if the manufacturing process and equipment are reviewed, such as adjusting the speed at which the negative electrode current collector 6a is inserted into the boss portion 11, it is possible to prevent folding and bending even at 52% or more.

<充電試験>
上述したように、真鍮製の負極集電子6に凹部20が形成されていない単3型アルカリ電池1と、負極集電子6aの表面に占有率や形成位置が異なるように凹部20が形成された各種単3型アルカリ電池1aとをサンプルとして作製した。また、同じ条件で作製されたサンプルを4本1組とし、50組のサンプルを作製した。そして、同じ条件で作製されたアルカリ電池(1,1a)を4本一組にして直列接続し、その内の1本を逆挿となるように接続させることで充電試験を行い、その逆挿したアルカリ電池(1,1a)のうち、漏液した個体数を調べた。そして、従来のアルカリ電池1では、50組全てで漏液が発生した
表3に、実施形態に対応するサンプルにおける凹部20の形成条件と充電試験の結果を示した。

Figure 0005836178
<Charging test>
As described above, the AA alkaline battery 1 in which the concave portion 20 is not formed in the brass negative electrode current collector 6 and the concave portion 20 are formed on the surface of the negative electrode current collector 6a so that the occupation ratio and the formation position are different. Various AA alkaline batteries 1a were prepared as samples. In addition, four samples prepared under the same conditions were made into one set, and 50 sets of samples were manufactured. A series of four alkaline batteries (1, 1a) produced under the same conditions are connected in series, and one of them is connected so as to be reversely inserted. Among the alkaline batteries (1, 1a), the number of individuals leaked was examined. And in the conventional alkaline battery 1, the liquid leakage generate | occur | produced by all 50 sets. Table 3 showed the formation conditions of the recessed part 20 in the sample corresponding to embodiment, and the result of the charge test.
Figure 0005836178

表3では、凹部20の形成部位に応じたサンプル群A〜Cについての充電試験結果が示されている。A群は、上記領域L1に凹部20が分散配置されている負極集電子6aを用いたサンプル群であり、B群のサンプルでは、領域L2にのみ凹部20が形成されている。そして、C群のサンプルでは、領域L3にのみ凹部20が形成されている。また、表3では、凹部20の占有率に応じて番号が対応付けされており、例えば、サンプルA1は、凹部20が負極集電子6aの全表面に分散配置されているA群に含まれるサンプルのうち、凹部20の占有率が7%となるサンプルを示している。以下、各サンプルをこの表記方法に従って特定することとする。   In Table 3, the charge test result about sample group AC according to the formation site | part of the recessed part 20 is shown. The group A is a sample group using the negative electrode current collector 6a in which the concave portions 20 are dispersedly arranged in the region L1. In the group B samples, the concave portions 20 are formed only in the region L2. And in the sample of C group, the recessed part 20 is formed only in the area | region L3. Further, in Table 3, numbers are associated according to the occupation ratio of the recesses 20, and for example, the sample A1 is a sample included in the group A in which the recesses 20 are dispersedly arranged on the entire surface of the negative electrode current collector 6a. Among these, the sample in which the occupation ratio of the recess 20 is 7% is shown. Hereinafter, each sample is specified according to this notation.

表3に示したように、A群〜C群の各サンプルは、総じて、凹部20の占有率が多くなるほど漏液したサンプル数が減る傾向にある。そして、領域L1に凹部20を形成したサンプルA1〜A27では、同じ占有率であれば、他の群に属するサンプルよりも漏液した個体数が少なく、最低限の個数の凹部20が形成されているサンプルA1においても、充電に起因する漏液を防止する効果が認められた。そして、凹部20の占有率が20%よりも大きくなると漏液した個体数が0となり、完全に漏液を防止することができた。   As shown in Table 3, the samples in Group A to Group C generally have a tendency to decrease the number of leaked samples as the occupancy ratio of the recesses 20 increases. And in the samples A1 to A27 in which the recesses 20 are formed in the region L1, the number of the leaked individuals is smaller than the samples belonging to other groups and the minimum number of recesses 20 is formed if the occupation ratio is the same. Also in Sample A1, the effect of preventing leakage due to charging was recognized. And when the occupation rate of the recessed part 20 became larger than 20%, the individual number which leaked was set to 0, and it was able to prevent leak completely.

他方、B群のサンプルでは、占有率が19%となるサンプルB10で漏液のないサンプルが出現し、以降、占有率が増加するの従って漏液した固体数が漸減していく傾向にある。また、C群のサンプルでは、占有率が18%となるサンプルC9で漏液のないサンプルが出現し、以降、占有率が増加するの従って漏液した固体数が漸減していく。   On the other hand, in the group B sample, a sample with no leakage appears in the sample B10 having an occupation ratio of 19%, and thereafter, the occupation ratio increases, so the number of leaked solids tends to gradually decrease. Further, in the group C sample, a sample with no leakage appears in the sample C9 with the occupation ratio of 18%, and thereafter, the occupation ratio increases, so the number of leaked solids gradually decreases.

以上より、負極集電子6aに凹部20を形成することにより、充電に起因するアルカリ電池の漏液や破裂を防止する効果が認められた。そして、その凹部20が、負極集電子6aの全域、すなわち、ガスケット8のボス部11の下端15から先端16までの領域L1に分散配置されていれば、確実にその効果が期待できる。さらに占有率が20%を超えると完全に漏液を防止することが確認された。そして、凹部20の占有率の上限は、製造コストを考慮すると、52%未満であることがより好ましい。   From the above, the effect of preventing leakage or rupture of the alkaline battery due to charging was confirmed by forming the recess 20 in the negative electrode current collector 6a. If the concave portions 20 are dispersed and arranged in the entire area of the negative electrode current collector 6a, that is, in the region L1 from the lower end 15 to the tip end 16 of the boss portion 11 of the gasket 8, the effect can be expected with certainty. Furthermore, it was confirmed that liquid leakage was completely prevented when the occupation ratio exceeded 20%. And the upper limit of the occupation rate of the recessed part 20 is more preferably less than 52% in consideration of the manufacturing cost.

以上により、凹部20は負極集電子6aの領域L1に分散配置されるように形成されていれば、充電による漏液や破裂を防止する効果があり、凹部20の占有率が20%よりも大きく52%よりも小さければ、その効果がさらに顕著になる。   As described above, if the recesses 20 are formed so as to be dispersedly disposed in the region L1 of the negative electrode current collector 6a, there is an effect of preventing leakage or rupture due to charging, and the occupation ratio of the recesses 20 is larger than 20%. If it is smaller than 52%, the effect becomes more remarkable.

===第2の実施例===
充電に起因する従来アルカリ電池1の漏液や破裂は、負極集電子6の表面で発生した気泡30が負極ゲル5内に放出されることにある。そして、負極ゲル5と負極集電子6との界面では、多少なりとも、負極ゲル5により、気泡30を負極集電子6の表面に押し戻そうとする力が働く。また、充電による逆電流は、負極ゲル5が負極集電子6に直接接触していなければ流れないため、負極集電子6の表面に気泡30が発生すると、負極ゲル5がその気泡30の形状に沿って変形し、負極集電子6との接触を維持しつづけている、と考えることもできる。
=== Second Embodiment ===
The leakage or rupture of the conventional alkaline battery 1 due to charging is caused by the bubbles 30 generated on the surface of the negative electrode current collector 6 being released into the negative electrode gel 5. At the interface between the negative electrode gel 5 and the negative electrode current collector 6, a force that pushes the bubbles 30 back to the surface of the negative electrode current collector 6 is exerted by the negative electrode gel 5. In addition, since the negative current due to charging does not flow unless the negative electrode gel 5 is in direct contact with the negative electrode current collector 6, when bubbles 30 are generated on the surface of the negative electrode current collector 6, the negative electrode gel 5 becomes the shape of the bubbles 30. It can be considered that the contact with the negative electrode current collector 6 continues to be maintained.

図5に、上記実施形態に係るアルカリ電池1aを例に挙げて、負極ゲル5の粘度と気泡30の振る舞いとの関係を示した。図5(A)は、負極ゲル5の粘度が低い場合を示しており、負極ゲル5が気泡30の形状に沿って変形し、気泡30が膜状となるまで負極集電子6aの表面との接触が維持される。一方、(B)に示しように、負極ゲル5の粘度が高い場合では、気泡30に沿う形状に変形し難くなり負極集電子6aの表面とのあいだに空隙33が生じる。また、気泡30の成長を抑える力も強くなる。このように、負極ゲル5によって気泡30を押さえつける力を増強させたり、気泡30に沿う形状に変形しにくくさせたりすることができれば、充電による漏液や破裂をさらに確実に防止することができる。そこで、負極ゲル5の粘度を高くすることで、充電による漏液や破裂をさらに確実に防止することを検討した。   FIG. 5 shows the relationship between the viscosity of the negative electrode gel 5 and the behavior of the bubbles 30 by taking the alkaline battery 1a according to the above embodiment as an example. FIG. 5A shows a case where the viscosity of the negative electrode gel 5 is low. The negative electrode gel 5 is deformed along the shape of the bubbles 30 and the surface of the negative electrode current collector 6a is changed until the bubbles 30 become a film shape. Contact is maintained. On the other hand, as shown in (B), when the viscosity of the negative electrode gel 5 is high, it is difficult to be deformed into a shape along the bubble 30 and a gap 33 is formed between the negative electrode current collector 6a and the surface. Moreover, the force which suppresses the growth of the bubble 30 also becomes strong. Thus, if the force which presses the bubble 30 by the negative electrode gel 5 can be strengthened, or it can be made difficult to deform | transform into the shape along the bubble 30, the liquid leakage and rupture by charge can be prevented more reliably. Therefore, it was studied to further reliably prevent leakage and rupture due to charging by increasing the viscosity of the negative electrode gel 5.

<粘度の上限について>
負極ゲル5の粘度を高めることによって充電に起因する漏液や破裂をさらに確実に防止することを検討する前に、粘度の上限値を規定することとした。これは、アルカリ電池1aを実際に生産することを想定し、高粘度の負極ゲル5を充填するために、その充填に長い時間が掛かっていては生産性が低下し、コストアップを招く虞があるからである。そこで、市販のアルカリ電池1の製造ラインを用いて粘度が異なる負極ゲル5を正極缶2内に充填してみた。なお、従来のアルカリ電池1を含め、上記第1の実施例において作製した各サンプルに用いられた負極ゲル5の粘度は87Pa・sであった。ここでは、従来の粘度よりも高い140Pa・s以上の粘度の負極ゲル5を用いた。そして、同じ粘度の負極ゲル5を100回充填させて、正しい量の負極ゲル5が所定の時間で充填できた場合を合格とし、充填できなかった場合を不具合として、その不具合の発生回数を調査した。
<About the upper limit of viscosity>
The upper limit of the viscosity was determined before studying to further prevent leakage and rupture due to charging by increasing the viscosity of the negative electrode gel 5. Assuming that the alkaline battery 1a is actually produced, the high-viscosity negative electrode gel 5 is filled. Therefore, if the filling takes a long time, the productivity may be lowered and the cost may be increased. Because there is. Then, the negative electrode gel 5 from which a viscosity differs was filled in the positive electrode can 2 using the production line of the commercially available alkaline battery 1. In addition, the viscosity of the negative electrode gel 5 used for each sample produced in the said 1st Example including the conventional alkaline battery 1 was 87 Pa.s. Here, the negative electrode gel 5 having a viscosity of 140 Pa · s or higher, which is higher than the conventional viscosity, was used. Then, the negative electrode gel 5 having the same viscosity is filled 100 times, and the case where the correct amount of the negative electrode gel 5 can be filled in a predetermined time is determined to be acceptable. did.

表4に負極ゲル5を充填する際の粘度と不具合発生数との関係を示した。

Figure 0005836178
Table 4 shows the relationship between the viscosity when filling the negative electrode gel 5 and the number of defects.
Figure 0005836178

表4に示したように、140Pa・sから粘度を徐々に上げていった場合、負極ゲル5の粘度が171Pa・s以上となると不具合が発生することが確認された。したがって、負極ゲル5の粘度は171Pa・s未満であることが望ましい。   As shown in Table 4, when the viscosity was gradually increased from 140 Pa · s, it was confirmed that a problem occurred when the viscosity of the negative electrode gel 5 was 171 Pa · s or more. Therefore, the viscosity of the negative electrode gel 5 is desirably less than 171 Pa · s.

<負極ゲルの最適粘度>
次に、負極ゲル5の粘度以外は、表3におけるサンプルA10と同じ構成のアルカリ電池1aをサンプルとして作製した。すなわち、凹部20の占有率が19%であり、負極ゲル5の粘度を87Pa・sとすると、50個中3個に漏液が発生するサンプルである。ここでは、同じ粘度の負極ゲル5を充填したアルカリ電池を4本1組として、粘度が異なる50組のサンプルを作製した。そして、第1の実施例と同様にして充電試験を行った。
<Optimum viscosity of negative electrode gel>
Next, except for the viscosity of the negative electrode gel 5, an alkaline battery 1a having the same configuration as the sample A10 in Table 3 was prepared as a sample. That is, when the occupation ratio of the recesses 20 is 19% and the viscosity of the negative electrode gel 5 is 87 Pa · s, the liquid leakage occurs in 3 out of 50 samples. Here, 50 sets of samples having different viscosities were prepared using four alkaline batteries each filled with the negative electrode gel 5 having the same viscosity. And the charge test was done like the 1st example.

表5に、負極ゲル5の粘度と充電試験結果との関係を示した。

Figure 0005836178
Table 5 shows the relationship between the viscosity of the negative electrode gel 5 and the charge test results.
Figure 0005836178

表5に示したように、当初の粘度87Pa・sでは3個のサンプルに漏液が発生し、粘度を上げると漏液数が減少し、90Pa・s以上の粘度では、漏液したサンプルが無かった。したがって、負極ゲルの粘度は、89Pa・sよりも大きく、171Pa・sよりも小さいことがより好ましい。   As shown in Table 5, leakage occurred in three samples at an initial viscosity of 87 Pa · s, and the number of leaks decreased when the viscosity was increased. There was no. Therefore, the viscosity of the negative electrode gel is more preferably greater than 89 Pa · s and less than 171 Pa · s.

===第3の実施例===
普通、アルカリ電池1は、内部で発生したガスによって直ちに防爆安全機構が作動しないように、正極端子部9を下方にしたとき、負極ゲル5の液面(図1,図2:符号18)とガスケット8の下面との間に緩衝部となる空隙(図1,図2:符号19)を設けている。上記実施形態に係るアルカリ電池1aでも空隙19を設けている。しかし、本実施形態に係るアルカリ電池1aでは、内部で発生したガスからなる気泡30が負極集電子6aの表面に捕捉されるように構成されているので、安全性を確保しつつ、負極ゲル5を従来よりも増量させて放電性能を向上させることが期待できる。そこで、負極ゲル5の充填量の上限を求めるために、表3より、漏液が全く発生しなかったサンプルで、凹部20の占有率21%で最も低かったサンプルA12と同じ構成で、負極ゲル5の充填量のみを変えたサンプルを作製し、上記と同様の充電試験を行った。ここでも、同じ条件のサンプルを4本一組で50組作製した。また、負極ゲル5の充填量は、正極端子部9を下方にしてアルカリ電池1aを正立させたとき、正極缶2の底部内面からボス部11の下端15までを100%とした。なお、実施例1における各サンプルの充填量は70%である。
=== Third embodiment ===
Normally, the alkaline battery 1 has a liquid surface (FIG. 1, FIG. 2: reference numeral 18) of the negative electrode gel 5 when the positive electrode terminal portion 9 is lowered so that the explosion-proof safety mechanism is not immediately activated by the gas generated inside. A gap (FIG. 1, FIG. 2: reference numeral 19) serving as a buffer portion is provided between the lower surface of the gasket 8. The gap 19 is also provided in the alkaline battery 1a according to the above embodiment. However, in the alkaline battery 1a according to the present embodiment, since the bubbles 30 made of the gas generated inside are trapped on the surface of the negative electrode current collector 6a, the negative electrode gel 5 is secured while ensuring safety. It can be expected that the discharge performance will be improved by increasing the amount of. Therefore, in order to obtain the upper limit of the filling amount of the negative electrode gel 5, from Table 3, a sample in which no liquid leakage occurred and the same configuration as the sample A12 having the lowest occupancy ratio of the recess 20 of 21%, the negative electrode gel Samples were prepared by changing only the filling amount of 5, and the same charge test as described above was performed. Again, 50 sets of four samples with the same conditions were produced. The filling amount of the negative electrode gel 5 was 100% from the bottom inner surface of the positive electrode can 2 to the lower end 15 of the boss portion 11 when the alkaline battery 1a was erected with the positive electrode terminal portion 9 facing down. In addition, the filling amount of each sample in Example 1 is 70%.

表6に、負極ゲル5の充填量と充電試験の結果との関係を示した。

Figure 0005836178
Table 6 shows the relationship between the filling amount of the negative electrode gel 5 and the result of the charge test.
Figure 0005836178

表6に示した結果より、負極ゲル5の充填量は96%未満であればよいことになる。なお、充填量の下限については、放電性能と勘案して適宜に決定すればよい。いずれにしても、市販されているアルカリ電池1よりも多くの負極ゲル5を充填できることが確認された。   From the results shown in Table 6, the filling amount of the negative electrode gel 5 may be less than 96%. Note that the lower limit of the filling amount may be appropriately determined in consideration of the discharge performance. In any case, it was confirmed that the negative electrode gel 5 could be filled more than the commercially available alkaline battery 1.

===その他の実施例===
上記実施形態に係るアルカリ電池1aにおける負極集電子6aは、図3に示したように、円形断面に対して凹部20が二つ対向して形成されていた。もちろん、この例に限らず、例えば、図6(A)〜(C)に示した負極集電子6b〜6dのように、ように、凹部20を等角度間隔で三つ以上形成してもよい。もちろん、負極集電子(6a〜6d)の長さ方向の同じ位置に凹部20を形成せず、千鳥配置にしてもよい。凹部20を球の内面形状(ディンプル状)とせず、溝状にしてもよい。溝は、円柱状の負極集電子を周回する方向に形成されていてもよいし、負極集電子の長さ方向に沿って形成されていてもよい。いずれにしても、凹部20を上記の領域L1に亘って形成するとともに、一つの気泡30が二つ以上の点、あるいは面で負極集電子と接触する形状であれば、図4(C)(D)に示した作用と同様の作用により気泡30の負極ゲル5中への放出が抑止できると予想される。
=== Other Embodiments ===
As shown in FIG. 3, the negative electrode current collector 6 a in the alkaline battery 1 a according to the above embodiment has two concave portions 20 facing the circular cross section. Of course, the present invention is not limited to this example. For example, three or more recesses 20 may be formed at equiangular intervals as in the negative electrode current collectors 6b to 6d shown in FIGS. . Of course, the concave portions 20 may not be formed at the same position in the length direction of the negative electrode current collectors (6a to 6d), and a staggered arrangement may be employed. The concave portion 20 may be formed in a groove shape instead of a spherical inner surface shape (dimple shape). The groove may be formed in a direction around the cylindrical negative electrode current collector, or may be formed along the length direction of the negative electrode current collector. In any case, as long as the concave portion 20 is formed over the region L1, and one bubble 30 has a shape that contacts the negative electrode current collector at two or more points or surfaces, FIG. It is expected that the release of the bubbles 30 into the negative electrode gel 5 can be suppressed by the same action as shown in D).

上記実施形態に係るアルカリ電池1aでは、防爆安全機構がガスケット8に形成されていた。もちろん、防爆安全機構の構成は、この例に限るものではない。例えば、特開2001−76701号公報に開示されたアルカリ電池のように、正極缶の外底部に防爆安全機構を備えたものもある。いずれにしても、本発明は、充電によって負極集電子と負極ゲルとの界面に化学反応に基づくガスが発生するアルカリ電池、すなわち、棒状の負極集電子が負極ゲル中に挿入されている構造のアルカリ電池に広く適用することができる。   In the alkaline battery 1a according to the above embodiment, the explosion-proof safety mechanism is formed in the gasket 8. Of course, the configuration of the explosion-proof safety mechanism is not limited to this example. For example, some alkaline batteries disclosed in Japanese Patent Application Laid-Open No. 2001-76701 have an explosion-proof safety mechanism on the outer bottom of the positive electrode can. In any case, the present invention is an alkaline battery in which a gas based on a chemical reaction is generated at the interface between the negative electrode current collector and the negative electrode gel by charging, that is, a structure in which a rod-shaped negative electrode current collector is inserted in the negative electrode gel. It can be widely applied to alkaline batteries.

1,1a アルカリ電池、2 電池缶(正極缶)、3 正極合剤、4 セパレータ、
5 負極ゲル、6,6a〜6d 負極集電子、7 負極端子板、8 封口ガスケット、
9 正極端子部、11 ボス部、15 ボス部下端、16 負極集電子の先端、
18 負極ゲルの液面、20 凹部、30,31 気泡
1, 1a alkaline battery, 2 battery can (positive electrode can), 3 positive electrode mixture, 4 separator,
5 negative electrode gel, 6, 6a to 6d negative electrode current collector, 7 negative electrode terminal plate, 8 sealing gasket,
9 positive electrode terminal portion, 11 boss portion, 15 boss lower end, 16 tip of negative electrode current collector,
18 Liquid level of negative electrode gel, 20 recess, 30, 31 bubbles

Claims (2)

上部が開口する有底円筒状の正極缶と、中空円筒状に成形されて当該正極缶内に挿嵌される正極合剤と、当該正極合剤の中空円筒内にセパレータを介して充填される負極ゲルと、前記正極缶の開口部にガスケットを介して嵌着される負極端子板と、下端を先端とした棒状金属で上端が前記負極端子板の下面にスポット溶接されているともに先端側が前記負極ゲル内に挿入される負極集電子と、を備えたアルカリ電池であって、
前記ガスケットは、上面形状が円板状で、前記円板中心に前記負極集電子が圧入されるボス部を備え、
前記負極集電子には、前記負極ゲルとの接触界面に発生した気泡を捕捉するための凹部が前記先端から前記ボス部の下端までの領域に亘って分散配置され、
前記負極ゲルの粘度が87Pa・s以上、171Pa・s未満であり、
前記負極集電子の前記先端から前記ボス部の下端までの表面積に対する前記凹部の開口面積の占有率が20%より大きく、52%未満であり、
正立状態にある前記正極缶の底部内面から前記ボス部の下端までの高さを100%として、前記負極ゲルの充填量が96%未満である、
ことを特徴とするアルカリ電池。
A bottomed cylindrical positive electrode can having an open top, a positive electrode mixture formed into a hollow cylindrical shape and inserted into the positive electrode can, and filled into the hollow cylinder of the positive electrode mixture via a separator A negative electrode gel, a negative electrode terminal plate that is fitted to the opening of the positive electrode can via a gasket, and a rod-like metal having a lower end as a tip, the upper end is spot welded to the lower surface of the negative electrode terminal plate, and the tip side is A negative electrode current collector inserted into the negative electrode gel, and an alkaline battery comprising:
The gasket has a disc shape on the upper surface, and includes a boss portion into which the negative electrode current collector is press-fitted into the disc center,
In the negative electrode current collector, concave portions for capturing bubbles generated at the contact interface with the negative electrode gel are distributed and arranged over a region from the tip to the lower end of the boss portion ,
The negative electrode gel has a viscosity of 87 Pa · s or more and less than 171 Pa · s,
The occupation ratio of the opening area of the recess to the surface area from the tip of the negative electrode current collector to the lower end of the boss portion is greater than 20% and less than 52%,
The height from the bottom inner surface of the positive electrode can in the upright state to the lower end of the boss portion is 100%, and the filling amount of the negative electrode gel is less than 96%.
An alkaline battery characterized by that.
上部が開口する有底円筒状の正極缶と、中空円筒状に成形されて当該正極缶内に挿嵌される正極合剤と、当該正極合剤の中空円筒内にセパレータを介して充填される負極ゲルと、前記正極缶の開口部にガスケットを介して嵌着される負極端子板と、下端を先端とした棒状金属で上端が前記負極端子板の下面にスポット溶接されているともに先端側が前記負極ゲル内に挿入される負極集電子と、を備えたアルカリ電池であって、
前記ガスケットは、上面形状が円板状で、前記円板中心に前記負極集電子が圧入されるボス部を備え、
前記負極集電子には、前記負極ゲルとの接触界面に発生した気泡を捕捉するための凹部が前記先端から前記ボス部の下端までの領域に亘って分散配置され、
前記負極ゲルの粘度が90Pa・s以上、171Pa・s未満であり、
前記負極集電子の前記先端から前記ボス部の下端までの表面積に対する前記凹部の開口面積の占有率が19%以上、52%未満であり、
正立状態にある前記正極缶の底部内面から前記ボス部の下端までの高さを100%として、前記負極ゲルの充填量が96%未満である、
ことを特徴とするアルカリ電池。
A bottomed cylindrical positive electrode can having an open top, a positive electrode mixture formed into a hollow cylindrical shape and inserted into the positive electrode can, and filled into the hollow cylinder of the positive electrode mixture via a separator A negative electrode gel, a negative electrode terminal plate that is fitted to the opening of the positive electrode can via a gasket, and a rod-like metal having a lower end as a tip, the upper end is spot welded to the lower surface of the negative electrode terminal plate, and the tip side is A negative electrode current collector inserted into the negative electrode gel, and an alkaline battery comprising:
The gasket has a disc shape on the upper surface, and includes a boss portion into which the negative electrode current collector is press-fitted into the disc center,
In the negative electrode current collector, concave portions for capturing bubbles generated at the contact interface with the negative electrode gel are distributed and arranged over a region from the tip to the lower end of the boss portion ,
The negative electrode gel has a viscosity of 90 Pa · s or more and less than 171 Pa · s,
The occupation ratio of the opening area of the recess with respect to the surface area from the tip of the negative electrode current collector to the lower end of the boss part is 19% or more and less than 52%,
The height from the bottom inner surface of the positive electrode can in the upright state to the lower end of the boss portion is 100%, and the filling amount of the negative electrode gel is less than 96%.
An alkaline battery characterized by that.
JP2012074175A 2012-03-28 2012-03-28 Alkaline battery Active JP5836178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012074175A JP5836178B2 (en) 2012-03-28 2012-03-28 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012074175A JP5836178B2 (en) 2012-03-28 2012-03-28 Alkaline battery

Publications (2)

Publication Number Publication Date
JP2013206698A JP2013206698A (en) 2013-10-07
JP5836178B2 true JP5836178B2 (en) 2015-12-24

Family

ID=49525584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074175A Active JP5836178B2 (en) 2012-03-28 2012-03-28 Alkaline battery

Country Status (1)

Country Link
JP (1) JP5836178B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11817591B2 (en) 2020-05-22 2023-11-14 Duracell U.S. Operations, Inc. Seal assembly for a battery cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4722422Y1 (en) * 1967-08-09 1972-07-21
JPH0817437A (en) * 1994-06-29 1996-01-19 Matsushita Electric Ind Co Ltd Alkaline battery
JP2001093569A (en) * 1999-09-21 2001-04-06 Sanyo Electric Co Ltd Sealed alkaline storage battery
JP2002008666A (en) * 2000-06-27 2002-01-11 Sony Corp Alkaline cell, and its manufacturing method and manufacturing equipment
JP2003217596A (en) * 2002-01-21 2003-07-31 Tookan:Kk Alkaline dry element cell
JP4729321B2 (en) * 2005-03-25 2011-07-20 Fdkエナジー株式会社 Alkaline battery
JP2008117568A (en) * 2006-11-01 2008-05-22 Fdk Energy Co Ltd Cylindrical battery
WO2010061521A1 (en) * 2008-11-25 2010-06-03 パナソニック株式会社 Alkaline battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11817591B2 (en) 2020-05-22 2023-11-14 Duracell U.S. Operations, Inc. Seal assembly for a battery cell

Also Published As

Publication number Publication date
JP2013206698A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JP5599384B2 (en) Cylindrical nickel-zinc cell with negative can
EP2800162B1 (en) Cylindrical alkaline storage battery
JP2008502120A (en) Alkaline battery with planar housing
JP2009087729A (en) Closed battery
JP2008530757A (en) End cap assembly and ventilation for high power batteries
JP2018506150A (en) Alkaline cell with improved reliability and discharge performance
JPWO2012042743A1 (en) Alkaline secondary battery
US20090263710A1 (en) Aa alkaline battery
JP4672041B2 (en) Alkaline battery and alkaline battery sealing unit
US9040196B2 (en) Alkaline primary battery
JP5836178B2 (en) Alkaline battery
EP1142043B1 (en) Electrochemical cell closure
JP2010505229A (en) End cap sealing assembly for electrochemical cells
JP4868809B2 (en) Cylindrical alkaline storage battery
JP2007512669A (en) Alkaline battery with planar housing
JP2013093294A (en) Sealed battery
JP5348968B2 (en) Cylindrical battery
JP2002100343A (en) Cylindrical sealed type battery
JP2011216217A (en) Alkaline dry battery
JP5366490B2 (en) Alkaline battery
JP5137438B2 (en) Cylindrical battery
JP2006092828A (en) Battery pack
JP2009170158A (en) Aa alkaline battery
CN101931099A (en) Button lithium ion battery
WO2011080854A1 (en) Alkaline dry battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R150 Certificate of patent or registration of utility model

Ref document number: 5836178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250