[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5778448B2 - 硬化成型体用樹脂組成物及び硬化成型体 - Google Patents

硬化成型体用樹脂組成物及び硬化成型体 Download PDF

Info

Publication number
JP5778448B2
JP5778448B2 JP2011057756A JP2011057756A JP5778448B2 JP 5778448 B2 JP5778448 B2 JP 5778448B2 JP 2011057756 A JP2011057756 A JP 2011057756A JP 2011057756 A JP2011057756 A JP 2011057756A JP 5778448 B2 JP5778448 B2 JP 5778448B2
Authority
JP
Japan
Prior art keywords
group
compound
resin composition
molded body
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011057756A
Other languages
English (en)
Other versions
JP2012193265A (ja
Inventor
稔 浦田
稔 浦田
潤一 中村
潤一 中村
愛 松本
愛 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2011057756A priority Critical patent/JP5778448B2/ja
Publication of JP2012193265A publication Critical patent/JP2012193265A/ja
Application granted granted Critical
Publication of JP5778448B2 publication Critical patent/JP5778448B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Eyeglasses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、硬化成型体用樹脂組成物及び硬化成型体に関する。より詳しくは、例えば、光学部材、機械部品、電気・電子部品、自動車部品、土木建築材料等の各種用途に適用される硬化成型体用樹脂組成物、及び、硬化成型体用樹脂組成物を硬化させて得られる硬化成型体に関する。
硬化成型体は、樹脂組成物を加熱や光照射によって硬化・成型(成形)して得られる硬化物であり、光学部材、機械部品、電気・電子部品、自動車部品、土木建築材料等の各種用途に適用されているが、それを形成する硬化性樹脂組成物について、種々開発がなされている。例えば、無機物質が含有された樹脂組成物は、熱膨張率を低下させることができるだけでなく、無機物質と樹脂との屈折率を合わせることで樹脂組成物及びその硬化物の外観を制御し、透明性を発現させることもできることから、電気・電子部品や光学部材用途の硬化成型体を得るための材料として特に有用である。これらの用途では、例えばデジタルカメラモジュールが携帯電話に搭載される等、硬化物の小型化が進んでおり、また低コスト化も求められているため、無機ガラスに代えて、アクリル樹脂(PMMA)、ポリカーボネート(PC)やポリシクロオレフィン等の熱可塑性樹脂を用いたプラスチックレンズの採用が進んでいる。また近年では、車載用カメラ、監視カメラ、表示素子(LED等)等の屋外でも使用できる用途への適用が検討されているが、屋外使用用途では、長時間の紫外線照射や夏期の高温暴露の他、砂塵や洗浄液等の外部環境への耐性、すなわち高いレベルの耐熱性や耐磨耗性、耐光性等が要求されることになる。しかし、熱可塑性樹脂を用いた硬化物ではこれらの性能が充分ではなく、砂塵や洗浄液等によってスクラッチや磨耗が生じるため、上層にハードコート膜を設けたり、カバーガラス(無機ガラス)を設けることが必要であり、非常に高価となる。また、タッチパネル等の物理的接触のあるセンサーに供する光学部材にも強度が必要である。
一方、熱硬化性樹脂を用いた硬化物に関する技術も検討されており、反応性の高いエポキシ化合物を硬化した硬化物が種々開発されている。しかし、エポキシ化合物は接着性・密着性に優れるという特性を有するため、離型性が充分ではなく、例えば金型を用いて成型体を得るといった手法に好適に適用することができない。そこで、離型剤の併用によって寸法精度が高く金型転写性に優れる成型体を得る手法が開発されており、例えば、有機樹脂と、炭素数8〜36のアルコール、カルボン酸、カルボン酸エステル及びカルボン酸塩からなる群より選択される少なくとも1種の化合物とを含有する透明有機樹脂組成物が開示されている(特許文献1等参照。)。
また硬化物の耐熱性や機械的特性を改善・向上するための技術として、有機樹脂成分としてエポキシ基含有化合物を必須とし、無機成分としてオルガノシロキサン化合物を必須とする樹脂組成物が開示されている(特許文献2等参照。)。特許文献2には、官能基を有するポリシロキサン化合物を用いると、常温でも粘度が経時的に増加し、更にエポキシ化合物は硬化反応性が高いため、これらを併用した場合には顕著に増粘・ゲル化が起こるが、反応性の低い有機基を官能基として有するオルガノシロキサン化合物を用いれば、耐熱性や機械的特性を改善しながら、増粘・ゲル化の抑制を実現できる旨が記載されている。
また一般にシロキサン樹脂は、透明性、耐光性に優れる一方、硬化物の硬度が低いという課題があるが、このような課題を解決し得る樹脂組成物として、特定の有機基を有するカルボキシル基含有ポリシロキサン、エポキシ化合物及び/又はオキセタン化合物、硬化剤を含有するシロキサン樹脂組成物が開示されている(特許文献3等参照。)。特許文献3には、このようなシロキサン樹脂組成物を用いることで、高い透明度及び硬度を有する硬化物が得られ、また、このような樹脂組成物は作業性に優れる一液硬化型樹脂組成物として使用可能である旨記載されている。
特開2008−088249号公報(第2頁等) 特開2008−133442号公報(第2、4〜5頁等) 特開2009−079219号公報(第1〜4頁等)
上記のように、種々の硬化性樹脂組成物が検討されており、例えば特許文献1や2のように、透明性や耐久性に優れ、光学用途を始めとする各種用途に極めて有用な樹脂組成物及びその硬化物に関する技術が開発されている。
ところで、硬化性樹脂を成型する方法としては一般に、樹脂組成物を金型等に注型した後加熱や光照射によって硬化させる方法が用いられるが、高精度の成型を効率よく行うためには、注型する樹脂組成物が優れた成型性を有していることが重要である。具体的には、硬化前には低粘度で注型が容易である一方、硬化後は割れずに容易に離型できることが必要である。特に、硬化前の粘度が高すぎると、樹脂組成物が型の形状に沿ってスムーズに広がらず、高精度の成型が困難となったり、樹脂組成物が型に馴染むまでに相当な時間を要し効率的な成型を行うことが難しくなるおそれがある。上述したように、近年は硬化物の小型化や精密化、低コスト化の要求は高まる一方であり、硬化性樹脂を高い精度で効率よく成型できる技術を確立するために、硬化前には低粘度であって硬化後には容易に離型できる、成型性に優れた硬化成形体用樹脂組成物を開発する工夫の余地があった。
また、無機成分を含有する硬化性樹脂は、優れた光学特性や高い硬度を実現できることから光学部材として有用なものであるが、その一方で、硬化反応の際に無機成分が含有するアルコキシ基の脱離や水酸基の縮合に起因する気泡が生じたり、硬化物にクラック(ひび割れ)が生じたりする場合があった。光学用途においては、光散乱等の光学的な問題の原因となる気泡やクラックのない硬化成型体を製造することは特に重要な課題であり、この点においても、従来の技術を改善する余地があった。
本発明は、上記現状に鑑みてなされたものであり、成型(成形)性に優れ、硬化工程における発泡やクラックの発生を防止し、優れた光学特性及び高い硬度を有する硬化成型体を得ることが可能な硬化成型体用樹脂組成物、及び、光学部材等の各種用途に有用な硬化成型体を提供することを目的とするものである。
本発明者は、成型性に優れ、硬化工程での発泡やクラックの発生を防止することができる硬化成型体用樹脂組成物について種々検討したところ、縮合性無機化合物、硬化性有機化合物及び硬化剤を含む硬化成型体用樹脂組成物において、縮合性無機化合物が特定の重量平均分子量を有するものであると、硬化前の粘度が低く注型が容易である一方、硬化後には割れずに容易に離型できる硬化成型体が得られることを見出した。さらに、このような樹脂組成物を用いることで、硬化工程における気泡の発生を抑制することができ、得られる硬化成型体が、光散乱等の原因となるクラックが極めて少なく光学部材等に好適に用いることができるものとなることも見出し、上記課題をみごとに解決できることに想到し、本発明に到達したものである。
すなわち本発明は、縮合性無機化合物、硬化性有機化合物及び硬化剤を含む硬化成型体用樹脂組成物であって、該縮合性無機化合物は、重量平均分子量が1000以上、50000以下であることを特徴とする硬化成型体用樹脂組成物である。
以下に本発明を詳述する。
本発明の硬化成形体用樹脂組成物(以下、単に樹脂組成物ともいう)は、縮合性無機化合物、硬化性有機化合物及び硬化剤を含むものであるが、これらを必須成分とする限り、更に他の成分を含むものであってもよく、各成分は、夫々1種又は2種以上を使用することができる。
上記縮合性無機化合物は、1000以上、50000以下の重量平均分子量を有するものである。本発明の硬化成型体用樹脂組成物がこのような重量平均分子量の縮合性無機化合物を含むものであると、硬化前の粘度が低く成型性に優れたものとなる。また、硬化工程においてはアルコキシ基の脱離や水酸基の縮合に起因する発泡や、クラックの発生を防止することができ、光散乱がなく透明性にも優れた高硬度の光学部材として好適に用いることが可能な硬化成型体を得ることができる。
縮合性無機化合物の重量平均分子量が1000未満であると、沸点が低く、樹脂組成物を硬化反応させる工程で揮発してしまう可能性が高いため、得られる硬化成型体に想定量の無機成分が組み込まれないおそれがある。また、同重量中のアルコキシ基や水酸基の含有量が多くなることにより硬化時に発泡しやすくなったり、得られる硬化成型体が脆くなったりするおそれもある。
一方、縮合性無機化合物の重量平均分子量が50000を超えると、後述する硬化性有機化合物との相容性が低下することにより、硬化成型体に濁りが生じ、透過率の低下を招くおそれがある。また、樹脂組成物の粘度が高すぎる為に射出成型等を行うことや触媒混合後の樹脂からの脱泡が困難となる。
上記縮合性無機化合物の重量平均分子量として、好ましくは1200以上、より好ましくは1500以上であり、また、好ましくは1万以下、より好ましくは、4000以下である。
上記重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)のポリスチレン換算の分子量として求めることができる。
ここで、「縮合性無機化合物」とは、縮合可能な基を有する無機化合物を意味する。「縮合可能な基」とは、熱によって縮合する官能基をいう。中でも、縮合可能な基を有し、かつ、メタロキサン結合(M−O−M結合、Mはケイ素又は金属原子を表す。)を有する化合物(ポリメタロキサン化合物)であることが好適である。上記縮合可能な基として具体的には、例えば、M−O−R基(Rは、アルキル基、アリール基又はアラルキル基を表す。)、M−OH基、M−X基(Xは、ハロゲン原子を表す。)、M−H基が好適である。これらの縮合可能な基の中でも、硬化反応性の点で、M−O−R基又はM−OH基が特に好適である。
上記メタロキサン結合を有する化合物としては、特に限定されないが、Mで表される原子が、Si、Mg、Al、Ca、Ti、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Sr、Zr、Nb、Mo、Pd、Ag、Cd、In、Sn、Sb、Te、Ba、Ta、W、Ir、Tl、Pb、Bi及びRaのうち1種又は2種以上であるものを含むことが好ましい。より好ましくは、MがSi、Al、Ti、Zn、Zr、Sn、Ba及びRaのうち1種又は2種以上であるものを含むことであり、更に好ましくは、Si、Ti、Zn及びZrのうち1種又は2種以上であるものを含むことである。特に好ましくは、化合物の安定性や製造のしやすさから、MがSiであるもの、すなわち、ポリシロキサン化合物を含むことである。
上記メタロキサン結合を有する化合物がポリシロキサン化合物を含む場合、シロキサン結合の含有量としては、全てのメタロキサン結合の総量100質量%に対して30質量%以上であることが好ましい。より好ましくは50質量%以上であり、更に好ましくは80質量%以上である。
上記M−O−R基において、Rは、アルキル基、アリール基又はアラルキル基を表すが、これらのうち2種以上を有するものであってもよい。また、炭素数は1〜20であることが好適である。より好ましくは1〜8、更に好ましくは1〜3である。
上記アルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、2−エチルへキシル基、n−オクチル基、ラウリル基、ステアリル基等の鎖状アルキル基;シクロプロピル基、シクロブチル基、シクロへキシル基、ビシクロヘキシル基等のシクロアルキル基;鎖状アルキル基の水素原子の一部又は全部が、シクロアルキル基で置換されてなる基;シクロアルキル基の水素原子の一部又は全部が、鎖状アルキル基で置換されてなる基等が挙げられる。
上記アリール基としては、例えば、フェニル基、ナフチル基、アントラニル基等の他、これらの水素原子の一部又は全部がアルキル基等で置換されてなる基(例えば、メチルフェニル基(トルイル基)、ジメチルフェニル基(キシリレン基)、ジエチルフェニル基等)等が挙げられる。
上記アラルキル基としては、ベンジル基等の他、これらの水素原子の一部又は全部がアルキル基等で置換されてなる基(例えば、メチルベンジル基等)等が挙げられる。
上記Rの中でも、アルキル基(すなわち、RO基がアルコキシ基である形態)が好ましく、特に、メチル基、エチル基、n−プロピル基、イソプロピル基等の炭素数1〜3のアルキル基が好適である。これによって、硬化工程での収縮をより低減することが可能になる。より好ましくはメチル基又はエチル基であり、反応の制御がしやすい点で、エチル基が最も好適である。
上記Rは、置換基を有するものであってもよい。また、鎖状(直鎖状、分岐鎖状)構造であってもよいし、環状構造であってもよい。
また上記Xで表されるハロゲン原子としては、特に限定されないが、フッ素原子が特に好適である。
上記ポリメタロキサン化合物の分子構造としては特に限定されないが、通常、鎖状構造(直鎖状、分岐状)、ラダー状構造、環状構造、かご状及び粒子状が例示される。中でも、開環重合性基を有する化合物等の樹脂成分への溶解性が高い観点から、鎖状、ラダー状、かご状が好ましい。更に溶解性が高く、光学的な透明性や機械特性がより高い硬化成型体が得られる観点から、鎖状、ラダー状がより好ましく、特に好ましくはラダー状である。特にラダー状のポリメタロキサン化合物を用いると、他の構造のものを用いる場合に比べて、少量の添加で離型性、光学特性(透明性、アッベ数・屈折率等)の制御性、機械的特性を更に向上することができる。すなわち、(1)硬化後の成形金型から硬化成型体を容易に離型することができる(離型性に優れる。)、(2)硬化性樹脂組成物の透明性、アッベ数・屈折率を厳密に制御することができる(制御性に優れる。)、(3)硬化成型体の透明性、アッベ数・屈折率を厳密に制御することができる(制御性に優れる。)、(4)硬化成型体の機械的特性に優れる(弾性率、破壊強度が高い)、等といった添加効果を発揮することができる。
また上記ポリメタロキサン化合物は常温で液状であってもよいし、固体状のものであってもよい。
上記ポリメタロキサン化合物がポリシロキサン化合物を含む形態において、ポリシロキサン化合物として特に好ましくは、シロキサン結合(Si−O−Si結合)によって3個のケイ素原子と結合するケイ素原子を有する構造単位、すなわちシルセスオキサン単位を主として含み、かつ分子内に縮合可能な基を含む化合物(この化合物を、「縮合可能な基を有するシルセスオキサン」、単に「シルセスオキサン」、又は、「ポリシルセスオキサン」とも称す。)である。このようなポリシロキサン化合物は、例えば、下記平均組成式(1):
xYySiOz (1)
(Rは、アルキル基、アリール基又はアラルキル基を表す。Yは、縮合基又は縮合原子を表し、Siと結合して上記縮合可能な基を形成するものである。x、y及びzは、それぞれ、Siに対するR、Y及びOの結合割合の平均値を表し、0<x<2、0<y<2、1<z<2、0<(x+y)<2、及び、x+y+2z=4を満たす。)で表される化合物が特に好ましい。このようなシルセスオキサンを用いることによって、耐熱性や機械的特性を向上・改善するとともに、樹脂組成物の経時的な粘度の上昇が抑制されることになる。したがって、上記硬化成型体用樹脂組成物をハンドリング性により優れる一液型樹脂組成物(一液性硬化性樹脂組成物)とすることができ、また、より効率的かつ簡便に、優れた物性を有する硬化成型体を得ることが可能になる。
上記平均組成式(1)において、Rは、アルキル基、アリール基又はアラルキル基を表すが、これらの炭素数は1〜20であることが好適である。より好ましくは1〜8、更に好ましくは1〜3である。また、アルキル基、アリール基又はアラルキル基の中でも、アルキル基が好ましく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、2−エチルへキシル基、n−オクチル基、ラウリル基、ステアリル基等の鎖状アルキル基;シクロプロピル基、シクロブチル基、シクロへキシル基、ビシクロヘキシル基等のシクロアルキル基;鎖状アルキル基の水素原子の一部又は全部が、シクロアルキル基で置換されてなる基;シクロアルキル基の水素原子の一部又は全部が、鎖状アルキル基で置換されてなる基等が挙げられる。中でも、表面硬度を更に高めることができる観点から、メチル基、エチル基、n−プロピル基、イソプロピル基等の炭素数1〜3のアルキル基が好適である。より好ましくはメチル基である。また、高屈折率化の観点では、アラルキル基が好ましく、フェニル基が特に好ましい。
上記Rは、置換基を有するものであってもよいが、置換基を有さない基であることが特に好ましい。
なお、本明細書中、「アルキル基」には、直鎖状又は分岐鎖状のアルキル基だけでなく、環状のアルキル基(シクロアルキル基)を含むものとする。
上記ポリシロキサン化合物はまた、上記Rに代えて、有機樹脂成分(硬化性の官能基を有する化合物等)と結合を形成する基を有するものを用いてもよい。例えば、上記平均組成式(1)中、Rに代えて硬化性の官能基を有する化合物を用いてもよい。ただし、有機樹脂成分の安定性の観点からは、このような化合物は用いない方が好ましい。
上記Yは、縮合基又は縮合原子を表し、Siと結合して上記縮合可能な基を形成するものである。したがって、Yは、OR基(Rは、アルキル基、アリール基又はアラルキル基を表す。)、水酸基、ハロゲン原子(X)及び水素原子からなる群より選択される少なくとも1種であることが好適である。R及びXの好適な形態は、上述したとおりである。
上記平均組成式(1)中のx、y及びzは、0<x<2、0<y<2、1<z<2、0<(x+y)<2、及び、x+y+2z=4を満たすものである。
上記yは、Siに対するYの結合割合の平均値を表し、0を超えて2未満の数であるが、yが2以上であると、Yの縮合により成型体中に気泡を生じるおそれがある。好ましくは1未満、更に好ましくは0.5未満、特に好ましくは0.3未満である。また、0.001より大きい値であることが好ましい。0.001未満では、硬化工程での縮合性無機化合物の縮合による硬度向上効果が小さくなり、有機樹脂成分への相溶性も小さいものとなる。より好ましくは0.01より大きい値、更に好ましくは0.05より大きい値、特に好ましくは0.08より大きい値である。
上記zは、1より大きく2未満の数であればよい。好ましくは1.2より大きく1.8未満であり、より好ましくは1.35より大きく1.65未満である。
上記x+yは、0より大きく2未満の数であればよい。好ましくは0.4より大きく1.6未満であり、より好ましくは0.7より大きく1.3未満である。
上記xは、y及びx+yが上述した好適な範囲を満たすものとなるように、適宜設定することが好適である。
上記硬化成型体用樹脂組成物において、上記縮合性無機化合物の含有量としては、縮合性無機化合物と後述する硬化性有機化合物との総量100質量%に対し、50質量%以上であることが好適である。すなわち、本発明の縮合性無機化合物の含有量が、縮合性無機化合物と硬化性有機化合物との総量100質量%に対して、50質量%以上であることは、本発明の好適な実施形態の1つである。これにより、本発明の効果を充分に発揮することができる。より好ましくは、70質量%以上である。
上記縮合性無機化合物(好ましくはポリシルセスオキサン)としてはまた、光学特性の制御の観点から、その他の金属、無機元素を構成成分として含むものであってもよい。金属元素としては、例えば、Be、Mg、Ca、Sr、Ba、Ra等のアルカリ土類金属元素;La、Ce等のランタノイド系金属元素;Ac等のアクチノイド系金属元素;Sc、Y等のIIIa族金属元素;Ti、Zr、Hf等のIVa族金属元素;V、Nb、Ta等のVa族金属元素;Cr、Mo、W等のVIa族金属元素;Mn、Tc、Re等のVIIa族金属元素;Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt等のVIII族金属元素;Cu、Ag、Au等のIb族金属元素;Zn、Cd、Hg等のIIb族金属元素;Al、Ga、In、Tl等のIIIb族金属元素;Ge、Sn、Pb等のIVb族金属元素;Sb、Bi等のVb族金属元素;Se、Te等のVIb族金属元素等を挙げることができ、これらが1種又は2種以上併存していてもよい。これらは、組成物が目的とする電気的特性や光学特性、磁気的特性等によって適宜選択することができる。例えば、光学物性のうち、高屈折率の樹脂組成物を得たい場合には、Ti、Zr、In、Zn、La、Al等が好ましい。
上記硬化成形体用樹脂組成物はまた、硬化性有機化合物を含むものである。「硬化性有機化合物」とは、硬化性の官能基を有する有機化合物を意味する。「硬化性の官能基」とは、熱又は光によって硬化反応する官能基(樹脂組成物を硬化反応させる基)をいう。硬化性の官能基としては、例えば、エポキシ基やオキセタン環等の開環重合性基や、アクリル基が挙げられる。中でも、開環重合性基を有する化合物が好適である。開環重合性基としては、エポキシ基、オキセタン環等が好ましい。すなわち上記硬化性有機化合物は、エポキシ基及び/又はオキセタン環を有する化合物であることが好適である。なお、エポキシ基とは、3員環のエーテルであるオキシラン環を含むものであり、狭義のエポキシ基の他、グリシジル基(グリシジルエーテル基及びグリシジルエステル基を含む)を含むものである。
また、上記硬化性有機化合物としては、1分子中に硬化性の官能基を1個以上含む化合物であればよいが、硬化性の官能基を合計2個以上有する化合物、すなわち多官能化合物を含むことが好適である。これによって、硬化反応性が更に高まり、硬化性や硬化速度に優れる樹脂組成物となるため、より短時間で硬化成型体を得ることが可能になる。
上記硬化性有機化合物としてはまた、重量平均分子量が70以上、2500以下であることが好ましい。硬化性有機化合物の重量平均分子量が70未満であると、沸点が低いため、硬化工程で揮発してしまう可能性が高く、成型(成形)が困難となるおそれがある。また、得られる硬化成型体が脆くなるおそれもある。一方、重量平均分子量が2500を超えると、上述の縮合性無機化合物との相容性が低下することにより、硬化成型体に濁りが生じ、透過率の低下を招くおそれがある。また、樹脂組成物の粘度が高くなったり、得られる硬化体が柔らかくなりすぎ取り扱いが困難となったりするおそれもある。
このように、本発明の硬化性有機化合物の重量平均分子量が70以上、2500以下であることは、本発明の好適な実施形態の1つである。
硬化性有機化合物の重量平均分子量として、100以上がより好ましい。また、硬化性有機化合物の重量平均分子量として、2000以下がより好ましく、更に好ましくは、1500以下である。
上記硬化性有機化合物のうち、少なくともエポキシ基を有する化合物(エポキシ化合物)としては、芳香族エポキシ化合物、脂肪族エポキシ化合物、脂環式エポキシ化合物、水添エポキシ化合物が好適である。
上記芳香族エポキシ化合物とは、分子中に芳香環及びエポキシ基を有する化合物であり、例えば、ビスフェノール骨格、フルオレン骨格、ビフェニル骨格、ナフタレン環、アントラセン環等の芳香環共役系を有するグリシジル化合物であることが好ましい。中でも、より高屈折率を実現させるため、ビスフェノール骨格及び/又はフルオレン骨格を有する化合物であることが好適である。より好ましくは、フルオレン骨格を有する化合物であり、これによって、更に著しく屈折率を高めることができ、また離型性を更に高めることも可能となる。また、芳香族グリシジルエーテル化合物も好適である。また、芳香族エポキシ化合物の臭素化化合物を用いることによっても、より高屈折率を達成できるため好適であるが、アッベ数が若干上がるため、用途に応じて適宜使用することが好ましい。
上記芳香族エポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、フルオレン系エポキシ化合物、ブロモ置換基を有する芳香族エポキシ化合物等が好適であり、中でも、ビスフェノールA型エポキシ化合物及びフルオレン系エポキシ化合物が好ましい。具体的には、ビスフェノールA型エポキシ化合物(ジャパンエポキシレジン社製、828EL、1003又は1007)、ビスフェノールF型エポキシ化合物、フルオレン系エポキシ化合物(大阪ガスケミカル社製、オンコートEX−1020又はオグソールEG−210)、フルオレン系エポキシ化合物(大阪ガスケミカル社製、オンコートEX−1010又はオグソールPG)等が好ましく用いられる。より好ましくは、ビスフェノールA型エポキシ化合物、フルオレン系エポキシ化合物(大阪ガスケミカル社製、オグソールEG−210)である。
上記芳香族エポキシ化合物としてはまた、芳香族グリシジルエーテル化合物が好適であるが、芳香族グリシジルエーテル化合物としては、例えば、エピビスタイプグリシジルエーテル型エポキシ樹脂、高分子量エピビスタイプグリシジルエーテル型エポキシ樹脂、ノボラック・アラルキルタイプグリシジルエーテル型エポキシ樹脂が挙げられる。
上記エピビスタイプグリシジルエーテル型エポキシ樹脂としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール等のビスフェノール類とエピハロヒドリンとの縮合反応により得られるものが好適である。
上記高分子量エピビスタイプグリシジルエーテル型エポキシ樹脂としては、例えば、上記エピビスタイプグリシジルエーテル型エポキシ樹脂を上記ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール等のビスフェノール類と更に付加反応させることにより得られるものが好適である。
上記ノボラック・アラルキルタイプグリシジルエーテル型エポキシ樹脂としては、例えば、フェノール、クレゾール、キシレノール、ナフトール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール等のフェノール類とホルムアルデヒド、アセトアルテヒド、プロピオンアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、サリチルアルデヒド、ジシクロペンタジエン、テルペン、クマリン、パラキシリレングリコールジメチルエーテル、ジクロロパラキシリレン、ビスヒドロキシメチルビフェニル等を縮合反応させて得られる多価フェノール類を、更にエピハロヒドリンと縮合反応することにより得られるものが好適である。
上記芳香族エポキシ化合物としては更に、例えば、テトラメチルビフェノール、テトラメチルビスフェノールF、ハイドロキノン、ナフタレンジオール等とエピハロヒドリンとの縮合反応により得られる芳香族結晶性エポキシ樹脂、及び、更に上記ビスフェノール類やテトラメチルビフェノール、テトラメチルビスフェノールF、ハイドロキノン、ナフタレンジオール等を付加反応させることにより得られる芳香族結晶性エポキシ樹脂の高分子量体;テトラヒドロフタル酸、ヘキサヒドロフタル酸、安息香酸とエピハロヒドリンとの縮合反応により得られるグリシジルエステル型エポキシ樹脂等を用いることもできる。
上記脂肪族エポキシ化合物とは、脂肪族エポキシ基を有する化合物であり、脂肪族グリシジルエーテル型エポキシ樹脂が好適である。
上記脂肪族グリシジルエーテル型エポキシ樹脂としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール(PEG600)、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール(PPG)、グリセロール、ジグリセロール、テトラグリセロール、ポリグリセロール、トリメチロールプロパン及びその多量体、ペンタエリスリトール及びその多量体、グルコース、フルクトース、ラクトース、マルトース等の単/多糖類等とエピハロヒドリンとの縮合反応により得られるもの、プロピレングリコール骨格、アルキレン骨格、オキシアルキレン骨格を有するもの等が好適である。中でも、中心骨格にプロピレングリコール骨格、アルキレン骨格、オキシアルキレン骨格を有する脂肪族グリシジルエーテル型エポキシ樹脂等が好適である。
上記脂環式エポキシ化合物とは、脂環式エポキシ基を有する化合物であり、脂環式エポキシ基としては、例えば、エポキシシクロヘキサン基(エポキシシクロヘキサン骨格)、環状脂肪族炭化水素に直接又は炭化水素を介して付加したエポキシ基等が挙げられる。中でも、エポキシシクロヘキサン基を有する化合物であることが好適である。また、硬化速度をより高めることができる点で、分子中に脂環式エポキシ基を2個以上有する多官能脂環式エポキシ化合物が好適である。また、分子中に脂環式エポキシ基を1個有し、かつビニル基等の不飽和二重結合基を有する化合物も好ましく用いられる。
上記エポキシシクロヘキサン基を有するエポキシ化合物としては、例えば、3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレート、イプシロン−カプロラクトン変性3,4−エポキシシクロヘキシルメチル3’,4’−エポキシシクロヘキサンカルボキシレート、ビス−(3,4−エポキシシクロヘキシル)アジペート等が好適である。また、上記エポキシシクロヘキサン基を有するエポキシ化合物以外の脂環式エポキシ化合物としては、例えば、2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物、トリグリシジルイソシアヌレート等のヘテロ環含有のエポキシ樹脂等の脂環式エポキシド等が挙げられる。
上記水添エポキシ化合物としては、飽和脂肪族環状炭化水素骨格に直接的又は間接的に結合したグリシジルエーテル基を有する化合物であることが好ましく、多官能グリシジルエーテル化合物が好適である。このような水添エポキシ化合物は、芳香族エポキシ化合物の完全又は部分水添物であることが好ましく、より好ましくは、芳香族グリシジルエーテル化合物の水添物であり、更に好ましくは、芳香族多官能グリシジルエーテル化合物の水添物である。具体的には、水添ビスフェノールA型エポキシ化合物、水添ビスフェノールS型エポキシ化合物、水添ビスフェノールF型エポキシ化合物等が好ましい。より好ましくは、水添ビスフェノールA型エポキシ化合物、水添ビスフェノールF型エポキシ化合物である。
上記エポキシ化合物としてはまた、ヒダントインやシアヌール酸、メラミン、ベンゾグアナミンとエピハロヒドリンとの縮合反応により得られる、室温で固形の3級アミン含有グリシジルエーテル型エポキシ樹脂を用いることもできる。
上記エポキシ化合物の中でも、脂環式エポキシ化合物や水添エポキシ化合物が特に好適である。これらは、硬化時にエポキシ化合物自体の着色が起こり難く、光による着色や劣化が発生しにくい、すなわち透明性や低着色性、耐光性にも優れることから、これらを含む樹脂組成物とすれば、着色がなく耐光性により優れる硬化成型体を高生産性で得ることができる。また、これらのエポキシ化合物は、カチオン硬化触媒と併用することで離型性及び硬化性により優れるため、硬化速度を高めることができる点でも好適である。このように、上記硬化性有機化合物が、脂環式エポキシ化合物及び/又は水添エポキシ化合物を含む形態もまた、本発明の好適な形態の1つである。より好ましくは、上記開環重合性基を有する化合物が、多官能脂環式エポキシ化合物及び/又は多官能水添エポキシ化合物を含む形態である。
上記硬化性有機化合物のうち、オキセタン環を有する化合物(オキセタン化合物)としては、硬化速度向上の観点から、脂環式エポキシ化合物及び/又は水添エポキシ化合物と併用することが好ましい。また、硬化速度を維持しつつ、屈折率を向上させる観点では、分子内にアリール基又は芳香環を有するオキセタン化合物を用いることが好適である。一方、耐光性向上の観点では、アリール基又は芳香環を有しないオキセタン化合物を用いることが好ましい。また一方、硬化物の強度向上の観点から、多官能のオキセタン化合物、すなわち1分子中に2個以上のオキセタン環を有する化合物を用いることが好適である。
上記アリール基又は芳香環を有しないオキセタン化合物のうち、単官能のオキセタン化合物としては、例えば、3−メチル−3−ヒドロキシメチルオキセタン、3−エチル−3−ヒドロキシメチルオキセタン、3−エチル−3−(2−エチルヘキシロキシメチル)オキセタン、イソブトキシメチル(3−エチル−3−オキセタニルメチル)エーテル、イソボルニルオキシエチル(3−エチル−3−オキセタニルメチル)エーテル、イソボルニル(3−エチル−3−オキセタニルメチル)エーテル、2−エチルヘキシル(3−エチル−3−オキセタニルメチル)エーテル、エチルジエチレングリコール(3−エチル−3−オキセタニルメチル)エーテル等が好ましい。
上記アリール基又は芳香環を有するオキセタン化合物のうち、単官能のオキセタン化合物としては、例えば、3−メチル−3−(フェノキシメチル)オキセタン、3−エチル−3−(フェノキシメチル)オキセタン、ジシクロペンタジエン(3−エチル−3−オキセタニルメチル)エーテル、ジシクロペンテニルオキシエチル(3−エチル−3−オキセタニルメチル)エーテル、ジシクロペンテニル(3−エチル−3−オキセタニルメチル)エーテル等が好ましい。
上記アリール基又は芳香環を有しないオキセタン化合物のうち、多官能のオキセタン化合物としては、例えば、ジ〔1−エチル(3−オキセタニル)〕メチルエーテル、3,7−ビス(3−オキセタニル)−5−オキサ−ノナン、1,2−ビス〔(3−エチル−3−オキセタニルメトキシ)メチル〕エタン、1,3−ビス〔(3−エチル−3−オキセタニルメトキシ)メチル〕プロパン、エチレングリコールビス(3−エチル−3−オキセタニルメチル)エーテル、トリシクロデカンジイルジメチレン(3−エチル−3−オキセタニルメチル)エーテル、トリメチロールプロパントリス(3−エチル−3−オキセタニルメチル)エーテル、1,4−ビス(3−エチル−3−オキセタニルメトキシ)ブタン、1,6−ビス(3−エチル−3−オキセタニルメトキシ)ヘキサン、ペンタエリスリトールトリス(3−エチル−3−オキセタニルメチル)エーテル、ペンタエリスリトールテトラキス(3−エチル−3−オキセタニルメチル)エーテル、ポリエチレングリコールビス(3−エチル−3−オキセタニルメチル)エーテル、ジペンタエリスリトールヘキサキス(3−エチル−3−オキセタニルメチル)エーテル、ジペンタエリスリトールペンタキス(3−エチル−3−オキセタニルメチル)エーテル、ジペンタエリスリトールテトラキス(3−エチル−3−オキセタニルメチル)エーテル等が好ましい。
上記アリール基又は芳香環を有するオキセタン化合物のうち、多官能のオキセタン化合物としては、例えば、フェノールノボラックオキセタン、ビフェニル骨格を有するジオキセタン化合物(宇部興産社製、ETERNACOLL(R)OXBP)、フェニル骨格を有するジオキセタン化合物(宇部興産社製、ETERNACOLL(R)OXTP)、フルオレン骨格を有するジオキセタン化合物等が好ましい。
上記硬化成型体用樹脂組成物において、硬化剤としては、樹脂組成物の硬化反応に応じて適宜選択すればよい。例えば、熱硬化を行う場合は、熱潜在性カチオン硬化触媒の他、酸無水物系、フェノール系又はアミン系等の通常使用される硬化剤を用いることができる。中でも、熱潜在性カチオン硬化触媒を用いることが特に好適である。また、活性エネルギー線照射による硬化を行う場合は、硬化剤として光重合開始剤を用いることができ、中でも光潜在性カチオン硬化触媒を用いることが好適である。なお、これらの硬化剤は1種又は2種類以上併せて用いることができる。
なお、硬化成型体の製造方法として、後述するような、特定温度での熱硬化工程及び/又は活性エネルギー線照射による硬化工程(第1工程)と、高温での熱硬化工程(第2工程)とを含む方法を採用する場合には、上記硬化剤は、第1工程での硬化反応に応じて適宜選択すればよい。
このように、本発明では熱潜在性カチオン硬化触媒や光潜在性カチオン硬化触媒等のカチオン硬化触媒を用いることが好適であるが、これにより、短時間で硬化反応を好適に進めることができ、マトリックス(硬化物)を速やかに形成することができるため、製造効率が向上できる。また、後述のような特定温度での硬化工程(第1工程)と高温での硬化工程(第2工程)とを含む硬化成型体の製造方法を採用する場合に、第1工程において縮合性無機化合物の硬化反応が進むことを充分に抑制することが可能になる。更に、耐熱性に優れ、離型性の高い硬化成型体を得られるうえ、上記硬化成型体用組成物がハンドリング性に優れた1液型組成物(1液性状)として安定的に存在できる。つまり、カチオン硬化触媒を用いることで、本発明の作用効果をより充分に発揮することが可能となる。中でも、上記樹脂組成物を光学部材用途に使用する場合には、熱潜在性カチオン硬化触媒を少なくとも用いることが特に好適である。
上記熱潜在性カチオン硬化触媒は、熱酸発生剤、熱潜在性硬化剤、熱潜在性カチオン発生剤、カチオン重合開始剤とも呼ばれ、樹脂組成物において硬化温度になれば、硬化剤としての実質的な機能を発揮するものである。熱潜在性カチオン硬化触媒を用いることにより、加熱によりカチオン種を含む化合物が励起されて熱分解反応が起こり、熱硬化が進むこととなるが、熱潜在性カチオン硬化触媒は、硬化剤として一般に使用されている酸無水物類、アミン類、フェノール樹脂類等とは異なり、樹脂組成物に含まれていても、樹脂組成物の常温での経時的な粘度上昇やゲル化を引き起こすことなく、また熱潜在性カチオン硬化触媒の作用として、硬化反応を充分に促進して優れた効果を発揮することができ、ハンドリング性により優れた一液性樹脂組成物(一液化材料)を提供することができる。
また熱潜在性カチオン硬化触媒を用いることによって、得られる樹脂組成物から得られる硬化成型体の耐湿性が劇的に改善され、過酷な使用環境においても樹脂組成物が有する優れた光学特性を保持し、種々の用途により好適に用いることができるものとなる。通常、屈折率が低い水分が樹脂組成物やその硬化物に含まれると濁りの原因になるが、熱潜在性カチオン硬化触媒を用いると、優れた耐湿性が発揮できることから、このような濁りが抑制され、レンズ等の光学用途に好適に用いることができる。特に車載用カメラや宅配業者向けバーコード読み取り機等の用途では、長時間の紫外線照射や夏季の高温暴露により黄変や強度劣化が懸念されるが、これらの現象は空気や水分の紫外線照射又は熱線暴露の相乗効果により酸素ラジカルの発生が原因と考えられる。耐湿性が向上することで、樹脂組成物中への吸湿が抑制され、紫外線照射又は熱線暴露の相乗効果による酸素ラジカル発生も抑えられるため、樹脂組成物の黄変や強度低下を引き起こすことなく長時間にわたり優れた耐熱性を発揮できる。
上記熱潜在性カチオン硬化触媒としては、例えば、下記一般式(4):
(R Z)+m(AXn)−m (4)
(式中、Zは、S、Se、Te、P、As、Sb、Bi、O、N及びハロゲン元素からなる群より選ばれる少なくとも一つの元素を表す。R、R、R及びRは、同一又は異なって、有機基を表す。a、b、c及びdは、0又は正数であり、a、b、c及びdの合計はZの価数に等しい。カチオン(R Z)+mはオニウム塩を表す。Aは、ハロゲン化物錯体の中心原子である金属元素又は半金属元素(metalloid)を表し、B、P、As、Al、Ca、In、Ti、Zn、Sc、V、Cr、Mn、Coからなる群より選ばれる少なくとも一つである。Xは、ハロゲン元素を表す。mは、ハロゲン化物錯体イオンの正味の電荷である。nは、ハロゲン化物錯体イオン中のハロゲン元素の数である。)で表される化合物が好適である。
上記一般式(4)の陰イオン(AXn)−mの具体例としては、テトラフルオロボレート(BF4−)、ヘキサフルオロホスフェート(PF6−)、ヘキサフルオロアンチモネート(SbF6−)、ヘキサフルオロアルセネート(AsF6−)、ヘキサクロロアンチモネート(SbCl6−)等が挙げられる。
更に一般式AXn(OH)で表される陰イオンも用いることができる。また、その他の陰イオンとしては、過塩素酸イオン(ClO )、トリフルオロメチル亜硫酸イオン(CFSO )、フルオロスルホン酸イオン(FSO )、トルエンスルホン酸イオン、トリニトロベンゼンスルホン酸イオン等が挙げられる。
上記熱潜在性カチオン硬化触媒の具体的な商品としては、例えば、AMERICUREシリーズ(アメリカン・キャン社製)、ULTRASETシリーズ(アデカ社製)、WPAGシリーズ(和光純薬工業社製)等のジアゾニウム塩タイプ;UVEシリーズ(ゼネラル・エレクトリック社製)、FCシリーズ(3M社製)、UV9310C(GE東芝シリコーン社製)、Photoinitiator 2074(ローヌプーラン社製)、WPIシリーズ(和光純薬工業社製)等のヨードニウム塩タイプ;CYRACUREシリーズ(ユニオンカーバイド社製)、UVIシリーズ(ゼネラル・エレクトリック社製)、FCシリーズ(3M社製)、CDシリーズ(サトーマー社製)、オプトマーSPシリーズ・オプトマーCPシリーズ(アデカ社製)、サンエイドSIシリーズ(三新化学工業社製)、CIシリーズ(日本曹達社製)、WPAGシリーズ(和光純薬工業社製)、CPIシリーズ(サンアプロ社製)等のスルホニウム塩タイプ等が挙げられる。
上記光重合開始剤としては、上述したように光潜在性カチオン硬化触媒を用いることが好適である。光潜在性カチオン硬化触媒は、光カチオン重合開始剤とも呼ばれ、光照射により、硬化剤としての実質的な機能を発揮するものである。光潜在性カチオン硬化触媒を用いることにより、光によりカチオン種を含む化合物が励起されて光分解反応が起こり、光硬化が進むこととなる。
上記光潜在性カチオン硬化触媒としては、例えば、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムホスフェート、p−(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロアンチモネート、p−(フェニルチオ)フェニルジフェニルスルホニウムヘキサフルオロホスフェート、4−クロルフェニルジフェニルスルホニウムヘキサフルオロホスフェート、4−クロルフェニルジフェニルスルホニウムヘキサフルオロアンチモネート、ビス[4−(ジフェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロフォスフェート、ビス[4−(ジフェニルスルフォニオ)フェニル]スルフィドビスヘキサフルオロアンチモネート、(2,4−シクロペンタジエン−1−イル)[(1−メチルエチル)ベンゼン]−Fe−ヘキサフルオロホスフェート、ジアリルヨードニウムヘキサフルオロアンチモネート等が好適である。これらは市場より容易に入手することができ、例えば、SP−150、SP−170(旭電化社製);イルガキュア261(チバ・ガイギー社製);UVR−6974、UVR−6990(ユニオンカーバイド社製);CD−1012(サートマー社製)等が好適である。これらの中でも、オニウム塩を使用することが好ましい。また、オニウム塩としては、トリアリールスルホニウム塩及びジアリールヨードニウム塩のうち少なくとも1種を使用することが好ましい。
上記活性エネルギー線照射による硬化においては、上記光重合開始剤に加え、更に光増感剤を併用することが好ましい。光増感剤としては、例えば、トリエタノールアミン、メチルジエタノールアミン、トリイソプロパノールアミン、4−ジメチルアミノ安息香酸メチル、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸イソアミル、安息香酸(2−ジメチルアミノ)エチル、4−ジメチルアミノ安息香酸(n−ブトキシ)エチル、4−ジメチルアミノ安息香酸2−エチルヘキシル等のアミン類等が好適である。
上記光増感剤の配合量は、上記硬化成型体用樹脂組成物100質量%に対し、0.1〜20質量%であることが好ましい。0.1質量%未満であると、光重合がより効率的に進行しないおそれがあり、20質量%を超えると、内部へ紫外線が透過するのが妨げられ、硬化が充分とはならないおそれがある。より好ましくは0.5〜10質量%である。
上記カチオン硬化触媒の含有量としては、溶媒等を含まない有効成分量としての固形分換算量として、硬化性有機化合物の総量100重量部に対し、0.01〜10重量部とすることが好適である。0.01重量部未満であると、硬化速度をより充分に高めることができず、短時間で充分に硬化でき、成型可能であるという作用効果をより充分に発揮できないおそれがある。より好ましくは0.1重量部以上、更に好ましくは0.2重量部以上である。また、10重量部を超える量とすると、硬化時やその成形体の加熱時等に着色するおそれがある。例えば、成型体を得た後にその成形体をリフロー実装する場合には200℃以上の耐熱性が必要であるため、無色・透明性の観点からは、10重量部以下とすることが好適である。より好ましくは5重量部以下、更に好ましくは3重量部以下、特に好ましくは2重量部以下である。
上記硬化剤として、酸無水物系、フェノール系又はアミン系等の通常使用される硬化剤を用いる場合、これらの硬化剤としては、通常使用されるものを用いればよい。例えば、酸無水物系硬化剤としては、テトラヒドロフタル酸無水物、メチルテトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、ヘキサヒドロフタル、酸無水物、メチルヘキサヒドロ無水フタル酸、ナジック酸無水物、メチルナジック酸無水物、ヘット酸無水物、ハイミック酸無水物、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸無水物、トリアルキルテトラヒドロ無水フタル酸−無水マレイン酸付加物、クロレンド酸、メチルエンドメチレンテトラヒドロ無水フタル酸等の脂環式カルボン酸無水物;ドデセニル無水コハク酸、ポリアゼライン酸無水物、ポリセバシン酸無水物、ポリドデカン二酸無水物等の脂肪族カルボン酸の無水物;フタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物、エチレングリコール無水トリメリット酸、ビフェニルテトラカルボン酸無水物等の芳香族カルボン酸無水物等が挙げられる。
また上記フェノール系硬化剤としては、例えば、ビスフェノールA、テトラブロムビスフェノールA、ビスフェノールF、ビスフェノールS、4,4’−ビフェニルフェノール、2,2’−メチレン−ビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレン−ビス(4−エチル−6−tert−ブチルフェノール)、4,4’−ブチリレン−ビス(3−メチル−6−tert−ブチルフェノール)、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェノール)、トリスヒドロキシフェニルメタン、ピロガロール、ジイソプロピリデン骨格を有するフェノール類;1,1−ジ−4−ヒドロキシフェニルフルオレン等のフルオレン骨格を有するフェノール類;フェノール化ポリブタジエン等のポリフェノール化合物、フェノール、クレゾール類、エチルフェノール類、ブチルフェノール類、オクチルフェノール類、ビスフェノールA、ブロム化ビスフェノールA、ビスフェノールF、ビスフェノールS、ナフトール類等の各種フェノールを原料とするノボラック樹脂:キシリレン骨格含有フェノールノボラック樹脂、ジシクロペンタジエン骨格含有フェノールノボラック樹脂、フルオレン骨格含有フェノールノボラック樹脂等の各種ノボラック樹脂が挙げられる。
上記酸無水物系、フェノール系又はアミン系等の通常使用される硬化剤のうち好ましくは酸無水物系硬化剤であり、より好ましくは、メチルテトラヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、へキサヒドロ無水フタル酸、であり、更に好ましくは、メチルヘキサヒドロ無水フタル酸、へキサヒドロ無水フタル酸である。
上記酸無水物系、フェノール系又はアミン系等の通常使用される硬化剤を用いる場合、硬化剤の含有量としては、硬化成型体用樹脂組成物100質量%に対し、25〜70質量%であることが好適である。より好ましくは35〜60質量%である。また、上記硬化性有機化合物とこれらの硬化剤との混合割合は、硬化性有機化合物の1化学当量に対し、硬化剤を0.5〜1.6当量の割合で混合することが好ましい。より好ましくは0.7〜1.4当量、更に好ましくは0.9〜1.2当量の割合で混合することである。
上記酸無水物系、フェノール系又はアミン系等の通常使用される硬化剤を用いる場合には、硬化促進剤を併用することが好適である。硬化促進剤としては、有機塩基の酸塩又は3級窒素を有する芳香族化合物等が挙げられ、有機塩基の酸塩としては、有機ホスフォニウム塩や有機アンモニウム塩等の有機オニウム塩や3級窒素を有する有機塩基の酸塩が挙げられる。有機ホスフォニウム塩としては、例えば、テトラフェニルホスフォニウムブロミド、トリフェニルホスフィン・トルエンブロミド等のフェニル環を四つ有するホスフォニウムブロミドが挙げられ、有機アンモニウム塩としては、例えばテトラオクチルアンモニウムブロミド、テトラブチルアンモニウムブロミド、テトラエチルアンモニウムブロミド等のテトラ(C1〜C8)アルキルアンモニウムブロミドが挙げられ、3級窒素を有する有機塩基の酸塩としては、例えば環内に3級窒素を有する脂環式塩基の有機酸塩や各種イミダゾール類の有機酸塩が挙げられる。
上記環内に3級窒素を有する脂環式塩基の有機酸塩としては、例えば、1,8−ジアザビシクロ(5,4,0)ウンデセン−7のフェノール塩、1,8−ジアザビシクロ(5,4,0)ウンデセン−7のオクチル酸塩等のジアザ化合物とフェノール類、下記多価カルボン酸類、又はフォスフィン酸類との塩類が挙げられる。
上記各種イミダゾール類の有機酸塩としては、例えばイミダゾール類と多価カルボン酸等の有機酸との塩類が挙げられる。イミダゾール類としては、例えば、2−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール等が挙げられる。好ましいイミダゾール類としては、例えば下記の3級窒素を有する芳香族化合物におけるフェニル基置換イミダゾール類と同じイミダゾール類が挙げられる。
上記多価カルボン酸類としては、例えば、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸等の芳香族多価カルボン酸、マレイン酸、蓚酸等の脂肪族多価カルボン酸が挙げられ、好ましい多価カルボン酸としては、例えばテレフタル酸、トリメリット酸、ピロメリット酸等の芳香族多価カルボン酸が挙げられる。好ましいイミダゾール類と多価カルボン酸等の有機酸との塩類としては、例えば1位に置換基を有しているイミダゾール類の多価カルボン酸塩が挙げられる。より好ましくは、例えば1−ベンジル−2−フェニルイミダゾールのトリメリット酸塩である。
上記3級窒素を有する芳香族化合物としては、例えばフェニル基置換イミダゾール類や3級アミノ基置換フェノール類が挙げられる。フェニル基置換イミダゾール類としては、例えば2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、2−フェニル−3,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−ヒドロキシメチル−5ーメチルイミダゾール、1−シアノエチル−2−フェニル−3,5−ジシアノエトキシメチルイミダゾール等が挙げられる。好ましくは、例えば1位に芳香族置換基を有しているイミダゾール類であり、より好ましくは、例えば1−ベンジル−2−フェニルイミダゾールである。3級アミノ基置換フェノール類としては、例えば2,4,6−トリ(ジメチルアミノメチル)−フェノール等のジ(C1〜C4)アルキルアミノ(C1〜C4)アルキル基を1〜3個有するフェノール類が挙げられる。
上記硬化促進剤の中でも特に好ましい硬化促進剤としては、例えば1,8−ジアザビシクロ(5,4,0)ウンデセン−7のフェノール塩、1,8−ジアザビシクロ(5,4,0)ウンデセン−7のオクチル酸塩、2,4,6−トリ(ジメチルアミノメチル)−フェノール、テトラブチルアンモニウムブロミド、テトラエチルアンモニウムブロミド、1−ベンジル−2−フェニルイミダゾール、1−ベンジル−2−フェニルイミダゾールのトリメリット酸塩、テトラフェニルホスフォニウムブロミド、トリフェニルホスフィン・トルエンブロミドである。
上記硬化促進剤は、1種又は2種類以上併せて用いることができる。硬化促進剤の使用量は、硬化成型体用樹脂組成物の総量100質量%に対し、0.01〜5質量%とすることが好ましく、より好ましくは0.03〜3質量%である。
上記硬化成型体用樹脂組成物としてはまた、可撓性を有する成分(可撓性成分)を含むことが好適であり、これによって、一体感のある樹脂組成物とすることが可能となる。また、可撓性成分を含むことによって樹脂の硬度が向上する。
上記可撓性成分としては、上記硬化性有機化合物とは異なる化合物であってもよく、上記硬化性有機化合物の少なくとも1種が可撓性成分であってもよい。
上記可撓性成分として具体的には、−〔−(CH−O−〕−で表されるオキシアルキレン骨格を有する化合物(nは2以上、mは1以上の整数である。好ましくは、nは2〜12、mは1〜1000の整数であり、より好ましくは、nは3〜6、mは1〜20の整数である。)が好適であり、例えば、(1)オキシブチレン基を含むエポキシ化合物(ジャパンエポキシレジン社製、YL−7217、エポキシ当量437、液状エポキシ化合物(10℃以上))が好適である。また、その他の好適な可撓性成分としては、(2)高分子エポキシ化合物(例えば、水添ビスフェノール(ジャパンエポキシレジン社製、YL−7170、エポキシ当量1000、固形水添エポキシ化合物));(3)脂環式固形エポキシ化合物(ダイセル工業社製 EHPE−3150);(4)脂環式液状エポキシ化合物(ダイセル工業社製、セロキサイド2081);(5)液状ニトリルゴム等の液状ゴム、ポリブタジエン等の高分子ゴム、粒径100nm以下の微粒子ゴム等が好ましい。
これらの中でもより好ましくは、末端や側鎖や主鎖骨格等に上述したような硬化性の官能基を含む化合物である。
このように上記可撓性成分としては、硬化性の官能基を含む化合物を好適に用いることができるが、該化合物としては、エポキシ基を含む化合物であることが好ましく、より好ましくは、オキシブチレン基(−〔−(CH−O−〕−(mは、同上。))を有する化合物である。
上記可撓性成分の含有量としては、上記硬化性有機化合物と可撓性成分との合計量100質量%に対し、40質量%以下であることが好適である。より好ましくは30質量%以下、特に好ましくは20質量%以下である。また、0.01質量%以上が好ましく、より好ましくは0.1質量%以上、更に好ましくは0.5質量%以上である。
上記硬化成型体用樹脂組成物としてはまた、離型剤を含むことが好適である。離型剤としては、通常の離型剤を好適に用いることができるが、炭素数8〜36のアルコール、炭素数8〜36のカルボン酸、炭素数8〜36のカルボン酸エステル及び炭素数8〜36のカルボン酸塩からなる群より選ばれる少なくとも一つの化合物であることが好ましい。このような離型剤を含有することで、金型を用いて硬化する際に容易に金型を剥がすことができ、硬化物の表面に傷をつけることなく外観を制御し、透明性を発現させることができることから、より優れた透明性、表面外観、寸法精度及び金型転写性等を有する硬化成型体を得ることができ、電気・電子部品材料用途や光学部材用途等に更に有用な硬化成型体となる。
上記化合物の中でもより好ましくは、カチオン硬化反応を阻害することなく、離型効果を充分に発揮できることから、特に、アルコール、カルボン酸、カルボン酸エステルであり、更に好ましくは、カルボン酸(特に高級脂肪酸)及びカルボン酸エステルである。なお、アミン類は、カチオン硬化反応を阻害する可能性があることから、カチオン硬化反応を伴う場合は、離型剤として用いない方が好ましい。
上記化合物はまた、直鎖状、分岐状、環状等のいずれの構造であってもよく、分岐しているものが好ましい。
上記化合物の炭素数としては、8〜36の整数であることが好適であるが、これによって、樹脂組成物の透明性や作業性等の機能を損なうことなく優れた剥離性を示す硬化物となる。炭素数としてより好ましくは8〜20であり、更に好ましくは10〜18である。
上記炭素数が8〜36のアルコールとは、一価又は多価のアルコールであり、直鎖状のものでも分岐状のものでもよい。具体的には、オクチルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ラウリルアルコール、トリデシルアルコール、テトラデシルアルコール、ペンタデシルアルコール、パルミチルアルコール、マーガリルアルコール、ステアリルアルコール、ノナデシルアルコール、エイコシルアルコール、セリルアルコール、ミリシルアルコ−ル、メチルペンチルアルコール、2−エチルブチルアルコール、2−エチルヘキシルアルコール、3.5−ジメチル−1−ヘキサノール、2,2,4−トリメチル−1−ペンタノール、ジペンタエリスリトール、2−フェニルエタノール等が好適である。上記アルコールとしては、脂肪族アルコールが好ましく、中でも、オクチルアルコール(オクタノール)、ラウリルアルコール、2−エチルヘキシルアルコール(2−エチルヘキサノール)、ステアリルアルコールがより好ましい。
上記炭素数が8〜36のカルボン酸とは、1価又は多価のカルボン酸であり、2−エチルヘキサン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ラウリン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、パルミチン酸、1−ヘプタデカン酸、ステアリン酸、ノナデカン酸、エイコサン酸、1−ヘキサコサン酸、ベヘン酸等が好適である。好ましくは、オクタン酸、ラウリン酸、2−エチルヘキサン酸、ステアリン酸である。
上記炭素数が8〜36のカルボン酸エステルとは、(1)上記アルコールと上記カルボン酸とから得られるカルボン酸エステル、(2)メタノール、エタノール、プロパノール、ヘプタノール、ヘキサノール、グリセリン、ベンジルアルコール等の炭素数1〜7のアルコールと上記カルボン酸との組み合わせで得られるカルボン酸エステル、(3)酢酸、プロピオン酸、ヘキサン酸、ブタン酸等の炭素数1〜7のカルボン酸と上記アルコールとの組み合わせで得られるカルボン酸エステル、(4)炭素数1〜7のアルコールと、炭素数1〜7のカルボン酸とから得られるカルボン酸エステルであって、合計炭素数が8〜36となる化合物等が好適である。これらの中でも、(2)及び(3)のカルボン酸エステルが好ましく、ステアリン酸メチルエステル、ステアリン酸エチルエステル、酢酸オクチルエステル等がより好ましい。
上記炭素数が8〜36のカルボン酸塩とは、上記カルボン酸と、アミン、Na、K、Mg、Ca、Mn、Fe、Co、Ni、Cu、Zn、Snとの組み合わせで得られるカルボン酸塩等が好適である。これらの中でも、ステアリン酸Zn、ステアリン酸Mg、2−エチルヘキサン酸Zn等が好ましい。
上述の化合物の中でもより好ましくは、ステアリン酸及びステアリン酸エステル等のステアリン酸系化合物、アルコール系化合物であり、更に好ましくは、ステアリン酸系化合物である。
上記離型剤の含有量としては、上記硬化成型体用樹脂組成物100質量%に対して、10質量%以下であることが好ましい。10質量%を超えると硬化成型体用樹脂組成物が硬化しにくくなる等のおそれがある。より好ましくは、0.01〜5質量%であり、更に好ましくは、0.1〜2質量%である。
上記硬化成型体用樹脂組成物は、上述した必須成分や好適な含有成分の他に、本発明の作用効果を損なわない限りにおいて、無機微粒子、反応性希釈剤、不飽和結合を有さない飽和化合物、顔料、染料、ラジカル補足剤、酸化防止剤、紫外線吸収剤、光安定剤、可塑剤、非反応性化合物、連鎖移動剤、熱重合開始剤、嫌気重合開始剤、重合禁止剤、無機充填剤や有機充填剤、カップリング剤等の密着向上剤、熱安定剤、防菌・防カビ剤、難燃剤、艶消し剤、消泡剤、レベリング剤、湿潤・分散剤、沈降防止剤、増粘剤・タレ防止剤、色分かれ防止剤、乳化剤、スリップ・スリキズ防止剤、皮張り防止剤、乾燥剤、防汚剤、帯電防止剤、導電剤(静電助剤)等を含有してもよい。
上記硬化成型体用樹脂組成物はまた、粘度が10000Pa・s以下であることが好ましい。これによって、加工特性により優れるものとなり、寸法精度及び金型転写性等に更に優れる硬化成型体を得ることができる。より好ましくは1000Pa・s以下、更に好ましくは、500Pa・s以下であり、特に好ましくは200Pa・s以下である。また、0.01Pa・s以上であることが好ましい。より好ましくは0.1Pa・s以上、更に好ましくは1Pa・s以上、特に好ましくは5Pa・s以上、最も好ましくは10Pa・s以上である。
本発明はまた、上記硬化成型体用樹脂組成物を硬化させることにより得られる硬化成型体でもある。
上記硬化成型体は、上述した硬化成型体用樹脂組成物から得られることに起因して、気泡やクラックがなく、優れた光学特性及び高い硬度を有するものとなる。
以下では、上記硬化成型体用樹脂組成物から硬化成型体を製造する方法について説明する。
硬化成型体の製造方法としては、特に限定されず、従来公知の硬化方法を採用することも可能であるが、特定温度での熱硬化工程及び/又は活性エネルギー線照射による硬化工程(第1工程)と、高温での熱硬化工程(第2工程)とを含む方法を採用することが好ましい。これによって、耐熱性、耐磨耗性及び離型性に優れ、収縮率が小さく、しかも着色がなく透明な硬化成型体を容易に製造することが可能となる。
上記硬化成型体の製造方法は、第1工程として、硬化成型体用樹脂組成物を80〜200℃で熱硬化させる工程、硬化成型体用樹脂組成物を活性エネルギー線照射により硬化させる工程、又は、硬化成型体用樹脂組成物を80〜200℃で熱硬化し、かつ活性エネルギー線照射により硬化させる工程、のいずれかの工程と、該第1工程で得た硬化物を200℃を超え、500℃以下で熱硬化させる第2工程とを含む方法である。なお、上記硬化成型体の製造方法の作用効果を損なわない限り、通常の成型(成形)工程で行われる他の工程を更に含むものであってもよい。
上記第1工程において、熱硬化させる場合は、硬化温度を80〜200℃とすることが適当である。80℃未満では、硬化成型体用樹脂組成物を充分に硬化できず、収縮率の小さい有機樹脂マトリックスを作成できないため、続く第2段階の熱硬化工程において硬化収縮が大きくなるおそれがある。200℃を超えると、縮合性無機化合物の縮合反応による硬化反応が目立つようになるため、縮合性無機化合物による硬化収縮が大きくなり、また、縮合反応により副生する水分やアルコール等の気化によって発泡して硬化反応を行うことができないおそれや、また、強度や表面硬度が高く、かつ高外観の硬化成型体を得ることができないおそれがある。更に、離型性が充分とはならず、寸法精度や金型転写性に優れた硬化成型体を得られないおそれもある。好ましくは100℃以上であり、また、好ましくは160℃以下である。
上記熱硬化工程における硬化時間は、用いる硬化剤の種類等によって適宜設定すればよい。例えば、カチオン硬化触媒を硬化剤として用いる場合、すなわちカチオン硬化反応で硬化させる場合は、硬化時間を短時間としても充分に硬化反応を行うことができるが、このような短時間硬化は、第1工程において縮合性無機化合物の反応が起こりにくいため好適である。また、製造効率を高めることができる点でも好適である。更にカチオン硬化触媒は、エステルを生じない点で耐熱性に優れる有機樹脂成分となる。例えば、硬化時間は10分以内であることが好ましく、より好ましくは5分以内、更に好ましくは3分以内である。また、好ましくは10秒以上、より好ましくは30秒以上である。また、酸無水物系やフェノール系、アミン系等の通常使用される硬化剤を用いる場合は、充分に硬化させるため、硬化時間は15分〜48時間とすることが好適である。より好ましくは30分〜36時間である。
上記熱硬化工程はまた、空気中及び/又は窒素等の不活性ガス雰囲気の減圧下、加圧下のいずれの雰囲気下でも行うことができる。また、硬化温度80〜200℃の範囲内で、硬化温度を段階的に変化させてもよい。例えば、生産性向上等の観点から、硬化成型体用樹脂組成物を型内で所定の温度・時間で保持した後、型から取り出して空気中及び/又は窒素等の不活性ガス雰囲気内に静置して熱処理することも可能である。また、活性エネルギー線照射による硬化を組み合わせてもよい。
上記第1工程において、活性エネルギー線照射により硬化させる場合、活性エネルギー線としては、ラジカル、カチオン等の活性種を生成させることができるものであればよい。例えば、紫外線、可視光線、電子線、α線、β線、γ線等の電離放射線、マイクロ波、高周波、赤外線、レーザー光線等が好適であり、ラジカル性活性種を発生させる化合物の吸収波長を考慮して適宜選択すればよい。中でも、容易に取り扱うことができる点から、波長180〜500nmの紫外線又は可視光線が好ましい。これらの波長範囲の中でも、特に、254nm、308nm、313nm、365nmの波長の光が硬化に有効である。
なお、上記活性エネルギー線照射による硬化工程は、空気中及び/又は不活性ガス中、減圧下、加圧下のいずれの雰囲気下でも行うことができる。
上記波長180〜500nmの紫外線又は可視光線の光発生源としては、例えば、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、ケミカルランプ、ブラックライトランプ、水銀−キセノンランプ、エキシマーランプ、ショートアーク灯、ヘリウム・カドミニウムレーザー、アルゴンレーザー、エキシマーレーザー、太陽光等が好適である。
上記活性エネルギー線照射の照射時間、すなわち活性エネルギー線による硬化工程における硬化時間は、活性エネルギー線の種類や照射量等によって適宜設定すればよい。例えば、波長180〜500nmの紫外線又は可視光線の照射時間は、0.1マイクロ秒〜30分が好ましく、より好ましくは0.1ミリ秒〜1分である。
上記第1工程としては、上述したように、硬化成型体用樹脂組成物を80〜200℃で熱硬化させる工程及び活性エネルギー線照射により硬化させる工程のいずれか1以上の工程からなるが、中でも、硬化成型体用樹脂組成物を80〜200℃で熱硬化させる工程を少なくとも行うことが好適である。これによって、第1工程で目的の形状をより容易に得ることができ、第2工程でもその形状の維持がより容易になり、第2工程で縮合性無機化合物の縮合によって生じ得る気体による成型体中での発泡をより充分に防ぐことができる。
上記第1工程としてはまた、金属、セラミック、ガラス、樹脂製等の型(「金型」と称す。)を用いた硬化工程であることが好適である。金型を用いた硬化工程とは、例えば、射出成型法、圧縮成型法、注型成型法、サンドイッチ成型法等の金型成型法で通常行われる硬化工程であればよいが、第1工程がこのような金型を用いた硬化工程であれば、耐磨耗性、低収縮性、寸法精度及び金型転写性等の各種物性に優れ、かつ着色がなく透明な硬化成型体を容易に製造できるという作用効果をより充分に発揮することが可能となる。
上記第1工程が金型を用いた硬化工程である場合には、第1工程の後であって、かつ第2工程の前に、脱型工程を行うことが好適である。脱型工程を含む形態、すなわち第1工程で得た硬化物を金型から取り出し、取り出した硬化物を次の第2工程に供する形態とすることによって、高価な金型を有効に回転(リサイクル)でき、かつ金型の寿命を長くすることができるため、低コストで硬化成型体を得ることが可能になる。
この場合、上記硬化成型体用樹脂組成物を硬化剤及び必要に応じて他の成分を含む1液組成物とし、目的とする硬化成型体の形状に合わせた金型内に該1液組成物を充填(射出・塗出等)して硬化させ、その後、硬化物を金型から取り出す方法が好適に用いられる。
上記製造方法では、上記第1工程で得た硬化物(好ましくは、脱型工程によって金型から取り出した硬化物)を、第2工程に供することになるが、第2工程での硬化物中の発泡を防ぐため、第1工程で得られる硬化物の鉛筆硬度が9B以上であることが好適である。より好ましくは6B以上、更に好ましくは2B以上、特に好ましくはF以上である。
なお、鉛筆硬度は、鉛筆引っかき硬度試験機(安田精機製作所製)を用いて、JIS−K5600−5−4(1999年制定)に準拠し、荷重を1000gとして測定することができる。
上記製造方法において、第2工程では、上記第1工程で得た硬化物(好ましくは、脱型工程によって金型から取り出した硬化物)を200℃を超え、500℃以下で熱硬化させることになる。第2工程での熱硬化温度が200℃以下であると、ポリシロキサン化合物が充分に硬化反応しないため、屋外使用用途等に求められる高いレベルの表面硬度、すなわち優れた耐磨耗性を有する硬化成型体を得ることができないおそれがある。また、500℃を超えると、有機樹脂成分の分解による着色や硬度が低下するおそれがある。好ましくは250℃以上、更に好ましくは300℃以上、特に好ましくは330℃以上、最も好ましくは350℃以上である。また、好ましくは、400℃以下である。
上記第2工程における硬化時間は、得られる硬化成型体の硬化率が充分となる時間とすればよく特に限定されないが、製造効率を考慮すると、例えば、30分〜30時間とすることが好適である。より好ましくは1〜10時間である。
上記第2工程はまた、空気中及び/又は窒素等の不活性ガス雰囲気のいずれの雰囲気下でも行うことができる。中でも特に、ポリシロキサン化合物の硬化反応が効果的に行われ、透明性及び表面硬度(耐磨耗性)が更に向上する観点から、酸素濃度が低い雰囲気下で上記第2工程を行うことが好ましい。例えば、酸素濃度が10体積%以下である不活性ガス雰囲気下で行うことが好適である。より好ましくは3体積%以下、更に好ましくは1体積%以下、特に好ましくは0.5体積%以下、最も好ましくは0.3体積%以下である。また、硬化温度200℃を超え、500℃以下の温度範囲内で、硬化温度を段階的に変化させてもよい。
上述した製造方法によって得られた硬化成型体は、耐熱性及び耐磨耗性に優れ、かつ収縮率が小さいうえ、離型性、低着色性及び透明性に優れ、機械的特性や光学特性を充分に発揮できるものである。また、上記硬化成型体は、上述した硬化成型体用樹脂組成物から得られることに起因して、気泡やクラックがなく、優れた光学特性及び高い硬度を有するものである。このような硬化成型体は、金型成型体であることが好ましいが、フィルム、シート、ペレット等の形状であってもよい。
上記硬化成型体は、上記特性に優れるものであるため、例えば、光学部材、機械部品材料、電気・電子部品材料、自動車部品材料、土木建築材料、成形材料等の他、塗料や接着剤の材料等の各種用途に有用なものである。中でも特に、光学部材、オプトデバイス部材、表示デバイス部材等に好適に用いることができる。このような用途として具体的には、例えば、眼鏡レンズ、(デジタル)カメラや、携帯電話や車裁カメラ、監視カメラ等のカメラ用撮像レンズ、光ビーム集光レンズ、光拡散用レンズ等のレンズ用途;ウォッチガラス、表示装置用のカバーガラス等の透明シート;フィルター、回折格子、プリズム、光案内子等の各種の光学用途;フォトセンサー、フォトスイッチ、LED、発光素子、光導波管、合波器、分波器、断路器、光分割器、光ファイバー接着剤等のオプトデバイス用途;LCDや有機ELやPDP等の表示素子用基板、カラーフィルター用基板、タッチパネル用基板、ディスプレイ保護膜、ディスプレイバックライト、導光板、反射防止フィルム、防曇フィルム等の表示デバイス用途;タッチパネル等の物理的接触のある用途等が好適である。
これらの用途の中でも、光学部材が特に好適である。すなわち、本発明の硬化成型体が光学部材であることは、本発明の好適な実施形態の1つである。光学部材としては、特に、レンズであることが好適である。レンズとして好ましくは、カメラレンズ、光ビーム集光レンズ及び光拡散用レンズであり、より好ましくはカメラレンズである。カメラレンズの中でも、携帯電話用撮像レンズ及びデジタルカメラ用撮像レンズ等の撮像レンズが好ましい。また、微小光学レンズであることが好適である。
なお、上記硬化成型体が光学部材である場合には、上記硬化成型体用樹脂組成物は、光学部材の用途に応じて適宜その他の成分を含んでいてもよい。具体的には、UV吸収剤、IRカット剤、反応性希釈剤、顔料、洗料、酸化防止剤、光安定剤、可塑剤、非反応性化合物、連鎖移動剤、熱重合開始剤、嫌気重合開始剤、光安定剤、重合禁止剤、消泡剤等が好適である。
本発明の硬化成型体用樹脂組成物は、上述のような構成であるので、成型性に優れ、硬化工程における発泡やクラックの発生を防止し、優れた光学特性及び高い硬度を有する硬化成型体を得ることが可能なものである。本発明の硬化成型体用樹脂組成物を硬化させて得られる硬化成型体は、高硬度で、気泡やクラックによる光散乱が極めて少なく、透明性にも優れた光学部材等として好適に用いることができる。
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。特に断りのない限り、「部」は「重量部」を、「%」は「質量%」を意味するものとする。
なお、以下の実施例において用いた化合物の構造及び組成は、1H−NMR(構造及び組成)、蛍光X線分析(Siの定量)、元素分析(炭素、水素の定量)、ガスクロマトグラムにより特定した。各化合物の分子量は、GPC(ゲルパーミエーションクロマトグラフィー)により測定した。
(分子量測定条件)
カラム:東ソー社製「TSKgel SuperMultipore HZ−N 4.6*150」×2本
溶離液:テトラヒドロフラン
流速:0.6mL/分
温度:40℃
尚、標準サンプルとしてポリスチレンオリゴマー(東ソー社製、商品名「TSKスタンダードポリスチレン」)を用い、この標準サンプルで上記GPC条件における分子量検量線を作成して求めた。
製造例1(樹脂組成物(1))
セロキサイド2021P(ダイセル化学工業社製、脂環式エポキシ樹脂)を30g、PMSQ−E(SR−13)(小西化学工業社製、ポリメチルシルセルキオキサン)を70g、ステアリン酸を0.5g添加し80℃にて均一になるまで混合した。40℃に冷却後、SI−60L(三新化学工業社製)を0.2gとプロピレングリコールモノメチルエーテルアセテート(PGMEA)を0.5gの混合物を添加し、減圧下で均一になるまで混合した。
製造例2(樹脂組成物(2))
セロキサイド2021P(ダイセル化学工業社製、脂環式エポキシ樹脂)を30g、PPSQ−E(SR−23)(小西化学工業社製、ポリフェニルシルセルキオキサン)を70g、ステアリン酸を0.5g添加し80℃にて均一になるまで混合した。40℃に冷却後、SI−60L(三新化学工業社製)を0.2gとプロピレングリコールモノメチルエーテルアセテート(PGMEA)を0.5gの混合物を添加し、減圧下で均一になるまで混合した。
製造例3(樹脂組成物(3))
20℃にて500mL4つ口セパラブルフラスコ中で、メチルトリメトキシシラン(東レ・ダウコーニング社製、Z−6366)100g、メチルイソブチルケトン50gを混合したした後、5分後にギ酸10.2gを添加し、更に5分後に水26.5gを添加した。15分後、47℃まで内温が上昇し、20分後、内温が42℃となったところで、内温が50℃となるようにオイルバスにて調整した。1時間撹拌後、内温が80℃になるように昇温し、80℃にて1時間撹拌した。その後、50℃まで降温し、減圧度10kPaで30分間留去を行い、減圧度1kPaにて30分間留去を行った。その後、セロキサイド2021P(ダイセル化学工業社製、脂環式エポキシ樹脂)を24g、ステアリン酸を0.4g添加し80℃にて均一になるまで混合し、減圧度1kPaにて1時間撹拌しながら、揮発分を除去した。40℃に冷却後、SI−60L(三新化学工業社製)を0.16gとプロピレングリコールモノメチルエーテルアセテート(PGMEA)を0.4gの混合物を添加し、減圧下で均一になるまで混合した。得られた樹脂組成物は、80.6gであった。
製造例4(樹脂組成物(4))
セロキサイド2021P(ダイセル化学工業社製、脂環式エポキシ樹脂)を15g、EHPE−3150(ダイセル化学工業社製、脂環式エポキシ樹脂)を15g添加し、120℃にて均一に混合した。その後、80℃まで降温した後に、PMSQ−E(SR−13)(小西化学工業社製、ポリメチルシルセルキオキサン)を70g、ステアリン酸を0.5g添加し80℃にて均一になるまで混合した。40℃に冷却後、SI−60L(三新化学工業社製)を0.2gとプロピレングリコールモノメチルエーテルアセテート(PGMEA)を0.5gの混合物を添加し、減圧下で均一になるまで混合した。
比較製造例1(比較樹脂組成物(1))
セロキサイド3000(ダイセル化学工業社製、脂環式エポキシ樹脂)を30g、PMSQ−E(SR−13)(小西化学工業社製、ポリメチルシルセルキオキサン)を70g、ステアリン酸を0.5g添加し80℃にて均一になるまで混合した。40℃に冷却後、SI−60L(三新化学工業社製)を0.2gとプロピレングリコールモノメチルエーテルアセテート(PGMEA)を0.5gの混合物を添加し、減圧下で均一になるまで混合した。
比較製造例2(比較樹脂組成物(2))
EHPE−3150(ダイセル化学工業社製、脂環式エポキシ樹脂)を30g、PMSQ−E(SR−13)(小西化学工業社製、ポリメチルシルセルキオキサン)を70g、ステアリン酸を0.5g添加し80℃にて均一になるまで混合したが、液状組成物とならなかった。
比較製造例3(比較樹脂組成物(3))
20℃にて2000mL4つ口セパラブルフラスコ中で、メチルトリメトキシシラン(東レ・ダウコーニング社製、Z−6366)900g、ギ酸100.8gを添加し混合した。5分後に、30分で水170.3gを添加した。その後、内温が50℃となるようにオイルバスにて調整した。1時間撹拌後、オイルバスを90℃に設定し、溶媒を565g常圧留去した(分子量は55000となっていた)。その後、50℃まで降温し、セロキサイド2021P(ダイセル化学工業社製、脂環式エポキシ樹脂)を180g添加し、減圧度10kPaで30分間留去を行い、減圧度1kPaにて30分間留去を行った。その後、ステアリン酸3.1g添加し、80℃にて均一になるまで混合し、減圧度1kPaにて1時間撹拌しながら、揮発分を除去した。40℃に冷却後、SI−60L(三新化学工業社製)を1.25gとプロピレングリコールモノメチルエーテルアセテート(PGMEA)を3.1gの混合物を添加し、減圧下で均一になるまで混合した。得られた樹脂組成物は、667.6gであった。
比較製造例4(比較樹脂組成物(4))
セロキサイド2021P(ダイセル化学工業社製、脂環式エポキシ樹脂)を30g、メチルトリメトキシシラン(東レ・ダウコーニング社製、Z−6366)70g、ステアリン酸を0.5g添加し80℃にて均一になるまで混合した。40℃に冷却後、SI−60L(三新化学工業社製)を0.2gとプロピレングリコールモノメチルエーテルアセテート(PGMEA)を0.5gの混合物を添加し、減圧下で均一になるまで混合した。
製造例1〜4及び比較製造例1〜4の樹脂組成物のそれぞれについて、下記方法に従って、粘度を測定した。結果を表1に示す。
<粘度>
粘度の測定は、硬化剤(SI−60L、SI−80L又は2E4MZ)を加える前の樹脂組成物について、R/Sレオメーター(米国ブルックフィールド社製)を用いて、40℃、回転速度D=1/sの条件下で行った。なお、粘度20Pa・s以上では、RC25−1の測定治具を使用し、粘度20Pa・s未満では、RC50−1の治具を使用した。また、回転速度D=1/s時点の粘度が測定できないものについては、回転速度D=5〜100/sの値を外挿して、樹脂組成物の粘度として評価した。
実施例1
(第1工程)
製造例1で得た樹脂組成物(1)を、1mmのギャップを形成したSUS304(日本テストパネル社製、表面800番仕上げ)の金属板2枚にはさみ、注型成型した。140℃で2分加熱し硬化させた後、脱型した。脱型は、金属板の片面を取り外した後に、金属板を加熱したまま、10S以内にもう一方の面を、硬化樹脂板と金属板との界面部分に、カッター(オルファ株式会社製、オルッファスクレーバシリーズM型43mm、品番35MB)の刃先を押し当て、試料板の面に対して10度傾けた角度で、硬化樹脂板と金属板との界面に浸入させ、1cm/sの速度でカッターを押し当てて離型した。
(第2工程)
第1工程後の硬化体を、N雰囲気下(特に断りのない限り、0.2〜0.3体積%の酸素濃度で実施した)、約15℃/分で昇温し、350℃で10分加熱処理を行い、その後、約1℃/分で50℃まで降温した。
実施例2〜4、比較例1〜4
製造例1で得た樹脂組成物(1)に代えて製造例2〜4及び比較製造例1〜4で得た樹脂組成物(2)〜(4)及び比較樹脂組成物(1)〜(4)を用いたこと以外は、実施例1と同様にして硬化処理を行った。
実施例1〜4及び比較例1〜4で得られた硬化成型体について、下記測定方法に従い、成形(成型)性、気泡、鉛筆硬度(表面硬度)、透過率、屈折率、アッベ数を評価した。結果を表1及び表2に示す。
なお、成形性及び気泡の評価には第1工程で得られた硬化体を用い、それ以外の評価には第2工程で得られた硬化体を用いた。
<成形性>
以下のように評価した。
A:硬化体が割れずに離型した(一体感あり)。
B:硬化体にクラックが入ったが離型した。
×:硬化不足もしくは硬脆く硬化体得られず。
<気泡>
3cm角の硬化体における泡・ヒビの発生量を目視にて、以下のように評価した。
A:3個以下。
B:4個以上。
<鉛筆硬度(表面硬度)>
鉛筆引っかき硬度試験機(安田精機製作所製)を用いてJIS―K5600−5−4(1999年制定)に準拠して測定した。なお、荷重は1000gであった。
<透過率>
吸光度計(島津製作所製、分光光度計UV−3100)を用いて、波長400nmにおける硬化体の透過率を測定した。
<屈折率、アッベ数>
屈折率及びアッベ数の測定は、JIS K7142に準拠した方法で、下記の方法によりそれぞれ測定を行った。
屈折率は、上記硬化体(1mm厚の成型体)について、屈折率計(アタゴ社製、DR−M2)を用いて、測定波長を486nm、589nm、656nmとして、20℃の条件下で測定した。
アッベ数は、上記硬化体(1mm厚の成型体)について、屈折率計(アタゴ社製、DR−M2)を用いて、20℃の条件下で測定した。
Figure 0005778448
Figure 0005778448
上記実施例及び比較例等から、下記のことが分かった。
実施例1〜4で用いた樹脂組成物(1)〜(4)はいずれも、比較例1〜4で用いた比較樹脂組成物(1)〜(4)と比較して低粘度で成形(成型)性に優れており、また、硬化工程における気泡の発生も抑制されることが分かった。
また、樹脂組成物(1)、(3)及び(4)は、比較樹脂組成物(1)〜(4)と比較して優れた光学特性及び高い硬度を有することが分かった。

Claims (7)

  1. 縮合性無機化合物、硬化性有機化合物及び硬化剤を含む硬化成型体用樹脂組成物であって、
    該縮合性無機化合物は、縮合可能な基を有するポリメタロキサン化合物であり、かつ重量平均分子量が1000以上、50000以下であり、
    該縮合性無機化合物の含有量は、縮合性無機化合物と硬化性有機化合物との総量100質量%に対し、70質量%以上であり、
    該硬化性有機化合物は、脂環式エポキシ樹脂を含むことを特徴とする硬化成型体用樹脂組成物。
  2. 前記硬化性有機化合物は、重量平均分子量が70以上、2500以下であることを特徴とする請求項1に記載の硬化成型体用樹脂組成物。
  3. 前記縮合可能な基は、M−O−R基、M−OH基、M−X基、又は、M−H基(Mは、ケイ素又は金属原子を表す。Rは、アルキル基、アリール基又はアラルキル基を表す。Xは、ハロゲン原子を表す。)であることを特徴とする請求項1又は2に記載の硬化成型体用樹脂組成物。
  4. 更に、離型剤を含むことを特徴とする請求項1〜3のいずれかに記載の硬化成型体用樹脂組成物。
  5. 前記硬化成型体用樹脂組成物は、少なくとも熱潜在性カチオン硬化触媒を用いて得られることを特徴とする請求項1〜4のいずれかに記載の硬化成型体用樹脂組成物。
  6. 請求項1〜のいずれかに記載の硬化成型体用樹脂組成物を硬化させることにより得られる硬化成型体。
  7. 前記硬化成型体は、光学部材であることを特徴とする請求項に記載の硬化成型体。
JP2011057756A 2011-03-16 2011-03-16 硬化成型体用樹脂組成物及び硬化成型体 Expired - Fee Related JP5778448B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011057756A JP5778448B2 (ja) 2011-03-16 2011-03-16 硬化成型体用樹脂組成物及び硬化成型体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011057756A JP5778448B2 (ja) 2011-03-16 2011-03-16 硬化成型体用樹脂組成物及び硬化成型体

Publications (2)

Publication Number Publication Date
JP2012193265A JP2012193265A (ja) 2012-10-11
JP5778448B2 true JP5778448B2 (ja) 2015-09-16

Family

ID=47085488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011057756A Expired - Fee Related JP5778448B2 (ja) 2011-03-16 2011-03-16 硬化成型体用樹脂組成物及び硬化成型体

Country Status (1)

Country Link
JP (1) JP5778448B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2873701A4 (en) * 2012-07-10 2016-01-06 Nippon Soda Co ORGANIC-INORGANIC COMPLEX, AND COMPOSITION FOR THE FORMATION OF SAID COMPLEX
JP6517066B2 (ja) * 2014-03-31 2019-05-22 三井化学株式会社 樹脂組成物およびその用途

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044618A1 (fr) * 2006-09-29 2008-04-17 Nippon Shokubai Co., Ltd. Composition de résine durcissable, matériau optique et procédé de régulation d'un matériau optique
JP5480469B2 (ja) * 2006-10-31 2014-04-23 株式会社日本触媒 樹脂組成物、光学材料、及び、該光学材料の制御方法
JP5448358B2 (ja) * 2008-04-03 2014-03-19 株式会社日本触媒 樹脂組成物、光学材料、及び、光学部材
JP5349143B2 (ja) * 2008-06-03 2013-11-20 三菱レイヨン株式会社 繊維強化複合材料用樹脂組成物およびそれを用いた繊維強化複合材料

Also Published As

Publication number Publication date
JP2012193265A (ja) 2012-10-11

Similar Documents

Publication Publication Date Title
JP5480469B2 (ja) 樹脂組成物、光学材料、及び、該光学材料の制御方法
US11560453B2 (en) Polyorganosilsesquioxane, hard coat film, adhesive sheet, and laminate
JP5771148B2 (ja) 硬化成型体の製造方法及び硬化成型体
US8674038B2 (en) Curable resin composition for molded bodies, molded body, and production method thereof
US8524841B2 (en) Curable resin composition, optical material, and method for controlling optical material
JP2009084310A (ja) 熱・光硬化性樹脂組成物、光学材料及び光学部材
JP2008274260A (ja) 樹脂組成物及び光学部材
JP2009062459A (ja) 有機無機複合樹脂組成物及び該有機無機複合樹脂組成物を硬化させてなる硬化物
TWI755535B (zh) 接著劑用硬化性組成物、接著片、硬化物、積層物及裝置
JP5102671B2 (ja) 硬化性樹脂組成物、その硬化物、光学部材及び光学ユニット
JP2011241380A (ja) 硬化成型体用樹脂組成物及び硬化成型体
JP5296472B2 (ja) 成型体用硬化性樹脂組成物、成型体及びその製造方法
JP4439017B2 (ja) 成型体用硬化性樹脂組成物、成型体及びその製造方法
JP6491637B2 (ja) 硬化性組成物及びその硬化物、並びにウェハレベルレンズ
JP5301409B2 (ja) カチオン硬化性樹脂組成物及びその硬化物
JP6001317B2 (ja) カチオン硬化性樹脂組成物
JP2009235196A (ja) 硬化性樹脂組成物、その硬化物、光学部材及び光学ユニット
JP5778448B2 (ja) 硬化成型体用樹脂組成物及び硬化成型体
JP2013138158A (ja) 撮像素子、色素含有レンズ及びレンズ成型用樹脂組成物
JP2009179568A (ja) 芳香族骨格含有脂環式エポキシ化合物、その製造方法、芳香族骨格含有脂環式エポキシ樹脂組成物並びにその成形体及び光学部材
JP5448358B2 (ja) 樹脂組成物、光学材料、及び、光学部材
JP2009132834A (ja) 硬化性樹脂組成物、光学部材用硬化性材料、及び、光学部材
JP2012136571A (ja) 光学レンズ用カチオン硬化性樹脂組成物
JP6001318B2 (ja) エポキシ系硬化物
JP2011128225A (ja) 光拡散レンズ用樹脂組成物及び光拡散レンズ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150709

R150 Certificate of patent or registration of utility model

Ref document number: 5778448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees