JP5812217B1 - Sputtering target and manufacturing method of sputtering target - Google Patents
Sputtering target and manufacturing method of sputtering target Download PDFInfo
- Publication number
- JP5812217B1 JP5812217B1 JP2015056107A JP2015056107A JP5812217B1 JP 5812217 B1 JP5812217 B1 JP 5812217B1 JP 2015056107 A JP2015056107 A JP 2015056107A JP 2015056107 A JP2015056107 A JP 2015056107A JP 5812217 B1 JP5812217 B1 JP 5812217B1
- Authority
- JP
- Japan
- Prior art keywords
- powder
- sputtering
- sputtering target
- target
- metal element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
- H01J37/3429—Plural materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/58085—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
- C04B35/6455—Hot isostatic pressing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
- C23C14/185—Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/067—Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/123—Spraying molten metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3488—Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
- H01J37/3491—Manufacturing of targets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/05—Light metals
- B22F2301/052—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/15—Nickel or cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/45—Others, including non-metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3279—Nickel oxides, nickalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/405—Iron group metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/421—Boron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
- C04B2235/727—Phosphorus or phosphorus compound content
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Powder Metallurgy (AREA)
Abstract
【課題】スパッタリングターゲットの抗折強度を高めて、割れ易さを抑制し、異常放電が少なく、安定的に高速成膜できるシリコンを主成分としたスパッタリングターゲットの提供。【解決手段】体積抵抗10Ω・cm以下、理論密度比が85%〜99%、抗折強度が65N/mm2以上であって、Ni、Alから選ばれた少なくとも1種類の金属元素:0.5〜10at%と、B又はP:0.01〜10000重量ppmとを含有したリコンスパッタリングターゲットであって、B又はPを含有している平均粒径150μm以下のSi粉末と、Ni及びAlから選ばれた少なくとも1種類の金属元素からなる粉末又は金属元素を含むシリサイト粉末とを混合し、加圧焼結したシリコンスパッタリングターゲット。【選択図】なしThe present invention provides a sputtering target mainly composed of silicon that can increase the bending strength of the sputtering target, suppress the ease of cracking, reduce abnormal discharge, and stably form a film at high speed. A volume resistance of 10 Ω · cm or less, a theoretical density ratio of 85% to 99%, a bending strength of 65 N / mm 2 or more, and at least one metal element selected from Ni and Al: 0.5 Recon sputtering target containing 10 to 10 at% and B or P: 0.01 to 10000 ppm by weight, selected from Si powder containing B or P and having an average particle size of 150 μm or less, and Ni and Al A silicon sputtering target obtained by mixing and sintering a powder comprising at least one metal element or a silicite powder containing a metal element. [Selection figure] None
Description
本発明は、ターゲット割れを抑制し、スパッタリング時の異常放電を低減し、しかも、安定的に高速成膜が可能な、シリコン(Si)を主成分としたスパッタリングターゲット及びその製造方法に関する。 The present invention relates to a sputtering target mainly composed of silicon (Si), which suppresses target cracking, reduces abnormal discharge during sputtering, and enables stable high-speed film formation, and a method for manufacturing the same.
シリコン(Si)膜、シリコンの窒化物膜、又は、シリコンの酸化物膜を成膜するために、シリコン(Si)スパッタリングターゲットがよく使われている。Si膜は、Siスパッタリングターゲットを用いて、そのまま成膜されるが、シリコンの窒化物膜又はシリコンの酸化物膜を成膜する場合には、Siスパッタリングターゲットを用いて、窒素や酸素を含んだ雰囲気で反応性スパッタリング技術を用いて成膜することが一般的である。 In order to form a silicon (Si) film, a silicon nitride film, or a silicon oxide film, a silicon (Si) sputtering target is often used. The Si film is formed as it is using a Si sputtering target, but when a silicon nitride film or a silicon oxide film is formed, the Si sputtering target is used to contain nitrogen or oxygen. It is common to form a film using a reactive sputtering technique in an atmosphere.
これらの膜を形成するために、一般的に、結晶系Siスパッタリングターゲット(単結晶又は多結晶のSiスパッタリングターゲット)が使われている。結晶系Siスパッタリングターゲットは、純度が高く、入手が容易であるなどのメリットがあるが、スパッタリング中に割れやすく、また、成膜速度が非常に遅いなどという課題がある。 In order to form these films, a crystal Si sputtering target (single crystal or polycrystalline Si sputtering target) is generally used. Crystalline Si sputtering targets have advantages such as high purity and easy availability, but have problems such as being easily broken during sputtering and having a very slow film formation rate.
そのため、結晶系Siスパッタリングターゲットの熱処理及び化学エッチング処理により、成膜速度や耐割れ性の向上を図ることが提案されている(例えば、特許文献1を参照)。一方、成膜速度や耐割れ性の向上を図るため、Si粉末を用いてSiの焼結体を製造する方法が提案されている(例えば、特許文献2、3などを参照)。この製造方法によって、焼結体密度99%以上の高密度スパッタリングターゲットを得ることができる。 Therefore, it has been proposed to improve the film formation rate and crack resistance by heat treatment and chemical etching treatment of the crystalline Si sputtering target (see, for example, Patent Document 1). On the other hand, in order to improve the film forming speed and crack resistance, a method of manufacturing a Si sintered body using Si powder has been proposed (see, for example, Patent Documents 2 and 3). By this manufacturing method, a high-density sputtering target having a sintered body density of 99% or more can be obtained.
さらに、SiとMo、W、Ti、Nb、Cr、Taからなる高融点金属群のシリサイトからなるスパッタリングターゲットが提案されている(例えば、特許文献4を参照)。また、溶射法により、原子番号が11以下の金属が含有された金属シリコンでターゲット材を形成して、ターゲット材の抵抗率を低下させた、導電性のあるSiスパッタリングターゲットを製造する方法が提案されている(例えば、特許文献5を参照)。 Furthermore, a sputtering target made of silicite of a refractory metal group made of Si and Mo, W, Ti, Nb, Cr, Ta has been proposed (see, for example, Patent Document 4). Also proposed is a method for producing a conductive Si sputtering target in which the target material is formed of metal silicon containing a metal having an atomic number of 11 or less by thermal spraying, and the resistivity of the target material is reduced. (For example, see Patent Document 5).
上記特許文献2、3で提案されたスパッタリングターゲットの製造方法によれば、焼結体密度99%以上の高密度スパッタリングターゲットを得ることができるが、得られたスパッタリングターゲットを用いたスパッタリング成膜では、その成膜速度が結晶系Siスパッタリングターゲットと違いがなく、依然として、スパッタリング中に割れやすいという問題が残されている。 According to the sputtering target manufacturing method proposed in Patent Documents 2 and 3 above, a high-density sputtering target having a sintered body density of 99% or more can be obtained. In sputtering film formation using the obtained sputtering target, The film forming speed is the same as that of the crystalline Si sputtering target, and the problem remains that it is easily broken during sputtering.
また、上記特許文献4により、Siを主成分とし、Mo、W、Ti、Nb、Cr、Taからなる高融点金属群のシリサイトを添加したスパッタリングターゲットが提案されているが、このスパッタリングターゲットに関しては、以下の問題がある。
i)焼結から冷却までを有する一般的な製造によると、その工程が複雑となり、高融点金属の添加により応力が発生しやすく、残留応力が生じ、焼結体にクラックが入りやすい。また、高電力密度での直流(DC)スパッタリング成膜時に割れやすい。
ii)スパッタリングターゲットの導電性を確保するために、シリコンは97重量%までしか添加できず、これ以上添加すると、導電性がなくなる。このため、シリコン添加量97重量%以上のスパッタリングターゲットを作製することができない。
iii)高融点金属を使うため、溶射法を用いたターゲット製造方法に適用できず、円筒型スパッタリングターゲットなど、平板形状以外のスパッタリングターゲットの製造ができない。
Moreover, although the said patent document 4 has proposed the sputtering target which added Si of the refractory metal group which has Si as a main component and consists of Mo, W, Ti, Nb, Cr, Ta, Has the following problems.
i) According to a general production including from sintering to cooling, the process becomes complicated, and stress is easily generated by addition of a refractory metal, residual stress is generated, and the sintered body is easily cracked. Moreover, it is easy to break at the time of direct current (DC) sputtering film formation at high power density.
ii) In order to ensure the conductivity of the sputtering target, silicon can be added only up to 97% by weight. For this reason, a sputtering target having a silicon addition amount of 97% by weight or more cannot be produced.
iii) Since a refractory metal is used, it cannot be applied to a target manufacturing method using a thermal spraying method, and a sputtering target other than a flat plate shape such as a cylindrical sputtering target cannot be manufactured.
一方、上記特許文献5には、溶射法により、導電性のあるSiスパッタリングターゲットを製造する方法が提案されているが、ここでは、原子番号11以降の金属元素を添加することを展開していないため、このSiスパッタリングターゲットを用いてスパッタリング成膜する場合には、成膜速度が遅いという課題を解決できない。 On the other hand, Patent Document 5 proposes a method for producing a conductive Si sputtering target by a thermal spraying method, but here, the addition of a metal element having an atomic number of 11 or later has not been developed. Therefore, when sputtering film formation is performed using this Si sputtering target, the problem that the film formation speed is low cannot be solved.
そこで、本発明は、スパッタリングターゲットの抗折強度を高めて割れやすさを抑制し、スパッタリング時の異常放電を低減し、しかも、安定的に高速成膜できるSiを主成分としたスパッタリングターゲットを提供することを目的とする。 Accordingly, the present invention provides a sputtering target mainly composed of Si that increases the bending strength of the sputtering target, suppresses fragility, reduces abnormal discharge during sputtering, and can stably form a film at high speed. The purpose is to do.
本発明者らは、Siスパッタリングターゲットに、Ni又はAl及びB又はPを添加することによって、容易に低抵抗化を図ることができ、さらに、スパッタリングターゲットの強度を向上することができるという知見を得た。 The inventors have found that by adding Ni or Al and B or P to a Si sputtering target, the resistance can be easily reduced, and further the strength of the sputtering target can be improved. Obtained.
SiスパッタリングターゲットにNi又はAl及びB又はPを添加することより、スパッタリングターゲットが低抵抗化し、直流(DC)スパッタリングや中間周波(MF)スパッタリングに適用が可能となり、スパッタリング成膜の向上を図ることができるとともに、パッタリングターゲットの抗折強度が向上し、機械加工時、さらには、スパッタリング時における耐割れ性に優れたスパッタリングターゲットを作製できることが確認された。 By adding Ni or Al and B or P to the Si sputtering target, the resistance of the sputtering target is reduced, and it can be applied to direct current (DC) sputtering or intermediate frequency (MF) sputtering, thereby improving the sputtering film formation. It was confirmed that the bending strength of the sputtering target was improved, and a sputtering target having excellent crack resistance during machining and further during sputtering was confirmed.
したがって、本発明は、上記知見から得られたものであり、前記課題を解決するために以下の構成を採用した。
(1)本発明のスパッタリングターゲットは、Ni及びAlから選ばれた少なくとも1種類の金属元素:0.5〜10at%と、B又はP:0.01〜10000重量ppmとを含有し、残部がSi及び不可避不純物からなる焼結体であって、前記焼結体の体積抵抗が10Ω・cm以下であり、かつ、理論密度比は85%〜99%、抗折強度が65N/mm2以上であることを特徴とする。
(2)本発明のスパッタリングターゲットの製造方法は、B又はPを含有している平均粒径150μm以下のSi粉末と、Ni及びAlから選ばれた少なくとも1種類の金属元素からなる粉末又は前記金属元素を含むシリサイト粉末とを、Ni元素及びAl元素の合計が0.5〜10at%、B又はPの含有量が0.01〜10000重量ppmになるように配合して混合し、加圧焼結することを特徴とする。
(3)本発明のスパッタリングターゲットの製造方法は、平均粒径150μm以下のSi粉末と、B粉末又はP粉末と、Ni及びAlから選ばれた少なくとも1種類の金属元素からなる粉末又は前記金属元素を含むシリサイト粉末とを、Ni元素及びAl元素の合計が0.5〜10at%、B又はPの含有量が0.01〜10000重量ppmになるように配合して混合し、加圧焼結することを特徴とする。
(4)本発明のスパッタリングターゲットの製造方法は、B又はPを含有している平均粒径150μm以下のSi粉末と、Ni及びAlから選ばれた少なくとも1種類の金属元素からなる粉末又は前記金属元素を含むシリサイト粉末とを、Ni元素及びAl元素の合計が0.5〜10at%、B又はPの含有量が0.01〜10000重量ppmになるように配合して混合し、溶射焼結することを特徴とする。
(5)発明のスパッタリングターゲットの製造方法は、平均粒径150μm以下のSi粉末と、B粉末又はP粉末と、Ni及びAlから選ばれた少なくとも1種類の金属元素からなる粉末又は前記金属元素を含むシリサイト粉末とを、Ni元素及びAl元素の合計が0.5〜10at%、B又はPの含有量が0.1〜20000重量ppmになるように配合して混合し、溶射焼結することを特徴とする。
Therefore, the present invention has been obtained from the above findings, and the following configuration has been adopted in order to solve the above problems.
(1) The sputtering target of the present invention contains at least one metal element selected from Ni and Al: 0.5 to 10 at%, and B or P: 0.01 to 10,000 ppm by weight, with the remainder being A sintered body composed of Si and inevitable impurities, wherein the sintered body has a volume resistance of 10 Ω · cm or less, a theoretical density ratio of 85% to 99%, and a bending strength of 65 N / mm 2 or more. It is characterized by being.
(2) The method for producing a sputtering target of the present invention comprises a powder comprising an Si powder containing B or P and having an average particle size of 150 μm or less, and at least one metal element selected from Ni and Al, or the metal The silicite powder containing the elements is mixed and mixed so that the total of the Ni element and Al element is 0.5 to 10 at%, and the B or P content is 0.01 to 10,000 ppm by weight. It is characterized by sintering.
(3) The method for producing a sputtering target of the present invention comprises a powder comprising the Si powder having an average particle size of 150 μm or less, B powder or P powder, and at least one metal element selected from Ni and Al, or the metal element Are mixed and mixed so that the total of Ni element and Al element is 0.5 to 10 at%, and the content of B or P is 0.01 to 10000 ppm by weight. It is characterized by tying.
(4) A method for producing a sputtering target of the present invention comprises a powder comprising B or P and having an average particle size of 150 μm or less and at least one metal element selected from Ni and Al or the metal The element-containing silicite powder is mixed and mixed so that the total of Ni and Al elements is 0.5 to 10 at%, and the content of B or P is 0.01 to 10000 ppm by weight, and spray-fired It is characterized by tying.
(5) A method for producing a sputtering target according to the present invention comprises a powder composed of at least one metal element selected from Si powder having an average particle size of 150 μm or less, B powder or P powder, and Ni and Al, or the metal element. The silicite powder contained is mixed and mixed so that the total of Ni and Al elements is 0.5 to 10 at%, and the content of B or P is 0.1 to 20000 ppm by weight, followed by spraying and sintering. It is characterized by that.
上記のように、本発明のスパッタリングターゲットの特徴は、Ni及びAlから選ばれた少なくとも1種類の金属元素:0.5〜10at%と、B又はP:0.01〜10000重量ppmとを含有し、残部がSi及び不可避不純物からなる焼結体において、前記焼結体の体積抵抗を10Ω・cm以下、かつ、理論密度比は85%〜99%、抗折強度を65N/mm2以上とすることである。 As described above, the characteristics of the sputtering target of the present invention include at least one metal element selected from Ni and Al: 0.5 to 10 at%, and B or P: 0.01 to 10,000 ppm by weight. In the sintered body composed of Si and inevitable impurities, the volume resistance of the sintered body is 10 Ω · cm or less, the theoretical density ratio is 85% to 99%, and the bending strength is 65 N / mm 2 or more. It is to be.
Siに、Ni又はAl及びB又はPを添加することによって、容易に低抵抗化を図ることができる。さらに、スパッタリングターゲットの強度を向上しやすく、Siを99.5at%含有した場合であっても、低い添加量でも、スパッタリング成膜の速度を向上することができるとともに、機械加工時、さらには、スパッタリング時に割れないスパッタリングターゲットを作製することができる。スパッタリングターゲットの体積抵抗が高いと、直流(DC)スパッタリングや中間周波(MF)スパッタリングに適用できない。スパッタリングターゲットの抗折強度が足りないと、割れやすい。従来技術による焼結タイプのSiスパッタリングターゲットと比較して、Ni又はAl及びB又はPが添加されると、成膜速度が速くなる。 By adding Ni or Al and B or P to Si, the resistance can be easily reduced. Furthermore, it is easy to improve the strength of the sputtering target, and even when Si is contained at 99.5 at%, the sputtering film forming speed can be improved even with a low addition amount, and at the time of machining, A sputtering target that does not break during sputtering can be manufactured. When the volume resistance of the sputtering target is high, it cannot be applied to direct current (DC) sputtering or intermediate frequency (MF) sputtering. If the bending strength of the sputtering target is insufficient, it is easy to break. When Ni or Al and B or P are added, the film forming rate is increased as compared with the sintered sputtering target of the prior art.
また、添加されるNi、Al元素の含有量が0.5at%以下になると、スパッタリングターゲットの抗折強度の向上、耐割れ性の向上の効果が得られない。一方、その含有量が10at%を超えると、添加金属元素とのシリサイトがターゲット中に大量に形成されるため、スパッタリングターゲットが脆くなりやすく、さらに、スパッタリング時において、そのシリサイトによる異常放電の発生が増大する。粉末焼結法又は溶射焼結法により製造する場合には、スパッタリングターゲットに含有されるNi、Alの含有量が多くなると、添加されたNi,Alが酸化されやすいため、ターゲット中の酸素の含有量が多くなり、スパッタリング時における異常放電が増える。なお、スパッタリングターゲットに含有されるNi、Alの金属元素は、Ni、Al単体として含まれても良く、NiとAlとの合金、NiとSiとの化合物、AlとSiとの化合物になっていても良い。さらに、これらの金属や合金、シリサイトには、B又はPを含んでも良い。 On the other hand, if the content of the added Ni and Al elements is 0.5 at% or less, the effect of improving the bending strength and cracking resistance of the sputtering target cannot be obtained. On the other hand, if the content exceeds 10 at%, a large amount of silicite with the added metal element is formed in the target, so that the sputtering target is likely to be brittle. Further, during sputtering, abnormal discharge due to the silicite occurs. Incidence increases. When manufacturing by the powder sintering method or thermal spraying sintering method, if the content of Ni and Al contained in the sputtering target is increased, the added Ni and Al are easily oxidized, so the oxygen content in the target The amount increases, and abnormal discharge during sputtering increases. The Ni and Al metal elements contained in the sputtering target may be included as Ni or Al alone, and are an alloy of Ni and Al, a compound of Ni and Si, or a compound of Al and Si. May be. Furthermore, these metals, alloys, and silicites may contain B or P.
さらに、本発明のスパッタリングターゲットには、B又はPが0.01〜10000重量ppm含有されることを特徴としているが、その含有量が0.01重量ppm以下になると、スパッタリングターゲット面内における電気抵抗分布が悪くなり、一様な低抵抗化が困難になる。一方、その含有量が、10000重量ppmを超えて増えると、B又はPと添加金属元素(Ni、Al)の反応が増加し、スパッタリング時の異常放電発生の増加や、スパッタリングターゲットの強度の低下がみられる。
さらに、本発明ターゲットの体積抵抗が10Ω・cm以下であり、かつ、理論密度比は85%〜99%、抗折強度が65N/mm2以上であることを特徴とする。スパッタリングターゲットの体積抵抗が高いと、直流(DC)スパッタリングや中間周波(MF)スパッタリングに適用できない。また、焼結法で形成されるため、理論密度比が焼結条件によって変動しやすく、85%以下になるとスパッタ中にSi粒子の脱落による異常放電が頻発し、99%以上になると、脆性が増え、大電力スパッタ時に割れが発生しやすくなる。
Furthermore, the sputtering target of the present invention is characterized in that B or P is contained in an amount of 0.01 to 10,000 ppm by weight. The resistance distribution becomes poor, and it is difficult to achieve uniform resistance reduction. On the other hand, when the content exceeds 10000 ppm by weight, the reaction between B or P and added metal elements (Ni, Al) increases, and the occurrence of abnormal discharge during sputtering and the strength of the sputtering target decrease. Is seen.
Furthermore, the volume resistance of the target of the present invention is 10 Ω · cm or less, the theoretical density ratio is 85% to 99%, and the bending strength is 65 N / mm 2 or more. When the volume resistance of the sputtering target is high, it cannot be applied to direct current (DC) sputtering or intermediate frequency (MF) sputtering. In addition, since it is formed by a sintering method, the theoretical density ratio is likely to fluctuate depending on the sintering conditions. When it becomes 85% or less, abnormal discharge frequently occurs due to the dropping of Si particles during sputtering, and when it becomes 99% or more, the brittleness Increasing and cracking is likely to occur during high power sputtering.
本発明のスパッタリングターゲットの製造方法の特徴は、1)B又はPを含有している平均粒径150μm以下のSi粉末と、Ni及びAlから選ばれた少なくとも1種類の金属元素からなる粉末又は前記金属元素を含むシリサイト粉末とを、Ni元素及びAl元素の合計が0.5〜10at%、B又はPの含有量が0.01〜10000重量ppmになるように配合して混合し、加圧焼結する、或いは、2)平均粒径150μm以下のSi粉末と、B粉末又はP粉末と、Ni及びAlから選ばれた少なくとも1種類の金属元素からなる粉末又は前記金属元素を含むシリサイト粉末とを、Ni元素及びAl元素の合計が0.5〜10at%、B又はPの含有量が0.01〜10000重量ppmになるように配合して混合し、加圧焼結することである。 The characteristics of the method for producing a sputtering target of the present invention are as follows: 1) a powder comprising B or P and having an average particle size of 150 μm or less and at least one metal element selected from Ni and Al Silicite powder containing a metal element is mixed and mixed so that the total of Ni and Al elements is 0.5 to 10 at%, and the content of B or P is 0.01 to 10,000 ppm by weight. 2) Si powder having an average particle size of 150 μm or less, B powder or P powder, and powder comprising at least one metal element selected from Ni and Al or silicite containing the metal element Mixing and mixing the powder so that the total of Ni element and Al element is 0.5 to 10 at%, and the content of B or P is 0.01 to 10,000 ppm by weight, and pressure sintering. It is.
上記1)及び2)の特徴を有するスパッタリングターゲットの製造では、B又はPがドープされたSi粉末、或いは、Si粉末及びB粉末又はP粉末の混合粉末を使うことによって粉末焼結しているため、スパッタリングターゲット内の電気抵抗の分布を均一化することができる。しかも、この加圧粉末焼結法の採用により、ターゲット抗折強度を焼結条件の選択により容易に調整することができるので、ターゲット抗折強度を高めることにより、ターゲット割れの発生を抑制でき、高電力密度スパッタリング時の安定性を強化することができる。
なお、上記2)の特徴を有する製造方法において、「平均粒径150μm以下のSi粉末」は、B又はPを含有していてもよい。即ち、SiにB又はPをドープするとともに、粉末としてもB又はPを添加することも可能であり、この場合には、全体としてB又はPの含有量が0.01〜10000重量ppmになっていればよい。
In the production of the sputtering target having the characteristics 1) and 2), powder sintering is performed by using Si powder doped with B or P, or a mixed powder of Si powder and B powder or P powder. The distribution of electrical resistance in the sputtering target can be made uniform. Moreover, by adopting this pressure powder sintering method, the target bending strength can be easily adjusted by selecting the sintering conditions, so by increasing the target bending strength, it is possible to suppress the occurrence of target cracking, Stability during high power density sputtering can be enhanced.
In the production method having the above feature 2), the “Si powder having an average particle size of 150 μm or less” may contain B or P. That is, while doping B or P into Si, it is possible to add B or P as a powder, and in this case, the total content of B or P becomes 0.01 to 10,000 ppm by weight. It only has to be.
また、本発明のスパッタリングターゲットの製造方法の特徴は、3)B又はPを含有している平均粒径150μm以下のSi粉末と、Ni及びAlから選ばれた少なくとも1種類の金属元素からなる粉末又は前記金属元素を含むシリサイト粉末とを、Ni元素及びAl元素の合計が0.5〜10at%、B又はPの含有量が0.01〜10000重量ppmになるように配合して混合し、溶射焼結する、或いは、4)平均粒径150μm以下のSi粉末と、B粉末又はP粉末と、Ni及びAlから選ばれた少なくとも1種類の金属元素からなる粉末又は前記金属元素を含むシリサイト粉末とを、Ni元素及びAl元素の合計が0.5〜10at%、B又はPの含有量が0.1〜20000重量ppmになるように配合して混合し、溶射焼結することである。 The sputtering target production method of the present invention is characterized by 3) a powder comprising B or P and having an average particle size of 150 μm or less and at least one metal element selected from Ni and Al. Alternatively, the silicite powder containing the metal element is mixed and mixed so that the total of Ni element and Al element is 0.5 to 10 at%, and the content of B or P is 0.01 to 10,000 ppm by weight. 4) Si powder having an average particle size of 150 μm or less, B powder or P powder, and powder comprising at least one metal element selected from Ni and Al, or a silica containing the metal element The site powder is mixed and mixed so that the total of Ni element and Al element is 0.5 to 10 at%, and the content of B or P is 0.1 to 20000 ppm by weight, followed by thermal spray sintering. That is.
上記3)及び4)の特徴を有する製造方法では、高融点金属を使わないため、溶射法によるスパッタリングターゲットを製造することができるようになる。溶射法を使うことで、円筒形のスパッタリングターゲット等、平板形以外のスパッタリングターゲットの製造が可能になる。なお、B及びPを単体粉末として原料粉末に添加する場合、溶射における高温で著しく蒸発するため、溶射原料粉末中のB及びP元素を、ターゲット目標組成より多く添加することが必要である。一方、NiやAlは、Siより溶射時の附着率が高く、溶射条件によって、ターゲット中のNi,Alの含有量が原料粉中のNi,Alの含有量より多くなる傾向がある。
なお、上記4)の特徴を有する製造方法において、「平均粒径150μm以下のSi粉末」は、B又はPを含有していてもよい。即ち、SiにB又はPをドープするとともに、粉末としてもB又はPを添加することも可能である。
In the manufacturing method having the features 3) and 4), since a refractory metal is not used, a sputtering target by a thermal spraying method can be manufactured. By using the thermal spraying method, it is possible to manufacture a sputtering target other than a flat plate, such as a cylindrical sputtering target. In addition, when adding B and P to a raw material powder as a single powder, since it evaporates remarkably at the high temperature in thermal spraying, it is necessary to add more B and P elements in the thermal spray raw material powder than a target target composition. On the other hand, Ni and Al have a higher deposition rate during thermal spraying than Si, and depending on the thermal spraying conditions, the Ni and Al contents in the target tend to be higher than the Ni and Al contents in the raw material powder.
In the production method having the feature 4), the “Si powder having an average particle size of 150 μm or less” may contain B or P. That is, it is possible to add B or P to Si and also add B or P as a powder.
以上の様に、本発明によるスパッタリングターゲットは、Ni及びAlから選ばれた少なくとも1種類の金属元素:0.5〜10at%と、B又はP:0.01〜10000重量ppmとを含有し、残部がSi及び不可避不純物からなる焼結体であって、前記焼結体の体積抵抗が10Ω・cm以下であり、かつ、理論密度比85%〜99%、抗折強度が65N/mm2以上であることを特徴としているので、ターゲット作製のための機械加工時において、割れやひびの発生を無くし、さらには、高スパッタ電力密度の直流(DC)スパッタリングや中間周波(MF)スパッタリング時においても、異常放電を低減でき、しかも、割れやひびの発生を無くすことができる。そのため、本発明のスパッタリングターゲットを用いれば、高スパッタ電力密度のスパッタリングにおいても、安定性を強化でき、高速成膜を行うことができる。 As described above, the sputtering target according to the present invention contains at least one metal element selected from Ni and Al: 0.5 to 10 at%, and B or P: 0.01 to 10,000 ppm by weight, The balance is a sintered body made of Si and inevitable impurities, the sintered body has a volume resistance of 10 Ω · cm or less, a theoretical density ratio of 85% to 99%, and a bending strength of 65 N / mm 2 or more. Therefore, it eliminates the occurrence of cracks and cracks during machining for target fabrication, and also during high sputter power density direct current (DC) sputtering and intermediate frequency (MF) sputtering. Abnormal discharge can be reduced, and cracks and cracks can be eliminated. Therefore, when the sputtering target of the present invention is used, stability can be enhanced even in sputtering with a high sputtering power density, and high-speed film formation can be performed.
また、本発明によるスパッタリングターゲットの製造方法は、B又はPを含有している平均粒径150μm以下のSi粉末と、Ni及びAlから選ばれた少なくとも1種類の金属元素からなる粉末又は前記金属元素を含むシリサイト粉末とを、Ni元素及びAl元素の合計が0.5〜10at%、B又はPの含有量が焼結方法に応じて所定量になるように配合して混合し、或いは、平均粒径150μm以下のSi粉末と、B粉末又はP粉末と、Ni及びAlから選ばれた少なくとも1種類の金属元素からなる粉末又は前記金属元素を含むシリサイト粉末とを、Ni元素及びAl元素の合計が0.5〜10at%、B又はPの含有量が、加圧焼結又は溶射焼結の焼結方法に応じた所定量になるように配合して混合し、加圧焼結又は溶射焼結することを特徴としており、この製造方法によれば、Ni及びAlから選ばれた少なくとも1種類の金属元素:0.5〜10at%と、B又はP:0.01〜10000重量ppmとを含有し、残部がSi及び不可避不純物からなり、体積抵抗が、10Ω・cm以下であり、かつ、理論密度比が、85%〜99%の範囲にあり、抗折強度が、65N/mm2以上である焼結体が得られ、高スパッタ電力密度のスパッタリングにおいても、安定的に高速成膜を行うことができるスパッタリングターゲットを製造することができる。 Further, the method for producing a sputtering target according to the present invention includes a powder comprising B or P and having an average particle size of 150 μm or less and at least one metal element selected from Ni and Al, or the metal element Are mixed and mixed so that the total of Ni element and Al element is 0.5 to 10 at%, and the content of B or P is a predetermined amount according to the sintering method, or Si powder having an average particle size of 150 μm or less, B powder or P powder, powder composed of at least one metal element selected from Ni and Al, or silicite powder containing the metal element, Ni element and Al element Are mixed and mixed so that the content of B or P is a predetermined amount according to the sintering method of pressure sintering or thermal spray sintering, Thermal spray sintering According to this production method, at least one metal element selected from Ni and Al: 0.5 to 10 at% and B or P: 0.01 to 10,000 ppm by weight is contained. The balance is made of Si and inevitable impurities, the volume resistance is 10 Ω · cm or less, the theoretical density ratio is in the range of 85% to 99%, and the bending strength is 65 N / mm 2 or more. A sintered body can be obtained, and a sputtering target capable of stably performing high-speed film formation can be manufactured even in sputtering with a high sputtering power density.
次に、本発明のスパッタリングターゲット及びその製造方法について、以下に、実施例により具体的に説明する。 Next, the sputtering target of the present invention and the manufacturing method thereof will be specifically described below with reference to examples.
〔実施例〕
先ず、スパッタリングターゲットを製造するに当たり、Si原料、Ni原料、Al原料及びドープ用B粉末を用意した。
Si原料については、表1に示されるように、Bドープ単結晶Siウエファー、Bドープ多結晶Siブロック、純度6Nの多結晶Siブロック、Pドープ多結晶Siブロック、単結晶Siブロックをそれぞれ粉砕して得たSi粉砕粉末とし、実施例1〜15のSi粉砕粉末を作製した。なお、各実施例に用いられた粉砕前のSiウエファー、Siブロックに係る体積抵抗を、表1の「体積抵抗(Ω・cm)」欄に示した。これらの粉砕においては、ジョークラッシャーを用いて1mm程度の粗い粉末に粉砕した後、ディスククラッシャーを用いて、一定な平均粒径を有する粉末に粉砕した。粉砕時の酸化を防止するために、ディスククラッシャーを用いた粉砕プロセスでは、N2雰囲気中で行った。粉砕後の粉末は、篩にて分級した。粉砕後の粉末平均粒径については、マイクロトラックを用いて測定したD50粒径を使用した。実施例1〜15のSi粉砕粉末に係る平均粒径が、表1の「粉砕粉末平均粒径(μm)」欄に示されている。
〔Example〕
First, in manufacturing a sputtering target, Si raw material, Ni raw material, Al raw material, and B powder for dope were prepared.
For the Si raw material, as shown in Table 1, each of the B-doped single crystal Si wafer, the B-doped polycrystalline Si block, the 6N purity polycrystalline Si block, the P-doped polycrystalline Si block, and the single-crystal Si block was ground. Si pulverized powders of Examples 1 to 15 were prepared as Si pulverized powders obtained in this manner. In addition, the volume resistance relating to the Si wafer and the Si block before pulverization used in each example is shown in the “Volume resistance (Ω · cm)” column of Table 1. In these pulverizations, after crushing into a coarse powder of about 1 mm using a jaw crusher, the powder was pulverized into a powder having a certain average particle diameter using a disk crusher. In order to prevent oxidation during pulverization, the pulverization process using a disk crusher was performed in an N 2 atmosphere. The pulverized powder was classified with a sieve. For the average particle size of the powder after pulverization, the D50 particle size measured using Microtrac was used. The average particle diameter according to the Si pulverized powders of Examples 1 to 15 is shown in the “average pulverized powder particle diameter (μm)” column of Table 1.
一方、Ni原料とAl原料については、表2に示される平均粒径を有するNi粉末、Niシリサイト粉末及びAl粉末を使用し、Bドープ剤として、表2に示される平均粒径を有するB粉末を使用した。Ni粉末及びAl粉末の平均粒径についても、上記Si粉末の場合と同様に測定した。なお、Ni粉末及びAl粉末中の酸素管理は、非常に重要であるため、原料粉末中の酸素を測定し、酸素含有量の低いものを選んだ。 On the other hand, for Ni raw material and Al raw material, Ni powder, Ni silicite powder and Al powder having the average particle size shown in Table 2 are used, and B having the average particle size shown in Table 2 is used as the B dopant. Powder was used. The average particle diameters of Ni powder and Al powder were also measured in the same manner as in the case of the Si powder. In addition, since the oxygen management in Ni powder and Al powder is very important, the oxygen in raw material powder was measured and the thing with low oxygen content was selected.
次いで、用意したSi粉砕粉末と、Ni粉末及びAl粉末のいずれかと、場合によっては、B粉末とを、表1及び表2の「添加量(wt%)」欄に示された添加量となるように秤量し、表3の「混合方法」欄に示されるように、実施例1、2、13の場合には、V型混合器を、実施例3、4、14、15の場合には、乾式ボールミルを、そして、実施例5〜12の場合には、ロッキングミキサーを使用して混合した。その混合時間は、表3の「混合時間(hour)」欄に示されている。ここで、Al粉末などは粉じん爆発の危険があるため、上記の混合においては、不活性ガス中で行うものとし、混合後の粉末の扱いにも、静電気による火花の発生を回避する必要がある。なお、混合粉末のB元素を除く各組成元素の含有量をICP−MASS法で測定し、一方、B元素の含有量が2重量ppm以下の場合には、ICP−MASSを、2重量ppm以上の場合には、ICP発光分析を用いて測定を行った。その結果を、表3の「混合粉末の組成分析」欄に示した。 Next, the prepared Si pulverized powder, any one of Ni powder and Al powder, and, in some cases, B powder, have the addition amounts shown in the “addition amount (wt%)” column of Tables 1 and 2. As shown in the “Mixing method” column of Table 3, in the case of Examples 1, 2, and 13, the V-type mixer is used. In the case of Examples 3, 4, 14, and 15, the V-type mixer is used. A dry ball mill and, in the case of Examples 5-12, were mixed using a rocking mixer. The mixing time is shown in the “mixing time (hour)” column of Table 3. Here, since Al powder or the like has a risk of dust explosion, the above mixing should be performed in an inert gas, and it is necessary to avoid the occurrence of sparks due to static electricity in the handling of the powder after mixing. . In addition, when the content of each composition element except the B element of the mixed powder is measured by the ICP-MASS method, and the content of the B element is 2 ppm by weight or less, the ICP-MASS is 2 ppm by weight or more. In the case of, measurement was performed using ICP emission analysis. The results are shown in the column “Composition analysis of mixed powder” in Table 3.
上記で得られた実施例1、3〜6、8〜10の混合粉末を、表4に示した条件(昇温速度、キープ温度、キープ時間、プレス圧力)にてホットプレス焼結(HP)又は熱間静水圧焼結(HIP)より焼結体を得て、この焼結体を機械加工後、バッキングプレートに貼着し、実施例1、3〜6、8〜10のスパッタリングターゲットを作製した。このホットプレス焼結については、前記混合粉末を黒鉛製モールドに入れ、真空中又は不活性雰囲気で加圧し、ホットプレス焼結を行った。なお、上記特許文献5で提案された製造方法では、焼結後に1200〜1300℃の無加圧温度保持を行って、残留応力を除去しているが、本実施例では、この焼結後の無加圧キープは行われない。 Hot press sintering (HP) of the mixed powders of Examples 1, 3 to 6 and 8 to 10 obtained above under the conditions (temperature increase rate, keep temperature, keep time, press pressure) shown in Table 4 Alternatively, a sintered body is obtained from hot isostatic pressing (HIP), and this sintered body is machined and then attached to a backing plate to produce the sputtering targets of Examples 1, 3-6, and 8-10. did. For the hot press sintering, the mixed powder was put in a graphite mold and pressed in a vacuum or in an inert atmosphere to perform hot press sintering. In addition, in the manufacturing method proposed by the said patent document 5, the non-pressurization temperature holding | maintenance of 1200-1300 degreeC is performed after sintering, and the residual stress is removed, but in a present Example, after this sintering No pressure keeping is performed.
また、実施例2、7、11〜15の混合粉末の場合には、溶射法により焼結体を作製した。この溶射法では、プラズマ溶射機(エアロプラズマ製APS7100)を用いて、出力120kWにて、バッキングプレートに対し、1パス50μmにて溶射施工を実施し、バッキングプレート上に溶射膜厚5mmの焼結体を作成し、研削加工を経て、実施例2、7、11〜15のスパッタリングターゲットを作製した。なお、溶射中はバッキングプレート裏面に冷却水を通し、溶射膜、基材双方の温度上昇を抑制した。また、溶射は不活性雰囲気中で実施した。
以上の実施例1〜15のスパッタリングターゲットについて、作製された焼結体を粉砕後、前述と同様のICP−MASS法又はICP発光法により組成分析測定を行い、その結果を、表5の「ターゲット組成分析」欄に示した。
Moreover, in the case of the mixed powders of Examples 2, 7, and 11 to 15, a sintered body was produced by a thermal spraying method. In this thermal spraying method, using a plasma spraying machine (Aeroplasma APS7100), an output of 120 kW is applied to the backing plate in one pass of 50 μm, and a thermal spraying film thickness of 5 mm is sintered on the backing plate. The body was created and the sputtering target of Example 2, 7, 11-15 was produced through the grinding process. During spraying, cooling water was passed through the back surface of the backing plate to suppress the temperature rise of both the sprayed film and the substrate. Thermal spraying was performed in an inert atmosphere.
About the sputtering target of the above Examples 1-15, after grind | pulverizing the produced sintered compact, a composition analysis measurement is performed by the ICP-MASS method or ICP light emission method similar to the above, The result is shown in "Target" of Table 5. Composition analysis "column.
〔比較例〕
上記した本実施例と比較するため、比較例1〜14のスパッタリングターゲットを用意した。比較例1のスパッタリングターゲットには、単結晶Si板を、比較例2、3のスパッタリングターゲットは、Bドープ多結晶Si板を、そして、比較例4のスパッタリングターゲットには、多結晶Si板をそれぞれ用いた。また、比較例5、7〜11、13、14の場合には、Si原料として、体積抵抗が表1に示される値を有するBドープ多結晶Siブロックを用い、比較例6、12の場合には、多結晶Siブロックを用い、実施例の場合と同様の手法で粉砕してSi粉砕粉末を作製した。比較例5の場合では、このSi粉砕粉末とNi粉末とを乾式ボールミルで混合した混合粉末をホットプレス焼結し、比較例6、7の場合では、Si粉砕粉末のみでホットプレス焼結し、比較例8の場合には、Si粉砕粉末とAl粉末とをロッキングミキサーで混合した混合粉末をホットプレス焼結し、比較例9の場合には、Si粉砕粉末と、Ni粉末及びAl粉末とをロッキングミキサーで混合した混合粉末をホットプレス焼結し、それぞれ評価用スパッタリングターゲットを作製した。また、比較例10の場合には、Ni原料の代わりに、W粉末が用いられ、Si粉砕粉末と共に乾式ボールミルで混合してホットプレス焼結され、比較例11の場合には、Ni原料の代わりに、Mo粉末が用いられ、Si粉砕粉末と共に乾式ボールミルで混合した後に溶射焼結され、スパッタリングターゲットが作製された。比較例12のスパッタリングターゲットには、高抵抗の多結晶Siブロックより作成されたSi粉砕粉末が用いられ、Mo粉末とB粉末と共に乾式ボールミルで混合した後に、溶射焼結された。
[Comparative Example]
In order to compare with the above-described Example, sputtering targets of Comparative Examples 1 to 14 were prepared. The sputtering target of Comparative Example 1 is a single crystal Si plate, the sputtering targets of Comparative Examples 2 and 3 are B-doped polycrystalline Si plates, and the sputtering target of Comparative Example 4 is a polycrystalline Si plate. Using. In the case of Comparative Examples 5, 7 to 11, 13, and 14, a B-doped polycrystalline Si block having a volume resistance as shown in Table 1 was used as the Si raw material. Used a polycrystalline Si block and pulverized in the same manner as in the example to prepare a pulverized Si powder. In the case of Comparative Example 5, the mixed powder obtained by mixing this Si pulverized powder and Ni powder with a dry ball mill was hot press sintered, and in Comparative Examples 6 and 7, it was hot press sintered only with the Si pulverized powder. In the case of Comparative Example 8, a mixed powder obtained by mixing Si pulverized powder and Al powder with a rocking mixer was hot-press sintered. In Comparative Example 9, Si pulverized powder, Ni powder and Al powder were mixed. The mixed powders mixed with the rocking mixer were hot-press sintered to produce sputtering targets for evaluation. In the case of Comparative Example 10, W powder is used instead of the Ni raw material, and mixed with Si pulverized powder in a dry ball mill and hot press sintered. In the case of Comparative Example 11, instead of the Ni raw material, In addition, Mo powder was used, mixed with Si pulverized powder in a dry ball mill, and then spray-sintered to produce a sputtering target. For the sputtering target of Comparative Example 12, a pulverized Si powder prepared from a high-resistance polycrystalline Si block was used, mixed with Mo powder and B powder by a dry ball mill, and then sprayed and sintered.
上記比較例1〜14の場合における混合粉末の組成分析の結果を、表3の「混合粉末の組成分析」欄に示し、比較例1〜14のスパッタリングターゲットについて、寸法密度測定し、粉砕後、ICP−MASS法またはICP発光法により組成分析測定を行い、その結果を、表5の「ターゲット組成分析」欄に示した。 The result of the composition analysis of the mixed powder in the case of Comparative Examples 1 to 14 is shown in the “Composition Analysis of Mixed Powder” column in Table 3, and the sputtering target of Comparative Examples 1 to 14 is measured for dimensional density, after pulverization, Composition analysis measurement was performed by ICP-MASS method or ICP emission method, and the results are shown in the “Target composition analysis” column of Table 5.
上記で作製された実施例1〜15及び比較例1〜14のスパッタリングターゲットについて、理論密度比、抗折強度及び体積抵抗(比抵抗)の測定を実施し、さらに、加工・ボンディング後の外観の検査を行った。 For the sputtering targets of Examples 1 to 15 and Comparative Examples 1 to 14 prepared above, the theoretical density ratio, the bending strength and the volume resistance (specific resistance) were measured, and the appearance after processing and bonding was further improved. Inspected.
<理論密度比の測定>
実施例1〜15及び比較例5〜14のスパッタリングターゲットの理論密度比は、作製された実施例1〜15及び比較例5〜14の焼結体の寸法密度を測定し、この測定した寸法密度と焼結体の理論密度との比で計算される。その結果を、表6の「ターゲット理論密度比(%)」欄に示した。なお、比較例1〜4のスパッタリングターゲットの場合には、単結晶又は多結晶Siブロックを使用しているため、その理論密度比を100%とした。
ここで、焼結体の理論密度は、下記の式によって計算される。
焼結体理論密度=100/(a/A+b/B+c/C)
A:Si単結晶の密度 a%:焼結体中のSi元素の重量割合
B:純Ni(又は、W)金属の密度 b%:焼結体中のNi(又は、W)元素の重量割合
C:純Al(又は、Mo)金属の密度
c%:焼結体中のAl(又は、Mo)元素の重量割合
なお、B及びPに関して、その添加量が少ないため、この理論密度の計算には取り入れていない。
<Measurement of theoretical density ratio>
The theoretical density ratio of the sputtering targets of Examples 1 to 15 and Comparative Examples 5 to 14 was determined by measuring the dimensional density of the sintered bodies of Examples 1 to 15 and Comparative Examples 5 to 14 that were produced. And the ratio of the theoretical density of the sintered body. The results are shown in the “Target theoretical density ratio (%)” column of Table 6. In addition, in the case of the sputtering target of Comparative Examples 1-4, since the single crystal or the polycrystal Si block is used, the theoretical density ratio was 100%.
Here, the theoretical density of the sintered body is calculated by the following equation.
Sintered body theoretical density = 100 / (a / A + b / B + c / C)
A: Density of Si single crystal a%: Weight ratio of Si element in sintered body B: Density of pure Ni (or W) metal b%: Weight ratio of Ni (or W) element in sintered body C: Density of pure Al (or Mo) metal c%: Weight ratio of Al (or Mo) element in the sintered body Note that since the amount of addition of B and P is small, this theoretical density is calculated. Is not included.
<抗折強度の測定>
抗折強度の測定には、上記で得られた実施例1〜15及び比較例5〜14の焼結体を加工して、それぞれの焼結体毎に、サイズ:40mm×3mm×4mmの10サンプルを作製し、これらのサンプルについて、JIS1601に従って、三点曲げ強度を測定した。10サンプルの平均値を抗折強度の測定値とした。その測定結果を、表6の「抗折強度(N/mm2)」欄に示した。
<Measurement of bending strength>
For the measurement of the bending strength, the sintered bodies of Examples 1 to 15 and Comparative Examples 5 to 14 obtained above were processed, and each sintered body had a size: 10 mm of size: 40 mm × 3 mm × 4 mm. Samples were prepared, and the three-point bending strength of these samples was measured according to JIS1601. The average value of 10 samples was taken as the measurement value of the bending strength. The measurement results are shown in the “Folding strength (N / mm 2 )” column of Table 6.
<体積抵抗の測定>
上記で作製した実施例及び比較例の各スパッタリングターゲットの体積抵抗(比抵抗)について、抵抗測定機を用い、測定した。なお、体積抵抗値が1000Ω・cm以下の場合には、三菱ガス化学(株)製抵抗測定機ロレスターを使用し、体積抵抗値が1000Ω・cm以上の場合には、同社製抵抗測定機ハイレスターを使用した。
その測定結果を、表6の「比抵抗(Ω・cm)」欄に示した。
<加工・ボンディング後の外観>
上記で作製された実施例1〜15及び比較例1〜14のスパッタリングターゲットの製作過程において、機械加工後の段階、バッキングプレートに貼着後の段階で、目視により、割れやひびの発生状況について外観検査を行った。その検査結果を、表6の「加工、ボンディング後外観」欄に示した。
<Measurement of volume resistance>
About the volume resistance (specific resistance) of each sputtering target of the Example produced above and a comparative example, it measured using the resistance measuring machine. If the volume resistance value is 1000 Ω · cm or less, use a resistance measuring machine Lorester made by Mitsubishi Gas Chemical Co., Ltd. If the volume resistance value is 1000 Ω · cm or more, make a resistance measuring machine Hirestar It was used.
The measurement results are shown in the “specific resistance (Ω · cm)” column of Table 6.
<Appearance after processing and bonding>
In the manufacturing process of the sputtering targets of Examples 1 to 15 and Comparative Examples 1 to 14 manufactured as described above, the occurrence of cracks and cracks is visually observed at the stage after machining and after being attached to the backing plate. Visual inspection was performed. The inspection results are shown in the column “Appearance after processing and bonding” in Table 6.
次に、上記で作製された実施例1〜15及び比較例1〜14のスパッタリングターゲットを、φ125mm×厚さ5mmの試料に加工して、成膜テストを実施した。この成膜テストでは、純Ar(「Arのみ」と表示)、Arと酸素の混合ガス(「Ar+酸素」と表示)、純酸素ガス(「純酸素」と表示)の雰囲気にて、直流(DC)電源(MKS社RPG−50)を用いてスパッタリング成膜を行った。スパッタリング中の成膜速度、異常放電回数を測定し、さらに、スパッタリング後のターゲット外観について検査を行った。 Next, the sputtering targets of Examples 1 to 15 and Comparative Examples 1 to 14 prepared above were processed into samples of φ125 mm × thickness 5 mm, and a film formation test was performed. In this film formation test, direct current (indicated as “Ar only”), a mixed gas of Ar and oxygen (indicated as “Ar + oxygen”), and pure oxygen gas (indicated as “pure oxygen”) is subjected to direct current ( Sputtering film formation was performed using a DC power source (RPG-50 manufactured by MKS). The film formation rate during sputtering and the number of abnormal discharges were measured, and further, the target appearance after sputtering was inspected.
<成膜速度の測定>
上記で作製された実施例1〜15及び比較例1〜14のスパッタリングターゲットを用いて、ガラス基板上に、以下に示す条件でスパッタリングを行い、スパッタリングの雰囲気ガスとしては、Arのみの場合、Ar+酸素の場合、純酸素の場合に分けて、Si膜を成膜した。それぞれの場合において、成膜速度を測定した。なお、Ar+酸素の場合では、Ar対酸素体積比は、Ar/酸素=1/1である。
・投入電力:DC1000W
・ターゲット−基板間距離:70mm
・水平磁場:2000ガウス
・基板加熱:なし
・成膜時間:60sec
・膜厚測定法:触針式表面段差計により測定
・成膜速度の計算:成膜速度=(膜厚)/(成膜時間)
以上の成膜側の測定結果を、表7の「成膜速度(nm/sec)」欄に示した。なお、比較例1、4、6、11、12のスパッタリングターゲットについては、DCスパッタリングを行うことができなかったので、成膜速度を測定しておらず、表中には、「DCスパッタリングできず」と表記した。また、比較例10の場合には、異常放電が多発し、成膜テストを実施できなかったため、成膜速度を測定していない。
<Measurement of deposition rate>
Using the sputtering targets of Examples 1 to 15 and Comparative Examples 1 to 14 prepared above, sputtering was performed on the glass substrate under the conditions shown below. In the case of only Ar as the atmosphere gas for sputtering, Ar + In the case of oxygen, a Si film was formed separately for pure oxygen. In each case, the deposition rate was measured. In the case of Ar + oxygen, the Ar to oxygen volume ratio is Ar / oxygen = 1/1.
-Input power: DC1000W
-Target-substrate distance: 70 mm
・ Horizontal magnetic field: 2000 gauss ・ Substrate heating: None ・ Deposition time: 60 sec
・ Film thickness measurement method: Measured with a stylus type surface level meter ・ Film formation speed calculation: Film formation speed = (film thickness) / (film formation time)
The measurement results on the film forming side are shown in the “film forming rate (nm / sec)” column of Table 7. For the sputtering targets of Comparative Examples 1, 4, 6, 11, and 12, since DC sputtering could not be performed, the film formation rate was not measured, and “DC sputtering could not be performed” is shown in the table. ". Moreover, in the case of the comparative example 10, since abnormal discharge occurred frequently and the film-forming test could not be implemented, the film-forming speed was not measured.
<異常放電回数の測定>
Ar+酸素ガス(Ar/酸素=1/1体積比)中、投入電力1250W、1時間の条件でスパッタリングを行い、異常放電の発生回数(回数/時間)を計測した。その結果を、表7の「異常放電回数(/hour)」欄に示した。
<Measurement of abnormal discharge times>
Sputtering was performed in Ar + oxygen gas (Ar / oxygen = 1/1 volume ratio) under the conditions of an input power of 1250 W for 1 hour, and the number of occurrences of abnormal discharge (number of times / hour) was measured. The results are shown in the “abnormal discharge count (/ hour)” column of Table 7.
<スパッタリング後のターゲット外観>
上記で作製された実施例1〜15及び比較例1〜14のスパッタリングターゲットの成膜速度測定及び異常放電回数測定のためのスパッタリング実施後、スパッタチャンバーを開放し、チャンバー内のスパッタリングターゲットについて、目視により、割れやひびの発生状況について外観検査を行った。その検査結果を、表7の「スパッタ後のターゲット外観」欄に示した。なお、比較例1、4、6、11、12のスパッタリングターゲットでは、DCスパッタリングを行えなかったので、表6中では、「DCスパッタリングできず」と表記し、成膜速度、異常放電回数の測定を行わなかった。また、比較例5の場合には、スパッタリング成膜途中において、ターゲット割れが発生し、スパッタリング成膜を中止し、比較例10の場合には、異常放電が多発し、クラックが生じたため、成膜テストを続行できなかった。
ここで、実施例5のスパッタリングターゲットについて、スパッタリング実施後のターゲット外観の写真を図1に、そして、比較例2のスパッタリングターゲットについて、スパッタリング実施後のターゲット外観の写真を図2にそれぞれ示した。図1の実施例の場合には、スパッタリング実施後でも、割れやひびが見られず、異常がないのに対して、図2の比較例の場合には、スパッタリング実施後には、クラックが発生していることが分かる。
<Appearance of target after sputtering>
After performing sputtering for measuring the deposition rate and measuring the number of abnormal discharges of the sputtering targets of Examples 1 to 15 and Comparative Examples 1 to 14 prepared above, the sputtering chamber was opened, and the sputtering target in the chamber was visually checked. Was used to inspect the appearance of cracks and cracks. The inspection result is shown in the column “Appearance of target after sputtering” in Table 7. In addition, since DC sputtering could not be performed with the sputtering targets of Comparative Examples 1, 4, 6, 11, and 12, in Table 6, “DC sputtering could not be performed” was described, and the film formation rate and the number of abnormal discharges were measured. Did not do. In the case of Comparative Example 5, the target crack occurred during the sputtering film formation, and the sputtering film formation was stopped. In the case of Comparative Example 10, the abnormal discharge occurred frequently and the crack was generated. The test could not continue.
Here, for the sputtering target of Example 5, a photograph of the appearance of the target after sputtering is shown in FIG. 1, and for the sputtering target of Comparative Example 2, a photograph of the appearance of the target after sputtering is shown in FIG. In the case of the example of FIG. 1, cracks and cracks are not observed even after sputtering, and there is no abnormality, whereas in the case of the comparative example of FIG. 2, cracks occur after the sputtering. I understand that
以上の表6及び表7に示された結果によれば、実施例1〜15のSiスパッタリングターゲットのいずれも、Ni又はAl及びB又はPを添加することにより、理論密度比が、85%〜99%、抗折強度が、65N/mm2以上に向上できることが確認でき、体積抵抗(比抵抗)についても、10Ω・cm以下であり、DCスパッタリングやMFスパッタリングが可能な程度に、低抵抗化されたことが示され、ターゲット製造過程において、実施例1〜15のいずれの場合も、ターゲット割れや、ひびの発生が無かった。さらに、実施例1〜15のSiスパッタリングターゲットを用いたスパッタリング成膜においては、Ni又はAlが添加されたことにより、成膜速度が向上し、しかも、異常放電の発生回数を低減できたことが確認され、スパッタリング後のターゲット外観に、割れやひびの異常が現われなかった。なお、実施例9、10の場合には、Niシリサイト粉末が添加されたが、Ni粉末を添加した場合と同様の効果が確認された。 According to the results shown in Table 6 and Table 7 above, the theoretical density ratio of each of the Si sputtering targets of Examples 1 to 15 is 85% to 85% by adding Ni or Al and B or P. 99%, the bending strength can be confirmed to be improved to 65 N / mm 2 or more, and the volume resistance (specific resistance) is also 10 Ω · cm or less, and the resistance is reduced to such an extent that DC sputtering or MF sputtering is possible. It was shown that the target was not cracked or cracked in any of Examples 1 to 15 in the target manufacturing process. Furthermore, in sputtering film formation using the Si sputtering target of Examples 1 to 15, the addition of Ni or Al improved the film formation rate and reduced the number of occurrences of abnormal discharge. As a result, cracks and cracks did not appear on the appearance of the target after sputtering. In Examples 9 and 10, Ni silicite powder was added, but the same effect as when Ni powder was added was confirmed.
一方、比較例1、4、6、12の場合では、Ni又はAl及びB又はPが実質的に添加されておらず、比抵抗が高いため、DCスパッタリングを行えなかった。比較例2、3の場合でも、Ni又はAlが添加されておらず、異常放電が多発し、スパッタリングターゲットの製造時には、ターゲット割れやひびは発生しなかったが、スパッタリング後には、クラックが発生した。比較例5の場合では、抗折強度が低く、スパッタリング中に割れが発生し、スパッタリング成膜が中止された。比較例7、9の場合には、異常放電回数が多く、クラックが発生した。比較例8の場合では、抗折強度が低く、クラックが発生した。比較例10の場合では、W粉末が添加されており、加工・ボンディング後に小量なひびが観察され、異常放電回数が多発したため、成膜テストを中止した。また、比較例11、12の場合は、Mo粉末が添加されており、溶射法でターゲット製造されたが、抗折強度が低く、加工・ボンディング後に、割れやひびが確認され、スパッタリングを行えなかった。比較例13、14の場合は、ターゲット理論密度比や抗折強度が低く、スパッタリング中に異常放電が多発し、クラックが発生した。 On the other hand, in the case of Comparative Examples 1, 4, 6, and 12, since Ni or Al and B or P were not substantially added and the specific resistance was high, DC sputtering could not be performed. Even in Comparative Examples 2 and 3, Ni or Al was not added, abnormal discharge occurred frequently, and no cracks or cracks occurred during the production of the sputtering target, but cracks occurred after sputtering. . In the case of Comparative Example 5, the bending strength was low, cracking occurred during sputtering, and sputtering film formation was stopped. In Comparative Examples 7 and 9, the number of abnormal discharges was large and cracks occurred. In the case of Comparative Example 8, the bending strength was low and cracks were generated. In the case of Comparative Example 10, W powder was added, small cracks were observed after processing and bonding, and the number of abnormal discharges occurred frequently, so the film formation test was stopped. In the case of Comparative Examples 11 and 12, Mo powder was added and the target was manufactured by thermal spraying, but the bending strength was low, cracking and cracking were confirmed after processing and bonding, and sputtering could not be performed. It was. In Comparative Examples 13 and 14, the target theoretical density ratio and bending strength were low, abnormal discharge occurred frequently during sputtering, and cracks occurred.
以上の様に、本実施例のスパッタリングターゲットでは、Siを主成分とし、Ni及びAlから選ばれた少なくとも1種類の金属元素:0.5〜10at%と、B又はP:0.01〜10000重量ppmとが含有されることにより、体積抵抗が10Ω・cm以下であり、かつ、理論密度比が85%〜99%、抗折強度が65N/mm2以上であることが分かり、そのため、スパッタリングターゲットの抗折強度が高められて耐割れ性を向上でき、スパッタリング時の異常放電も低減され、しかも、高電力のスパッタリングにおいても、安定的に高速成膜を行えることが確認された。 As described above, in the sputtering target of this example, Si is the main component, and at least one metal element selected from Ni and Al: 0.5 to 10 at%, and B or P: 0.01 to 10,000. As a result, the volume resistivity is 10 Ω · cm or less, the theoretical density ratio is 85% to 99%, and the bending strength is 65 N / mm 2 or more. It was confirmed that the bending strength of the target was increased to improve crack resistance, abnormal discharge during sputtering was reduced, and stable high-speed film formation was possible even in high-power sputtering.
Claims (5)
前記焼結体の体積抵抗が10Ω・cm以下であり、かつ、理論密度比が85%〜99%、抗折強度が65N/mm2以上であることを特徴とするスパッタリングターゲット。 A sintered body containing at least one metal element selected from Ni and Al: 0.5 to 10 at% and B or P: 0.01 to 10,000 ppm by weight, with the balance being Si and inevitable impurities. There,
A sputtering target, wherein the sintered body has a volume resistance of 10 Ω · cm or less, a theoretical density ratio of 85% to 99%, and a bending strength of 65 N / mm 2 or more.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015056107A JP5812217B1 (en) | 2014-04-17 | 2015-03-19 | Sputtering target and manufacturing method of sputtering target |
EP15780256.2A EP3050999A4 (en) | 2014-04-17 | 2015-04-16 | Sputtering target and sputtering target manufacturing method |
US15/032,176 US20160260591A1 (en) | 2014-04-17 | 2015-04-16 | Sputtering target and method of producing sputtering target |
CN201580002219.8A CN105637114B (en) | 2014-04-17 | 2015-04-16 | The manufacture method of sputtering target and sputtering target |
PCT/JP2015/061703 WO2015159947A1 (en) | 2014-04-17 | 2015-04-16 | Sputtering target and sputtering target manufacturing method |
TW104112397A TWI550117B (en) | 2014-04-17 | 2015-04-17 | Sputtering target and method for producing sputtering target |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014085233 | 2014-04-17 | ||
JP2014085233 | 2014-04-17 | ||
JP2015056107A JP5812217B1 (en) | 2014-04-17 | 2015-03-19 | Sputtering target and manufacturing method of sputtering target |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5812217B1 true JP5812217B1 (en) | 2015-11-11 |
JP2015212413A JP2015212413A (en) | 2015-11-26 |
Family
ID=54324149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015056107A Active JP5812217B1 (en) | 2014-04-17 | 2015-03-19 | Sputtering target and manufacturing method of sputtering target |
Country Status (6)
Country | Link |
---|---|
US (1) | US20160260591A1 (en) |
EP (1) | EP3050999A4 (en) |
JP (1) | JP5812217B1 (en) |
CN (1) | CN105637114B (en) |
TW (1) | TWI550117B (en) |
WO (1) | WO2015159947A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6502399B2 (en) | 2017-02-06 | 2019-04-17 | Jx金属株式会社 | Single crystal silicon sputtering target |
JP6546953B2 (en) | 2017-03-31 | 2019-07-17 | Jx金属株式会社 | Sputtering target-backing plate assembly and method for manufacturing the same |
WO2020188987A1 (en) * | 2019-03-20 | 2020-09-24 | Jx金属株式会社 | Sputtering target and production method for sputtering target |
JP7385370B2 (en) * | 2019-05-07 | 2023-11-22 | 山陽特殊製鋼株式会社 | Ni-based sputtering target and magnetic recording medium |
CN111074217A (en) * | 2019-12-24 | 2020-04-28 | 江苏杰太光电技术有限公司 | Amorphous silicon-doped target material and solar cell preparation method |
BE1029590B1 (en) * | 2021-07-16 | 2023-02-14 | Soleras Advanced Coatings Jiangyin Co Ltd | Silicon conductive sputtering targets |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3342898B2 (en) * | 1991-11-26 | 2002-11-11 | 株式会社東芝 | Silicon sintered body and wafer holding board, sputtering target and silicon wafer formed using the same |
BE1007067A3 (en) * | 1992-07-15 | 1995-03-07 | Emiel Vanderstraeten Besloten | SPUTTER CATHOD AND METHOD FOR MANUFACTURING THIS CATHOD |
JPH0726371A (en) * | 1993-07-09 | 1995-01-27 | Asahi Glass Co Ltd | Sputtering target and low refractivity film |
US5403458A (en) * | 1993-08-05 | 1995-04-04 | Guardian Industries Corp. | Sputter-coating target and method of use |
JP3627273B2 (en) * | 1994-02-21 | 2005-03-09 | 旭硝子株式会社 | Resin substrate with transparent conductive film and method for producing the same |
JP4382943B2 (en) * | 2000-01-13 | 2009-12-16 | 日本板硝子株式会社 | Manufacturing method of vacuum container type display substrate |
JP2001220666A (en) * | 2000-02-02 | 2001-08-14 | Toshiba Corp | NiSi TARGET MATERIAL, TARGET, PRODUCING METHOD FOR NiSi TARGET, NiSi THIN FILM, PRODUCING METHOD THEREFOR AND THIN FILM ELEMENT |
JP2002313707A (en) * | 2001-04-17 | 2002-10-25 | Hoya Corp | Method of forming euv-ray reflecting film, euv mask blank, and reflective mask for euv exposure |
JP2003160862A (en) * | 2001-11-28 | 2003-06-06 | Mitsubishi Materials Corp | Aluminum-containing silicon alloy target for sputtering |
JP4021237B2 (en) * | 2002-04-26 | 2007-12-12 | Hoya株式会社 | Lithographic mask blank manufacturing method, lithography mask, and halftone phase shift mask blank |
US7998324B2 (en) * | 2003-09-26 | 2011-08-16 | Kabushiki Kaisha Toshiba | Sputtering target and process for producing si oxide film therewith |
JP4933756B2 (en) * | 2005-09-01 | 2012-05-16 | 出光興産株式会社 | Sputtering target |
JP5394481B2 (en) * | 2009-05-27 | 2014-01-22 | Jx日鉱日石金属株式会社 | Sintered body target and film forming method |
JP5610877B2 (en) * | 2010-06-25 | 2014-10-22 | 株式会社日本セラテック | Sputtering target, manufacturing method thereof and target material raw material |
JP5606264B2 (en) * | 2010-10-22 | 2014-10-15 | 信越化学工業株式会社 | Photomask blank |
-
2015
- 2015-03-19 JP JP2015056107A patent/JP5812217B1/en active Active
- 2015-04-16 CN CN201580002219.8A patent/CN105637114B/en active Active
- 2015-04-16 US US15/032,176 patent/US20160260591A1/en not_active Abandoned
- 2015-04-16 WO PCT/JP2015/061703 patent/WO2015159947A1/en active Application Filing
- 2015-04-16 EP EP15780256.2A patent/EP3050999A4/en not_active Withdrawn
- 2015-04-17 TW TW104112397A patent/TWI550117B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JP2015212413A (en) | 2015-11-26 |
WO2015159947A1 (en) | 2015-10-22 |
US20160260591A1 (en) | 2016-09-08 |
CN105637114A (en) | 2016-06-01 |
CN105637114B (en) | 2017-09-08 |
EP3050999A1 (en) | 2016-08-03 |
TWI550117B (en) | 2016-09-21 |
TW201606107A (en) | 2016-02-16 |
EP3050999A4 (en) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5812217B1 (en) | Sputtering target and manufacturing method of sputtering target | |
TWI567217B (en) | Fe-co-based alloyed sputtering target material, and method for producing the same | |
TWI564416B (en) | Magnetic sputtering target for magnetic recording film | |
JP2015096647A (en) | Alloy target of aluminum and rare earth element and manufacturing method of the same | |
TW201532710A (en) | Magnetic material sputtering target and method for producing same | |
TWI599668B (en) | Mo-w target and manufacturing method thereof | |
WO2019187329A1 (en) | Tungsten silicide target member and method for manufacturing same, and method for manufacturing tungsten silicide film | |
JP2018162493A (en) | Tungsten silicide target and method for producing the same | |
JP6665428B2 (en) | Cu-Ga alloy sputtering target and manufacturing method thereof | |
WO2014014126A1 (en) | Thermoelectric conversion material, thermoelectric conversion module using same, and method for producing thermoelectric conversion material | |
TWI579243B (en) | 钌Sintered sputtering target and bismuth alloy sintered body sputtering target | |
JP5988140B2 (en) | Manufacturing method of MoTi target material and MoTi target material | |
JP6144858B1 (en) | Oxide sintered body, sputtering target, and production method thereof | |
TWI675116B (en) | Ti-Al alloy sputtering target | |
JP6415361B2 (en) | Coarse and uniform, spherical titanium silicide powder and method for producing the same | |
JP2017193478A (en) | Oxide sintered body and sputtering target, and methods for producing same | |
JP7359412B2 (en) | Polycrystalline magnesium silicide, sintered body and its use | |
JP6459830B2 (en) | Oxide sintered body, method for producing the same, and method for producing oxide film | |
JP2016223012A (en) | Sputtering target | |
JP2019039070A (en) | SiC sputtering target | |
TW200940447A (en) | Sintered silicon wafer | |
TW201734238A (en) | Sputtering target | |
EP3170916B1 (en) | Sputterring target comprising al-te-cu-zr-based alloy and method of manufacturing the same | |
JP5795897B2 (en) | CuGaNa sputtering target | |
CN116727669A (en) | Chromium sintered body and method for producing same, sputtering target, and method for producing substrate with chromium film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20150810 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150825 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150907 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5812217 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |