[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4474729B2 - Structural electric resistance welded steel pipe with excellent hydroforming properties and low weld softening - Google Patents

Structural electric resistance welded steel pipe with excellent hydroforming properties and low weld softening Download PDF

Info

Publication number
JP4474729B2
JP4474729B2 JP2000127075A JP2000127075A JP4474729B2 JP 4474729 B2 JP4474729 B2 JP 4474729B2 JP 2000127075 A JP2000127075 A JP 2000127075A JP 2000127075 A JP2000127075 A JP 2000127075A JP 4474729 B2 JP4474729 B2 JP 4474729B2
Authority
JP
Japan
Prior art keywords
steel pipe
steel
less
hydroforming
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000127075A
Other languages
Japanese (ja)
Other versions
JP2001303194A (en
Inventor
章男 登坂
裕二 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000127075A priority Critical patent/JP4474729B2/en
Publication of JP2001303194A publication Critical patent/JP2001303194A/en
Application granted granted Critical
Publication of JP4474729B2 publication Critical patent/JP4474729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、自動車の構造部材や足回り部材などに用いて好適な鋼管であって、とくにハイドロフォーミングにおける加工性(ハイドロフォーミング性)に優れるとともに、溶接部の軟化が少ない構造用電縫鋼管に関する。
【0002】
【従来の技術】
自動車用の構造部材として用いられる、種々の断面形状をもつ中空部材を製造するには、従来、鋼板のプレス加工によって成形した部品同士をその溶接代であるフランジ部でスポット溶接して接合する方法が採用されてきたが、品質の面でも、生産効率の面でも改善が求められていた。
一方、最近になり、構造用の中空部材に対して、衝突時のより高い衝撃吸収能が求められるようになり、素材として用いられる鋼板が一層高強度化してきた。このため、従来のプレス成形による方法では、成形欠陥のない、また成形品の形状や寸法精度が良好な部材を製造することが次第に困難になってきている。
【0003】
このような問題を解決するための新しい成形方法として、最近、ハイドロフォーミングが注目されている。ハイドロフォーミングは、鋼管の内部に高圧液体を注入して塑性加工を行う方法であり、鋼管の断面寸法を拡管加工などにより変化させて、複雑形状部材の一体成形をはかるとともに、強度・剛性を高める機能をもつ優れた成形法である。
ところで、ハイドロフォーミングに供される鋼管としては、一般に、C:0.20〜0.10%の中、低炭素鋼からなる素材で製造した電縫鋼管が用いられることが多い。
【0004】
【発明が解決しようとする課題】
しかしながら、かかるC量を含む電縫鋼管にハイドロフォーミングを施しても、素材そのものの加工性がよくないために、十分な拡管率が得られないという問題があった。なお、ハイドロフォーミングにおける拡管率を高めるには、管軸方向に軸力を加える方法もあるが、この方法は管が長手方向に大きく曲がっているようなデザインの管の成形の場合には有効ではない。
一方、電縫鋼管の素材そのものの加工性を高めるために、炭素量を著しく低減した極低炭素鋼を素材に用いることが考えられる。しかし、極低炭素電縫鋼管の場合には、高い延性を有しているものの、溶接に起因する別の問題が発生する。すなわち、極低炭素電縫鋼管では、鋼管製造時の電気抵抗溶接による溶接部の結晶粒が粗大化して軟化し、拡管成形での変形が局部的に集中して、素材がもつ高延性を十分に発揮できないこと、また、ハイドロフォームした部材を他の部材と溶接する場合にも同様な軟化が生じて、部材として必要な静的強度や疲労強度が得られなくなることなどである。
【0005】
そこで、本発明は、上述した従来技術が抱えていたこれらの問題に鑑み、ハイドロフォーミングに適した電縫鋼管についての新たな提案を行うものである。とくに、この発明は、ハイドロフォーミング性に優れるとともに、溶接による軟化を生じない、構造用電縫鋼管について提案することを目的とする。
また、本発明鋼管が目指す具体的な目標特性は、(鋼管のTS)×(管端固定条件での拡管率)で表したハイドロフォーミング性が 9000 MPa・%以上であり、溶接部の軟化抵抗を表す指標として用いる溶接部の最低硬さHv(min)と鋼管素材の硬さHv(素材)との比Hv(min) /Hv(素材)が0.9 以上であるものとする。
【0006】
【課題を解決するための手段】
発明者らは、上記課題を達成するために、電縫鋼管の成分組成、製造方法などについて種々の検討を重ねた。その結果、C量を0.01〜0.05%の範囲とした低炭素〜セミ極低炭素の素材を用い、これにTiを適正量添加すること、継ぎ目部を電気抵抗溶接して造管した後に絞り率0.3 〜10%のサイジング(縮径)を行うことが有効であることを見いだした。本発明は上記知見を基にして完成したものであり、その要旨構成は次のとおりである。
【0007】
(1)鋼組成が、質量%(以下単に、%)でC:0.01〜0.08%、Si:1.0%以下、Mn:3.0%以下、P:0.15%以下、S:0.015%以下、Al:0.01〜0.10%、Ti:0.21〜0.50%、かつTiは、CおよびNと、Ti:−0.05%以上、ただしTi=Ti(%)−(48/14)N(%)−(48/12)C(%)の関係を満たして含有し、残部はFeおよび不可避的不純物の鋼組成からなるスラブを熱間圧延した熱延鋼板または熱間圧延後さらに冷間圧延−焼鈍した冷延鋼板を素材とし、これを円筒状の形に成形し、両幅端部同士を突合せた継目部を電気抵抗溶接し、次いで、外周長の絞り率で0.3〜10%のサイジングを施した電縫鋼管であって、管端固定条件の下でのハイドロフォーミングによる拡管率(%)と鋼管のTS(MPa)がTS(MPa)×拡管率(%)≧9000MPa・%を満たし、溶接部の最低硬さHv(min)と鋼管素材の硬さHv(素材)との比Hv(min)/Hv(素材)が0.9以上であることを特徴とするハイドロフォーミング性に優れ、溶接部の軟化が少ない構造用電縫鋼管。
【0008】
(2)上記(1)において、鋼組成が、上記成分のほか、下記A群〜C群から選ばれる1種または2種以上を含有することを特徴とするハイドロフォーミング性に優れ、溶接部の軟化が少ない構造用電縫鋼管。

A群:Nb:0.005〜0.040%、B:0.0005〜0.020%のうちの1種または2種
B群:Ni:0.02〜1.0
C群:Ca:0.0020〜0.02%、REM:0.0020〜0.02%のうちの1種または2種
【0010】
なお、本発明ではNを積極的に添加しないが、上記のTiを求める際には、不可避的不純物として含有される0.005 %未満のN含有量を用いるものとする。
【0011】
【発明の実施の形態】
この発明における鋼成分の限定理由、電縫鋼管の製造方法などについて説明する。
C:0.01〜0.08%
Cは、鋼の強化に寄与する反面、成形性を低下させる元素であり、とくにC含有量が0.08%以上では成形性の低下が大きくなる。一方、0.01%に満たない含有量では、電縫鋼管製造時の抵抗溶接により、また、電縫鋼管を加工して製造された部品を組み立てる際のアーク溶接により、溶接部(溶接熱影響部)の結晶粒が粗大化し、不均一な変形のほか、静的強度や疲労強度の低下を招く。このため、C量は0.01〜0.08%の範囲とする。
【0012】
Si:1.0 %以下
Siは、鋼の強化に有用な元素であり、所望の強度に応じて添加する。しかし、1.0 %を超えて添加すると、鋼管素材の表面性状が顕著に悪化し、結果的にハイドロフォーム時の耐バースト性を低下させるので、1.0 %以下の範囲で添加する。
【0013】
Mn:3.0 %以下
Mnは、表面性状および溶接性を低下させることなく、鋼板ひいてはハイドロフォーミング部材の強度を向上させるのに有効な元素であるが、3.0 %を超える添加はハイドロフォーム時の拡管率を低下させる。したがって、Mn含有量は3.0 %以下とする。
【0014】
P:0.15%以下
Pは、強度の向上に有効な元素であるが、0.15%を超えて添加すると溶接性を顕著に劣化させる。とくに、Pによる強化作用がさほど必要ではないとき、またC量が高く溶接性の低下が懸念されるときには、0.02%以下に制限するのが望ましい。
【0015】
S:0.015 %以下
Sは、鋼中で非金属介在物として存在し、これが起点となってハイドロフォーム時に鋼管を破断させる恐れがある。このため、S量は低いほど耐バースト性が改善され0.015 %以下とすればその効果があらわれる。なお、耐バースト性の一層の向上には、好ましくは0.010 %以下、さらに好ましくは0.005 %以下に制限するのがよい。
【0016】
Al:0.01〜0.10%、
Alは、鋼の脱酸作用を有するほか、結晶粒の粗大化抑制のために有用な元素であるので、0.01%以上の添加が必要である。一方、0.1 %を超えて多量に添加しても、これらの効果が飽和するだけでなく、かえって鋼板の表面欠陥を生じてしまう。よって、Alは0.01〜0.10%、好ましくは0.02〜0.10%の範囲で含有させる。
【0017】
Ti:0.21〜0.50%、かつTi:−0.05以上、ただしTi=Ti(%)−(48/14)N(%)−(48/12)C(%)
Tiは、本発明において、素材の延性およびr値の改善を通じての鋼管の成形性向上に寄与するとともに、ハイドロフォーミング性の向上にも寄与するとくに重要な元素である。このような効果は、Ti量で0.21%以上、かつTiで−0.05%以上含有するときに得られる。しかし、Ti量が0.50%を超えて含有してもその効果が飽和するだけでなく、鋼の熱間変形抵抗を増大して製造性を阻害する。したがって、これらの元素は上記範囲で添加する。
【0018】
Nb:0.005 〜0.040 %、B:0.0005〜0.020 %
NbおよびBは、いずれも結晶粒の微細化に有用な元素である。このような効果は、Nb:0.005 %以上、B:0.0005%以上の添加であらわれる。一方、Nb:0.040 %、B:0.020 %を超えて添加してもその効果が飽和するだけでなく、鋼の熱間変形抵抗を増大して製造性を阻害する。したがって、これらの元素は上記範囲で添加する。
【0019】
i:0.02〜1.0
Niは、鋼管の延性を損なうことなく、強度を向上させるのに有用な元素である。このような効果は、いずれも0.02%以上の添加で得られる。一方、Niを、1.0%を超えて添加してもその効果が飽和し、コストの上昇を招くほか、鋼の熱間加工性および冷間加工性を低下させる。したがって、Niは上記範囲で添加する。
【0020】
Ca:0.0020〜0.02%、 REM:0.0020〜0.02%
Ca、 REMは、鋼中のSを主体とした非金属介在物の形態を球状にして、その切欠作用を減少して、耐バースト性を向上させるのに有用な元素である。こうした効果は、Ca、 REMともに0.0020%以上の添加で得られるが、0.02%を超えて添加しても効果が飽和するかやや低下する傾向となる。したがって、これら元素は上記範囲で添加する。なお、Ca、 REMの両者を併用する場合には合計量で0.03%以下の範囲で添加するのが好ましい。
【0021】
次に、本発明鋼管の必要特性について説明する。
鋼管の引張強度が小さいと、高い衝撃吸収能が得られず、また、ハイドロフォームによる拡管率が小さいと、ハイドロフォーミングにより成形できる形状が限定されてしまう。本発明では、これらの2つの特性がバランスしていることが必要である。また、ハイドロフォーミングでは、管の両端から水等の液体を供給し、液圧により管の内面から変形を行うが、管の両端を固定する場合(以下、管端固定という)と、管の両端から圧縮力を加える場合(以下、管端圧縮という)とがある。一般に、管端圧縮の方が高い拡管率を得ることができる。
本発明では、強度とハイドロフォーミング性とがバランスしていることが必要であることから、引張強度(MPa)×拡管率(%)が管端固定の場合で 9000 MPa・%以上であるものとする。
ここで拡管率は、外径do の鋼管を変形部長さlc =2do として、管端から管内面に液体を供給して液圧を負荷し、円形断面自由バルジ変形させ、バーストした時の最大外径dmax より、(dmax −do )/do ×100 で定義するものとする。
【0022】
この拡管率の測定は、例えば、図1および図2に示される金型2a,2bを、図3に示す構成のハイドロフォーミング加工装置を用いて、拡管を行なうことにより実施できる。
図1は金型の斜視図であり、図2は金型の断面図である。金型2a,2bはそれぞれ、長さ方向両端側は、鋼管の外径do に略等しい径の半筒状面で構成される鋼管保持部3を有し、長さ方向中央部には、径dc =2do の半円筒状変形部4および傾斜角θ=45°のテーパー状変形部5とよりなる変形部6を有し、変形部6の長さlc がdo の2倍となっている、上部金型2aおよび下部金型2bからなる。図3に示すように、この上部金型2aと下部金型2bとで、金型それぞれの鋼管保持部3に鋼管1が嵌まるように、鋼管1を挟み込む。この状態で、鋼管1の両端から該鋼管1の内面側に、軸押シリンダ7aを介して水等の液体を供給して、液圧Pを付与し、円形断面自由バルジ変形させてバーストした時の最大外径dmax を測定する。なお、図4中の8、9はそれぞれ金型2a、2bが鋼管を挟み込んだ状態に保持しておくための、金型ホルダ、アウターリングである。
【0023】
本発明において、拡管率は管端固定条件の下に測定するものとする。このため、管端が軸方向に移動しないようにする必要があり、例えば、軸押シリンダ7a、7bに鋼管1の両端をボルト締め等により固定するとともに、液圧負荷中に、軸押シリンダ7a、7bを鋼管1の軸方向に移動しないように固定することにより実施できる。
【0024】
次に、本発明鋼管の製造方法について説明する。まず、上述した成分組成にしたがう鋼を溶製した後、連続鋳造法あるいは造塊−分塊法によりスラブとする。次いでこのスラブを、熱間圧延により熱延鋼板とするか、熱間圧延の後、さらに冷間圧延−焼鈍により冷延鋼板とする。このようにして得られた熱延鋼板または冷延鋼板を素材として、ロール成形または曲げ加工により、ほぼ円筒状の形に成形し、両幅端部同士を突き合わせた継目部を電気抵抗溶接(電縫溶接)にて接合する。
電気抵抗溶接に次いで、外周長の絞り率で0.3 〜10%のサイジングを行う。サイジングの目的は、電縫鋼管をハイドロフォーミングに供するために、十分な形状精度を得ることと、材料変形の均一性を確保することにある。このような目的を達成するには、少なくとも外周長の絞り率で0.3 %は必要であるが、10%を超えて行うと鋼管が顕著に加工硬化し、ハイドロフォーミング性の低下を招いてしまう。したがって、電気抵抗溶接後は、外周長の絞り率で0.3 〜10%のサイジングを行うものとする。
【0025】
【実施例】
表1、表2に示す化学成分の鋼を溶製してスラブとした。このスラブを1220℃に加熱後、熱間圧延して板厚2.0 mmの熱延鋼板とするか、または、熱間圧延に引き続き、酸洗−冷間圧延−連続焼鈍の工程により板厚2.0 mmの冷延鋼板とした。
これらの熱延鋼板または冷延鋼板を、円筒状に成形後、その継目部を電気抵抗溶接して、直径63.5mm、肉厚2.0 mmの鋼管とし、次いで外周長の絞り率で2%のサイジング(縮径)を行った。
【0026】
得られた電縫鋼管より、JIS12号試験片を採取し、鋼管の引張強度を調査した。また、鋼管を500 mmの長さに切断し、ハイドロフォーム用の試験体とした。この試験体を、図1〜3に示したように、両端拘束して管端部から水を供給して、水圧により円形断面自由バルジ変形させて、バーストしたときの最大の拡管率を測定した。ここで、金型寸法は、図2におけるlc が 127.0mm、dc が 127.0mm、rd が5mm、lo が 550mm、θが45°のものとした。また、試験体を変形させるに当たっては、金型と試験体表面(外周面)との間に粘度800cst の潤滑剤を介在させた。そして、各電縫鋼管の特性は、拡管率だけでなく、鋼管強度とのバランスを考慮して、強度×拡管率でも表した。
各電縫鋼管の特性は、拡管率だけでなく、鋼管強度とのバランスを考慮して、鋼管強度×拡管率でも表した。
【0027】
さらに、ハイドロフォーミングのあと、溶接により部品に組付ける場合を想定して、アーク溶接による溶接部の強度を評価した。溶接条件は以下のとおりとした。
・溶接ワイヤ:JIS YGW15相当
・溶接ワイヤ径:1.2 mm
・シールドガス:Ar−20体積%CO
・ガス流量:40 l/min
・溶接電流:200 〜220 A
・アーク電圧:18〜19V
・溶接速度:80〜100 cm/min
・被溶接材形状:電縫鋼管と板厚2mmの冷延鋼板(鋼組成は電縫鋼管と同一)との突き合わせ溶接(図4参照)
ここに、静的強度、疲労強度は、ともに素材の硬度Hv (素材)に対する溶接熱影響部(HAZ)の最軟化部の硬度Hv (min)の比に依存することを確認したので、溶接部の強度として硬度の比、Hv (min)/Hv (素材)で評価した。
【0028】
得られた結果を表1、表2に併せて示す。これらの表から、本発明にしたがう電縫鋼管は、鋼管強度×拡管率が高く、ハイドロフォーミング性が優れているとともに、Hv(min )/Hv(素材)が高く、静的強度や疲労強度も良好であることがわかる。
一方、化学成分が適正でない比較例は、ハイドロフォーミング性が劣るか、溶接部の軟化が大きく静的強度や疲労強度に難点がある。
【0029】
【表1】

Figure 0004474729
【0030】
【表2】
Figure 0004474729
【0031】
また、表1中の管No. 3の鋼管について、サイジングの際の絞り率を0.1 〜12%の間で変化させた場合の、拡管試験結果を表3に示す。
表3より、サイジング時の絞り率が0.3 〜10%の範囲内であると、TS×拡管率が9000 MPa・%以上となることがわかる。
【0032】
【表3】
Figure 0004474729
【0033】
【発明の効果】
以上説明したように、本発明によれば、ハイドロフォーミング性に優れ、しかも溶接部の軟化が少なく溶接による強度低下が少ない電縫鋼管を提供できる。したがって、本発明は、ハイドロフォーム後に、溶接することにより製造される構造部材の品質、安定生産に大きく貢献する。
【図面の簡単な説明】
【図1】自由バルジ試験に用いる金型を示す斜視図である。
【図2】自由バルジ試験に用いる金型を示す断面図である。
【図3】自由バルジ試験に用いるハイドロフォーミング加工装置の構成の例を示す断面図である。
【図4】被溶接材の形状を示す斜視図である。[0001]
BACKGROUND OF THE INVENTION
This invention provides a suitable steel using such a structural member or chassis member of a motor vehicle, particularly excellent in workability (hydroforming property) in hydroforming, electric resistance welded steel pipe for softening a small structure of the weld about the.
[0002]
[Prior art]
In order to manufacture hollow members having various cross-sectional shapes used as structural members for automobiles, a conventional method is to join parts formed by press working of steel plates by spot welding at the flange portion which is the welding allowance. Have been adopted, but improvements have been demanded both in terms of quality and production efficiency.
On the other hand, recently, higher impact absorbing ability at the time of collision has been demanded for structural hollow members, and steel sheets used as raw materials have been further strengthened. For this reason, it is becoming increasingly difficult to manufacture a member having no molding defects and having a good shape and dimensional accuracy in the conventional press molding method.
[0003]
Recently, hydroforming has attracted attention as a new molding method for solving such problems. Hydroforming is a method of plastic processing by injecting high-pressure liquid into the inside of a steel pipe, and by changing the cross-sectional dimension of the steel pipe by pipe expansion processing, etc., it is possible to integrally form complex shaped members and increase strength and rigidity. It is an excellent molding method with functions.
By the way, as a steel pipe used for hydroforming, generally, an electric resistance steel pipe manufactured with a material made of low carbon steel in C: 0.20 to 0.10% is often used.
[0004]
[Problems to be solved by the invention]
However, even when hydroforming is performed on an ERW steel pipe containing such an amount of C, there is a problem that a sufficient tube expansion rate cannot be obtained because the workability of the material itself is not good. In order to increase the tube expansion ratio in hydroforming, there is a method of applying axial force in the tube axis direction, but this method is not effective when forming a tube with a design in which the tube is greatly bent in the longitudinal direction. Absent.
On the other hand, in order to improve the workability of the material itself of the electric resistance welded steel pipe, it is conceivable to use an ultra-low carbon steel with a significantly reduced carbon content as the material. However, in the case of an ultra-low carbon ERW steel pipe, although it has high ductility, another problem caused by welding occurs. In other words, in ultra-low carbon ERW steel pipes, the crystal grains of the welded part due to electric resistance welding during steel pipe production are coarsened and softened, and deformation during tube expansion is concentrated locally, so that the high ductility of the material is sufficient. In addition, when a hydroformed member is welded to another member, similar softening occurs, and static strength and fatigue strength necessary for the member cannot be obtained.
[0005]
Therefore, in view of these problems that the above-described prior art has, the present invention proposes a new proposal for an electric resistance welded steel pipe suitable for hydroforming. In particular, an object of the present invention is to propose a structural electric-welded steel pipe that has excellent hydroforming properties and does not cause softening due to welding.
The specific target characteristics of the steel pipe of the present invention are as follows: Hydroforming property expressed by (TS of steel pipe) x (pipe expansion ratio under pipe end fixing conditions) is 9000 MPa ·% or more, and softening resistance of welds It is assumed that the ratio Hv (min) / Hv (material) between the minimum hardness Hv (min) of the welded portion used as an index indicating the hardness and the hardness Hv (material) of the steel pipe material is 0.9 or more.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned problems, the inventors have made various studies on the composition of the ERW steel pipe, the manufacturing method, and the like. As a result, using a low carbon to semi-very low carbon material with a C content in the range of 0.01 to 0.05%, adding an appropriate amount of Ti to this, drawing the pipe joint by electrical resistance welding of the seam portion It was found that sizing (reducing diameter) of 0.3 to 10% is effective. The present invention has been completed based on the above findings, and the gist of the present invention is as follows.
[0007]
(1) Steel composition in mass% (hereinafter simply referred to as%) C: 0.01 to 0.08%, Si: 1.0% or less, Mn: 3.0% or less, P: 0.15% or less , S: 0.015% or less, Al: 0.01~0.10%, Ti: 0.21 ~0.50%, and Ti has a C and N, Ti *: -0.05% or more, However, Ti * = Ti (%)-(48/14) N (%)-(48/12) C (%) is satisfied and contained, and the balance is a slab composed of a steel composition of Fe and inevitable impurities. Hot-rolled steel sheet that has been hot-rolled or cold-rolled steel sheet that has been cold-rolled and annealed after hot-rolling is formed into a cylindrical shape, and the seam part where both width ends are butted together is resistance-welded and, then, a electric resistance welded steel pipe subjected 0.3 to 10% of the sizing aperture ratio of the peripheral length, Hydro under tube end fixed conditions Omingu TS of expansion ratio (%) and steel (MPa) is less than the TS (MPa) × expansion ratio (%) ≧ 9000 MPa ·% by minimum weld hardness Hv (min) and of the steel pipe material hardness Hv A structural electric resistance welded steel pipe having excellent hydroforming properties and low softening of welds, characterized in that the ratio Hv (min) / Hv (material) to (material) is 0.9 or more .
[0008]
(2) In the above (1), the steel composition contains one or more selected from the following group A to group C, in addition to the above components, and is excellent in hydroforming properties, and has a welded portion. ERW steel pipe for structural use with little softening.
Serial Group A: Nb: 0.005~0.040%, B: 0.0005~0.020% 1 kind of or two or Group B: N i: 0.02~1.0%
Group C: Ca: 0.0020-0.02%, REM: One or two of 0.0020-0.02%
In the present invention, N is not actively added, but when obtaining the above Ti * , an N content of less than 0.005% contained as an unavoidable impurity is used.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The reason for limiting the steel components in the present invention, the method for producing the ERW steel pipe, etc. will be described.
C: 0.01-0.08%
C contributes to the strengthening of the steel, but is an element that lowers the formability. In particular, when the C content is 0.08% or more, the formability is greatly reduced. On the other hand, when the content is less than 0.01%, a welded part (welding heat affected zone) is produced by resistance welding during the manufacture of ERW pipes and by arc welding when assembling parts manufactured by machining ERW pipes. The crystal grains become coarse, resulting in non-uniform deformation as well as a decrease in static strength and fatigue strength. For this reason, C amount is taken as 0.01 to 0.08% of range.
[0012]
Si: 1.0% or less
Si is an element useful for strengthening steel, and is added depending on the desired strength. However, if added over 1.0%, the surface properties of the steel pipe material are significantly deteriorated, and as a result, the burst resistance during hydroforming is lowered. Therefore, it is added in the range of 1.0% or less.
[0013]
Mn: 3.0% or less
Mn is an element effective for improving the strength of the steel sheet and thus the hydroforming member without deteriorating the surface properties and weldability. However, the addition of more than 3.0% lowers the tube expansion rate during hydroforming. Therefore, the Mn content is 3.0% or less.
[0014]
P: 0.15% or less P is an element effective for improving the strength, but if added over 0.15%, the weldability is remarkably deteriorated. In particular, when the strengthening action by P is not so necessary, or when there is a concern about a decrease in weldability due to a high C content, it is desirable to limit it to 0.02% or less.
[0015]
S: 0.015% or less S is present as a non-metallic inclusion in steel, and this may be the starting point and break the steel pipe during hydroforming. For this reason, the lower the amount of S, the better the burst resistance. If the S content is 0.015% or less, the effect is exhibited. In order to further improve the burst resistance, it is preferably limited to 0.010% or less, more preferably 0.005% or less.
[0016]
Al: 0.01-0.10%,
In addition to deoxidizing steel, Al is a useful element for suppressing the coarsening of crystal grains, so it is necessary to add 0.01% or more. On the other hand, adding a large amount exceeding 0.1% not only saturates these effects but also causes surface defects of the steel sheet. Therefore, Al is contained in the range of 0.01 to 0.10%, preferably 0.02 to 0.10%.
[0017]
Ti: 0.21 to 0.50% and Ti * : −0.05 or more, provided that Ti * = Ti (%) − (48/14) N (%) − (48/12) C (%)
In the present invention, Ti is a particularly important element that contributes to the improvement of the formability of the steel pipe through the improvement of the ductility and r value of the material and also contributes to the improvement of the hydroforming property. Such an effect is obtained when the Ti content is 0.21 % or more and the Ti * content is −0.05% or more. However, even if the Ti content exceeds 0.50%, not only the effect is saturated, but also the hot deformation resistance of the steel is increased to impair the productivity. Therefore, these elements are added in the above range.
[0018]
Nb: 0.005 to 0.040%, B: 0.0005 to 0.020%
Nb and B are both useful elements for crystal grain refinement. Such an effect appears when Nb is 0.005% or more and B is 0.0005% or more. On the other hand, the addition of Nb exceeding 0.040% and B: 0.020% not only saturates the effect, but also increases the hot deformation resistance of the steel and impairs manufacturability. Therefore, these elements are added in the above range.
[0019]
N i: 0.02~1.0%
Ni is an element useful for improving the strength without impairing the ductility of the steel pipe. Such an effect can be obtained by adding 0.02% or more. On the other hand, even if Ni is added in excess of 1.0% , the effect is saturated, resulting in an increase in cost, and the hot workability and cold workability of the steel are lowered. Therefore, Ni is added in the above range.
[0020]
Ca: 0.0020-0.02%, REM: 0.0020-0.02%
Ca and REM are useful elements for improving the burst resistance by reducing the notch action of the non-metallic inclusions mainly composed of S in the steel and making them spherical. Such an effect can be obtained by adding 0.0020% or more of both Ca and REM, but even if added over 0.02%, the effect tends to be saturated or slightly reduced. Therefore, these elements are added in the above range. When both Ca and REM are used in combination, it is preferable to add in a total amount of 0.03% or less.
[0021]
Next, necessary characteristics of the steel pipe of the present invention will be described.
If the tensile strength of the steel pipe is small, a high impact absorbing ability cannot be obtained, and if the expansion ratio by hydroforming is small, the shape that can be formed by hydroforming is limited. In the present invention, it is necessary that these two characteristics are balanced. In hydroforming, a liquid such as water is supplied from both ends of the tube, and deformation is performed from the inner surface of the tube by hydraulic pressure. When both ends of the tube are fixed (hereinafter referred to as tube end fixing), both ends of the tube are fixed. In some cases, the compression force is applied (hereinafter referred to as tube end compression). In general, the tube expansion rate can provide a higher tube expansion rate.
In the present invention, since it is necessary to balance strength and hydroforming properties, the tensile strength (MPa) x tube expansion rate (%) is 9000 MPa ·% or more when the tube end is fixed. To do.
Here, the pipe expansion rate is the maximum outer diameter when a steel pipe with an outer diameter do is deformed part length l c = 2 do, liquid is supplied from the pipe end to the inner surface of the pipe, the hydraulic pressure is applied, the circular cross section is freely deformed, and bursts. From the diameter dmax, it is defined as (dmax -do) / do x100.
[0022]
The pipe expansion rate can be measured by, for example, expanding the pipes 2a and 2b shown in FIGS. 1 and 2 using the hydroforming apparatus having the configuration shown in FIG.
FIG. 1 is a perspective view of a mold, and FIG. 2 is a cross-sectional view of the mold. Each of the molds 2a and 2b has a steel pipe holding portion 3 composed of a semi-cylindrical surface having a diameter substantially equal to the outer diameter do of the steel pipe at both ends in the length direction. a deformable portion 6 comprising a semicylindrical deformable portion 4 with dc = 2 do and a tapered deformable portion 5 with an inclination angle θ = 45 °, and the length lc of the deformable portion 6 is twice as long as do. It consists of an upper mold 2a and a lower mold 2b. As shown in FIG. 3, the steel pipe 1 is sandwiched between the upper mold 2a and the lower mold 2b so that the steel pipe 1 fits in the steel pipe holding portion 3 of each mold. In this state, when a liquid such as water is supplied from both ends of the steel pipe 1 to the inner surface side of the steel pipe 1 via the axial cylinder 7a, and a hydraulic pressure P is applied, and a circular cross section free bulge is deformed and burst. The maximum outer diameter dmax is measured. In addition, 8 and 9 in FIG. 4 are a mold holder and an outer ring for holding the molds 2a and 2b in a state of sandwiching the steel pipe, respectively.
[0023]
In the present invention, the tube expansion rate is measured under tube end fixing conditions. For this reason, it is necessary to prevent the tube end from moving in the axial direction. For example, both ends of the steel pipe 1 are fixed to the shaft pressing cylinders 7a and 7b by bolting or the like, and the shaft pressing cylinder 7a is subjected to a hydraulic load. , 7b can be carried out by fixing the steel pipe 1 so as not to move in the axial direction.
[0024]
Next, the manufacturing method of this invention steel pipe is demonstrated. First, after melting steel in accordance with the above-described component composition, a slab is formed by a continuous casting method or an ingot-bundling method. Subsequently, this slab is made into a hot-rolled steel sheet by hot rolling or, after hot rolling, is further made into a cold-rolled steel sheet by cold rolling-annealing. Using the hot-rolled steel sheet or cold-rolled steel sheet obtained in this way as a raw material, it is formed into a substantially cylindrical shape by roll forming or bending, and the seam part where both width end parts are butted together is electrically resistance welded (electrical Join together by sewing).
Following electrical resistance welding, sizing of 0.3 to 10% is performed with the drawing ratio of the outer peripheral length. The purpose of sizing is to obtain sufficient shape accuracy and to ensure uniformity of material deformation in order to use the ERW steel pipe for hydroforming. In order to achieve such an objective, at least 0.3% is required for the drawing ratio of the outer peripheral length, but if it exceeds 10%, the steel pipe is remarkably work-hardened and the hydroforming property is lowered. Therefore, after electric resistance welding, sizing of 0.3 to 10% is performed at the drawing ratio of the outer peripheral length.
[0025]
【Example】
Steels having chemical components shown in Tables 1 and 2 were melted to form slabs. This slab is heated to 1220 ° C. and then hot rolled to obtain a hot rolled steel sheet having a thickness of 2.0 mm, or, following hot rolling, a thickness of 2.0 mm is obtained by pickling, cold rolling, and continuous annealing processes. The cold-rolled steel sheet.
After forming these hot-rolled steel sheets or cold-rolled steel sheets into a cylindrical shape, the seam is electrically resistance welded to form a steel pipe having a diameter of 63.5 mm and a wall thickness of 2.0 mm, and then a sizing of 2% with a drawing ratio of the outer peripheral length. (Shrinking) was performed.
[0026]
From the obtained electric resistance welded steel pipe, a JIS No. 12 test piece was collected, and the tensile strength of the steel pipe was investigated. Moreover, the steel pipe was cut | disconnected to the length of 500 mm, and it was set as the test body for hydroforms. As shown in FIGS. 1 to 3, this test body was constrained at both ends, water was supplied from the end of the pipe, a circular cross section free bulge was deformed by water pressure, and the maximum tube expansion rate when bursting was measured. . Here, the mold dimensions in FIG. 2 are that lc is 127.0 mm, dc is 127.0 mm, rd is 5 mm, lo is 550 mm, and θ is 45 °. Further, in deforming the test body, a lubricant having a viscosity of 800 cst was interposed between the mold and the surface (outer peripheral surface) of the test body. And the characteristic of each electric resistance welded steel pipe was expressed not only by the pipe expansion ratio but also by the strength × the pipe expansion ratio in consideration of the balance with the steel pipe strength.
The characteristics of each electric resistance welded steel pipe are expressed not only by the pipe expansion ratio but also by the steel pipe strength x the pipe expansion ratio in consideration of the balance with the steel pipe strength.
[0027]
Furthermore, the strength of the welded part by arc welding was evaluated on the assumption that the part was assembled by welding after hydroforming. The welding conditions were as follows.
-Welding wire: JIS YGW15 equivalent-Welding wire diameter: 1.2 mm
Shield gas: Ar-20% by volume CO 2
・ Gas flow rate: 40 l / min
・ Welding current: 200 to 220 A
・ Arc voltage: 18-19V
-Welding speed: 80-100 cm / min
-Material to be welded: Butt weld between ERW steel pipe and cold-rolled steel sheet with a thickness of 2 mm (steel composition is the same as ERW steel pipe) (see Fig. 4)
Here, since it was confirmed that both static strength and fatigue strength depend on the ratio of the hardness Hv (min) of the softest part of the weld heat affected zone (HAZ) to the hardness Hv (material) of the material, The hardness ratio was evaluated by the hardness ratio, Hv (min) / Hv (material).
[0028]
The obtained results are also shown in Tables 1 and 2. From these tables, the ERW steel pipe according to the present invention has a high steel pipe strength × expansion rate, excellent hydroforming properties, high Hv (min) / Hv (material), static strength and fatigue strength. It turns out that it is favorable.
On the other hand, the comparative example in which the chemical component is not appropriate has poor hydroforming properties or has a large softening of the welded portion and has a difficulty in static strength and fatigue strength.
[0029]
[Table 1]
Figure 0004474729
[0030]
[Table 2]
Figure 0004474729
[0031]
Table 3 shows the results of the pipe expansion test when the sizing ratio of the steel pipe No. 3 in Table 1 was changed between 0.1 and 12%.
From Table 3, it can be seen that if the drawing ratio during sizing is within the range of 0.3 to 10%, the TS × tube expansion ratio is 9000 MPa ·% or more.
[0032]
[Table 3]
Figure 0004474729
[0033]
【The invention's effect】
As described above, according to the present invention, it is possible to provide an electric-welded steel pipe that is excellent in hydroforming properties and that has little softening of the welded portion and less strength reduction due to welding. Therefore, the present invention greatly contributes to the quality and stable production of structural members manufactured by welding after hydroforming.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a mold used for a free bulge test.
FIG. 2 is a cross-sectional view showing a mold used for a free bulge test.
FIG. 3 is a cross-sectional view showing an example of the configuration of a hydroforming apparatus used for a free bulge test.
FIG. 4 is a perspective view showing a shape of a material to be welded.

Claims (2)

鋼組成が、質量%で
C:0.01〜0.08%、
Si:1.0%以下、
Mn:3.0%以下、
P:0.15%以下、
S:0.015%以下、
Al:0.01〜0.10%、
Ti:0.21〜0.50%、
かつTiは、CおよびNと、Ti:−0.05%以上、
ただしTi=Ti(%)−(48/14)N(%)−(48/12)C(%)
の関係を満たして含有し、残部はFeおよび不可避的不純物の鋼組成からなるスラブを熱間圧延した熱延鋼板または熱間圧延後さらに冷間圧延−焼鈍した冷延鋼板を素材とし、これを円筒状の形に成形し、両幅端部同士を突合せた継目部を電気抵抗溶接し、次いで、外周長の絞り率で0.3〜10%のサイジングを施した電縫鋼管であって、管端固定条件の下でのハイドロフォーミングによる拡管率(%)と鋼管のTS(MPa)がTS(MPa)×拡管率(%)≧9000MPa・%を満たし、溶接部の最低硬さHv(min)と鋼管素材の硬さHv(素材)との比Hv(min)/Hv(素材)が0.9以上であることを特徴とするハイドロフォーミング性に優れ、溶接部の軟化が少ない構造用電縫鋼管。
Steel composition is C: 0.01-0.08% by mass%,
Si: 1.0% or less,
Mn: 3.0% or less,
P: 0.15% or less,
S: 0.015% or less,
Al: 0.01 to 0.10%,
Ti: 0.21 to 0.50%,
And Ti is C and N, Ti * : -0.05% or more,
However, Ti * = Ti (%)-(48/14) N (%)-(48/12) C (%)
The balance is contained, and the balance is a hot-rolled steel sheet hot-rolled with a slab comprising a steel composition of Fe and inevitable impurities, or a cold-rolled steel sheet further cold-rolled and annealed after hot rolling, An electric resistance welded steel pipe formed into a cylindrical shape, subjected to electrical resistance welding at the joint part where both width ends are butted together, and then subjected to sizing of 0.3 to 10% at the drawing ratio of the outer peripheral length, Tube expansion rate (%) by hydroforming under tube end fixing conditions and TS (MPa) of steel pipe satisfy TS (MPa) x tube expansion rate (%) ≧ 9000 MPa ·%, and minimum hardness Hv (min ) And the hardness Hv (material) of the steel pipe material Hv (min) / Hv (material) is 0.9 or more, and has excellent hydroforming properties and less softening of welds Sewn steel pipe.
請求項1において、鋼組成が、上記成分のほか、下記A群〜C群から選ばれる1種または2種以上を含有することを特徴とするハイドロフォーミング性に優れ、溶接部の軟化が少ない構造用電縫鋼管。

A群:Nb:0.005〜0.040%、B:0.0005〜0.020%のうちの1種または2種
B群:Ni:0.02〜1.0
C群:Ca:0.0020〜0.02%、REM:0.0020〜0.02%のうちの1種または2種
2. The structure according to claim 1, wherein the steel composition contains one or more selected from the following group A to group C in addition to the above components, and has excellent hydroforming properties and little softening of the welded portion. ERW steel pipe.
Serial Group A: Nb: 0.005~0.040%, B: 0.0005~0.020% 1 kind of or two or Group B: N i: 0.02~1.0%
Group C: Ca: 0.0020 to 0.02%, REM: One or two of 0.0020 to 0.02%
JP2000127075A 2000-04-27 2000-04-27 Structural electric resistance welded steel pipe with excellent hydroforming properties and low weld softening Expired - Fee Related JP4474729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000127075A JP4474729B2 (en) 2000-04-27 2000-04-27 Structural electric resistance welded steel pipe with excellent hydroforming properties and low weld softening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000127075A JP4474729B2 (en) 2000-04-27 2000-04-27 Structural electric resistance welded steel pipe with excellent hydroforming properties and low weld softening

Publications (2)

Publication Number Publication Date
JP2001303194A JP2001303194A (en) 2001-10-31
JP4474729B2 true JP4474729B2 (en) 2010-06-09

Family

ID=18636739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000127075A Expired - Fee Related JP4474729B2 (en) 2000-04-27 2000-04-27 Structural electric resistance welded steel pipe with excellent hydroforming properties and low weld softening

Country Status (1)

Country Link
JP (1) JP4474729B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5867474B2 (en) * 2013-09-25 2016-02-24 Jfeスチール株式会社 Manufacturing method of high carbon ERW welded steel pipe with excellent reliability of ERW welds

Also Published As

Publication number Publication date
JP2001303194A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
KR100878731B1 (en) Welded steel pipe with excellent hydroforming property and manufacturing method
JP6447752B2 (en) Automotive parts having resistance welds
JP5391656B2 (en) High tensile welded steel pipe for automobile parts and manufacturing method thereof
JP3975852B2 (en) Steel pipe excellent in workability and manufacturing method thereof
JP2006299398A (en) Method for producing high-strength steel sheet having tensile strength of 760 MPa or more excellent in strain aging characteristics, and method for producing high-strength steel pipe using the same
JP2006021216A (en) Method for manufacturing tailored blank press molded parts
JP5732999B2 (en) High-strength ERW steel pipe and manufacturing method thereof
JP4474729B2 (en) Structural electric resistance welded steel pipe with excellent hydroforming properties and low weld softening
KR100884515B1 (en) Welded steel pipe with excellent hydroforming property and manufacturing method
JP4474731B2 (en) Structural electric resistance welded steel pipe with excellent hydroforming properties and strain aging
JP3965563B2 (en) Welded steel pipe excellent in hydroforming property and manufacturing method thereof
JP4399954B2 (en) Structural electric resistance welded steel pipe excellent in hydroforming property and manufacturing method thereof
JP4474730B2 (en) Manufacturing method of structural electric resistance welded steel pipe with excellent hydroforming properties
JP4474728B2 (en) Structural electric resistance welded steel pipe having excellent hydroforming property and precipitation strengthening ability, method for producing the same, and method for producing hydroformed members
JP4461626B2 (en) Manufacturing method of steel pipe for hydroforming having strain aging
JP4419336B2 (en) Manufacturing method of steel pipe for hydroforming having strain aging
KR20240161814A (en) Steel pipe and its manufacturing method
JP3610827B2 (en) Welded steel pipe excellent in workability and manufacturing method thereof
JP4126950B2 (en) Welded steel pipe excellent in hydroforming property and manufacturing method thereof
JP2009142827A (en) Ferritic stainless steel welded pipe excellent in pipe expansion workability and manufacturing method thereof
JP3265591B2 (en) High-strength ERW steel pipe for automobiles with excellent weld toughness
JP7700594B2 (en) Electric resistance welded steel pipe and its manufacturing method
JP4126949B2 (en) Welded steel pipe excellent in hydroforming property and manufacturing method thereof
JP4244749B2 (en) Welded steel pipe excellent in hydroforming property and burring property and manufacturing method thereof
JP2004010922A (en) Tailored steel pipe with excellent hydroformability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees