JP5867474B2 - Manufacturing method of high carbon ERW welded steel pipe with excellent reliability of ERW welds - Google Patents
Manufacturing method of high carbon ERW welded steel pipe with excellent reliability of ERW welds Download PDFInfo
- Publication number
- JP5867474B2 JP5867474B2 JP2013197819A JP2013197819A JP5867474B2 JP 5867474 B2 JP5867474 B2 JP 5867474B2 JP 2013197819 A JP2013197819 A JP 2013197819A JP 2013197819 A JP2013197819 A JP 2013197819A JP 5867474 B2 JP5867474 B2 JP 5867474B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel pipe
- erw
- welded steel
- high carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 79
- 239000010959 steel Substances 0.000 title claims description 79
- 229910052799 carbon Inorganic materials 0.000 title claims description 40
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 238000005096 rolling process Methods 0.000 claims description 31
- 238000003466 welding Methods 0.000 claims description 28
- 230000009467 reduction Effects 0.000 claims description 25
- 238000010438 heat treatment Methods 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 15
- 238000010622 cold drawing Methods 0.000 claims description 14
- 229910000677 High-carbon steel Inorganic materials 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 12
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 230000006698 induction Effects 0.000 claims description 4
- 238000003303 reheating Methods 0.000 claims description 4
- 238000005482 strain hardening Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 37
- 230000007547 defect Effects 0.000 description 29
- 229920006395 saturated elastomer Polymers 0.000 description 10
- 238000005336 cracking Methods 0.000 description 8
- 238000009661 fatigue test Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 7
- 230000006872 improvement Effects 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 230000002411 adverse Effects 0.000 description 6
- 150000001247 metal acetylides Chemical class 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 229910052720 vanadium Inorganic materials 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000005496 tempering Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 239000011796 hollow space material Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- -1 by mass% Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/08—Making tubes with welded or soldered seams
- B21C37/0807—Tube treating or manipulating combined with, or specially adapted for use in connection with tube making machines, e.g. drawing-off devices, cutting-off
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/30—Finishing tubes, e.g. sizing, burnishing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/50—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明は、自動車等の中空機械部品用として好適な、高炭素電縫溶接鋼管の製造方法に係り、とくに電縫溶接部の信頼性向上に関する。 The present invention relates to a method for manufacturing a high carbon electric resistance welded steel pipe suitable for hollow machine parts such as automobiles, and more particularly to an improvement in reliability of an electric resistance welded portion.
近年、地球環境の保全という観点から、自動車の燃費向上が強く要望され、自動車車体の軽量化が強く指向されている。そのため、従来、使用されていた中実素材に代えて、中空素材が使用されるようになってきた。自動車等に用いられる熱処理が必要な部品用の中空素材として、とくに、寸法精度が良好で、しかも表面脱炭が少ないことから、機械構造用高炭素鋼材である高炭素電縫溶接鋼管の利用が検討されている。 In recent years, from the viewpoint of the preservation of the global environment, there has been a strong demand for improvement in fuel efficiency of automobiles, and weight reduction of automobile bodies is strongly directed. For this reason, a hollow material has been used instead of the solid material that has been conventionally used. As a hollow material for parts that require heat treatment used in automobiles, etc., the use of high-carbon ERW welded steel pipe, which is a high-carbon steel material for machine structures, is particularly good because of its good dimensional accuracy and low surface decarburization. It is being considered.
しかし、機械構造用高炭素鋼材では、炭素量が多くなるため、強度が増加し、伸びが低下するうえ、偏析が強くなる傾向を示す。このため、C、Mn、P等が強く偏析した偏析部では、高温での熱間加工性の低下が著しくなり、電縫溶接そのものが困難になったり、あるいは偏析部に起因して電縫溶接部に、高温割れ等の欠陥が多発し、鋼管としての加工性に問題を残していた。 However, the high carbon steel material for mechanical structures has a tendency to increase the strength, increase the elongation, decrease segregation, and increase the carbon content. For this reason, in segregated parts where C, Mn, P, etc. are strongly segregated, the hot workability at high temperatures is significantly reduced, making ERW welding itself difficult, or causing ERW welding due to segregated parts. In this part, defects such as hot cracking frequently occurred, and there was a problem in workability as a steel pipe.
このような問題に対して、例えば、特許文献1には、C:0.4〜0.8%、Si:0.15〜0.35%、Mn:0.3〜2.0%、P:0.030%以下、S:0.035%以下、Al:0.035%以下を含み、さらにMo:0.05〜0.15%を添加し、残部Feおよび不可避的不純物からなる機械構造用高炭素鋼電縫鋼管が記載されている。特許文献1に記載された技術では、Moを添加することにより、1000℃以上の熱間での加工性を大幅に改善でき、熱間加工性の優れた機械構造用高炭素鋼電縫鋼管となるとしている。
For such problems, for example, in
また、特許文献2には、C:0.3〜0.6%、Si:0.15〜0.35%、Mn:0.3〜1.5%、P:0.012%以下、S:0.035%以下、Al:0.035%以下を含み、連続鋳造した中心偏析部のP濃度がC濃度との関係で特定関係を満足する低いレベルに調整された高炭素スラブを熱間圧延して得た高炭素熱延コイルを素材として電縫鋼管を製造する、高加工性高炭素電縫鋼管の製造方法が記載されている。特許文献2に記載された技術によれば、電縫溶接時における高温割れが抑制され、歩留りが向上するとともに、バルジ成形などの苛酷な加工を受けても、偏析部での脆化割れが生じる可能性が低く、高炭素電縫鋼管の加工性が向上するとしている。 Patent Document 2 includes C: 0.3 to 0.6%, Si: 0.15 to 0.35%, Mn: 0.3 to 1.5%, P: 0.012% or less, S: 0.035% or less, Al: 0.035% or less, and continuous. Manufactured ERW steel pipes using high-carbon hot-rolled coils obtained by hot rolling high carbon slabs that have been adjusted to a low level that satisfies the specific relationship between the P concentration of the cast center segregation and the C concentration. A process for producing a high workability, high carbon ERW steel pipe is described. According to the technique described in Patent Document 2, high-temperature cracking at the time of ERW welding is suppressed, yield is improved, and embrittlement cracking occurs in the segregated portion even when subjected to severe processing such as bulge forming. The possibility is low, and the workability of high-carbon ERW steel pipes will be improved.
また、特許文献3には、C:0.30〜0.60%、P:0.012%以下を含む高炭素鋼を連続鋳造して中心偏析部のP濃度がC濃度との関係で特定関係を満足する低いレベルに調整された高炭素鋼スラブとし、この高炭素鋼スラブを熱間圧延して得た高炭素熱延コイルを素材として、成形ロール群により円筒状のオープンパイプとしたのち、オープンパイプの両エッジを、好ましくは加熱幅を通常より広い2〜4mmとしかつ800〜1000℃に予熱して電縫溶接し、ついで電縫溶接部を空冷する高加工性機械構造用高炭素鋼電縫鋼管の製造方法が記載されている。特許文献3に記載された技術によれば、電縫溶接時における高温割れが抑制され、歩留りが向上するとともに、電縫溶接部の硬さが低減し、バルジ成形などの苛酷な加工を受けても、溶接部での割れを防止でき、高炭素電縫鋼管の加工性が向上するとしている。 Patent Document 3 discloses a low level in which high carbon steel containing C: 0.30 to 0.60% and P: 0.012% or less is continuously cast, and the P concentration in the central segregation portion satisfies a specific relationship in relation to the C concentration. A high-carbon steel slab adjusted to a high carbon hot-rolled coil obtained by hot-rolling this high-carbon steel slab as a raw material, and then forming a cylindrical open pipe by a group of forming rolls, then both edges of the open pipe , Preferably 2 to 4 mm wider than usual, preheated to 800 to 1000 ° C., welded by electro-welding, and then air-cooled by ERW A method is described. According to the technique described in Patent Document 3, high temperature cracking during ERW welding is suppressed, yield is improved, hardness of the ERW welded portion is reduced, and severe processing such as bulge forming is applied. However, it is possible to prevent cracking at the welded portion and improve the workability of the high carbon ERW steel pipe.
また、特許文献4には、C:0.03〜0.30%、Si:0.50〜3.00%、Mn:0.30〜3.00%を含む組成の電縫鋼管を電縫溶接後、その溶接部を800〜1000℃に加熱した後、Ar3変態点以上から20〜200℃/sで急冷して、電縫溶接部に残留オーステナイトを残存させ電縫溶接部の加工性を高める、電縫溶接部熱処理方法が記載されている。特許文献4に記載された技術によれば、電縫溶接部の延性が向上し、ハイドロフォームなどの厳しい加工にも耐えることができる電縫鋼管となるとしている。 Patent Document 4 discloses that an electric resistance welded steel pipe having a composition containing C: 0.03 to 0.30%, Si: 0.50 to 3.00%, and Mn: 0.30 to 3.00% is subjected to electric resistance welding, and then the weld is heated to 800 to 1000 ° C. A method for heat treatment of an electric resistance welded portion is described in which, after heating, it is rapidly cooled at 20 to 200 ° C./s from the Ar 3 transformation point or higher to leave residual austenite in the electric resistance welded portion to improve the workability of the electric resistance welded portion ing. According to the technique described in Patent Document 4, the ductility of the ERW welded portion is improved, and an ERW steel pipe that can withstand severe processing such as hydroforming is obtained.
最近では、とくに自動車等の安全性確保の観点から、自動車等の部品には、高い信頼性を保持することが厳しく要求されるようになっている。とくに、部品用素材として電縫溶接鋼管を用いる場合には、従来に比して高い信頼性を有する電縫溶接部を有することが要求されている。しかしながら、特許文献1〜4に記載された技術では、電縫溶接部の疲労強度で代表される信頼性要求値を十分に満足できない場合が生じるという問題がある。
Recently, particularly from the viewpoint of ensuring the safety of automobiles and the like, parts such as automobiles are strictly required to maintain high reliability. In particular, when an ERW welded steel pipe is used as a material for parts, it is required to have an ERW welded portion having higher reliability than conventional ones. However, the techniques described in
本発明は、かかる問題を解決して、信頼性に優れた電縫溶接部を有する高炭素電縫溶接鋼管を提供することを目的とする。なお、ここでいう「信頼性に優れた」とは、電縫溶接部に疲労強度に影響する欠陥が存在しない場合をいうものとする。具体的には、深さ0.2mm×長さ12.5mmのノッチを基準とし、6db感度アップで行った超音波探傷試験で欠陥が0個で、かつ外表面のねじり応力τを350MPaとして繰返し数:200万回までのねじり疲労試験で割れが発生しない場合をいうものとする。 An object of this invention is to solve this problem and to provide the high carbon electric resistance welded steel pipe which has the electric resistance weld part excellent in reliability. Here, “excellent in reliability” refers to a case where there is no defect affecting the fatigue strength in the ERW weld. Specifically, based on a notch of depth 0.2mm × length 12.5mm as a reference, the number of repetitions was 0, and the torsional stress τ of the outer surface was 350MPa in the ultrasonic flaw test conducted with 6db sensitivity enhancement: This shall mean the case where no cracks occur in the torsional fatigue test up to 2 million times.
本発明者らは、上記した目的を達成するため、従来の高炭素電縫溶接鋼管についてその信頼性が低い原因について鋭意検討した。その結果、従来の高炭素電縫溶接鋼管では、電縫溶接部に割れ等の欠陥が残りやすいためであることを見い出した。従来の高炭素電縫溶接鋼管では、所定の寸法形状に精度高く調整する必要性から、通常、電縫溶接終了後、冷間でサイザー絞り圧延や、曲り矯正を行っており、この絞り圧延や曲り矯正により、電縫溶接で硬化した電縫溶接部に割れが発生し、信頼性が低下したものと考えられる。 In order to achieve the above-mentioned object, the present inventors diligently investigated the cause of the low reliability of the conventional high carbon electric resistance welded steel pipe. As a result, it has been found that conventional high carbon ERW welded steel pipes tend to have defects such as cracks remaining in ERW welds. Conventional high carbon electric resistance welded steel pipes are usually subjected to cold sizer drawing and bending correction after the completion of electric resistance welding because of the necessity of adjusting to a predetermined dimension and shape with high accuracy. It is considered that the bend correction caused cracks in the ERW welds that had been hardened by ERW welding, resulting in decreased reliability.
そこで、高炭素電縫溶接鋼管の場合には、電縫溶接終了後に、電縫溶接部のみを焼準し、その後、冷間でサイザー絞り圧延や、曲り矯正等の加工を行うことが考えられる。しかし、この方法によってもなお、十分な信頼性の向上は得られなかった。その原因については、現時点では明確にはなっていないが、引け巣状欠陥が関係している可能性が高いと推察される。というのは、低炭素鋼における電縫溶接では、通常、溶接部をスクイズロールで絞ることにより引け巣状欠陥を防止しているが、高炭素鋼の電縫溶接では、融点が低くなるため、スクイズロールを通過した後まで溶融部が残存し、引け巣状欠陥が発生しやすくなる場合があると考えられる。 Therefore, in the case of high carbon ERW welded steel pipe, it is considered that after ERW welding is completed, only the ERW welded portion is normalized, and thereafter, cold work such as sizer drawing and bending correction is performed. . However, even with this method, sufficient reliability cannot be improved. The cause of this is not clear at this time, but it is presumed that there is a high possibility that a shrinkage defect is related. This is because in ERW welding in low carbon steel, shrinkage defects are usually prevented by squeezing the weld with a squeeze roll, but in ERW welding of high carbon steel, the melting point is low, It is considered that the melted portion remains until after passing through the squeeze roll, and shrinkage defects are likely to occur.
このようなことから、本発明者らは、高炭素電縫溶接鋼管の更なる信頼性向上のためには、電縫溶接部に単純に熱処理を施して延性を向上させるのみではなく、電縫溶接部に発生した引け巣欠陥を潰すような加工(絞り圧延)を併せて施す必要があることに思い至った。
そして、更なる検討の結果、本発明者らは、高炭素電縫溶接鋼管の更なる信頼性向上のためには、電縫溶接直後の矯正等の冷間での加工を必要最小限に抑えたうえで、再加熱し、850℃以上の温度域で、10%以上の縮径率で熱間縮径圧延を施すことが有効であることを見出した。なお、再加熱に際しては、誘導加熱を利用することが加熱時間の短縮化が可能でかつ脱炭を抑制できることも知見した。
For this reason, the present inventors have not only improved the ductility by simply performing heat treatment on the ERW welded part, but also improving the ductility by improving the reliability of the high carbon ERW welded steel pipe. It came to mind that it is necessary to perform processing (drawing rolling) that crushes shrinkage defects occurring in the welded portion.
As a result of further studies, the present inventors have minimized the cold working such as straightening immediately after ERW welding to further improve the reliability of high carbon ERW welded steel pipes. Furthermore, it was found that it is effective to reheat and perform hot reduction rolling at a temperature reduction rate of 10% or more in a temperature range of 850 ° C. or more. It has also been found that the use of induction heating can reduce the heating time and can suppress decarburization during reheating.
本発明の基礎となった実験結果について説明する。
質量%で、0.37%C−0.25%Si−1.50%Mn−0.025%Al−0.004%N−0.02%Ti−0.002%Bを含有する組成の高炭素鋼板(板厚:7.9mm)を素材鋼板とし、複数ロールを用いて略円筒形状に冷間成形し、相対する端面同士を突合せ、電縫溶接して電縫溶接鋼管(外径89.1mmφ)とした。電縫溶接したのち、冷間でサイザー圧延機を用いて、絞り率:0〜1.2%で冷間絞り圧延を施した。得られた電縫溶接鋼管について、とくに電縫溶接部について超音波探傷検査し、欠陥箇所の個数(欠陥個数)を測定した。超音波探傷は、深さ0.2mm×長さ12.5mmのノッチを基準として6db感度アップして行った。得られた結果を図1に示す。図1から、冷間絞り圧延の絞り率が0.8%を超えると、欠陥発生が顕著となることがわかる。
The experimental results on which the present invention is based will be described.
A high-carbon steel plate (thickness: 7.9 mm) with a composition containing 0.37% C-0.25% Si-1.50% Mn-0.025% Al-0.004% N-0.02% Ti-0.002% B in mass% is used as the material steel plate. Then, it was cold-formed into a substantially cylindrical shape using a plurality of rolls, but the opposed end faces were butted together and electro-welded to form an electric-welded steel pipe (outer diameter 89.1 mmφ). After the electric seam welding, cold drawing was performed at a drawing ratio of 0 to 1.2% using a sizer rolling machine in the cold. The obtained ERW welded pipe was subjected to ultrasonic flaw detection, particularly with respect to the ERW weld, and the number of defects (number of defects) was measured. Ultrasonic flaw detection was performed with a 6db sensitivity improvement based on a notch having a depth of 0.2 mm and a length of 12.5 mm. The obtained results are shown in FIG. As can be seen from FIG. 1, when the drawing ratio of cold drawing rolling exceeds 0.8%, the occurrence of defects becomes significant.
また、電縫溶接後、絞り率:0.1%の冷間絞り圧延を行ったのち、直ちに980℃に再加熱し、850℃以上の温度域での縮径率を0〜30%まで変化して熱間縮径圧延を施した。得られた電縫溶接鋼管について、電縫溶接部を超音波探傷検査し、欠陥箇所の個数(欠陥個数)を測定した。超音波探傷検査の条件は電縫溶接後と同様とした。得られた結果を、図2に示す。図2から、縮径率:10%未満の熱間縮径圧延では、電縫溶接部の欠陥の発生が顕著であり、10%を超えると、顕著に欠陥の発生が減少することがわかる。 In addition, after ERW welding, after cold-rolling with a drawing ratio of 0.1%, immediately reheat to 980 ° C and change the diameter reduction rate in the temperature range of 850 ° C or higher to 0-30%. Hot reduction rolling was performed. The obtained ERW welded steel pipe was subjected to ultrasonic flaw inspection at the ERW weld and the number of defects (number of defects) was measured. The conditions for ultrasonic flaw detection were the same as those after ERW welding. The obtained results are shown in FIG. From FIG. 2, it can be seen that in hot reduction rolling with a diameter reduction ratio of less than 10%, the occurrence of defects in the ERW welds is significant, and when it exceeds 10%, the occurrence of defects is significantly reduced.
本発明は、かかる知見に基づき、更なる検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)素材鋼板を冷間加工により略円筒形状に成形したのち、相対する端面同士を突合せ、電縫溶接して電縫溶接鋼管とする電縫溶接鋼管の製造方法において、前記素材鋼板を、質量%で、C:0.30〜0.60%、Si:0.05〜0.50%、Mn:0.30〜2.0%、Al:0.50%以下、N:0.0100%以下を含み、残部Feおよび不可避的不純物からなる組成の高炭素鋼板とし、前記電縫溶接後に、絞り率:0.8%以下の冷間絞り圧延を施したのち、直ちに再加熱しあるいは冷却して再加熱し、850℃以上の温度域で、縮径率:10%以上の熱間縮径圧延を施して、信頼性に優れた電縫溶接部とすることを特徴とする高炭素電縫溶接鋼管の製造方法。
The present invention has been completed on the basis of such findings and further studies. That is, the gist of the present invention is as follows.
(1) After forming the material steel plate into a substantially cylindrical shape by cold working, the opposite end surfaces are butted together, and in the method for producing an ERW welded steel pipe by ERW welding, the material steel plate is High in composition with the balance consisting of the balance Fe and unavoidable impurities, including C: 0.30-0.60%, Si: 0.05-0.50%, Mn: 0.30-2.0%, Al: 0.50% or less, N: 0.0100% or less. A carbon steel sheet is subjected to cold drawing rolling with a drawing ratio of 0.8% or less after the aforementioned ERW welding, and then immediately reheated or cooled and reheated, and in a temperature range of 850 ° C. or higher, the diameter reduction ratio: A method for producing a high carbon electric resistance welded steel pipe, characterized by performing hot shrinking rolling of 10% or more to obtain an electric resistance welded portion having excellent reliability.
(2)(1)において、前記組成に加えてさらに、質量%で、Cu:1.0%以下、Ni:1.0%以下、Cr:1.2%以下、Mo:1.0%以下、W:1.5%以下のうちから選ばれた1種または2種以上を含有することを特徴とする高炭素電縫溶接鋼管の製造方法。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Ti:0.04%以下、Nb:0.2%以下、V:0.2%以下のうちから選ばれた1種または2種以上を含有することを特徴とする高炭素電縫溶接鋼管の製造方法。
(2) In (1), in addition to the above composition, by mass%, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.2% or less, Mo: 1.0% or less, W: 1.5% or less The manufacturing method of the high carbon electric resistance welded steel pipe characterized by including 1 type, or 2 or more types chosen from these.
(3) In (1) or (2), in addition to the above-mentioned composition, by mass%, one or two selected from Ti: 0.04% or less, Nb: 0.2% or less, V: 0.2% or less The manufacturing method of the high carbon electric resistance welded steel pipe characterized by including a seed | species or more.
(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、質量%で、B:0.0005〜0.0050%を含有することを特徴とする高炭素電縫溶接鋼管の製造方法。
(5)(1)ないし(4)のいずれかにおいて、前記再加熱が、高周波誘導加熱手段による加熱であることを特徴とする高炭素電縫溶接鋼管の製造方法。
(6)高炭素電縫鋼管を素材として自動車部品を製造する自動車部品の製造方法であって、前記素材が、(1)ないし(5)のいずれかに記載の高炭素電縫溶接鋼管の製造方法を用いて製造された高炭素電縫鋼管であることを特徴とする自動車部品の製造方法。
(4) In any one of (1) to (3), in addition to the above composition, the method further comprises B: 0.0005 to 0.0050% by mass%, and a method for producing a high carbon electric resistance welded steel pipe.
(5) The method for producing a high carbon electric resistance welded steel pipe according to any one of (1) to (4), wherein the reheating is heating by high frequency induction heating means.
(6) A method of manufacturing an automobile part, wherein an automobile part is manufactured using a high-carbon electric-welded steel pipe as a raw material, wherein the raw material is a high-carbon electric-welded steel pipe according to any one of ( 1) to (5) A method of manufacturing an automobile part, wherein the method is a high carbon electric resistance welded steel pipe manufactured using the method.
(7)(6)において、前記自動車部品が、フロントフォーク、ラックバー、ドライブシャフト、タイロッド、ステーターシャフト、カムシャフトのうちのいずれかである自動車部品の製造方法。 (7) The method of manufacturing an automobile part according to (6), wherein the automobile part is any one of a front fork, a rack bar, a drive shaft, a tie rod, a stator shaft, and a cam shaft.
本発明によれば、欠陥発生が抑制されて信頼性に優れた電縫溶接部となり、高炭素電縫溶接鋼管の信頼性が顕著に向上し、産業上格段の効果を奏する。また、本発明によれば、高炭素電縫溶接鋼管を素材とする中空部品、例えば、フロントフォーク、ラックバー、ドライブシャフト、タイロッド、ステーターシャフト、カムシャフト等の各種自動車部品の信頼性も向上するという効果もある。 According to the present invention, the occurrence of defects is suppressed and an electric resistance welded portion having excellent reliability is obtained, the reliability of the high carbon electric resistance welded steel pipe is remarkably improved, and a remarkable industrial effect is achieved. In addition, according to the present invention, the reliability of various automobile parts such as hollow parts made of high carbon ERW welded steel pipes, such as front forks, rack bars, drive shafts, tie rods, stator shafts, camshafts, etc. is also improved. There is also an effect.
本発明は、高炭素電縫溶接鋼管の製造方法であり、素材鋼板を高炭素鋼板とし、常用の電縫溶接鋼管の製造方法を適用して、高炭素電縫溶接鋼管とする。なお、ここで言う「鋼板」には、鋼帯をも含むものとする。
まず、素材鋼板である高炭素鋼板の組成限定理由について説明する。以下、とくに断わらない限り、質量%は単に%と記す。
The present invention is a method for producing a high carbon electric resistance welded steel pipe. The material steel plate is made of a high carbon steel plate, and a conventional method for producing an electric resistance welded steel pipe is applied to obtain a high carbon electric resistance welded steel pipe. The “steel plate” mentioned here includes a steel strip.
First, the reasons for limiting the composition of the high-carbon steel sheet, which is a raw steel sheet, will be described. Hereinafter, unless otherwise specified, mass% is simply referred to as%.
本発明で素材鋼板とする鋼板は、C:0.30〜0.60%、Si:0.05〜0.50%、Mn:0.30〜2.0%、Al:0.50%以下、N:0.0100%以下を含み、あるいはさらに、Cu:1.0%以下、Ni:1.0%以下、Cr:1.2%以下、Mo:1.0%以下、W:1.5%以下のうちから選ばれた1種または2種以上、および/または、Ti:0.04%以下、Nb:0.2%以下、V:0.2%以下のうちから選ばれた1種または2種以上、および/または、B:0.0005〜0.0050%を含有し、残部Feおよび不可避的不純物からなる組成の高炭素鋼板である。なお、電縫溶接部の信頼性向上のためには、電縫溶接部から酸化物を排出するという観点から、素材鋼板の板厚は8mm以下とすることが好ましい。 The steel plate used as the material steel plate in the present invention includes C: 0.30 to 0.60%, Si: 0.05 to 0.50%, Mn: 0.30 to 2.0%, Al: 0.50% or less, N: 0.0100% or less, or, further, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.2% or less, Mo: 1.0% or less, W: 1.5% or less, and / or Ti: 0.04% or less, Nb: 0.2% or less, V: one or more selected from 0.2% or less, and / or B: 0.0005-0.0050%, high carbon with a composition comprising the balance Fe and inevitable impurities It is a steel plate. In order to improve the reliability of the electric resistance welded portion, the thickness of the material steel plate is preferably 8 mm or less from the viewpoint of discharging oxide from the electric resistance welded portion.
C:0.30〜0.60%
Cは、固溶してあるいは炭化物、炭窒化物として析出し、強度増加に寄与する元素である。このような効果を得て、所望の鋼管強度、熱処理後の鋼管強度を確保するために、0.30%以上の含有を必要とする。なお、ここでいう「所望の鋼管強度」とは、引張強さTS:1200MPa以上を言うものとする。一方、0.60%を超えて多量に含有すると、熱処理後の靭性が低下する。このため、Cは0.30〜0.60%の範囲に限定した。
C: 0.30 ~ 0.60%
C is an element that contributes to an increase in strength by solid solution or precipitation as carbide or carbonitride. In order to obtain such an effect and to secure a desired steel pipe strength and a steel pipe strength after heat treatment, it is necessary to contain 0.30% or more. Here, “desired steel pipe strength” refers to a tensile strength TS of 1200 MPa or more. On the other hand, if the content exceeds 0.60%, the toughness after heat treatment decreases. For this reason, C was limited to the range of 0.30 to 0.60%.
Si:0.05〜0.50%
Siは、脱酸剤として作用する元素である。このような効果を得るためには、0.05%以上の含有を必要とする。一方、0.50%を超える含有は、効果が飽和し経済的に不利となるうえ、電縫溶接時に介在物の生成を促進し、電縫溶接部の健全性に悪影響を及ぼす。このため、Siは0.05〜0.50%の範囲に限定した。なお、好ましくは0.10〜0.30%である。
Si: 0.05-0.50%
Si is an element that acts as a deoxidizer. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, if the content exceeds 0.50%, the effect is saturated and economically disadvantageous, and the formation of inclusions is promoted during ERW welding, which adversely affects the soundness of ERW welds. For this reason, Si was limited to the range of 0.05 to 0.50%. In addition, Preferably it is 0.10 to 0.30%.
Mn:0.30〜2.0%
Mnは、固溶して強度増加、焼入れ性の向上に寄与する元素である。このような効果を得るためには0.30%以上の含有を必要とする。一方、2.0%を超える含有は、残留オーステナイトが形成され焼戻処理後の靭性が低下する。このため、Mnは0.30〜2.0%の範囲に限定した。なお、好ましくは0.8〜1.6%である。
Mn: 0.30 to 2.0%
Mn is an element that contributes to increase in strength and improve hardenability by solid solution. In order to obtain such an effect, a content of 0.30% or more is required. On the other hand, if the content exceeds 2.0%, retained austenite is formed, and the toughness after tempering is lowered. For this reason, Mn was limited to the range of 0.30 to 2.0%. In addition, Preferably it is 0.8 to 1.6%.
Al:0.50%以下
Alは、脱酸剤として作用する元素であり、このような効果を得るためには0.01%以上含有することが望ましい。一方、0.50%を超える含有は、効果が飽和し含有量に見合う効果が期待できず、経済的に不利となるとともに、電縫溶接時に介在物の生成を促進し、電縫溶接部の健全性に悪影響を及ぼす。このため、Alは0.50%以下の範囲に限定した。なお、好ましくは0.02〜0.04%である。
Al: 0.50% or less
Al is an element that acts as a deoxidizer, and in order to obtain such an effect, it is desirable to contain 0.01% or more. On the other hand, if the content exceeds 0.50%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous and promotes the formation of inclusions during ERW welding, and the integrity of ERW welds. Adversely affect. For this reason, Al was limited to the range of 0.50% or less. In addition, Preferably it is 0.02 to 0.04%.
N:0.0100%以下
Nは、窒化物あるいは炭窒化物を形成し、熱処理(焼戻)後の強度を確保するために有用な元素である。このような効果を得るためには、0.0005%以上含有することが望ましいが、0.0100%を超えて多量に含有すると、粗大な窒化物を形成し、靭性や耐疲労寿命が低下する場合がある。このため、Nは0.0100%以下に限定した。なお、NはTiを含有する場合にはTi含有量との関係で、下記式
N/14 ≦ Ti/47.9
(ここで、N、Ti:各元素の含有量(質量%))
を満足するように調整することが望ましい。
N: 0.0100% or less
N is a useful element for forming nitrides or carbonitrides and ensuring strength after heat treatment (tempering). In order to acquire such an effect, it is desirable to contain 0.0005% or more, but when it contains more than 0.0100%, coarse nitrides are formed, and the toughness and fatigue life may be reduced. For this reason, N was limited to 0.0100% or less. In the case where N contains Ti, the following formula is used in relation to the Ti content:
N / 14 ≤ Ti / 47.9
(Where N, Ti: content of each element (mass%))
It is desirable to adjust so as to satisfy.
上記した成分が基本の成分であるが、本発明ではこの基本の組成に加えてさらに、必要に応じて、Cu:1.0%以下、Ni:1.0%以下、Cr:1.2%以下、Mo:1.0%以下、W:1.5%以下のうちから選ばれた1種または2種以上、および/または、Ti:0.04%以下、Nb:0.20%以下、V:0.20%以下のうちから選ばれた1種または2種以上、および/または、B:0.0005〜0.0050%、を選択して含有してもよい。 The above components are basic components. In the present invention, in addition to this basic composition, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.2% or less, Mo: 1.0% as necessary. In the following, one or more selected from W: 1.5% or less, and / or Ti: 0.04% or less, Nb: 0.20% or less, V: 0.20% or less Two or more kinds and / or B: 0.0005 to 0.0050% may be selected and contained.
Cu:1.0%以下、Ni:1.0%以下、Cr:1.2%以下、Mo:1.0%以下、W:1.5%以下のうちから選ばれた1種または2種以上
Cu、Ni、Cr、Mo、Wはいずれも、強度増加、焼入れ性の向上に寄与する元素であり、必要に応じて選択して1種または2種以上含有できる。
Cuは、固溶して強度増加、焼入れ性の向上に寄与するうえさらに、靭性、耐遅れ破壊性、耐腐食疲労特性をも向上させる元素である。このような効果を得るためには、0.05%以上含有することが望ましい。一方、1.0%を超えて含有しても、上記した効果が飽和し含有量に見合う効果が期待できず、経済的に不利となるうえ、加工性が低下する。このため、含有する場合には、Cuは1.0%以下に限定することが好ましい。なお、より好ましくは0.05〜0.25%である。
One or more selected from Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.2% or less, Mo: 1.0% or less, W: 1.5% or less
Cu, Ni, Cr, Mo, and W are all elements that contribute to increasing the strength and improving the hardenability, and can be selected as necessary and contained in one or more.
Cu is an element that dissolves and contributes to increasing strength and improving hardenability, as well as improving toughness, delayed fracture resistance, and corrosion fatigue resistance. In order to acquire such an effect, it is desirable to contain 0.05% or more. On the other hand, if the content exceeds 1.0%, the above-described effects are saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous and processability is lowered. For this reason, when it contains, it is preferable to limit Cu to 1.0% or less. In addition, More preferably, it is 0.05 to 0.25%.
Niは、固溶して強度増加、焼入れ性の向上に寄与するうえさらに、靭性、耐遅れ破壊性、耐腐食疲労特性の向上にも寄与する元素である。このような効果を得るためには、0.05%以上含有することが望ましいが、1.0%を超えて含有しても、上記した効果が飽和し含有量に見合う効果が期待できず、経済的に不利となるうえ、加工性が低下する。このため、含有する場合には、Niは1.0%以下に限定することが好ましい。なお、より好ましくは0.05〜0.25%である。 Ni is an element that contributes to the improvement of toughness, delayed fracture resistance, and corrosion fatigue resistance in addition to solid solution that contributes to increasing strength and improving hardenability. In order to obtain such an effect, the content is preferably 0.05% or more. However, even if the content exceeds 1.0%, the above effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. In addition, workability is reduced. For this reason, when it contains, it is preferable to limit Ni to 1.0% or less. In addition, More preferably, it is 0.05 to 0.25%.
Crは、固溶して強度増加、焼入れ性の向上に寄与するうえさらに、微細な炭化物を生成して析出強化により強度増加に寄与する。このような効果を得るためには、0.1%以上含有することが望ましい。一方、1.2%を超えて多量に含有しても、効果が飽和し含有量に見合う効果が期待できず、経済的に不利となるうえ、電縫溶接時に介在物を生じやすく、電縫溶接部の健全性に悪影響を及ぼす。このため、含有する場合には、Crは1.2%以下に限定することが好ましい。なお、より好ましくは0.1〜0.5%である。 Cr dissolves and contributes to increasing strength and improving hardenability, and further generates fine carbides and contributes to increasing strength by precipitation strengthening. In order to acquire such an effect, it is desirable to contain 0.1% or more. On the other hand, even if the content exceeds 1.2%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous and easily causes inclusions during ERW welding. Adversely affects the health of For this reason, when contained, Cr is preferably limited to 1.2% or less. In addition, More preferably, it is 0.1 to 0.5%.
Moは、固溶して強度増加、焼入れ性の向上に寄与するうえ、さらに、微細な炭化物を生成して析出強化により強度増加に寄与する。このような効果を得るためには、0.01%以上含有することが望ましい。一方、1.0%を超えて含有しても、効果が飽和し含有量に見合う効果が期待できず、経済的に不利となるうえ、粗大な炭化物を形成し靭性が低下する場合がある。このため、含有する場合には、Moは1.0%以下に限定することが好ましい。なお、より好ましくは0.10〜0.30%である。 Mo dissolves and contributes to increasing the strength and improving the hardenability, and further, forming fine carbides to contribute to increasing the strength by precipitation strengthening. In order to acquire such an effect, it is desirable to contain 0.01% or more. On the other hand, even if the content exceeds 1.0%, the effect is saturated and an effect commensurate with the content cannot be expected, which is disadvantageous economically, and coarse carbides are formed and the toughness may be lowered. For this reason, when contained, Mo is preferably limited to 1.0% or less. In addition, More preferably, it is 0.10 to 0.30%.
Wは、固溶して強度増加、焼入れ性の向上に寄与することに加えてさらに、熱処理後の硬さと靭性のバランスを良好にする作用を有する。このような効果を確保するためには、0.01%以上含有することが望ましい。一方、1.5%を超えて含有しても効果が飽和し含有量に見合う効果が期待できず、経済的に不利となる。このため、含有する場合は、Wは1.5%以下に限定することが好ましい。なお、より好ましくは0.10〜0.30%である。 W has a function of improving the balance between hardness and toughness after heat treatment in addition to solid solution and contributing to increase in strength and improvement in hardenability. In order to ensure such an effect, it is desirable to contain 0.01% or more. On the other hand, if the content exceeds 1.5%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, when contained, W is preferably limited to 1.5% or less. In addition, More preferably, it is 0.10 to 0.30%.
Ti:0.04%以下、Nb:0.20%以下、V:0.20%以下のうちから選ばれた1種または2種以上
Ti、Nb、Vはいずれも、微細な炭化物を形成して強度増加に寄与する元素であり、必要に応じて選択して1種または2種以上含有できる。
Tiは、上記した作用に加えて、Nと結合しNを固定することにより焼入れ性向上に有効な固溶Bを確保する作用を有する元素である。また、Tiは微細な窒化物を形成し、熱処理時や電縫溶接時の結晶粒の粗大化を抑制する作用を有し、靭性向上に寄与する。このような効果を得るためには0.001%以上含有することが望ましい。一方、0.04%を超えて多量に含有すると、介在物量が増加し靭性が低下する場合がある。このため、含有する場合には、Tiは0.04%以下に限定することが好ましい。また、Tiは、含有する場合には、N含有量との関係で下記式
N/14 ≦ Ti/47.9
(ここで、N、Ti:各元素の含有量(質量%))
を満足するように含有することが望ましい。なお、より好ましくは0.01〜0.03%である。
One or more selected from Ti: 0.04% or less, Nb: 0.20% or less, V: 0.20% or less
Ti, Nb, and V are all elements that contribute to increasing the strength by forming fine carbides, and can be selected as necessary and contained in one or more.
In addition to the above-described action, Ti is an element having an action of securing solid solution B effective for improving hardenability by binding N and fixing N. Further, Ti forms fine nitrides, has an action of suppressing the coarsening of crystal grains during heat treatment and electric resistance welding, and contributes to improvement of toughness. In order to acquire such an effect, it is desirable to contain 0.001% or more. On the other hand, if the content exceeds 0.04%, the amount of inclusions may increase and the toughness may decrease. For this reason, when it contains, it is preferable to limit Ti to 0.04% or less. In addition, when Ti is contained, the following formula in relation to the N content:
N / 14 ≤ Ti / 47.9
(Where N, Ti: content of each element (mass%))
It is desirable to contain so that it may satisfy. In addition, More preferably, it is 0.01 to 0.03%.
Nbは、焼戻時に微細な炭化物を形成して強度増加に寄与するとともに、熱処理後の組織を微細化し靭性や耐遅れ破壊性を改善する作用を有する。このような効果を得るためには、0.001%以上含有することが望ましい。一方、0.20%を超えて含有しても、上記した効果は飽和し含有量に見合う効果が期待できず、経済的に不利となる。このため、含有する場合には、Nbは0.20%以下に限定することが好ましい。なお、より好ましくは0.01〜0.02%である。 Nb has the effect of improving the toughness and delayed fracture resistance by forming fine carbides during tempering and contributing to an increase in strength, and by refining the structure after heat treatment. In order to acquire such an effect, it is desirable to contain 0.001% or more. On the other hand, even if the content exceeds 0.20%, the above effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, when it contains, it is preferable to limit Nb to 0.20% or less. In addition, More preferably, it is 0.01 to 0.02%.
Vは、焼戻時に微細な炭化物を形成して強度増加に寄与する。このような効果を確保するためには0.001%以上含有することが望ましい。一方、0.20%を超えて含有しても、上記した効果は飽和し含有量に見合う効果が期待できず、経済的に不利となる。このため、含有する場合には、Vは0.20%以下に限定することが好ましい。なお、なお、より好ましくは0.01〜0.08%である。 V contributes to an increase in strength by forming fine carbides during tempering. In order to ensure such an effect, it is desirable to contain 0.001% or more. On the other hand, even if the content exceeds 0.20%, the above effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, when contained, V is preferably limited to 0.20% or less. In addition, More preferably, it is 0.01 to 0.08%.
B:0.0005〜0.0050%
Bは、微量含有で焼入れ性を向上させ、熱処理後の硬さと靭性のバランスを良好にするともに、結晶粒界を強化して耐焼割れ性を向上できる、有効な元素であり、必要に応じて含有できる。このような効果を得るためには0.0005%以上の含有を必要とする。一方、0.0050%を超えて含有しても、上記した効果は飽和し含有量に見合う効果が期待できず、経済的に不利となるうえ、粗大なB含有析出物を生成し靭性が低下する。このため、含有する場合には、Bは0.0005〜0.0050%の範囲に限定することが好ましい。なお、より好ましくは0.002〜0.003%である。
B: 0.0005-0.0050%
B is an effective element that improves hardenability with a small amount of content, improves the balance between hardness and toughness after heat treatment, and strengthens the grain boundaries to improve the fire cracking resistance. Can be contained. In order to acquire such an effect, 0.0005% or more needs to be contained. On the other hand, even if the content exceeds 0.0050%, the above effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous, and coarse B-containing precipitates are produced, resulting in a decrease in toughness. For this reason, when it contains, it is preferable to limit B to 0.0005 to 0.0050% of range. In addition, More preferably, it is 0.002 to 0.003%.
上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、P:0.020%以下、S:0.010%以下、O:0.005%以下が許容できる。
P:0.020%以下
Pは、耐溶接割れ性、靭性に悪影響を及ぼす元素であり、0.020%以下の範囲でできるだけ低減することが望ましい。しかし、過度の低減は精錬コストを高騰させるため、0.0005%以上とすることが望ましい。なお、より好ましくは0.010%以下である。
The balance other than the components described above consists of Fe and inevitable impurities. Inevitable impurities include P: 0.020% or less, S: 0.010% or less, and O: 0.005% or less.
P: 0.020% or less
P is an element that adversely affects weld crack resistance and toughness, and it is desirable to reduce it as much as possible within a range of 0.020% or less. However, excessive reduction raises the refining cost, so 0.0005% or more is desirable. More preferably, it is 0.010% or less.
S:0.010%以下
Sは、鋼中では硫化物系介在物として存在し、加工性、靭性、疲労寿命に悪影響を及ぼすとともに、再熱割れ感受性を増大させる元素であり、0.010%以下の範囲でできるだけ低減することが望ましい。しかし、過度の低減は精錬コストを高騰させるため、0.0005%以上とすることが望ましい。なお、より好ましくは0.001%以下である。
S: 0.010% or less
S exists as a sulfide inclusion in steel and has an adverse effect on workability, toughness and fatigue life, and increases reheat cracking susceptibility. It can be reduced as much as possible within a range of 0.010% or less. desirable. However, excessive reduction raises the refining cost, so 0.0005% or more is desirable. More preferably, it is 0.001% or less.
O:0.005%以下
O(酸素)は、鋼中では酸化物系介在物として存在し、加工性、靭性、疲労寿命に悪影響を及ぼす。このため、O(酸素)は0.005%以下の範囲で、できるだけ低減することが望ましい。なお、より好ましくは0.002%以下である。
本発明では、上記した組成の高炭素鋼板を素材鋼板とするが、素材鋼板の製造方法はとくに限定する必要はない。通常の熱延鋼板の製造方法がいずれも適用できる。素材鋼板を、所定の幅にスリット加工して、冷間で、好ましくは複数の成形ロールを用いて連続して、略円筒形状に成形したのち、相対する端面同士を突合せ電縫溶接して電縫溶接鋼管とする。
O: 0.005% or less
O (oxygen) exists as an oxide inclusion in steel and adversely affects workability, toughness, and fatigue life. For this reason, it is desirable to reduce O (oxygen) within the range of 0.005% or less as much as possible. More preferably, it is 0.002% or less.
In the present invention, the high carbon steel plate having the above composition is used as the raw steel plate, but the manufacturing method of the raw steel plate is not particularly limited. Any of the usual methods for producing hot-rolled steel sheets can be applied. The raw steel plate is slit to a predetermined width and formed into a substantially cylindrical shape in the cold, preferably continuously using a plurality of forming rolls. It shall be a sewn welded steel pipe.
本発明では、電縫溶接して電縫溶接鋼管としたのち、該電縫溶接鋼管に、形状不良を防止するため、好ましくはサイザー圧延機で、冷間絞り圧延を施す。本発明では、冷間絞り圧延の絞り率を0.8%以下に限定する。絞り率が0.8%を超えて大きくなると、電縫溶接部に割れ等の欠陥が発生し、電縫溶接部の信頼性が低下する。このため、電縫溶接したのちに施す冷間絞り圧延の絞り率を0.8%以下に限定した。なお、好ましくは0.01〜0.1%である。電縫溶接部の欠陥発生に対しては冷間絞り圧延を行わない(絞り率0%)ほうが好ましいが、冷間絞り圧延を行わない場合には、管形状に不良が発生する確率が高くなる。
In the present invention, after the ERW welding is performed to form an ERW welded steel pipe, the ERW welded steel pipe is preferably subjected to cold drawing rolling with a sizer rolling mill in order to prevent shape defects. In the present invention, the drawing ratio of cold drawing is limited to 0.8% or less. When the drawing ratio exceeds 0.8%, defects such as cracks occur in the ERW weld, and the reliability of the ERW weld decreases. For this reason, the drawing ratio of the cold drawing rolling performed after the ERW welding is limited to 0.8% or less. In addition, Preferably it is 0.01 to 0.1%. It is preferable not to perform cold drawing rolling (drawing
絞り率:0.8%以下の冷間絞り圧延を施された電縫溶接鋼管は、直ちに再加熱されるか、あるいは室温まで冷却されたのち再加熱される。再加熱の温度はとくに限定されないが、850℃以上の温度域で、10%以上の縮径率を施す熱間縮径圧延を行うことができる温度、すなわち、900〜1050℃とすることが好ましい。
本発明では、熱間縮径圧延は、オーステナイト域まで再加熱し、電縫溶接部の高靭化を図るとともに電縫溶接部に発生した欠陥を押し潰して無害化を図り、電縫溶接部の信頼性向上のために行う。熱間縮径圧延の仕上圧延温度が850℃未満では、引け巣状欠陥の圧着が不十分となり、所望の欠陥の無害化が達成できない。なお、熱間縮径圧延の仕上圧延温度は、好ましくは900℃以上である。なお、熱間縮径圧延の仕上圧延温度の上限は、組織の粗大化が防止できる1000℃である。
The ERW welded steel pipe subjected to cold drawing with a drawing ratio of 0.8% or less is immediately reheated or cooled to room temperature and then reheated. Although the reheating temperature is not particularly limited, it is preferably set to a temperature at which hot reduction rolling can be performed to give a reduction ratio of 10% or more in a temperature range of 850 ° C. or higher, that is, 900 to 1050 ° C. .
In the present invention, the hot reduction rolling is reheated to the austenite region, and the electric seam welded portion is made tough and the defects generated in the electric seam welded portion are crushed and made harmless. To improve reliability. If the finish rolling temperature of hot reduction rolling is less than 850 ° C., crimping of shrinkage defects becomes insufficient, and the desired defect cannot be rendered harmless. In addition, the finish rolling temperature of hot reduction rolling is preferably 900 ° C. or higher. In addition, the upper limit of the finish rolling temperature of hot diameter reduction rolling is 1000 ° C. which can prevent the coarsening of the structure.
また、熱間縮径圧延の縮径率が850℃以上の温度域で、10%未満では、縮径率が不足し、所望の欠陥の無害化が達成できない。このため、熱間縮径圧延の縮径率を10%以上に限定した。なお、好ましくは30%以上である。熱間縮径圧延の縮径率の上限は、所望の寸法形状に応じて決定される。 Further, if the reduction ratio of the hot reduction rolling is less than 10% in the temperature range of 850 ° C. or higher, the reduction ratio is insufficient and the desired defect cannot be rendered harmless. For this reason, the reduction ratio of hot reduction rolling is limited to 10% or more. In addition, Preferably it is 30% or more. The upper limit of the diameter reduction rate of hot diameter reduction rolling is determined according to the desired size and shape.
表1に示す組成の高炭素熱延鋼板(板厚:7.8mm)を素材鋼板とした。これら素材鋼板を所定の幅にスリット加工し、冷間で複数のロールで、略円筒形状のオープン管に成形したのち、相対する端面同士を突合せて電縫溶接して、外径89.1mmφ×肉厚7.9mmの電縫溶接鋼管(母管)とした。なお、電縫溶接鋼管には、電縫溶接後、サイザー圧延機を用いて、表2に示す絞り率の冷間絞り圧延を施し、所定の寸法形状になるように調整した。冷間絞り圧延後、直ちに誘導加熱手段で表2に示す温度まで加熱し、熱間縮径圧延機で表2に示す条件で熱間縮径圧延を施し、熱間縮径圧延後空冷して外径42.7mmφ×肉厚8.0mmの電縫溶接鋼管とした。 A high carbon hot-rolled steel sheet (thickness: 7.8 mm) having the composition shown in Table 1 was used as the raw steel sheet. After slitting these steel sheets into a predetermined width and forming them into a substantially cylindrical open tube with multiple rolls in the cold, the opposing end faces are butted together by electro-welding, and the outer diameter is 89.1 mmφ x meat A 7.9 mm thick ERW welded steel pipe (mother pipe) was used. The ERW welded steel pipe was subjected to cold drawing with the drawing ratios shown in Table 2 and adjusted so as to have a predetermined size and shape using a sizer mill after ERW welding. Immediately after the cold-drawing rolling, it is heated to the temperature shown in Table 2 by induction heating means, subjected to hot-reduction rolling under the conditions shown in Table 2 with a hot-reduction mill, and air-cooled after hot-reduction rolling. An electric resistance welded steel pipe having an outer diameter of 42.7 mmφ and a thickness of 8.0 mm was used.
得られた電縫溶接鋼管の電縫溶接部全長(約10000m)について、超音波探傷を行い、検知される欠陥の有無および欠陥個数(長さ10000m当たりに換算)を調査した。超音波探傷は、深さ0.2mm×長さ12.5mmのノッチを基準とし、6dB感度アップで行った。
また、得られた電縫溶接鋼管から試験材を採取して外径36.7mmφ×肉厚7.2mmまで冷間引抜加工を行ったのち、焼準処理(945℃加熱後空冷)と焼入れ処理(950℃加熱後水冷焼入れ)を施し、ねじり疲労試験片(長:500mm)を採取し、ねじり疲労試験を実施した。ねじり疲労試験は、試験片10本について、外表面のねじり応力τが350MPaとして、繰返し数:200万回までの試験を実施し、電縫溶接部割れの発生比率(%)を測定した。これらの結果(超音波探傷とねじり疲労試験の結果)から、電縫溶接部の信頼性を評価した。超音波探傷における欠陥個数が0個でかつねじり疲労試験での割れ発生なしである場合を○とし、それ以外を×として、信頼性を評価した。
The total length (about 10,000 m) of the ERW welded steel pipe obtained was subjected to ultrasonic flaw detection, and the presence of detected defects and the number of defects (converted per 10000 m in length) were investigated. Ultrasonic flaw detection was performed with a 6 dB sensitivity improvement based on a notch having a depth of 0.2 mm and a length of 12.5 mm.
In addition, after collecting the test material from the obtained ERW welded pipe and performing cold drawing to an outer diameter of 36.7mmφ x thickness of 7.2mm, normalization treatment (air cooling after heating at 945 ° C) and quenching treatment (950 (Cooling after water cooling) was performed, and a torsional fatigue test piece (length: 500 mm) was collected and subjected to a torsional fatigue test. In the torsional fatigue test, 10 specimens were tested with an outer surface torsional stress τ of 350 MPa and repeated up to 2 million times to measure the occurrence ratio (%) of ERW cracks. From these results (results of ultrasonic flaw detection and torsional fatigue test), the reliability of ERW welds was evaluated. Reliability was evaluated by setting the case where the number of defects in ultrasonic flaw detection was 0 and no cracking occurred in the torsional fatigue test as ○, and other cases as ×.
得られた結果を表3に示す。 The obtained results are shown in Table 3.
本発明例はいずれも、電縫溶接部の欠陥発生が少なく、またねじり疲労試験においても電縫溶接部での割れ発生が少なくなっている。一方、本発明の範囲を外れる比較例は、電縫溶接部の欠陥発生個数が多く、ねじり疲労試験においても、電縫溶接部での割れ発生がおおくなっている。 In all of the examples of the present invention, the occurrence of defects in the ERW welds is small, and the occurrence of cracks in the ERW welds is also reduced in the torsional fatigue test. On the other hand, the comparative example which is out of the scope of the present invention has a large number of defects in the electric resistance welded portion, and cracks are generated in the electric resistance welded portion even in the torsional fatigue test.
Claims (7)
前記素材鋼板を、質量%で、
C:0.30〜0.60%、Si:0.05〜0.50%、Mn:0.30〜2.0%、Al:0.50%以下、N:0.0100%以下を含み、残部Feおよび不可避的不純物からなる組成の高炭素鋼板とし、
前記電縫溶接後に、絞り率:0.8%以下の冷間絞り圧延を施したのち、直ちに再加熱しあるいは冷却して再加熱し、850℃以上の温度域で、縮径率:10%以上の熱間縮径圧延を施して、信頼性に優れた電縫溶接部とすることを特徴とする高炭素電縫溶接鋼管の製造方法。 After forming the material steel plate into a substantially cylindrical shape by cold working, in the manufacturing method of the ERW welded steel pipe to make the ERW welded steel pipe by butt-welding the opposing end faces to each other,
The material steel plate in mass%,
C: 0.30 to 0.60%, Si: 0.05 to 0.50%, Mn: 0.30 to 2.0%, Al: 0.50% or less, N: 0.0100% or less, and a high carbon steel plate having a composition comprising the balance Fe and inevitable impurities,
After the ERW welding, after cold drawing rolling with a drawing ratio of 0.8% or less, immediately reheat or cool and reheat, and at a temperature range of 850 ° C. or higher, the diameter reduction ratio is 10% or more. A method for producing a high carbon electric resistance welded steel pipe, characterized in that hot shrinking rolling is performed to make an electric resistance welded portion excellent in reliability.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013197819A JP5867474B2 (en) | 2013-09-25 | 2013-09-25 | Manufacturing method of high carbon ERW welded steel pipe with excellent reliability of ERW welds |
PCT/JP2014/004882 WO2015045373A1 (en) | 2013-09-25 | 2014-09-24 | Process for manufacturing high-carbon electric resistance welded steel pipe, and automobile part |
CN201480051527.5A CN105555976B (en) | 2013-09-25 | 2014-09-24 | The manufacture method and automobile component of high-carbon electric-resistance-welded steel pipe |
KR1020167009089A KR101766293B1 (en) | 2013-09-25 | 2014-09-24 | Method for producing high carbon electric resistance welded steel pipe or tube and automotive parts |
EP14846979.4A EP3018220B1 (en) | 2013-09-25 | 2014-09-24 | Process for manufacturing high-carbon electric resistance welded steel pipe, and automobile part |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013197819A JP5867474B2 (en) | 2013-09-25 | 2013-09-25 | Manufacturing method of high carbon ERW welded steel pipe with excellent reliability of ERW welds |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015062920A JP2015062920A (en) | 2015-04-09 |
JP5867474B2 true JP5867474B2 (en) | 2016-02-24 |
Family
ID=52742545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013197819A Active JP5867474B2 (en) | 2013-09-25 | 2013-09-25 | Manufacturing method of high carbon ERW welded steel pipe with excellent reliability of ERW welds |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3018220B1 (en) |
JP (1) | JP5867474B2 (en) |
KR (1) | KR101766293B1 (en) |
CN (1) | CN105555976B (en) |
WO (1) | WO2015045373A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101676244B1 (en) | 2015-04-14 | 2016-11-29 | 현대자동차주식회사 | Carbon steel compositions reduced thermal strain for steering rack bar and method for manufacturing the same |
MX2020013761A (en) * | 2018-06-27 | 2021-03-02 | Jfe Steel Corp | Electric-resistance-welded steel pipe for producing hollow stabilizer, hollow stabilizer, and method for producing same. |
CN109252096A (en) * | 2018-10-10 | 2019-01-22 | 江阴兴澄特种钢铁有限公司 | Economical heavy load truck steering gear rack 43MnCrMoB steel and its production method |
CN113528939A (en) * | 2021-06-10 | 2021-10-22 | 江苏利淮钢铁有限公司 | Steel for tie rod joint in high-performance automobile steering system |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6013024A (en) * | 1983-07-05 | 1985-01-23 | Nippon Steel Corp | Production of high-carbon and high-manganese electric welded pipe |
JPH01108314A (en) * | 1987-10-20 | 1989-04-25 | Nkk Corp | Production of hoop for electric welded tube having excellent cold workability |
JP2596860B2 (en) * | 1991-02-04 | 1997-04-02 | 新日本製鐵株式会社 | Method for manufacturing ERW oil well pipe with high Young's modulus in circumferential direction of steel pipe and excellent crush characteristics |
JPH0776409B2 (en) | 1991-02-16 | 1995-08-16 | 新日本製鐵株式会社 | High carbon steel and machined steel ERW pipe with excellent hot workability for machine structures |
JPH0688129A (en) * | 1992-09-10 | 1994-03-29 | Kawasaki Steel Corp | Production of high strength steel pipe as welded low in residual stress |
JPH06179945A (en) * | 1992-12-15 | 1994-06-28 | Nippon Steel Corp | Cr-mo series ultrahigh tensile strength electric resistance welded steel tube excellent in ductility |
JPH06256845A (en) * | 1993-03-04 | 1994-09-13 | Nippon Steel Corp | Production of high-strength electric resistance welded tube |
JPH09279250A (en) * | 1996-04-16 | 1997-10-28 | Sumitomo Metal Ind Ltd | Production of electric resistance welded tube having high toughness and high strength in welded part |
JPH11156433A (en) | 1997-11-27 | 1999-06-15 | Sumitomo Metal Ind Ltd | High carbon electric resistance welded steel tube of high workability |
JP3232040B2 (en) | 1998-02-10 | 2001-11-26 | 住友鋼管株式会社 | Method of manufacturing high carbon steel ERW steel pipe for high workability machine structure |
JP4105796B2 (en) | 1998-05-08 | 2008-06-25 | 新日本製鐵株式会社 | ERW weld heat treatment method for improving the workability of ERW welds |
JP4474729B2 (en) * | 2000-04-27 | 2010-06-09 | Jfeスチール株式会社 | Structural electric resistance welded steel pipe with excellent hydroforming properties and low weld softening |
JP2004027368A (en) * | 2000-09-20 | 2004-01-29 | Sumitomo Metal Ind Ltd | Electric resistance welded tube and its production method |
JP3699394B2 (en) * | 2001-12-26 | 2005-09-28 | 住友鋼管株式会社 | Heat treatment method for ERW steel pipe for machine structure |
CN101248202A (en) * | 2005-08-22 | 2008-08-20 | 新日本制铁株式会社 | Highly strong, thick electric resistance-welded steel pipe excellent in quenching property, hot forming processability and fatigue strength, and method for manufacture thereof |
JP4837601B2 (en) * | 2006-03-09 | 2011-12-14 | 新日本製鐵株式会社 | Steel pipe for hollow parts and manufacturing method thereof |
JP2007262469A (en) * | 2006-03-28 | 2007-10-11 | Jfe Steel Kk | Steel pipe and its production method |
JP5303842B2 (en) * | 2007-02-26 | 2013-10-02 | Jfeスチール株式会社 | Manufacturing method of ERW welded steel pipe for heat treatment with excellent flatness |
JP5540646B2 (en) * | 2009-10-20 | 2014-07-02 | Jfeスチール株式会社 | Low yield ratio high strength ERW steel pipe and method for producing the same |
JP5845623B2 (en) * | 2010-05-27 | 2016-01-20 | Jfeスチール株式会社 | ERW steel pipe excellent in torsional fatigue resistance and manufacturing method thereof |
-
2013
- 2013-09-25 JP JP2013197819A patent/JP5867474B2/en active Active
-
2014
- 2014-09-24 EP EP14846979.4A patent/EP3018220B1/en active Active
- 2014-09-24 WO PCT/JP2014/004882 patent/WO2015045373A1/en active Application Filing
- 2014-09-24 KR KR1020167009089A patent/KR101766293B1/en active IP Right Grant
- 2014-09-24 CN CN201480051527.5A patent/CN105555976B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN105555976B (en) | 2017-10-10 |
EP3018220B1 (en) | 2018-08-29 |
JP2015062920A (en) | 2015-04-09 |
EP3018220A1 (en) | 2016-05-11 |
EP3018220A4 (en) | 2016-09-14 |
CN105555976A (en) | 2016-05-04 |
KR101766293B1 (en) | 2017-08-08 |
WO2015045373A1 (en) | 2015-04-02 |
KR20160055193A (en) | 2016-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4258678B1 (en) | Austenitic stainless steel | |
JP6156574B2 (en) | Thick and high toughness high strength steel sheet and method for producing the same | |
JP5223511B2 (en) | Steel sheet for high strength sour line pipe, method for producing the same and steel pipe | |
JP5303842B2 (en) | Manufacturing method of ERW welded steel pipe for heat treatment with excellent flatness | |
JP4853082B2 (en) | Steel plate for hydroforming, steel pipe for hydroforming, and production method thereof | |
JP2007262469A (en) | Steel pipe and its production method | |
JP5005543B2 (en) | High-strength thick-walled electric-welded steel pipe excellent in hardenability, hot workability and fatigue strength, and method for producing the same | |
WO2013058274A1 (en) | Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material | |
JP4860786B2 (en) | High-strength seamless steel pipe for machine structure with excellent toughness and its manufacturing method | |
JP5630322B2 (en) | High-tensile steel plate with excellent toughness and manufacturing method thereof | |
US20140003989A1 (en) | Duplex stainless steel | |
JP5867474B2 (en) | Manufacturing method of high carbon ERW welded steel pipe with excellent reliability of ERW welds | |
JP6261648B2 (en) | Ti-containing ferritic stainless steel sheet for exhaust pipe flange parts and manufacturing method | |
JP5668547B2 (en) | Seamless steel pipe manufacturing method | |
JP5630321B2 (en) | High-tensile steel plate with excellent toughness and manufacturing method thereof | |
CN114174547A (en) | High-strength steel sheet for acid-resistant line pipe, method for producing same, and high-strength steel pipe using high-strength steel sheet for acid-resistant line pipe | |
JP2013104065A (en) | Thick high-tensile strength steel plate excellent in low temperature toughness of weld zone and method for producing the same | |
KR102639340B1 (en) | Electric-resistance-welded steel pipe or tube for hollow stabilizer | |
JP6654328B2 (en) | High hardness and high toughness cold tool steel | |
JP5516780B2 (en) | ERW welded steel pipe for heat treatment with excellent flatness | |
JP4193308B2 (en) | Low carbon ferrite-martensitic duplex stainless steel welded steel pipe with excellent resistance to sulfide stress cracking | |
JP4241431B2 (en) | Ferritic stainless steel | |
JP7498416B1 (en) | Cr-Ni alloy tube | |
JP7160235B1 (en) | Hot shrinking ERW pipe | |
JP3235168B2 (en) | Manufacturing method of high strength electric resistance welded steel pipe for automobile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150610 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20150610 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20150819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150826 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5867474 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |