JP5772553B2 - シリコン単結晶の評価方法およびシリコン単結晶の製造方法 - Google Patents
シリコン単結晶の評価方法およびシリコン単結晶の製造方法 Download PDFInfo
- Publication number
- JP5772553B2 JP5772553B2 JP2011266877A JP2011266877A JP5772553B2 JP 5772553 B2 JP5772553 B2 JP 5772553B2 JP 2011266877 A JP2011266877 A JP 2011266877A JP 2011266877 A JP2011266877 A JP 2011266877A JP 5772553 B2 JP5772553 B2 JP 5772553B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- silicon single
- oxygen
- resistivity
- oxygen concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013078 crystal Substances 0.000 title claims description 136
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims description 97
- 229910052710 silicon Inorganic materials 0.000 title claims description 97
- 239000010703 silicon Substances 0.000 title claims description 97
- 238000000034 method Methods 0.000 title claims description 69
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000001301 oxygen Substances 0.000 claims description 189
- 229910052760 oxygen Inorganic materials 0.000 claims description 189
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 187
- 238000010438 heat treatment Methods 0.000 claims description 75
- 239000000969 carrier Substances 0.000 claims description 32
- 238000009792 diffusion process Methods 0.000 claims description 7
- 125000004429 atom Chemical group 0.000 description 25
- 239000000523 sample Substances 0.000 description 19
- 238000011156 evaluation Methods 0.000 description 17
- 238000002474 experimental method Methods 0.000 description 15
- 239000000047 product Substances 0.000 description 10
- 235000012431 wafers Nutrition 0.000 description 9
- 238000005259 measurement Methods 0.000 description 7
- 125000004430 oxygen atom Chemical group O* 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 238000007711 solidification Methods 0.000 description 5
- 230000008023 solidification Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000002045 lasting effect Effects 0.000 description 2
- 150000002926 oxygen Chemical class 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- -1 and in particular Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005247 gettering Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/322—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
- H01L21/3221—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
- H01L21/3225—Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/02—Heat treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Thermal Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
しかし近年CMOSプロセスの微細化が進んだこと、低コスト化したいことなどから、シリコンをベースとしたRFデバイスが実現可能となってきた。
しかしこの方法では、高温の熱処理工程が必要なために高コスト化してしまうという問題点がある。
また、特許文献4の図2では酸素濃度と酸素ドナー発生量とが片対数グラフ上で直線の関係になることが示されている。酸素濃度のB乗に比例するのであれば片対数グラフ上で直線関係になるはずはないので、結局この方法からは数式として発生量を表記できておらず、汎用性がないと考えられる。
ここで、酸素ドナー等については、国際公開第2005/071144号や、非特許文献のW. Kaiser et al., Phys. Rev. 112, 1546 (1958)、また、K.wada et al., in Semiconductor Silicon/1986 edited by H.R.Huff et al. (Electrochemical Society, Pennington NJ, 1986),p.778、さらにはH.Takeno et al., J. Appl. Phys. 84, 3117 (1998)などに記載されており、本発明者らは、それらの記載に基づき、酸素ドナーに起因して発生するキャリア濃度を数値化することを試みた。
Δ[C]=α’[Oi]3×exp(−β’・D(T)・[Oi]・t) (ここでα’、β’は定数)、と表されることである。なお、[Oi]はシリコン単結晶中の酸素濃度、Tが熱処理の温度、tが前記熱処理の時間、D(T)が温度Tでの酸素拡散係数である。
また、酸素ドナーが生成されて基板の抵抗率がシフトしても、所望の抵抗率とすることが可能なシリコン単結晶を育成して製造する方法を提供することを目的とする。
なお、ここでいう熱処理は酸素ドナーが生成されやすい450℃近辺の熱処理であり、例えば400−500℃程度の比較的低温の熱処理とすることができる。
さらには、本発明のシリコン単結晶の製造方法であれば、熱処理による酸素ドナー起因のキャリアの発生量を考慮してシリコン単結晶を育成して製造することができ、最終的に所望の抵抗率を有する製品を得ることができる。
まず、本発明のシリコン単結晶の評価方法について説明する。
図1は本方法の手順の一例を示すフロー図である。
(工程1) 評価対象のシリコン単結晶の用意
評価対象となるシリコン単結晶を用意する。
本方法では、酸素ドナーを起因とするキャリアの発生量について求めるので、特には酸素を含むものとすることができる。例えば、CZ法やMCZ法によるシリコン単結晶を用意することができる。
ここで、CZ法等によりシリコン単結晶を育成可能な装置について図2を用いて説明する。
図2に示すように、単結晶引上げ装置1は、引上げ室2と、引上げ室2中に設けられたルツボ3(内側に石英ルツボ、外側に黒鉛ルツボ)と、ルツボ3の周囲に配置されたヒータ4と、ルツボ3を回転させるルツボ保持軸5及びその回転機構(図示せず)と、シリコンの種結晶6を保持するシードチャック7と、シードチャック7を引上げるワイヤ8と、ワイヤ8を回転又は巻き取る巻取機構(図示せず)を備えて構成されている。また、ヒータ4の外側周囲には断熱材9が配置されている。
シリコン単結晶10は、原料のシリコン融液11からワイヤ8によって引上げられる。
ルツボ3はルツボ保持軸5により結晶成長軸方向に昇降可能であり、結晶成長中に結晶化して減少した融液の液面下降分を補うように該ルツボ3を上昇させる。結晶の側方にはシリコン融液11から発する酸化性蒸気を整流するために不活性ガスが流されている。
このときにルツボ3や育成するシリコン結晶10の回転数を変更したり、磁場印加CZ法(すなわちMCZ法)では磁場印加条件を変更したりすることでシリコン融液11内の対流の流れを制御して結晶中の酸素濃度を制御することが可能であるし、また不活性ガスの流量調整や炉内の圧力制御により表面からの酸素蒸発量を制御可能である。
なお、酸素濃度はこのウェーハ状のサンプルを用いて、例えば、室温でのFT−IR法によって求めることができる。ここで酸素濃度[Oi]でOiと記載しているのは、酸素原子がシリコン結晶中ではインタースティシャル(格子間)の位置に存在しているためであり、その位置での赤外吸収を測定して酸素濃度と表記しているためである。
なお、本手法は酸素濃度9×1017atoms/cm3(ASTM’79)以下の低酸素の結晶に対して特に有用である。
シリコン単結晶育成後の結晶中には酸素ドナーが存在している。酸素ドナーは450℃前後の比較的低温領域で生成される。結晶のボトム側(尾側:後に育成される部分)では結晶成長時にこのような低温熱履歴を受けず、ほとんど酸素ドナーが発生しない。逆に結晶のトップ側(頭側:先に育成される部分)では充分にこの低温熱履歴を受けるため、多くの酸素ドナーが生成される。
近年の結晶長尺化に伴い、この傾向は一層顕著となり、トップ側では大量の酸素ドナーが存在し、ボトム側には酸素ドナーがほとんど存在しない、という状況となっている。
そして、該測定した抵抗率からアービンカーブを用いてキャリア濃度を求める。
以上のようにして、評価対象のシリコン単結晶のサンプルを用意し、酸素濃度やキャリア濃度、抵抗率等を予め調べておく。
次に、関係式:Δ[C]=α[Oi]5×exp(−β・D(T)・[Oi]・t) (ここでα、βは定数)を用いて、酸素ドナーを起因とするキャリアの発生量を算出する。
上記関係式において、[Oi]はシリコン単結晶中の酸素濃度であり、Tが熱処理の温度、tが前記熱処理の時間、D(T)が温度Tでの酸素拡散係数である。
また、熱処理の温度Tは、目的等に応じて適宜決定することができる。例えば、デバイス工程後の配線やパッケージなどの工程で行われる熱処理による酸素ドナーを起因とするキャリアの発生量を求めるのであれば、実際にその工程で行われるのと同様の値とすることができる。酸素ドナーが生成される熱処理条件であれば良い。例えば、400−500℃程度の熱処理温度のものとすることができる。
熱処理時間tも同様にして適宜決定することができる。
例えば酸素濃度はFT−IRによって測定されるが、その吸収ピークからリファレンスを差し引きした吸光度から酸素濃度に換算する。この時、換算係数はリファレンスによっても異なるし、測定器によっても異なるし、メーカーによっても異なる。従って同じサンプルを測定しても、どの換算係数を用いたかによって変わってくる。また酸素濃度をppmaで表示するメーカーもあれば、atoms/cm3で表示するメーカーもある。
しかしながら、前述したように、近年多く用いられる様になってきた9×1017atoms/cm3(ASTM’79)以下の酸素濃度に対しては、キャリアの生成量をうまく表すことが出来ない。
しかし本手法によれば近年増加しつつある低酸素濃度結晶から従来の酸素濃度結晶に至るまで広く適用することが可能である。従って本手法によって全酸素濃度におけるドナー生成量を求めることが簡便であり、汎用性が高い。
(実験1)
まず、上述した国際公開第2005/071144号等から導かれた関係式:Δ[C]=α’[Oi]3×exp(−β’・D(T)・[Oi]・t) (ここでα’、β’は定数)について検証した。
工程1と同様にして、CZ法及びMCZ法を用いて酸素濃度を振ったP型結晶を育成し、そこからウェーハ状のサンプルを切り出した。
酸素濃度[Oi]=9.2×1017、10.8×1017、12.8×1017、13.8×1017、15.9×1017atoms/cm3(ASTM’79)のサンプルを用意した。
今回はP型のサンプルを用いたので、熱処理前のキャリア濃度から熱処理後のキャリア濃度を差し引いたものを、酸素ドナーに起因するキャリア発生量として求めた。ただし、熱処理後にN型に反転したサンプルにおいては、熱処理前のキャリア濃度と熱処理後のキャリア濃度との和を酸素ドナー起因キャリア発生量とした。これらのキャリア発生量を酸素濃度に対してプロットしたのが図9である。
Δ[C]=4.53×10−39×[Oi]3×exp(−1.63×10−5×D(T)・[Oi]・t) …式(1)
[Oi]:酸素濃度(atoms/cm3(ASTM’79))、T:熱処理温度(K)、t:熱処理時間(sec)、D(T):温度Tでの酸素拡散係数(cm2/sec)、k:ボルツマン定数=8.62×10−5(eV/K)
次に、より低酸素濃度領域にまで範囲を広げて式(1)が使用できるのかを確かめた。
実験1と同様に酸素濃度を振ったサンプルを用意した。ただし酸素のレベルは、実験1よりも低く、4.8×1017、5.2×1017、5.8×1017、6.8×1017、8.0×1017atoms/cm3(ASTM’79)である。酸素濃度を下げる必要があるので今回のサンプルは全て磁場を印加したMCZ法を用いて作製した。
またサーマルドナーは酸素析出の核として働くことが同文献内でも報告されており、この高酸素領域ではサーマルドナーから酸素析出物へと成長するため正確な記述ができていなかったとも考えられる。いずれにしても従来の酸素濃度を扱う限りにおいては、式(1)で不都合が無かったと考えられる。
しかしながら、これからは従来になかったような低酸素濃度領域のMCZ結晶が使われていくことが予想されるので、低酸素濃度側もあわせて表記できる式が好ましい。そこで、これらのデータを基に、式(1)に変わる酸素ドナー起因キャリア発生量を求められる式を鋭意検討した。
その結果、実験1、2におけるシリコン単結晶においては、
Δ[C]=5.78×10−74×[Oi]5×exp(−6.25×10−7×D(T)・[Oi]・t) …式(2)
と表せることが判った。
この式(2)と実験1、実験2の結果をともに記載したグラフが図3である。酸素濃度全域にわたって実験結果を良く表すことができている。以上から、酸素ドナー起因キャリアの発生量は式(2)によって求めることが妥当であると考えられる。
以上のようにして、本発明における関係式を導いた。
さらには、キャリア発生量を求めることができるため、これと該当のシリコン単結晶の抵抗率から計算されるキャリア濃度との加算もしくは減算から、熱処理後の抵抗率を推定することができる。
ここで加算もしくは減算と記載したのは、元のシリコン単結晶の導電型に依存するためである。もともとの結晶がN型であれば加算となるし、P型であれば減算を取ることになるからである。更にP型のキャリア濃度よりも酸素ドナー起因キャリアの発生量が多い場合には、N転といわれN型に変化してしまうが、その場合には酸素ドナー起因キャリア濃度からP型キャリア濃度を差し引いた分をN型キャリア濃度として計算することができる。キャリア濃度と抵抗率の関係はアービンカーブを用いて計算することができる。
このようにして、熱処理後のシリコン単結晶について、抵抗率を算出し、評価を行うことができる。
図1に示すような本発明の評価方法をまず行う。
そして、上述したように、予想される低温熱処理後の抵抗率が計算できるので、これを基にして、その低温熱処理を含む該当のプロセスへ投入すべきシリコンウェーハの酸素濃度や抵抗率を定めることが可能である。
CZ法においては、一般に抵抗を制御するためのドーパントをルツボ内に投入した後に結晶を育成するが、この際にドーパントは偏析現象によって結晶のトップ側とボトム側で抵抗率が変化する。顧客に出荷する際には要求を満たす部分を出荷することになる。従って要求の抵抗率範囲が狭ければ、製品長さが短くなる。
そして、当初の予定通りのプロセスを経て、所望のシリコンウェーハを得ることが可能である。
(実施例1)
実験2で用いたサンプルに加え、酸素濃度が2.9〜8.9×1017atoms/cm3(ASTM’79)である低酸素濃度サンプルを用意した。P型に限らずN型のサンプルも含まれている。
これらのサンプルについて、本発明における関係式(この場合、式(2))を用い、酸素ドナー起因のキャリアの発生量を算出して評価した。
450℃の熱処理時間が1時間と15時間の場合だけでなく、5時間と10時間の場合についても評価した。
関係式で得られるグラフを、各熱処理時間ごとに図4に示す。
なお、N型のサンプルの場合には熱処理後の抵抗率から求められるキャリア濃度から、熱処理前の抵抗率から求められるキャリア濃度を引いたものを発生量とした。
P型で1000Ωcmから2000Ωcmの抵抗率のウェーハが要求された。また、このデバイス最終段階で行われる低温の熱処理は450℃で2時間に相当するプロセスである。そこで、この目標を達成するために検討を行った。
結晶の製造はMCZ法にて行い、ルツボのサイズが26インチ(66cm)である装置を用いて結晶育成を行うこととした。
先に述べた様に、結晶トップ側の酸素濃度は下がりにくい。例えば図2の装置を用い、酸素濃度[Oi]を4×1017atoms/cm3(ASTM’79)狙いとした場合と、8×1017atoms/cm3(ASTM’79)狙いとした場合とを比較すると、酸素濃度に関する不良率が、4×1017atoms/cm3(ASTM’79)狙いでは、8×1017atoms/cm3(ASTM’79)狙いの2倍から3倍となりコストアップになる。従って狙うべき酸素濃度が高い方ほど不良率が下がってコストも低下する。しかしながら、酸素濃度を高くすると酸素ドナー起因キャリアが発生してしまい、所望の抵抗率に入らない。
そこで本発明における関係式(この場合、式(2))を用いて試算を行った。
そして、試算した酸素濃度[Oi]が4×1017、5×1017、6×1017、7×1017atoms/cm3(ASTM’79)及び酸素濃度[Oi]が0atoms/cm3(ASTM’79)の場合のキャリア発生量に基づいて、上記低温熱処理後で、酸素ドナー起因のキャリアが発生した際の結晶長さ方向の抵抗率分布を、各酸素濃度ごとに、図6にプロットした。
この図6では、横軸は結晶の固化率(=結晶重量/初期原料重量)で表している。
酸素濃度[Oi]が5×1017atoms/cm3(ASTM’79)を狙った場合にはデバイス工程後に約半分が規格外になり、また、6×1017、7×1017atoms/cm3(ASTM’79)を狙った場合にはほぼ全量が規格外になってしまうことが容易に判断できる。
実施例2と同様に、デバイス最終段で行われる低温の熱処理が450℃で2時間相当であり、P型で1000Ωcmから2000Ωcmの抵抗率のウェーハが要求された。
まず、実施例2の図6のグラフから、上記規格内の抵抗率のウエーハを得るには、シリコン単結晶の育成のときに酸素濃度[Oi]が4×1017atoms/cm3(ASTM’79)を狙えばよいことが示唆された。この酸素濃度でシリコン単結晶を育成し、上記低温熱処理のプロセスを行えば、図6における酸素の度[Oi]が4×1017atoms/cm3(ASTM’79)のときの抵抗率を有するものが得られると考えられる。
そこで、ここでは、図6を踏まえ、さらには無理なく酸素濃度を下げられる条件で結晶を育成した場合の酸素濃度から狙うべき抵抗率を定めて、製品が少しでも多く取れる設計を行うこととする。実施例2と同様の製造装置を用い、無理のない条件で低酸素濃度化を狙った場合には、図7のような酸素濃度プロファイルが得られる。
上述の考慮を行った結果、狙うべき抵抗率はトップ側で約1350Ωcmであった。更に上述の酸素濃度から計算されるキャリア発生量を考慮し、デバイス工程後に予想される抵抗率も図8に破線で示した。
そして、この設計を基にしてシリコン単結晶を育成した。また、育成した結晶からウェーハ状のサンプルを切り出し、ドナーキラー熱処理を施し抵抗率を測定した。その結果、図8の実線と一致する抵抗率が得られた。
その結果、抵抗率のプロファイルは、式(2)から求めたデバイス熱処理後に予想される抵抗率プロファイルの図8の破線に一致する結果が得られた。またこれらの結晶(の全ての領域)から切り出された製品ウェーハを実デバイス工程に投入して評価してもらった結果、デバイス動作に問題ないことが確認された。
実施例3と同様の要求に対して、本手法を用いずに結晶を育成することとした。
酸素ドナー起因のキャリアの発生量を考慮することなく、抵抗率規格が1000Ωcmから2000Ωcmなので、結晶のトップ側で1900Ωcmとなる様に狙い抵抗率を定めた。この狙いから計算される抵抗率を図8に一点鎖線で示した。
また酸素濃度は実施例3と同様のプロファイルとした。
その結果、図8の一点鎖線にほぼ乗るように抵抗プロファイルが得られた。この時点では抵抗率規格1000〜2000Ωcmを満たしており合格品である。
その結果、抵抗率のプロファイルは、式(2)から求めたデバイス熱処理後に予想される抵抗率プロファイルの図8の点線と同等の分布を示した。
つまり、酸素ドナー起因のキャリア発生量を考慮せずに結晶を育成した結果、デバイス工程後も規格を満たす製品の長さは固化率が0.25〜0.7までとなり、実施例3で得られた0.11〜0.7に比較して製品長さが減少してしまった。
5…ルツボ保持軸、 6…種結晶、 7…シードチャック、
8…ワイヤ、 9…断熱材、 10…シリコン単結晶、 11…シリコン融液。
Claims (4)
- シリコン単結晶の評価方法であって、
シリコン単結晶に熱処理を施したときに生成される酸素ドナーを起因とするキャリアの発生量Δ[C]を、
前記シリコン単結晶中の酸素濃度[Oi]、前記熱処理の温度T、前記熱処理の時間t、温度Tでの酸素拡散係数D(T)とから、
Δ[C]=α[Oi]5×exp(−β・D(T)・[Oi]・t) (ここでα、βは定数)
の関係式を用いて算出して評価することを特徴とするシリコン単結晶の評価方法。 - 前記評価するシリコン単結晶中の酸素濃度を、9×1017atoms/cm3(ASTM’79)以下とすることを特徴とする請求項1に記載のシリコン単結晶の評価方法。
- 前記関係式を用いて酸素ドナー起因のキャリアの発生量を算出し、該算出したキャリアの発生量を用いて、前記熱処理後のシリコン単結晶の抵抗率を算出して評価することを特徴とする請求項1または請求項2に記載のシリコン単結晶の評価方法。
- 請求項3に記載のシリコン単結晶の評価方法を用いて前記熱処理後のシリコン単結晶の抵抗率を算出し、該算出した抵抗率に基づいて、シリコン単結晶を育成するときの酸素濃度および抵抗率の狙い値を決定し、該決定した狙い値に基づいてシリコン単結晶を育成することを特徴とするシリコン単結晶の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011266877A JP5772553B2 (ja) | 2011-12-06 | 2011-12-06 | シリコン単結晶の評価方法およびシリコン単結晶の製造方法 |
US14/358,618 US9111883B2 (en) | 2011-12-06 | 2012-11-12 | Method for evaluating silicon single crystal and method for manufacturing silicon single crystal |
KR20147015202A KR20140099266A (ko) | 2011-12-06 | 2012-11-12 | 실리콘 단결정의 평가방법 및 실리콘 단결정의 제조방법 |
PCT/JP2012/007232 WO2013084410A1 (ja) | 2011-12-06 | 2012-11-12 | シリコン単結晶の評価方法およびシリコン単結晶の製造方法 |
DE201211004731 DE112012004731T5 (de) | 2011-12-06 | 2012-11-12 | Verfahren zum Evaluieren von Silizium-Einkristall und Verfahren zum Herstellen von Silizium-Einkristall |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011266877A JP5772553B2 (ja) | 2011-12-06 | 2011-12-06 | シリコン単結晶の評価方法およびシリコン単結晶の製造方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2013119486A JP2013119486A (ja) | 2013-06-17 |
JP2013119486A5 JP2013119486A5 (ja) | 2014-06-26 |
JP5772553B2 true JP5772553B2 (ja) | 2015-09-02 |
Family
ID=48573804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011266877A Active JP5772553B2 (ja) | 2011-12-06 | 2011-12-06 | シリコン単結晶の評価方法およびシリコン単結晶の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9111883B2 (ja) |
JP (1) | JP5772553B2 (ja) |
KR (1) | KR20140099266A (ja) |
DE (1) | DE112012004731T5 (ja) |
WO (1) | WO2013084410A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2997096B1 (fr) * | 2012-10-23 | 2014-11-28 | Commissariat Energie Atomique | Procede de formation d'un lingot en silicium de resistivite uniforme |
JP6036670B2 (ja) * | 2013-12-10 | 2016-11-30 | 信越半導体株式会社 | シリコン単結晶基板の欠陥濃度評価方法 |
US20150294868A1 (en) * | 2014-04-15 | 2015-10-15 | Infineon Technologies Ag | Method of Manufacturing Semiconductor Devices Containing Chalcogen Atoms |
JP6187689B2 (ja) | 2014-06-02 | 2017-08-30 | 株式会社Sumco | シリコンウェーハの製造方法 |
FR3045074B1 (fr) * | 2015-12-14 | 2018-01-05 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede pour ajuster la resistivite d'un lingot semi-conducteur lors de sa fabrication |
FR3059821B1 (fr) * | 2016-12-05 | 2019-07-12 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede de mesure de temperature |
JP6669133B2 (ja) | 2017-06-23 | 2020-03-18 | 株式会社Sumco | シリコンウェーハのサーマルドナー生成挙動予測方法、シリコンウェーハの評価方法およびシリコンウェーハの製造方法 |
JP2019019030A (ja) * | 2017-07-18 | 2019-02-07 | 信越半導体株式会社 | シリコン単結晶の評価方法およびシリコン単結晶の製造方法 |
JP2019094224A (ja) | 2017-11-21 | 2019-06-20 | 信越半導体株式会社 | シリコン単結晶の育成方法 |
JP6844561B2 (ja) * | 2018-03-09 | 2021-03-17 | 信越半導体株式会社 | 酸素濃度評価方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2688137B2 (ja) | 1991-12-04 | 1997-12-08 | 信越半導体株式会社 | シリコン単結晶の引上げ方法 |
JP3985768B2 (ja) | 2003-10-16 | 2007-10-03 | 株式会社Sumco | 高抵抗シリコンウェーハの製造方法 |
US7803228B2 (en) | 2003-10-21 | 2010-09-28 | Sumco Corporation | Process for producing high-resistance silicon wafers and process for producing epitaxial wafers and SOI wafers |
TWI290182B (en) * | 2004-01-27 | 2007-11-21 | Sumco Techxiv Corp | Method for predicting precipitation behavior of oxygen in silicon single crystal, determining production parameter thereof, and storage medium storing program for predicting precipitation behavior of oxygen in silicon single crystal |
JP4656284B2 (ja) * | 2004-04-02 | 2011-03-23 | 株式会社Sumco | 高抵抗シリコンウェーハの製造方法 |
CN101228301A (zh) * | 2005-05-19 | 2008-07-23 | Memc电子材料有限公司 | 高电阻率硅结构和用于制备该结构的方法 |
TW200818327A (en) * | 2006-09-29 | 2008-04-16 | Sumco Techxiv Corp | Silicon wafer heat treatment method |
US8263484B2 (en) * | 2009-03-03 | 2012-09-11 | Sumco Corporation | High resistivity silicon wafer and method for manufacturing the same |
FR2964459B1 (fr) * | 2010-09-02 | 2012-09-28 | Commissariat Energie Atomique | Procede de cartographie de la concentration en oxygene |
FR2974180B1 (fr) * | 2011-04-15 | 2013-04-26 | Commissariat Energie Atomique | Procede de determination de la concentration en oxygene interstitiel. |
-
2011
- 2011-12-06 JP JP2011266877A patent/JP5772553B2/ja active Active
-
2012
- 2012-11-12 DE DE201211004731 patent/DE112012004731T5/de not_active Withdrawn
- 2012-11-12 KR KR20147015202A patent/KR20140099266A/ko active Search and Examination
- 2012-11-12 US US14/358,618 patent/US9111883B2/en active Active
- 2012-11-12 WO PCT/JP2012/007232 patent/WO2013084410A1/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2013084410A1 (ja) | 2013-06-13 |
JP2013119486A (ja) | 2013-06-17 |
KR20140099266A (ko) | 2014-08-11 |
US9111883B2 (en) | 2015-08-18 |
US20140363904A1 (en) | 2014-12-11 |
DE112012004731T5 (de) | 2014-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5772553B2 (ja) | シリコン単結晶の評価方法およびシリコン単結晶の製造方法 | |
US20070169688A1 (en) | Method for manufacturing silicon wafer | |
JP6945805B2 (ja) | エピタキシャルウェーハの製造方法 | |
JP2008545605A (ja) | 高抵抗率シリコン構造体およびその製造方法 | |
JP2007191350A (ja) | Igbt用シリコン単結晶ウェーハ及びigbt用シリコン単結晶ウェーハの製造方法 | |
TWI570286B (zh) | Β-Ga 2 O 3 A method for manufacturing a substrate, and a method for producing a crystalline laminated structure | |
JPH10163220A (ja) | 半導体ウェーハの熱処理方法及び、それによって形成された半導体ウェーハ | |
JP2019206451A (ja) | シリコン単結晶の製造方法、エピタキシャルシリコンウェーハ及びシリコン単結晶基板 | |
JP2004503086A (ja) | 削剥領域を備えたシリコンウエハの製造方法及び製造装置 | |
US5385115A (en) | Semiconductor wafer heat treatment method | |
JP5817542B2 (ja) | シリコン基板の製造方法 | |
JP6980893B2 (ja) | 単結晶シリコンから作られる半導体ウェハおよびその製造プロセス | |
JPH09283529A (ja) | 半導体基板の製造方法およびその検査方法 | |
JP2005206391A (ja) | シリコン単結晶基板の抵抗率保証方法及びシリコン単結晶基板の製造方法並びにシリコン単結晶基板 | |
JP5849878B2 (ja) | シリコン単結晶育成方法 | |
JP2019019030A (ja) | シリコン単結晶の評価方法およびシリコン単結晶の製造方法 | |
JP7429122B2 (ja) | シリコン単結晶の製造方法 | |
JP4962406B2 (ja) | シリコン単結晶の育成方法 | |
JPH04298042A (ja) | 半導体の熱処理方法 | |
WO2019102702A1 (ja) | シリコン単結晶の育成方法 | |
JP2024004663A (ja) | シリコン単結晶基板の酸素濃度の上限値の決定方法 | |
JP7264100B2 (ja) | シリコン単結晶基板中のドナー濃度の制御方法 | |
WO2022172368A1 (ja) | シリコン単結晶の製造方法 | |
Hoshikawa et al. | Investigation of methods for doping CZ silicon with gallium | |
JPH0411518B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141028 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150615 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5772553 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |