[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5834882B2 - Multilayer circuit board and manufacturing method thereof - Google Patents

Multilayer circuit board and manufacturing method thereof Download PDF

Info

Publication number
JP5834882B2
JP5834882B2 JP2011278204A JP2011278204A JP5834882B2 JP 5834882 B2 JP5834882 B2 JP 5834882B2 JP 2011278204 A JP2011278204 A JP 2011278204A JP 2011278204 A JP2011278204 A JP 2011278204A JP 5834882 B2 JP5834882 B2 JP 5834882B2
Authority
JP
Japan
Prior art keywords
layer
resin
circuit board
insulating layer
multilayer circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011278204A
Other languages
Japanese (ja)
Other versions
JP2013131526A (en
Inventor
水谷 大輔
大輔 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2011278204A priority Critical patent/JP5834882B2/en
Publication of JP2013131526A publication Critical patent/JP2013131526A/en
Application granted granted Critical
Publication of JP5834882B2 publication Critical patent/JP5834882B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structure Of Printed Boards (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、多層回路基板及びその製造方法に関する。   The present invention relates to a multilayer circuit board and a method for manufacturing the same.

半導体装置を実装するときは、複数の半導体素子や半導体パッケージ基板を多層回路基板に実装することによって電気的に接続させる。ここで、従来の多層回路基板の製造方法の一例として、一括積層プロセスについて図4を参照して説明する。図4(a)に示すように、多層回路基板の製造にあたっては、下側から、銅箔101、未硬化の樹脂層102、3層配線板103、未硬化の樹脂層102、3層配線板103、未硬化の樹脂層102、銅箔101を積層する。未硬化の樹脂層102は、ガラス繊維織物からなるガラスクロスと樹脂を含む複合材料である。3層配線板103は、ガラスクロスを含有させて硬化させた樹脂層110の上側に一対の配線パターン111を有する。一対の配線パターン111は、銅箔をパターニングすることによって形成される。さらに、樹脂層110の下面には、銅箔112が全面にわたって貼り付けられている。   When a semiconductor device is mounted, a plurality of semiconductor elements and a semiconductor package substrate are electrically connected by being mounted on a multilayer circuit substrate. Here, as an example of a conventional method for manufacturing a multilayer circuit board, a batch lamination process will be described with reference to FIG. As shown in FIG. 4A, in the manufacture of the multilayer circuit board, the copper foil 101, the uncured resin layer 102, the three-layer wiring board 103, the uncured resin layer 102, and the three-layer wiring board are arranged from the bottom. 103, an uncured resin layer 102, and a copper foil 101 are laminated. The uncured resin layer 102 is a composite material including a glass cloth made of glass fiber fabric and a resin. The three-layer wiring board 103 has a pair of wiring patterns 111 on the upper side of the resin layer 110 containing glass cloth and cured. The pair of wiring patterns 111 is formed by patterning a copper foil. Furthermore, a copper foil 112 is attached to the entire bottom surface of the resin layer 110.

一括積層プロセスでは、図4(a)に示すように、樹脂層102,110などの絶縁層と、配線パターン111や銅箔101,112などの導体層とを交互に配置する。銅箔101や未硬化の樹脂層102、3層配線板103を複数積層させたら、加熱式の真空プレスによって一括に成型する。図4(b)に真空プレス後の形態を示すように、未硬化の樹脂層102が熱溶融後に硬化して樹脂層110が形成されると共に各層が一体化され、多層回路基板120が形成される。この後、必要に応じて、多層回路基板120の所定位置に不図示の貫通穴を形成する。貫通穴には、めっき法によって導電膜が形成される。   In the collective lamination process, as shown in FIG. 4A, insulating layers such as resin layers 102 and 110 and conductor layers such as wiring patterns 111 and copper foils 101 and 112 are alternately arranged. After a plurality of the copper foil 101, the uncured resin layer 102, and the three-layer wiring board 103 are laminated, they are collectively molded by a heating type vacuum press. As shown in the form after vacuum pressing in FIG. 4B, the uncured resin layer 102 is cured after being thermally melted to form the resin layer 110, and the layers are integrated to form the multilayer circuit board 120. The Thereafter, a through hole (not shown) is formed at a predetermined position of the multilayer circuit board 120 as necessary. A conductive film is formed in the through hole by a plating method.

ここで、このような多層回路基板120の使用用途としては、例えば、差動伝送のための回路基板がある。この場合には、一対の配線パターン111が差動伝送のための信号線として使用される。さらに、一対の配線パターン111に硬化後の樹脂層110を介して配置される銅箔112がグランド層又は電源層として使用される。差動伝送では、対をなす2本の配線パターン111にそれぞれ逆位相の信号を伝送することで、信号の電圧を低くでき、ノイズに強い信号伝達が可能になる。   Here, as a use application of such a multilayer circuit board 120, there is a circuit board for differential transmission, for example. In this case, the pair of wiring patterns 111 are used as signal lines for differential transmission. Further, the copper foil 112 disposed on the pair of wiring patterns 111 via the cured resin layer 110 is used as a ground layer or a power supply layer. In differential transmission, signals having opposite phases are transmitted to the two wiring patterns 111 forming a pair, so that the signal voltage can be lowered and signal transmission resistant to noise becomes possible.

ところが、差動伝送する信号の周波数を高周波数化すると、硬化した樹脂層110に含まれるガラス繊維織物の粗密によって一対の配線パターン111の間の伝播遅延時間に差が生じ易くなり、回路が許容する伝播遅延時間に収まらなくなることがあった。   However, when the frequency of the signal for differential transmission is increased, the difference in propagation delay time between the pair of wiring patterns 111 is likely to occur due to the density of the glass fiber fabric contained in the cured resin layer 110, and the circuit is allowed. The propagation delay time may not fit.

ガラス繊維織物の影響を防止する方法としては、例えば、ガラス繊維織物を用いないリジッドフレキ基板で多層回路基板に製造することが考えられる。ここで、リジットフレキ基板は、コンポジット材料を用いた多層回路基板と、ガラス繊維織物を含有しないポリイミドなどの絶縁材料を用いたフレキシブル配線板を別々に製造した後、接着材で張り合わせて形成される。ところが、リジットフレキ基板では、コンポジット材料を用いた多層回路基板とフレキシブル配線板の熱膨張率や弾性率温度依存性の違いによって、接着部において剥離し易かった。   As a method for preventing the influence of the glass fiber fabric, for example, it is conceivable to manufacture a multilayer circuit board using a rigid flexible substrate that does not use the glass fiber fabric. Here, the rigid-flex board is formed by separately manufacturing a multilayer circuit board using a composite material and a flexible wiring board using an insulating material such as polyimide that does not contain a glass fiber fabric, and then bonding them together with an adhesive. . However, the rigid-flexible board is easily peeled off at the bonded portion due to the difference in thermal expansion coefficient and elastic modulus temperature dependency between the multilayer circuit board using the composite material and the flexible wiring board.

さらに、ガラス繊維織物を使用せずに製造した多層回路基板では、電子部品支持体としての機械的特性が低下する。例えば、一辺が数十cmで、積層数が20層を超えるような大型の多層回路基板では、機械的特性の低下が顕著に現れる。このために、ガラス繊維織物は、回路基板の寸法安定性向上に貢献するので、微細な電子部品を高密度で実装可能な回路基板においては必須の構成要素とされている。   Furthermore, in a multilayer circuit board manufactured without using a glass fiber fabric, the mechanical properties as an electronic component support are deteriorated. For example, in a large-sized multilayer circuit board having a side of several tens of centimeters and a stacking number exceeding 20 layers, the mechanical characteristics are significantly reduced. For this reason, the glass fiber fabric contributes to improving the dimensional stability of the circuit board, and is therefore an indispensable component in a circuit board capable of mounting fine electronic components at high density.

そこで、従来では、ガラス繊維織物を格子状に織り込んで、一対の配線パターン111をガラス繊維織物と平行になるように形成することで、ガラス繊維織物の影響を低減させている。また、格子状に織り込んだガラス繊維織物に対して一対の配線パターン111を斜めに、かつジグザクに配置することで、信号線から見たガラス繊維織物の粗密をできるだけ均一化させている。   Therefore, conventionally, the influence of the glass fiber fabric is reduced by weaving the glass fiber fabric in a lattice shape and forming the pair of wiring patterns 111 so as to be parallel to the glass fiber fabric. Further, by arranging the pair of wiring patterns 111 obliquely and zigzag with respect to the glass fiber fabric woven in a lattice shape, the density of the glass fiber fabric viewed from the signal line is made as uniform as possible.

米国特許第2004181764号明細書US 2004181764 Specification

しかしながら、配線パターン111のレイアウトによっては、ガラス繊維織物の方向がたまたま一致することがあり、このような場合には、その領域における信号遅延を防止できなかった。このために、信号遅延を確実に防止しようとすると、配線パターン111のレイアウトに制約が生じていた。
さらに、ガラス繊維織物を格子状に織り込んだ大きい基材から、ガラス繊維織物が斜め配置されるように基板を分割しようとすると、使用されない部分が増えるので製造コストが増大する。
この発明は、このような事情に鑑みてなされたものであり、多層回路基板に用いた差動伝送の信号遅延を防止することを目的とする。
However, depending on the layout of the wiring pattern 111, the directions of the glass fiber fabric may happen to coincide with each other. In such a case, signal delay in that region cannot be prevented. For this reason, if the signal delay is surely prevented, the layout of the wiring pattern 111 is restricted.
Further, if a substrate is divided from a large base material in which a glass fiber fabric is woven in a lattice shape, the substrate is divided so that the glass fiber fabric is obliquely arranged, so that the unused portion increases and the manufacturing cost increases.
The present invention has been made in view of such circumstances, and an object thereof is to prevent a signal delay of differential transmission used in a multilayer circuit board.

実施形態の一観点によれば、一対の信号線と、ガラス繊維織物を有しない樹脂材料を用いて前記信号線の下方に形成された第1の絶縁層と、前記第1の絶縁層の下に形成され、電源又はグランドに接続される第1の導電層と、ガラス繊維織物を有しない樹脂材料を用いて前記信号線の上方に形成された第2の絶縁層と、前記第2の絶縁層の上に形成され、電源又はグランドに接続される第2の導電層と、一対の前記信号線を挟む位置で前記第1の導電層から前記第2の導電層まで貫通し、内壁に導電膜を有しない複数の貫通孔と、前記第1の導電層及び前記第2の導電層を覆うと共に、前記貫通孔に埋め込まれた樹脂と、を含むことを特徴とする多層回路基板が提供される。
According to one aspect of the embodiment, a pair of signal lines, a first insulating layer formed below the signal lines by using a resin material having no glass fiber fabric, of the first insulating layer A first conductive layer formed underneath and connected to a power source or a ground; a second insulating layer formed above the signal line using a resin material not having a glass fiber fabric; and the second A second conductive layer formed on the insulating layer and connected to the power source or the ground, and penetrates from the first conductive layer to the second conductive layer at a position between the pair of signal lines, and the inner wall A multilayer circuit board comprising: a plurality of through holes not having a conductive film; and a resin that covers the first conductive layer and the second conductive layer and is embedded in the through holes. Provided.

また、実施形態の別の観点によれば、ガラス繊維織物を有しない樹脂で形成された第1の絶縁層の上に一対の信号線を形成する工程と、前記信号線の上に、ガラス繊維織物を有しない樹脂で形成された第2の絶縁層を配置する工程と、一対の前記信号線を挟む位置で前記第1の絶縁層の下面に形成された第1の導電層から、前記第2の絶縁層の上面に形成された第2の導電層までを貫通し、内壁に導電膜を有しない貫通孔を複数形成する工程と、前記第1の導電層及び前記第2の導電層を覆うと共に、前記貫通孔に樹脂を埋め込む工程と、を含む多層回路基板の製造方法が提供される。 Further, according to another aspect of the embodiments, a step of forming a pair of signal lines on the first insulating layer formed of a resin having no glass fiber fabric, on the signal lines, glass fiber From the first conductive layer formed on the lower surface of the first insulating layer at a position sandwiching the pair of signal lines , the second insulating layer formed of a resin not having a fabric from the first conductive layer up to the second conductive layer formed on the upper surface of the second insulating layer through a step of forming a plurality of transmural holes having no conductive film on the inner wall, the first conductive layer and the second conductive layer And a step of embedding a resin in the through hole is provided.

信号線と第1及び第2の導電層との間に、ガラス繊維織物を有しない樹脂で形成された絶縁層を配置したので、ガラス繊維織物の影響を受けない。   Since an insulating layer made of a resin having no glass fiber fabric is disposed between the signal line and the first and second conductive layers, the glass fiber fabric is not affected.

図1Aは、本発明の第1の実施の形態に係る多層回路基板の製造工程の一例を示す断面図(その1)である。FIG. 1A is a cross-sectional view (part 1) illustrating an example of the manufacturing process of the multilayer circuit board according to the first embodiment of the present invention. 図1Bは、本発明の第1の実施の形態に係る多層回路基板の製造工程の一例を示す断面図(その2)である。FIG. 1B is a cross-sectional view (part 2) illustrating the example of the manufacturing process of the multilayer circuit board according to the first embodiment of the present invention. 図1Cは、本発明の第1の実施の形態に係る多層回路基板の製造工程の一例を示す断面図(その3)である。FIG. 1C is a cross-sectional view (part 3) illustrating the example of the manufacturing process of the multilayer circuit board according to the first embodiment of the present invention. 図1Dは、本発明の第1の実施の形態に係る多層回路基板の製造工程の一例を示す断面図(その4)である。FIG. 1D is a cross-sectional view (part 4) illustrating the example of the manufacturing process of the multilayer circuit board according to the first embodiment of the invention. 図1Eは、本発明の第1の実施の形態に係る多層回路基板の製造工程の一例を示す断面図(その5)である。FIG. 1E is a cross-sectional view (part 5) illustrating the example of the manufacturing process of the multilayer circuit board according to the first embodiment of the invention. 図1Fは、本発明の第1の実施の形態に係る多層回路基板の製造工程の一例を示す断面図(その6)である。FIG. 1F is a sectional view (No. 6) showing an example of the manufacturing process of the multilayer circuit board according to the first embodiment of the present invention. 図1Gは、本発明の第1の実施の形態に係る多層回路基板の製造工程の一例を示す断面図(その7)である。FIG. 1G is a sectional view (No. 7) showing an example of the manufacturing process of the multilayer circuit board according to the first embodiment of the invention. 図1Hは、本発明の第1の実施の形態に係る多層回路基板の製造工程の一例を示す断面図(その8)である。FIG. 1H is a sectional view (No. 8) showing an example of the manufacturing process of the multilayer circuit board according to the first embodiment of the invention. 図I1は、本発明の第1の実施の形態に係る多層回路基板の製造工程の一例を示す断面図(その9)である。FIG. 11 is a sectional view (No. 9) showing an example of the manufacturing process of the multilayer circuit board according to the first embodiment of the present invention. 図1Jは、本発明の第1の実施の形態に係る多層回路基板の製造工程の一例を示す断面図(その10)である。FIG. 1J is a sectional view (No. 10) showing an example of the manufacturing process of the multilayer circuit board according to the first embodiment of the invention. 図1Kは、本発明の第1の実施の形態に係る多層回路基板の製造工程の一例を示す断面図(その11)である。FIG. 1K is a sectional view (No. 11) showing an example of the manufacturing process of the multilayer circuit board according to the first embodiment of the invention. 図1Lは、本発明の第1の実施の形態に係る多層回路基板の製造工程の一例を示す断面図(その12)である。FIG. 1L is a sectional view (No. 12) showing an example of the manufacturing process of the multilayer circuit board according to the first embodiment of the present invention. 図2Aは、本発明の第2の実施の形態に係る多層回路基板の製造工程の一例を示す断面図(その1)である。FIG. 2A is a cross-sectional view (part 1) illustrating an example of the manufacturing process of the multilayer circuit board according to the second embodiment of the present invention. 図2Bは、本発明の第2の実施の形態に係る多層回路基板の製造工程の一例を示す断面図(その2)である。FIG. 2B is a cross-sectional view (part 2) illustrating the example of the manufacturing process of the multilayer circuit board according to the second embodiment of the present invention. 図2Cは、本発明の第2の実施の形態に係る多層回路基板の製造工程の一例を示す断面図(その3)である。FIG. 2C is a cross-sectional view (part 3) illustrating the example of the manufacturing process of the multilayer circuit board according to the second embodiment of the present invention. 図3は、本発明の変形例に係る多層回路基板の製造工程の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of a manufacturing process of a multilayer circuit board according to a modification of the present invention. 図4は、従来の多層回路基板の製造工程の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a manufacturing process of a conventional multilayer circuit board.

発明の目的及び利点は、請求の範囲に具体的に記載された構成要素及び組み合わせによって実現され達成される。
前述の一般的な説明及び以下の詳細な説明は、典型例及び説明のためのものであって、本発明を限定するためのものではない。
The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
The foregoing general description and the following detailed description are exemplary and explanatory only and are not intended to limit the invention.

(第1の実施の形態)
図面を参照して第1の実施の形態に係る多層回路基板の製造方法について説明する。
まず、図1Aに示す断面構造を得るまでの工程について説明する。
絶縁層1の両面に銅箔2A,2Bを1枚ずつ貼り付けて両面銅張り板3を形成する。絶縁層1は、加撓性を有し、ガラス繊維を含まない。さらに、絶縁層1は、多層回路基板が使用される温度範囲内にはガラス転移温度を有しないポリイミド樹脂フィルムが用いられる。より好ましくは、絶縁層1は銅箔2A,2Bと同じか同程度の熱膨張率を有する樹脂から形成される。このような絶縁層1としては、例えば、ポリイミドフィルムの一種である宇部興産株式会社製のユーピレックスが使用できる。また、この絶縁層1の厚さは、任意に選択できるが例えば100μmの厚さとする。
(First embodiment)
A method for manufacturing a multilayer circuit board according to the first embodiment will be described with reference to the drawings.
First, steps required until a sectional structure shown in FIG. 1A is obtained will be described.
Copper foils 2A and 2B are attached to both surfaces of the insulating layer 1 one by one to form a double-sided copper-clad plate 3. The insulating layer 1 has flexibility and does not contain glass fiber. Further, the insulating layer 1 is made of a polyimide resin film having no glass transition temperature within the temperature range in which the multilayer circuit board is used. More preferably, the insulating layer 1 is made of a resin having the same or similar thermal expansion coefficient as the copper foils 2A and 2B. As such an insulating layer 1, for example, Upilex manufactured by Ube Industries, Ltd., which is a kind of polyimide film, can be used. The thickness of the insulating layer 1 can be arbitrarily selected, but is set to 100 μm, for example.

上側の銅箔2A(第2の導電層)は、絶縁層1の上面の全体を覆い、下側の銅箔2B(第1の導電層)は絶縁層1の下面の全面を覆う。続いて、両面銅張り板3の各銅箔2A,2Bのそれぞれの表面にフォトレジスト膜5A,5Bを塗布によって形成する。フォトレジスト膜5Aは上側の銅箔2Aの全面を覆い、フォトレジスト膜5Bは下側の銅箔2Bの全面を覆う。   The upper copper foil 2A (second conductive layer) covers the entire upper surface of the insulating layer 1, and the lower copper foil 2B (first conductive layer) covers the entire lower surface of the insulating layer 1. Subsequently, photoresist films 5A and 5B are formed on the respective surfaces of the copper foils 2A and 2B of the double-sided copper-clad plate 3 by coating. The photoresist film 5A covers the entire surface of the upper copper foil 2A, and the photoresist film 5B covers the entire surface of the lower copper foil 2B.

図1Bに示すように、上側のフォトレジスト膜5Aを露光及び現像してパターニングしてレジストパターン5Cを形成する。フォトレジストパターン5Cは、後の工程で形成す
る配線のパターンに併せてレジスト膜5Aが部分的に残されることによって形成される。一方、下側のフォトレジスト膜5Bは、パターニングしない。ここで、上側のフォトレジスト膜5Aをパターニングする代わりに、下側のフォトレジスト膜5Bをパターニングしても良い。
As shown in FIG. 1B, the upper photoresist film 5A is exposed and developed and patterned to form a resist pattern 5C. The photoresist pattern 5 </ b> C is formed by partially leaving the resist film 5 </ b> A together with the wiring pattern to be formed in a later step. On the other hand, the lower photoresist film 5B is not patterned. Here, instead of patterning the upper photoresist film 5A, the lower photoresist film 5B may be patterned.

この後、図1Cに断面構造を示すように、レジストパターン5Cをマスクにして上側の銅箔2Aをウェットエッチングして一対の配線パターン10を形成する。一対の配線パターン10は、所定の間隔を設けて平行に配置され、例えば、高速差動伝送の信号線として用いられる。一方、下側の銅箔2Bは、フォトレジスト膜5Bにカバーされているので、エッチングされない。一対の配線パターン10上に残されたフォトレジストパターン5Cと、下面側の銅箔2Bを保護していたフォトレジスト膜5Bは、アッシングや薬液処理によって除去する。これによって、絶縁層1の片面のみに配線パターン10が形成され、下側の銅箔2Bが残されたコア材11が得られる。   Thereafter, as shown in FIG. 1C, the upper copper foil 2 </ b> A is wet-etched using the resist pattern 5 </ b> C as a mask to form a pair of wiring patterns 10. The pair of wiring patterns 10 are arranged in parallel with a predetermined interval, and are used as signal lines for high-speed differential transmission, for example. On the other hand, the lower copper foil 2B is not etched because it is covered with the photoresist film 5B. The photoresist pattern 5C left on the pair of wiring patterns 10 and the photoresist film 5B protecting the lower surface copper foil 2B are removed by ashing or chemical treatment. As a result, the core material 11 in which the wiring pattern 10 is formed only on one surface of the insulating layer 1 and the lower copper foil 2B is left is obtained.

一方、図1Dに示すように、別の両面銅張り板3を形成し、上側の銅箔2Aの全面にフォトレジスト膜5Aを塗布によって形成する。下側の銅箔2Bにはフォトレジスト膜5Bを塗布しない。続いて、露出している下側の銅箔2Bをウェットエッチングによって除去する。このとき、上側の銅箔2Aはフォトレジスト膜5Aで保護されているので全て残る。これによって、図1Eに示すように、片面銅張りコア材20が得られる。片面銅張りコア材20としては、絶縁層1の上側のみに銅箔2Aを予め貼り付けたコア材を使用しても良い。   On the other hand, as shown in FIG. 1D, another double-sided copper-clad plate 3 is formed, and a photoresist film 5A is formed by coating on the entire surface of the upper copper foil 2A. The photoresist film 5B is not applied to the lower copper foil 2B. Subsequently, the exposed lower copper foil 2B is removed by wet etching. At this time, all of the upper copper foil 2A remains because it is protected by the photoresist film 5A. Thereby, as shown to FIG. 1E, the single-sided copper clad core material 20 is obtained. As the single-sided copper-clad core material 20, a core material in which the copper foil 2 </ b> A is attached in advance only on the upper side of the insulating layer 1 may be used.

続いて、図1Fに示すように、コア材11の上に、接着層25を介して片面銅張りコア材20を積層する。接着層25は、コア材11の配線パターン10上に配置され、片面銅張りコア材20は、接着層25に樹脂層1を密着させる。接着層25には、例えば、京セラケミカル製のTFA−860FBが用いられ、その厚さは25μmとする。   Subsequently, as shown in FIG. 1F, a single-sided copper-clad core material 20 is laminated on the core material 11 via an adhesive layer 25. The adhesive layer 25 is disposed on the wiring pattern 10 of the core material 11, and the single-sided copper-clad core material 20 brings the resin layer 1 into close contact with the adhesive layer 25. For the adhesive layer 25, for example, TFA-860FB manufactured by Kyocera Chemical is used, and the thickness thereof is 25 μm.

この後、コア材11及び片面銅張りコア材20を加熱が可能な真空プレスによって一体化させる。これによって、図1Gに示すように、3層板31が形成される。3層板31は、一対の配線パターン10を絶縁層1が上下に挟み、下側の絶縁層1(第1の絶縁層)を介して銅箔2Bが配置され、上側の絶縁膜1(第2の絶縁層)を介して銅箔2Aが配置された構造を有する。銅箔2A,2Bの幅は、各配線パターン10の幅より十分に大きい。このような構造は、配線パターン10を信号線とし、その上下の銅箔2A,2Bを電源層又はグランド層とするストリップライン構造である。   Thereafter, the core material 11 and the single-sided copper-clad core material 20 are integrated by a vacuum press capable of heating. As a result, as shown in FIG. 1G, a three-layer plate 31 is formed. The three-layer board 31 has a pair of wiring patterns 10 sandwiched between the upper and lower insulating layers 1, the copper foil 2 </ b> B disposed via the lower insulating layer 1 (first insulating layer), and the upper insulating film 1 (first 2A), the copper foil 2A is disposed via the insulating layer 2). The widths of the copper foils 2A and 2B are sufficiently larger than the width of each wiring pattern 10. Such a structure is a stripline structure in which the wiring pattern 10 is a signal line and the upper and lower copper foils 2A and 2B are power supply layers or ground layers.

次に、図1Hに示す断面構造を得るまでの工程について説明する。
上側の銅箔2Aの表面にフォトレジスト膜32Aを塗布によって形成する。同様に、下側の銅箔2Bの表面にフォトレジスト膜32Bを塗布によって形成する。さらに、それぞれのフォトレジスト膜32A,32Bを露光及び現像してパターニングする。このときに形成されるレジストパターン33A,33Bは、後の工程で形成する配線のパターンに併せてフォトレジスト膜32A,32Bが残されることで形成される。
Next, steps required until a sectional structure shown in FIG.
A photoresist film 32A is formed by coating on the surface of the upper copper foil 2A. Similarly, a photoresist film 32B is formed by coating on the surface of the lower copper foil 2B. Further, each of the photoresist films 32A and 32B is exposed and developed to be patterned. The resist patterns 33A and 33B formed at this time are formed by leaving the photoresist films 32A and 32B together with the wiring pattern to be formed in a later step.

続いて、レジストパターン33A,33Bをマスクとして用いて銅箔2A,2Bをウェットエッチングする。レジストパターン33Aから露出する銅箔2Aと、レジストパターン33Bから露出する銅箔2Bとが除去される。これによって、上面と下面のそれぞれに表面配線パターン35を有する3層配線板41が形成される。   Subsequently, the copper foils 2A and 2B are wet-etched using the resist patterns 33A and 33B as a mask. The copper foil 2A exposed from the resist pattern 33A and the copper foil 2B exposed from the resist pattern 33B are removed. Thereby, the three-layer wiring board 41 having the surface wiring pattern 35 on each of the upper surface and the lower surface is formed.

表面配線パターン35は、一対の配線パターン10の上下に配置されるグランド層36,37と、一対の配線パターン10が存在しない領域に形成された配線パターン38,39とを有する。グランド層36,37は、いずれか一方を電源層として使用しても良いし
、両方を電源層として使用しても良い。配線パターン38,39は、不図示の回路や他の部品などに電気的に接続される。このように、この3層配線板41は、一対の配線パターン10を有するストリップライン構造と、配線パターン38,39とが一体に形成された多層の回路基板である。差動伝送の信号線として使用される一対の配線パターン10の上下には、配線パターン38,39が形成されないので、配線パターン10と配線パターン38,39の間のクロストークは生じない。
The surface wiring pattern 35 includes ground layers 36 and 37 disposed above and below the pair of wiring patterns 10 and wiring patterns 38 and 39 formed in regions where the pair of wiring patterns 10 do not exist. One of the ground layers 36 and 37 may be used as a power supply layer, or both may be used as a power supply layer. The wiring patterns 38 and 39 are electrically connected to a circuit (not shown) or other components. Thus, the three-layer wiring board 41 is a multilayer circuit board in which the strip line structure having the pair of wiring patterns 10 and the wiring patterns 38 and 39 are integrally formed. Since the wiring patterns 38 and 39 are not formed above and below the pair of wiring patterns 10 used as signal lines for differential transmission, no crosstalk occurs between the wiring pattern 10 and the wiring patterns 38 and 39.

続いて、図1Iに示す断面構造を得るまでの工程について説明する。
表面配線パターン35上に残されたレジストパターン33A,33Bをアッシングや薬液処理によって除去する。続いて、3層配線板41の所定位置に不図示の機械ドリルを用いて、貫通孔42を複数形成する。貫通孔42は、上側の表面配線パターン35(銅箔2A)から下側の表面配線パターン35(銅箔2B)まで貫通し、少なくとも配線パターン10を挟む位置に1つずつ形成される。また、図示を省略するが、貫通孔42は、配線パターン10に沿って細長に形成しても良い。
Next, steps required until a sectional structure shown in FIG.
The resist patterns 33A and 33B left on the surface wiring pattern 35 are removed by ashing or chemical treatment. Subsequently, a plurality of through holes 42 are formed at predetermined positions of the three-layer wiring board 41 using a mechanical drill (not shown). The through holes 42 penetrate from the upper surface wiring pattern 35 (copper foil 2 </ b> A) to the lower surface wiring pattern 35 (copper foil 2 </ b> B), and are formed one by one at positions sandwiching at least the wiring pattern 10. Although not shown, the through hole 42 may be formed elongated along the wiring pattern 10.

この後、3層配線板41を含む多数の基板材料を積層する。この実施の形態では、図1Jに示すように、下側から銅箔44、未硬化の樹脂層43、3層配線板41、未硬化の樹脂層43、3層配線板41、未硬化の樹脂層43、銅箔44を積層する。未硬化の樹脂層43は、エポキシ樹脂などの熱硬化性の樹脂43Aにガラス繊維織物43Bを含有させた構成を有し、ガラス繊維織物は、例えば2方向に交差するように積層されたガラスクロスになっている。図1Iに配列して表示する積層体の積層数や、構成要素の種類は、これに限定されない。例えば、銅箔44、未硬化の樹脂層43、3層配線板41、未硬化の樹脂層43、銅箔44を積層させても良い。   Thereafter, a large number of substrate materials including the three-layer wiring board 41 are laminated. In this embodiment, as shown in FIG. 1J, from the bottom, the copper foil 44, the uncured resin layer 43, the three-layer wiring board 41, the uncured resin layer 43, the three-layer wiring board 41, and the uncured resin Layer 43 and copper foil 44 are laminated. The uncured resin layer 43 has a configuration in which a glass fiber fabric 43B is contained in a thermosetting resin 43A such as an epoxy resin, and the glass fiber fabric is, for example, a glass cloth laminated so as to intersect in two directions. It has become. The number of stacked layers and the types of components that are arranged and displayed in FIG. 1I are not limited thereto. For example, the copper foil 44, the uncured resin layer 43, the three-layer wiring board 41, the uncured resin layer 43, and the copper foil 44 may be laminated.

図1Kに示すように、3層配線板41などを積層した状態では、3層配線板41の上側のグランド層36と配線パターン38の上に未硬化の樹脂層43(第2の層間絶縁層)が密着配置される。このために、グランド層36及び配線パターン38の間の配線溝35Aは空洞になっている。同様に、3層配線板41の下側のグランド層37と配線パターン39の下に未硬化の樹脂層43(第1の層間絶縁層)が密着配置される。このために、グランド層37及び配線パターン39の間の配線溝35Aは空洞になっている。さらに、貫通孔42は、空洞のままである。   As shown in FIG. 1K, in a state where the three-layer wiring board 41 and the like are laminated, an uncured resin layer 43 (second interlayer insulating layer) is formed on the ground layer 36 and the wiring pattern 38 on the upper side of the three-layer wiring board 41. ) Are closely arranged. For this reason, the wiring groove 35A between the ground layer 36 and the wiring pattern 38 is hollow. Similarly, an uncured resin layer 43 (first interlayer insulating layer) is disposed in close contact with the ground layer 37 below the three-layer wiring board 41 and the wiring pattern 39. For this reason, the wiring groove 35 </ b> A between the ground layer 37 and the wiring pattern 39 is hollow. Furthermore, the through hole 42 remains hollow.

続いて、図1Lに示す断面構造を得るまでの工程について説明する。
3層配線板41の上下に未硬化の樹脂層43と銅箔44をそれぞれ重ねた後、真空プレスによって一括積層する。真空プレス時の加熱によって、樹脂層43の樹脂43Aが溶融、硬化する過程で、樹脂43Aが配線パターン38,39などの溝35Aに充填される。同様に、溶融した樹脂43Aが3層配線板41の貫通孔42に埋め込まれる。この状態で樹脂を硬化させると、貫通孔42が樹脂43Aで埋められる。さらに、各3層配線板41が上下の一対の硬化した樹脂層45によって挟まれることで一体化された多層の回路基板51が形成される。
Next, steps required until a sectional structure shown in FIG.
After the uncured resin layer 43 and the copper foil 44 are stacked on the upper and lower sides of the three-layer wiring board 41, they are laminated together by a vacuum press. The resin 43A is filled in the grooves 35A such as the wiring patterns 38 and 39 in the process in which the resin 43A of the resin layer 43 is melted and cured by heating during vacuum pressing. Similarly, the melted resin 43 </ b> A is embedded in the through hole 42 of the three-layer wiring board 41. When the resin is cured in this state, the through hole 42 is filled with the resin 43A. Further, each of the three-layer wiring boards 41 is sandwiched between a pair of upper and lower cured resin layers 45 to form an integrated multilayer circuit board 51.

ここで、一括成型時に樹脂43Aが貫通孔42に充填されることによって、3層配線板41を上下に挟む一対の樹脂層43が一体となって硬化させられる。貫通孔42を通り上下一体となった樹脂43Aは、各3層配線板41のハトメとして機能する。即ち、3層配線板41は、樹脂層45によって上下から強固に押さえ付けされているので、膨らむことはできない。例えば、外部から熱が加えられたときに、接着層25にガスが発生し、かつそのガスが集まった場合には、ガスが膨らもうとする力によって、3層配線板41が押し拡げられて、樹脂層1や配線パターン10が剥がれ易くなることが考えられる。しかしながら、この多層の回路基板51では、貫通孔42を通って上下に連結された樹脂43Aが3層配線板41を上と下から押さえ込むことによって、3層配線板41の膨らみを防止し
、絶縁層1や接着層25、配線パターン10などの層間剥離が防止される。
Here, the resin 43A is filled in the through-holes 42 at the time of batch molding, so that the pair of resin layers 43 sandwiching the three-layer wiring board 41 up and down are integrally cured. The resin 43 </ b> A that is integrated vertically through the through-hole 42 functions as an eyelet for each three-layer wiring board 41. That is, since the three-layer wiring board 41 is firmly pressed from above and below by the resin layer 45, it cannot swell. For example, when heat is applied from the outside, gas is generated in the adhesive layer 25, and when the gas is collected, the three-layer wiring board 41 is expanded by a force for expanding the gas. Thus, the resin layer 1 and the wiring pattern 10 may be easily peeled off. However, in this multilayer circuit board 51, the resin 43A connected up and down through the through hole 42 presses down the three-layer wiring board 41 from above and below, thereby preventing the three-layer wiring board 41 from bulging and the insulating layer 1 And delamination of the adhesive layer 25 and the wiring pattern 10 are prevented.

以上、説明したように、この実施形態によれば、配線パターン10を内蔵した3層配線板41の絶縁層1にガラス繊維織物を有しないポリイミドフィルムなどの樹脂材料を用いたので、ガラス繊維織物の疎密による影響を排除できる。一対の配線パターン10を差動伝送に用いた場合には、信号遅延を低減でき、信頼性の高い多層回路基板が得られる。
3層配線板41は、ストリップライン構造が一体的に形成されているので、取り扱いが容易である。例えば、図4(b)に示す従来の多層回路基板120と同じ積層構造を形成した場合に比べて、多層回路基板51は厚さが薄くなる。
As described above, according to this embodiment, since a resin material such as a polyimide film having no glass fiber fabric is used for the insulating layer 1 of the three-layer wiring board 41 having the wiring pattern 10 incorporated therein, the glass fiber fabric is used. Can eliminate the influence of density. When the pair of wiring patterns 10 are used for differential transmission, signal delay can be reduced and a highly reliable multilayer circuit board can be obtained.
The three-layer wiring board 41 is easy to handle because the stripline structure is integrally formed. For example, the multilayer circuit board 51 is thinner than the conventional multilayer circuit board 120 shown in FIG.

また、3層配線板41に貫通孔42を形成し、一括積層時に貫通孔42内に樹脂43Aを埋め込むようにしたので、3層配線板41を挟む一対の樹脂層45及び貫通孔42内の樹脂43Aで3層配線板41の層間剥離を防止できる。これによって、多層回路基板51には、高い寸法精度や高い信頼性、熱安定性を実現できる。貫通孔42は、一対の配線パターン10を挟む位置に形成したので、一対の配線パターン10が形成された領域の層間剥離をより確実に防止できる。また、樹脂43Aは、貫通孔42内に隙間無く充填されることが好ましいが、層間剥離を防止できる強度を有するのであれば、一部に空隙を有しても良い。   Since the through-hole 42 is formed in the three-layer wiring board 41 and the resin 43A is embedded in the through-hole 42 at the time of batch lamination, the pair of resin layers 45 and the through-hole 42 sandwiching the three-layer wiring board 41 are provided. The delamination of the three-layer wiring board 41 can be prevented by the resin 43A. As a result, the multilayer circuit board 51 can achieve high dimensional accuracy, high reliability, and thermal stability. Since the through hole 42 is formed at a position between which the pair of wiring patterns 10 are sandwiched, delamination of the region where the pair of wiring patterns 10 is formed can be prevented more reliably. The resin 43A is preferably filled in the through-hole 42 without any gap, but may have a gap in part as long as it has a strength capable of preventing delamination.

さらに、絶縁層1は、多層回路基板51の使用温度範囲内ではガラス転移しない材料を用いて製造されているので、銅箔2を用いた表面配線パターン35との間に反りや剥がれを生じ難い。このために、3層配線板41を一体として取り扱うことができ、使用温度範囲内での信頼性を向上できる。   Furthermore, since the insulating layer 1 is manufactured using a material that does not undergo a glass transition within the operating temperature range of the multilayer circuit board 51, warping and peeling are unlikely to occur between the insulating layer 1 and the surface wiring pattern 35 using the copper foil 2. . For this reason, the three-layer wiring board 41 can be handled as a unit, and the reliability within the operating temperature range can be improved.

(第2の実施の形態)
図面を参照して第2の実施の形態について説明する。第1の実施の形態と同じ構成要素には同一の符号を付してある。また、第1の実施の形態と重複する説明は省略する。
最初に、図1Aから図1Iに示すように、3層配線板41を形成し、一対の配線パターン10を挟むように貫通孔42を形成する。続いて、図2Aに示すように、貫通孔42の内壁に、例えば銅などの導電膜62を成長させる。導電膜62は、電解めっき法又は無電解めっき法によって所定の厚さに形成される。一対の配線パターン10の上下のグランド層36,37は、貫通孔42内の導電膜62によって電気的に接続される。グランド層36,37は、電源パターンとして使用することも可能である。
(Second Embodiment)
A second embodiment will be described with reference to the drawings. The same components as those in the first embodiment are denoted by the same reference numerals. Moreover, the description which overlaps with 1st Embodiment is abbreviate | omitted.
First, as shown in FIGS. 1A to 1I, a three-layer wiring board 41 is formed, and a through hole 42 is formed so as to sandwich a pair of wiring patterns 10. Subsequently, as shown in FIG. 2A, a conductive film 62 such as copper is grown on the inner wall of the through hole 42. The conductive film 62 is formed to a predetermined thickness by an electrolytic plating method or an electroless plating method. The upper and lower ground layers 36 and 37 of the pair of wiring patterns 10 are electrically connected by the conductive film 62 in the through hole 42. The ground layers 36 and 37 can also be used as a power supply pattern.

続いて、図2Bに示すように、下側から銅箔44、未硬化の樹脂層43、貫通孔42に導電膜62を形成した3層配線板61、未硬化の樹脂層43、3層配線板61、未硬化の樹脂層43、銅箔44を積層する。この段階では、グランド層37及び配線パターン39の間の配線溝35Aは空洞になっている。さらに、貫通孔42は、空洞のままである。   2B, the copper foil 44, the uncured resin layer 43, the three-layer wiring board 61 in which the conductive film 62 is formed in the through hole 42, the uncured resin layer 43, and the three-layer wiring are formed from below. A plate 61, an uncured resin layer 43, and a copper foil 44 are laminated. At this stage, the wiring groove 35A between the ground layer 37 and the wiring pattern 39 is hollow. Furthermore, the through hole 42 remains hollow.

続いて、図2Cに示すように、真空プレスによって多層回路基板65を一括積層によって形成する。真空プレス時の加熱によって、樹脂層43の樹脂43Aが溶融、硬化する過程で、樹脂43Aが配線パターン37,39などの溝35Aに充填される。同様に、溶融した樹脂43Aが3層配線板61の貫通孔42に充填される。この状態で樹脂を硬化させると、貫通孔42が樹脂43Aで埋められる。さらに、各3層配線板61が上下の一対の硬化した樹脂層45によって挟まれることで一体化された多層の回路基板65が形成される。   Subsequently, as shown in FIG. 2C, a multilayer circuit board 65 is formed by batch lamination by vacuum pressing. The resin 43A is filled in the grooves 35A such as the wiring patterns 37 and 39 in the process in which the resin 43A of the resin layer 43 is melted and cured by heating during vacuum pressing. Similarly, the molten resin 43 </ b> A is filled in the through hole 42 of the three-layer wiring board 61. When the resin is cured in this state, the through hole 42 is filled with the resin 43A. Further, a multilayer circuit board 65 is formed by integrating each three-layer wiring board 61 between a pair of upper and lower cured resin layers 45.

ここで、貫通孔42に充填された樹脂43Aがハトメとなり、3層配線板41の上下に配置された樹脂層43が接着層23の膨らみを防止する。さらに、貫通孔42の内壁に形成された導電膜62もハトメとして機能して接着層23の膨らみを防止する。   Here, the resin 43 </ b> A filled in the through hole 42 becomes an eyelet, and the resin layers 43 arranged above and below the three-layer wiring board 41 prevent the adhesive layer 23 from bulging. Further, the conductive film 62 formed on the inner wall of the through hole 42 also functions as an eyelet to prevent the adhesive layer 23 from bulging.

以上、説明したように、この実施形態によれば、3層配線板61の貫通孔42に導電膜62を形成したので、3層配線板41を挟む一対の樹脂層45及び貫通孔42内の樹脂43Aで3層配線板41の層間剥離をさらに防止できる。その他の作用及び効果は、第1の実施の形態と同様である。   As described above, according to this embodiment, since the conductive film 62 is formed in the through hole 42 of the three-layer wiring board 61, the pair of resin layers 45 sandwiching the three-layer wiring board 41 and the inside of the through hole 42 are provided. The delamination of the three-layer wiring board 41 can be further prevented by the resin 43A. Other operations and effects are the same as those in the first embodiment.

ここで、実施形態の変形例について説明する。
図3に示すように、一対の配線パターン10を挟む一対のグランド層36,37を切り欠き68によって区画しても良い。また、図示を省略するが、図1Iに示す3層配線板41に切り欠き68を形成しても良い。
Here, a modification of the embodiment will be described.
As shown in FIG. 3, the pair of ground layers 36 and 37 sandwiching the pair of wiring patterns 10 may be partitioned by notches 68. Although not shown, a notch 68 may be formed in the three-layer wiring board 41 shown in FIG. 1I.

ここで挙げた全ての例及び条件的表現は、発明者が技術促進に貢献した発明及び概念を読者が理解するのを助けるためのものであり、ここで具体的に挙げたそのような例及び条件に限定することなく解釈するものであり、また、明細書におけるそのような例の編成は本発明の優劣を示すこととは関係ない。本発明の実施形態を詳細に説明したが、本発明の精神及び範囲から逸脱することなく、それに対して種々の変更、置換及び変形を施すことができる。   All examples and conditional expressions given here are intended to help the reader understand the inventions and concepts that have contributed to the promotion of technology, and such examples and It is to be construed without being limited to the conditions, and the organization of such examples in the specification is not related to showing the superiority or inferiority of the present invention. While embodiments of the present invention have been described in detail, various changes, substitutions and variations can be made thereto without departing from the spirit and scope of the present invention.

以下に、前記の実施の形態の特徴を付記する。
(付記1) 一対の信号線と、前記信号線の下方に形成され、樹脂で形成された第1の絶縁層と、前記第1の絶縁層の下に形成され、電源又はグランドに接続される第1の導電層と、前記信号線の上方に形成され、樹脂で形成された第2の絶縁層と、前記第2の絶縁層の上に形成され、電源又はグランドに接続される第2の導電層と、を含むことを特徴とする多層回路基板。
(付記2) 前記第1の導電層から前記第2の導電層まで貫通する貫通孔と、前記第1の導電層及び前記第2の導電層を覆うと共に、前記貫通孔に埋め込まれた樹脂と、を含むことを特徴とする付記1に記載の多層回路基板。
(付記3) 前記貫通孔の内壁を覆う導電膜を有することを特徴とする付記2に記載の多層回路基板。
(付記4) 前記第1の絶縁層及び前記第2の絶縁層は、使用温度範囲内でガラス転移温度を有しないポリイミド樹脂から形成されていることを特徴とする付記1乃至付記3のいずれか一項に記載の多層回路基板。
(付記5) 前記第1の絶縁層及び前記第2の絶縁層は、前記第1の導電層及び前記第2の導電層と同じ熱膨張率を有することを特徴とする付記4に記載の多層回路基板。
(付記6) 前記貫通孔は、前記一対の信号線を挟んで形成されていることを特徴とする付記1乃至付記5のいずれか一項に記載の多層回路基板。
(付記7) 樹脂で形成された第1の絶縁層の上に一対の信号線を形成する工程と、前記信号線の上に、樹脂で形成された第2の絶縁層を配置する工程と、前記第1の絶縁層の下面に形成された第1の導電層から、前記第2の絶縁層の上面に形成された第2の導電層までを貫通する貫通孔を形成する工程と、を含む多層回路基板の製造方法。
(付記8) 前記貫通孔の内壁を導電膜で覆う工程を有することを特徴とする付記7に記載の多層回路基板の製造方法。
(付記9) 前記第1の導電層の下に未硬化の樹脂を含む第1の層間絶縁層を配置し、前記第2の導電層の上に未硬化の樹脂を含む第2の層間絶縁層を配置し、前記第1の層間絶縁層を前記第1の導電層に、前記第2の層間絶縁層を前記第2の導電層にそれぞれ接合する際に、前記第1の層間絶縁層及び前記第2の層間絶縁層の樹脂を前記貫通孔に埋め込む工程を含むことを特徴とする付記7又は付記8に記載の多層回路基板の製造方法。
(付記10) 前記第1の層間絶縁層を前記第1の導電層に、前記第2の層間絶縁層を前記第2の導電層にそれぞれ接合する工程は、未硬化の樹脂を溶融させて前記貫通孔に埋め込む工程と、溶融した樹脂を硬化させる工程とを含むことを特徴とする付記9に記載の多
層回路基板の製造方法。
The features of the above embodiment will be added below.
(Supplementary Note 1) A pair of signal lines, a first insulating layer formed of resin, formed below the signal lines, and formed below the first insulating layer, and connected to a power source or a ground. A first conductive layer; a second insulating layer formed above the signal line and made of resin; and a second insulating layer formed on the second insulating layer and connected to a power source or a ground. A multilayer circuit board comprising a conductive layer.
(Supplementary Note 2) A through-hole penetrating from the first conductive layer to the second conductive layer, a resin that covers the first conductive layer and the second conductive layer, and is embedded in the through-hole The multilayer circuit board according to appendix 1, characterized by comprising:
(Additional remark 3) It has a conductive film which covers the inner wall of the said through-hole, The multilayer circuit board of Additional remark 2 characterized by the above-mentioned.
(Supplementary note 4) Any one of Supplementary notes 1 to 3, wherein the first insulating layer and the second insulating layer are formed of a polyimide resin having no glass transition temperature within a use temperature range. The multilayer circuit board according to one item.
(Additional remark 5) The said 1st insulating layer and the said 2nd insulating layer have the same thermal expansion coefficient as the said 1st conductive layer and the said 2nd conductive layer, The multilayer of Additional remark 4 characterized by the above-mentioned Circuit board.
(Supplementary note 6) The multilayer circuit board according to any one of Supplementary notes 1 to 5, wherein the through hole is formed with the pair of signal lines interposed therebetween.
(Appendix 7) A step of forming a pair of signal lines on the first insulating layer formed of resin, a step of disposing a second insulating layer formed of resin on the signal line, Forming a through hole penetrating from the first conductive layer formed on the lower surface of the first insulating layer to the second conductive layer formed on the upper surface of the second insulating layer. A method of manufacturing a multilayer circuit board.
(Additional remark 8) It has the process of covering the inner wall of the said through-hole with a electrically conductive film, The manufacturing method of the multilayer circuit board of Additional remark 7 characterized by the above-mentioned.
(Additional remark 9) The 1st interlayer insulation layer containing uncured resin is arranged under the 1st conductive layer, and the 2nd interlayer insulation layer containing uncured resin on the 2nd conductive layer When the first interlayer insulating layer is bonded to the first conductive layer and the second interlayer insulating layer is bonded to the second conductive layer, the first interlayer insulating layer and the The method for manufacturing a multilayer circuit board according to appendix 7 or appendix 8, further comprising a step of embedding a resin of the second interlayer insulating layer in the through hole.
(Appendix 10) The step of bonding the first interlayer insulating layer to the first conductive layer and the second interlayer insulating layer to the second conductive layer includes melting uncured resin and The method for manufacturing a multilayer circuit board according to appendix 9, wherein the method includes a step of embedding in the through hole and a step of curing the molten resin.

1 絶縁層(第1の絶縁層、第2の絶縁層)
2A 銅箔(第2の導体層)
2B 銅箔(第1の導電層)
10 配線パターン(信号線)
41、61 3層配線板
42 貫通孔
43A 樹脂
51、65 多層回路基板
62 導電膜
1 Insulating layer (first insulating layer, second insulating layer)
2A copper foil (second conductor layer)
2B Copper foil (first conductive layer)
10 Wiring pattern (signal line)
41, 61 Three-layer wiring board 42 Through-hole 43A Resin 51, 65 Multilayer circuit board 62 Conductive film

Claims (2)

一対の信号線と、
ガラス繊維織物を有しない樹脂材料を用いて前記信号線の下方に形成された第1の絶縁層と、
前記第1の絶縁層の下に形成され、電源又はグランドに接続される第1の導電層と、
ガラス繊維織物を有しない樹脂材料を用いて前記信号線の上方に形成された第2の絶縁層と、
前記第2の絶縁層の上に形成され、電源又はグランドに接続される第2の導電層と、
一対の前記信号線を挟む位置で前記第1の導電層から前記第2の導電層まで貫通し、内壁に導電膜を有しない複数の貫通孔と、
前記第1の導電層及び前記第2の導電層を覆うと共に、前記貫通孔に埋め込まれた樹脂と、
を含むことを特徴とする多層回路基板。
A pair of signal lines;
A first insulating layer formed below the signal lines by using a resin material having no glass fiber fabric,
A first conductive layer formed under the first insulating layer and connected to a power source or a ground;
A second insulating layer formed above the signal line by using a resin material having no glass fiber fabric,
A second conductive layer formed on the second insulating layer and connected to a power source or a ground;
A plurality of through holes penetrating from the first conductive layer to the second conductive layer at positions sandwiching a pair of the signal lines, and having no conductive film on the inner wall ;
A resin that covers the first conductive layer and the second conductive layer and is embedded in the through hole;
A multilayer circuit board comprising:
ガラス繊維織物を有しない樹脂で形成された第1の絶縁層の上に一対の信号線を形成する工程と、
前記信号線の上に、ガラス繊維織物を有しない樹脂で形成された第2の絶縁層を配置する工程と、
一対の前記信号線を挟む位置で前記第1の絶縁層の下面に形成された第1の導電層から、前記第2の絶縁層の上面に形成された第2の導電層までを貫通し、内壁に導電膜を有しない貫通孔を複数形成する工程と、
前記第1の導電層及び前記第2の導電層を覆うと共に、前記貫通孔に樹脂を埋め込む工程と、
を含む多層回路基板の製造方法。
Forming a pair of signal lines on the first insulating layer formed of a resin having no glass fiber fabric ;
Disposing a second insulating layer formed of a resin not having a glass fiber fabric on the signal line;
Penetrating from the first conductive layer formed on the lower surface of the first insulating layer to the second conductive layer formed on the upper surface of the second insulating layer at a position between the pair of signal lines , a step of forming a plurality of transmural holes having no conductive film on the inner wall,
Covering the first conductive layer and the second conductive layer and embedding a resin in the through hole;
A method for manufacturing a multilayer circuit board comprising:
JP2011278204A 2011-12-20 2011-12-20 Multilayer circuit board and manufacturing method thereof Expired - Fee Related JP5834882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011278204A JP5834882B2 (en) 2011-12-20 2011-12-20 Multilayer circuit board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011278204A JP5834882B2 (en) 2011-12-20 2011-12-20 Multilayer circuit board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013131526A JP2013131526A (en) 2013-07-04
JP5834882B2 true JP5834882B2 (en) 2015-12-24

Family

ID=48908885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011278204A Expired - Fee Related JP5834882B2 (en) 2011-12-20 2011-12-20 Multilayer circuit board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5834882B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015141004A1 (en) * 2014-03-20 2017-04-06 富士通株式会社 Multilayer circuit board, semiconductor device, and method for manufacturing the multilayer circuit board
JP2017069320A (en) * 2015-09-29 2017-04-06 日立化成株式会社 Multilayer wiring board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4876272B2 (en) * 2008-04-02 2012-02-15 サムソン エレクトロ−メカニックス カンパニーリミテッド. Printed circuit board and manufacturing method thereof
JP2010016339A (en) * 2008-06-03 2010-01-21 Nippon Mektron Ltd Module using multilayer flexible printed circuit board and method of manufacturing the same

Also Published As

Publication number Publication date
JP2013131526A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
TWI507099B (en) Rigid-flexible printed circuit board, method for manufacturing same, and printed circuit board module
US20050016764A1 (en) Wiring substrate for intermediate connection and multi-layered wiring board and their production
KR101506794B1 (en) Printed curcuit board and manufacture method
KR101441236B1 (en) Method of manufacturing wiring board, wiring board, and via structure
US20150129293A1 (en) Printed circuit board and method of manufacturing the same
TW201005892A (en) Embedded chip substrate and fabrication method thereof
JPWO2010113448A1 (en) Circuit board manufacturing method and circuit board
US20140318834A1 (en) Wiring board and method for manufacturing the same
KR101438915B1 (en) The printed circuit board and the method for manufacturing the same
KR20140086824A (en) Method of manufacturing wiring substrate
JP4994988B2 (en) Wiring board manufacturing method
JP2015035497A (en) Electronic component built-in wiring board
US20170006699A1 (en) Multilayer circuit board, semiconductor apparatus, and method of manufacturing multilayer circuit board
KR20160099934A (en) Rigid-flexible printed circuit board and method for manufacturing the same
JP2002076530A (en) Printed circuit board and its manufacturing method
KR101905879B1 (en) The printed circuit board and the method for manufacturing the same
JP6643956B2 (en) Printed wiring board and manufacturing method thereof
JP5834882B2 (en) Multilayer circuit board and manufacturing method thereof
KR20160004157A (en) Chip embedded substrate and method of manufacturing the same
KR101417264B1 (en) The printed circuit board and the method for manufacturing the same
JP2006216593A (en) Method of manufacturing rigid flex multilayer wiring board
JP4538513B2 (en) Manufacturing method of multilayer wiring board
JP2006073819A (en) Printed board and method for manufacturing the same
JP2011040648A (en) Method of manufacturing circuit board, and the circuit board
KR101887754B1 (en) Rigid flexible circuit board manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151019

R150 Certificate of patent or registration of utility model

Ref document number: 5834882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees