[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5751185B2 - ハイブリッド車 - Google Patents

ハイブリッド車 Download PDF

Info

Publication number
JP5751185B2
JP5751185B2 JP2012025892A JP2012025892A JP5751185B2 JP 5751185 B2 JP5751185 B2 JP 5751185B2 JP 2012025892 A JP2012025892 A JP 2012025892A JP 2012025892 A JP2012025892 A JP 2012025892A JP 5751185 B2 JP5751185 B2 JP 5751185B2
Authority
JP
Japan
Prior art keywords
engine
motor
output
vehicle speed
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012025892A
Other languages
English (en)
Other versions
JP2013163393A (ja
Inventor
国明 新美
国明 新美
英輝 鎌谷
英輝 鎌谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012025892A priority Critical patent/JP5751185B2/ja
Publication of JP2013163393A publication Critical patent/JP2013163393A/ja
Application granted granted Critical
Publication of JP5751185B2 publication Critical patent/JP5751185B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、ハイブリッド車に関し、詳しくは、排気を浄化するための触媒を有する排気浄化装置が排気系に取り付けられたエンジンと、エンジンをモータリング可能な第1モータと、走行用の動力を出力可能な第2モータと、を備えるハイブリッド車に関する。
従来、この種の技術としては、車両に搭載され排気通路に排気浄化触媒を有するエンジンへの燃料供給を所定の燃料供給停止条件の成立に応じて停止する際に、排気浄化触媒の温度が所定値α以上であることと車両の走行速度が所定値β以上であることとを禁止条件とし、この禁止条件の成立に応じて燃料供給停止を禁止するものが提案されている(例えば、特許文献1参照)。このエンジンへの燃料供給制御では、上述の禁止条件を設けることにより、排気硫黄臭を抑制すると共に排気浄化触媒の熱による劣化を抑制している。
また、排気系に排気浄化装置が取り付けられたエンジンと走行用のモータとを備えるハイブリッド車において、排気浄化装置の触媒の温度が高いために触媒劣化が促進されると判定されている最中にアクセルオフなどによりエンジンの目標回転数が低下しエンジン回転数と目標回転数との回転数差が閾値よりも大きいときには、車速が触媒の温度が高いほど大きな値に設定された閾値よりも大きいときにはエンジンの爆発燃焼を継続しながらエンジン回転数を目標回転数に至るように制御し、車速が閾値より小さいときにはエンジンのフューエルカットを実行するものが提案されている(例えば、特許文献2参照)。このハイブリッド車では、触媒の温度が高く触媒の劣化が促進されるときにはエンジンの爆発燃焼を継続する触媒劣化抑制制御をできるだけ長く継続させて触媒劣化を抑制している。
特開2005−147082号公報 特開2007−192113号公報
エンジンとエンジンをモータリング可能な第1モータと走行用の動力を出力可能な第2モータとを備えるハイブリッド車では、運転者がアクセルオフしたときには、エンジンへの出力要求がなくてもエンジンの回転数を保持する場合がある。比較的高車速で走行している最中に運転者がアクセルオフすると、エンジンへの出力要求はないが、次に運転者がアクセルを踏み込んだときに迅速にエンジンからパワーを出力するために車速に応じてエンジンの回転数を保持する。このとき、通常は、燃費を良好に保持するためにエンジンへの燃料供給を停止した状態で第1モータによるモータリングによりエンジンの回転数を保持することが行なわれている。一方、エンジンを高負荷で運転したときなど、エンジンの排気系に取り付けられた排気浄化装置の触媒の温度が通常の範囲より高くなったときには、高温時に触媒がリーン雰囲気(空気(酸素)が存在する雰囲気)に晒されることによって生じる触媒の劣化が促進しないようにエンジンの燃料カットを禁止してエンジンの爆発燃焼を継続する触媒劣化抑制制御が行なわれる。したがって、比較的高車速でのアクセルオフによるエンジン回転数の保持と触媒の温度が高いことによる触媒劣化抑制制御とが同時に要求されると、エンジンの回転数の保持は、燃料供給によるエンジンの爆発燃焼を伴って行なわれることになり、燃費が悪化してしまう。これに対し、エンジンの回転数の保持を行なわないものとすれば、エンジン停止により燃費の悪化を抑制することができるが、次に運転者がアクセルを踏み込んだときには、エンジンの始動に時間を要し、迅速にエンジンからパワーを出力することができず、運転フィーリングを悪化させてしまう。
本発明のハイブリッド車は、排気浄化装置の触媒の劣化を抑制しつつ、燃費の悪化の抑制と運転フィーリングの悪化の抑制とのある程度の両立を図ることを主目的とする。
本発明のハイブリッド車は、上述の主目的を達成するために以下の手段を採った。
本発明のハイブリッド車は、
排気を浄化するための触媒を有する排気浄化装置が排気系に取り付けられたエンジンと、前記エンジンをモータリング可能な第1モータと、走行用の動力を出力可能な第2モータと、前記第1モータおよび前記第2モータと電力のやりとりが可能なバッテリと、前記エンジンへの出力要求がないときに車速が判定車速未満のときには前記エンジンの回転数を値0として前記エンジンの運転を停止するよう前記エンジンと前記第1モータと前記第2モータとを制御し、前記エンジンへの出力要求がないときに車速が前記判定車速以上のときには前記エンジンの回転が保持されるよう前記エンジンと前記第1モータと前記第2モータとを制御する制御手段と、を備えるハイブリッド車において、
前記制御手段は、前記触媒の温度が高いほど大きな値を前記判定車速として用いる手段である、
ことを特徴とする。
この本発明のハイブリッド車では、エンジンの排気系に取り付けられた排気浄化装置が有する触媒の温度が高いほど大きな値を判定車速とし、エンジンへの出力要求がないときに車速が判定車速未満のときにはエンジンの回転数を値0としてエンジンの運転を停止するようエンジンと第1モータと第2モータとを制御し、エンジンへの出力要求がないときに車速が判定車速以上のときにはエンジンの回転が保持されるようエンジンと第1モータと第2モータとを制御する。つまり、触媒の温度が高いほど判定車速を大きくして、エンジンへの出力要求がないときにエンジンの回転が保持される頻度を小さくするのである。これにより、触媒の温度が高いときにエンジンの爆発燃焼を伴ってエンジンの回転を保持する頻度を小さくすることができ、触媒の劣化を抑制しつつ、燃費の悪化をある程度抑制することができると共に運転フィーリングの悪化をある程度抑制することができる。ここで、触媒の温度と判定車速との関係としては、触媒の温度が触媒の劣化が促進される温度範囲の下限近傍の温度として予め定められた所定温度未満のときには判定車速は予め定められた所定車速で一定であり、触媒の温度が所定温度以上のときには触媒の温度が高くなるほど判定車速が大きくなるものとしてもよい。
こうした本発明のハイブリッド車において、前記制御手段は、前記バッテリの状態に基づく出力制限の範囲内で前記第1モータと前記第2モータとを制御する手段であり、更に、前記エンジンへの出力要求がない状態から前記エンジンへの出力要求がなされたときには、所定時間経過するまでは前記判定車速が大きいほど及び/又は前記バッテリに蓄電された蓄電量が大きいほど大きくなる補正値により前記出力制限を補正して用いる手段である、ことを特徴とするものとすることもできる。こうすれば、車速が判定車速未満であるためにエンジンの運転を停止している最中に運転者にアクセルが踏み込まれたときに、エンジンを始動する必要からエンジンからのパワー出力に時間を要しても、第2モータから出力するパワーを大きくすることができ、運転フィーリングの悪化をある程度抑制することができる。特に、判定車速が大きいほど、あるいは、バッテリに蓄電された蓄電量が大きいほど、大きくなる補正値を用いて出力制限を補正するから、補正値をより適正なものとすることができる。
本発明のハイブリッド車では、車軸とエンジンの出力軸と第1モータの回転軸との3軸に3つの回転要素が接続された遊星歯車機構を備えるものとすることもできる。
本発明の実施例のハイブリッド自動車20の構成の概略を示す構成図である。 エンジン22の構成の概略を示す構成図である。 HVECU70により実行される駆動制御ルーチンの一例を示すフローチャートである。 要求トルク設定用マップの一例を示す説明図である。 燃費最適動作ラインの一例を目標回転数Ne*と目標トルクTe*とを設定する様子を示す説明図である。 判定車速設定用マップの一例を示す説明図である。 エンジン22を停止したときとエンジン22の回転数Neを所定回転数Nsetで保持したときの共線図の一例を示す説明図である。 出力補正値設定用マップの一例を示す説明図である。 変形例のハイブリッド車120の構成の概略を示す構成図である。
次に、本発明を実施するための形態を実施例を用いて説明する。
図1は、本発明の一実施例としてのハイブリッド自動車20の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図示するように、ガソリンや軽油などを燃料として動力を出力するエンジン22と、エンジン22を駆動制御するエンジン用電子制御ユニット(以下、エンジンECUという)24と、エンジン22の出力軸としてのクランクシャフト26にキャリアが接続されると共に駆動輪63a,63bにデファレンシャルギヤ62を介して連結された駆動軸32にリングギヤが接続されたプラネタリギヤ30と、例えば同期発電電動機として構成されて回転子がプラネタリギヤ30のサンギヤに接続されたモータMG1と、例えば同期発電電動機として構成されて回転子が駆動軸32に接続されたモータMG2と、モータMG1,MG2を駆動するためのインバータ41,42と、インバータ41,42の図示しないスイッチング素子をスイッチング制御することによってモータMG1,MG2を駆動制御するモータ用電子制御ユニット(以下、モータECUという)40と、例えばリチウムイオン二次電池として構成されたバッテリ50と、インバータ41,42が接続された電力ライン(以下、高電圧系電力ラインという)54aとバッテリ50が接続された電力ライン(以下、電池電圧系電力ラインという)54bとに接続されて高電圧系電力ライン54aと電池電圧系電力ライン54bとの間で電力のやりとりを行なう昇圧コンバータ55と、バッテリ50を管理するバッテリ用電子制御ユニット(以下、バッテリECUという)52と、車両の駆動系全体を制御するハイブリッド用電子制御ユニット(以下、HVECUという)70と、を備える。
エンジン22は、図2に示すように、エアクリーナ122により清浄された空気をスロットルバルブ124を介して吸入すると共に燃料噴射弁126からガソリンを噴射して吸入された空気とガソリンとを混合し、この混合気を吸気バルブ128を介して燃料室に吸入し、点火プラグ130による電気火花によって爆発燃焼させて、そのエネルギにより押し下げられるピストン132の往復運動をクランクシャフト26の回転運動に変換する。エンジン22からの排気は、一酸化炭素(CO)や炭化水素(HC),窒素酸化物(NOx)の有害成分を浄化する浄化触媒(三元触媒)134aを有する浄化装置134を介して外気へ排出される。
エンジンECU24は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。エンジンECU24には、エンジン22の状態を検出する種々のセンサからの信号、例えば、クランクシャフト26の回転位置を検出するクランクポジションセンサ140からのクランクポジションθcrやエンジン22の冷却水の温度を検出する水温センサ142からの冷却水温Tw,燃焼室内に取り付けられた圧力センサからの筒内圧力Pin,燃焼室へ吸排気を行なう吸気バルブ128や排気バルブを開閉するカムシャフトの回転位置を検出するカムポジションセンサ144からのカムポジションθca,スロットルバルブ124のポジションを検出するスロットルバルブポジションセンサ146からのスロットル開度TH,吸気管に取り付けられたエアフローメータ148からの吸入空気量Qa,同じく吸気管に取り付けられた温度センサ149からの吸気温Ta,浄化触媒134aの温度を検出する温度センサ134bからの触媒温度Tc,排気系に取り付けられた空燃比センサ135aからの空燃比AF,同じく排気系に取り付けられた酸素センサ135bからの酸素信号O2などが入力ポートを介して入力されている。また、エンジンECU24からは、エンジン22を駆動するための種々の制御信号、例えば、燃料噴射弁126への駆動信号や、スロットルバルブ124のポジションを調節するスロットルモータ136への駆動信号、イグナイタと一体化されたイグニッションコイル138への制御信号、吸気バルブ128の開閉タイミングを変更可能な可変バルブタイミング機構150への制御信号などが出力ポートを介して出力されている。なお、エンジンECU24は、HVECU70と通信しており、HVECU70からの制御信号によりエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータを出力する。なお、エンジンECU24は、クランクポジションセンサ140からのクランクポジションθcrに基づいてクランクシャフト26の回転数即ちエンジン22の回転数Neを演算している。また、エンジンECU24は、温度センサ134bからの触媒温度Tcが浄化触媒143aがリーン雰囲気に晒されると劣化が促進される下限温度として予め定められた劣化促進下限温度未満のときには、リーン雰囲気に晒されても浄化触媒134aの劣化は促進しないと判断して触媒劣化抑制フラグFcに値0を設定し、触媒温度Tcが劣化促進下限温度以上のときには、リーン雰囲気に晒されると浄化触媒134aの劣化が促進すると判断して触媒劣化抑制フラグFcに値1を設定する。そして、この触媒劣化抑制フラグFc1に値1がセットされると、浄化触媒143aがリーン雰囲気に晒されないように、エンジン22の吸入空気量に対してストイキとなるよう燃料噴射を実行して爆発燃焼を継続する触媒劣化抑制制御を実行する。なお、触媒劣化抑制フラグFcは、触媒温度Tcを直接に検出する温度センサ134bを用いて設定するものに限られず、エンジン22の負荷状態に応じて推定される推定温度に基づいて設定するものとしてもよい。
モータECU40は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。モータECU40には、モータMG1,MG2を駆動制御するために必要な信号、例えばモータMG1,MG2の回転子の回転位置を検出する図示しない回転位置検出センサからの回転位置θm1,θm2や図示しない電流センサにより検出されるモータMG1,MG2に印加される相電流などが入力ポートを介して入力されており、モータECU40からは、インバータ41,42の図示しないスイッチング素子へのスイッチング制御信号などが出力ポートを介して出力されている。また、モータECU40は、HVECU70と通信しており、HVECU70からの制御信号によってモータMG1,MG2を駆動制御すると共に必要に応じてモータMG1,MG2の運転状態に関するデータをHVECU70に出力する。なお、モータECU40は、回転位置検出センサからのモータMG1,MG2の回転子の回転位置θm1,θm2に基づいてモータMG1,MG2の回転数Nm1,Nm2も演算している。
バッテリECU52は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。バッテリECU52には、バッテリ50を管理するのに必要な信号、例えば、バッテリ50の端子間に設置された図示しない電圧センサからの端子間電圧Vbやバッテリ50の出力端子に接続された電力ラインに取り付けられた図示しない電流センサからの充放電電流Ib,バッテリ50に取り付けられた図示しない温度センサからの電池温度Tbなどが入力されており、必要に応じてバッテリ50の状態に関するデータを通信によりHVECU70に送信する。また、バッテリECU52は、バッテリ50を管理するために、電流センサにより検出された充放電電流Ibの積算値に基づいてそのときのバッテリ50から放電可能な電力の容量の全容量に対する割合である蓄電割合SOCを演算したり、演算した蓄電割合SOCと電池温度Tbとに基づいてバッテリ50を充放電してもよい最大許容電力である入出力制限Win,Woutを演算したりしている。なお、バッテリ50の入出力制限Win,Woutは、電池温度Tbに基づいて入出力制限Win,Woutの基本値を設定し、バッテリ50の蓄電割合SOCに基づいて出力制限用補正係数と入力制限用補正係数とを設定し、設定した入出力制限Win,Woutの基本値に補正係数を乗じることにより設定することができる。
HVECU70は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。HVECU70には、シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSPやアクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc,ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速Vなどが入力ポートを介して入力されている。HVECU70は、前述したように、エンジンECU24やモータECU40,バッテリECU52と通信ポートを介して接続されており、エンジンECU24やモータECU40,バッテリECU52と各種制御信号やデータのやりとりを行なっている。
こうして構成された実施例のハイブリッド自動車20では、運転者によるアクセルペダルの踏み込み量に対応するアクセル開度Accと車速Vとに基づいて駆動軸32に出力すべき要求トルクTr*を計算し、この要求トルクTr*に対応する要求動力が駆動軸32に出力されるように、エンジン22とモータMG1とモータMG2とが運転制御される。エンジン22とモータMG1とモータMG2との運転制御としては、要求動力に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にエンジン22から出力される動力のすべてがプラネタリギヤ30とモータMG1とモータMG2とによってトルク変換されて駆動軸32に出力されるようモータMG1およびモータMG2を駆動制御するトルク変換運転モードや、要求動力とバッテリ50の充放電に必要な電力との和に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にバッテリ50の充放電を伴ってエンジン22から出力される動力の全部またはその一部がプラネタリギヤ30とモータMG1とモータMG2とによるトルク変換を伴って要求動力が駆動軸32に出力されるようモータMG1およびモータMG2を駆動制御する充放電運転モード,エンジン22の運転を停止してモータMG2からの要求動力に見合う動力を駆動軸32に出力するよう運転制御するモータ運転モードなどがある。なお、トルク変換運転モードと充放電運転モードとは、いずれもエンジン22の運転を伴って要求動力が駆動軸32に出力されるようエンジン22とモータMG1とモータMG2とを制御するモードであり、実質的な制御における差異はないため、以下、両者を合わせてエンジン運転モードという。
エンジン運転モードでは、HVECU70は、アクセルペダルポジションセンサ84からのアクセル開度Accと車速センサ88からの車速Vとに基づいて駆動軸32に出力すべき要求トルクTr*を設定し、設定した要求トルクTr*に駆動軸32の回転数Nr(例えば、モータMG2の回転数Nm2や車速Vに換算係数を乗じて得られる回転数)を乗じて走行に要求される走行用パワーPdrv*を計算すると共に計算した走行用パワーPdrv*からバッテリ50の蓄電割合SOCに基づいて得られるバッテリ50の充放電要求パワーPb*(バッテリ50から放電するときが正の値)を減じ更にロス(損失)を加えることによりエンジン22から出力すべきパワーとしての要求パワーPe*を設定する。そして、要求パワーPe*を効率よくエンジン22から出力することができるエンジン22の回転数NeとトルクTeとの関係としての動作ライン(例えば燃費最適動作ライン)を用いてエンジン22の目標回転数Ne*と目標トルクTe*とを設定し、バッテリ50の入出力制限Win,Woutの範囲内で、エンジン22の回転数Neが目標回転数Ne*となるようにするための回転数フィードバック制御によってモータMG1から出力すべきトルクとしてのトルク指令Tm1*を設定すると共にモータMG1をトルク指令Tm1*で駆動したときにプラネタリギヤ30を介して駆動軸32に作用するトルクを要求トルクTr*から減じてモータMG2のトルク指令Tm2*を設定し、設定した目標回転数Ne*と目標トルクTe*とについてはエンジンECU24に送信し、トルク指令Tm1*,Tm2*についてはモータECU40に送信する。目標回転数Ne*と目標トルクTe*とを受信したエンジンECU24は、目標回転数Ne*と目標トルクTe*とによってエンジン22が効率よく運転されるようエンジン22の吸入空気量制御や燃料噴射制御,点火制御などを行ない、トルク指令Tm1*,Tm2*を受信したモータECU40は、モータMG1,MG2がトルク指令Tm1*,Tm2*で駆動されるようインバータ41,42のスイッチング素子のスイッチング制御を行なう。
モータ運転モードでは、HVECU70は、アクセル開度Accと車速Vとに基づいて駆動軸32に出力すべき要求トルクTr*を設定し、モータMG1のトルク指令Tm1*に値0を設定する共にバッテリ50の入出力制限Win,Woutの範囲内で要求トルクTr*が駆動軸32に出力されるようモータMG2のトルク指令Tm2*を設定してモータECU40に送信する。そして、トルク指令Tm1*,Tm2*を受信したモータECU40は、モータMG1,MG2がトルク指令Tm1*,Tm2*で駆動されるようインバータ41,42のスイッチング素子のスイッチング制御を行なう。
次に、こうして構成された実施例のハイブリッド自動車20の動作、特に、浄化触媒134aが比較的高温の状態で比較的高速走行している最中の動作について説明する。図3は、HVECU70のCPU72により実行される駆動制御ルーチンの一例を示すフローチャートである。このルーチンは、所定時間毎(例えば、数msec毎)に繰り返し実行される。
駆動制御ルーチンが実行されると、HVECU70のCPU72は、まず、アクセルペダルポジションセンサ84からのアクセル開度Accや車速センサ88からの車速V,エンジン22の回転数Ne,モータMG1,MG2の回転数Nm1,Nm2,バッテリ50の入出力制限Win,Wout,触媒温度Tc,触媒劣化抑制フラグFcなど制御に必要なデータを入力する処理を実行する(ステップS100)。ここで、エンジン22の回転数Neはクランクポジションセンサ140からの信号に基づいて演算されたものをエンジンECU24から通信により入力するものとした。また、モータMG1,MG2の回転数Nm1,Nm2は、回転位置検出センサ43,44により検出されたモータMG1,MG2の回転子の回転位置に基づいて演算されたものをモータECU40から通信により入力するものとした。さらに、バッテリ50の入出力制限Win,Woutは、バッテリ50の電池温度Tbとバッテリ50の残容量(SOC)とに基づいて設定されたものをバッテリECU52から通信により入力するものとした。触媒温度Tcは温度センサ134bにより検出されたものをエンジンECU24から通信により入力するものとした。触媒劣化抑制フラグFcは触媒温度Tcによって設定されたものをエンジンECU24から通信により入力するものとした。
こうしてデータを入力すると、入力したアクセル開度Accと車速Vとに基づいて車両に要求されるトルクとして駆動輪63a,63bに連結された駆動軸32に出力すべき要求トルクTr*とエンジン22に要求される要求パワーPe*とを設定する(ステップS110)。要求トルクTr*は、実施例では、アクセル開度Accと車速Vと要求トルクTr*との関係を予め定めて要求トルク設定用マップとしてROM74に記憶しておき、アクセル開度Accと車速Vとが与えられると記憶したマップから対応する要求トルクTr*を導出して設定するものとした。図4に要求トルク設定用マップの一例を示す。要求パワーPe*は、設定した要求トルクTr*に駆動軸32の回転数Nrを乗じたものとバッテリ50が要求する充放電要求パワーPb*とロスLossとの和として計算することができる。なお、駆動軸32の回転数Nrは、車速Vに換算係数kを乗じること(Nr=k・V)によって求めたり、モータMG2の回転数Nm2として求めることができる。
続いて、エンジン22が運転中であるか否かを判定し(ステップS120)、エンジン22が運転中のときには設定した要求パワーPe*がエンジン22を運転停止するための閾値Pstop未満か否かを判定する(ステップS130)。ここで、閾値Pstopとしては、エンジン22を比較的効率よく運転することができるパワー領域の下限値近傍の値を用いることができる。
要求パワーPe*が閾値Pstop以上のときには、エンジン22への出力要求がなされていると判断し、燃費を最適にするエンジン22の回転数NeとトルクTeの関係としての動作ラインとして予め定められた燃費最適動作ラインと設定した要求パワーPe*とに基づいてエンジン22を運転すべき運転ポイントとしての目標回転数Ne*と目標トルクTe*とを設定し(ステップS260)、設定した目標回転数Ne*と目標トルクTe*とをエンジンECU24に送信する(ステップS270)。燃費最適動作ラインの一例を目標回転数Ne*と目標トルクTe*とを設定する様子を図5に示す。図示するように、目標回転数Ne*と目標トルクTe*は、燃費最適動作ラインと要求パワーPe*(Ne*×Te*)が一定の曲線との交点により求めることができる。目標回転数Ne*と目標トルクTe*とを受信したエンジンECU24は、エンジン22が目標回転数Ne*と目標トルクTe*とによって示される運転ポイントで運転されるようにエンジン22における吸入空気量制御や燃料噴射制御,点火制御などの制御を行なう。
次に、エンジン22の目標回転数Ne*とモータMG2の回転数Nm2とプラネタリギヤ30のギヤ比ρとを用いて次式(1)によりモータMG1の目標回転数Nm1*を計算すると共に計算した目標回転数Nm1*と入力したモータMG1の回転数Nm1とに基づいて式(2)によりモータMG1から出力すべきトルク指令Tm1*を計算する(ステップS280)。ここで、式(1)は、プラネタリギヤ30の回転要素における機構的な回転数に関する関係式であり、式(2)は、モータMG1を目標回転数Nm1*で回転させるためのフィードバック制御における関係式である。式(2)中、右辺第2項の「k1」は比例項のゲインであり、右辺第3項の「k2」は積分項のゲインである。なお、式(2)中の右辺第1項は、エンジン22から目標トルクTe*を出力したときにプラネタリギヤ30を介して作用するトルクに対する反力としてトルクである。
Nm1*=Ne*・(1+ρ)/ρ-Nm2/ρ (1)
Tm1*=ρ・Te*/(1+ρ)+k1(Nm1*-Nm1)+k2∫(Nm1*-Nm1)dt (2)
そして、要求トルクTr*に設定したトルク指令Tm1*をプラネタリギヤ30のギヤ比ρで除したものを加えてモータMG2から出力すべきトルクの仮の値である仮トルクTm2tmpを次式(3)により計算し(ステップS290)、バッテリ50の入出力制限Win,Woutとトルク指令Tm1*に現在のモータMG1の回転数Nm1を乗じて得られるモータMG1の消費電力(発電電力)との偏差をモータMG2の回転数Nm2で割ることによりモータMG2から出力してもよいトルクの上下限としてのトルク制限Tmin,Tmaxを次式(4)および式(5)により計算すると共に(ステップS300)、設定した仮トルクTm2tmpを式(6)によりトルク制限Tmin,Tmaxで制限してモータMG2のトルク指令Tm2*を設定し(ステップS310)、設定したトルク指令Tm1*,Tm2*をモータECU40に送信して(ステップS320)、駆動制御ルーチンを終了する。トルク指令Tm1*,Tm2*を受信したモータECU40は、トルク指令Tm1*でモータMG1が駆動されると共にトルク指令Tm2*でモータMG2が駆動されるようインバータ41,42のスイッチング素子のスイッチング制御を行なう。
Tm2tmp=Tr*+Tm1tmp/ρ (3)
Tmin=(Win-Tm1*・Nm1)/Nm2 (4)
Tmax=(Wout-Tm1*・Nm1)/Nm2 (5)
Tm2*=max(min(Tm2tmp,Tmax),Tmin) (6)
エンジン22への出力要求がなされているときには、以上説明したステップS260〜S320を繰り返すことにより、バッテリ50の入出力制限Win,Woutの範囲内でエンジン22を効率よく運転して駆動軸32に要求トルクTr*を出力して走行することができる。
ステップS130で要求パワーPe*が閾値Pstop未満であると判定されたときには、エンジン22への出力要求はないと判断し、触媒温度Tcが高いほど大きくなる傾向に判定車速Vajを設定し(ステップS140)、車速Vを設定した判定車速Vajと比較する(ステップS150)。判定車速Vajは、実施例では、触媒温度Tcと判定車速Vajとの関係を予め定めて判定車速設定用マップとしてROM74に記憶しておき、触媒温度Tcが与えられると記憶したマップから対応する判定車速Vajを導出して設定するものとした。図6に判定車速設定用マップの一例を示す。図6の例では、触媒温度Tcが劣化が促進する温度より若干低い温度として予め設定された所定温度Tset未満のときには、予め定められた所定車速Vsetが判定車速Vajとして設定され、触媒温度Tcが所定温度Tset以上のときには、触媒温度Tcが高くなるほど大きな車速が判定車速Vajに設定される。なお、図6の例では、触媒温度Tcが所定温度Tset未満のときには所定車速Vsetが判定車速Vajとして設定されるものとしたが、触媒温度Tcが所定温度Tset未満のときにも、触媒温度Tcが高くなるほど大きな車速が判定車速Vajに設定されるものとしてもよい。
車速Vが判定車速Vaj未満のときには、エンジン22の運転を停止して(ステップS160)、モータMG1のトルク指令Tm1*に値0を設定し、この値0のトルク指令Tm1*を用いてステップS290〜S310の処理によりモータMG2のトルク指令Tm2*を設定し、設定したトルク指令Tm1*,Tm2*をモータECU40に送信して(ステップS320)、駆動制御ルーチンを終了する。ステップS290〜S310では、値0のトルク指令Tm1*を用いるから、モータMG2の仮トルクTm2tmpには要求トルクTr*が設定され、トルク制限Tmin,Tmaxにはバッテリ50の入出力制限Win,WoutをモータMG2の回転数Nm2で除したものが設定され、仮トルクTm2tmpがトルク制限Tmin,Tmaxで制限されたものがトルク指令Tm2*として設定される。このように、エンジン22への出力要求がなく、車速Vが判定車速Vaj未満のときには、エンジン22の運転を停止して、モータMG2からのトルク出力のみによって走行する。
ステップS150で車速Vが判定車速Vaj以上のときには、次にエンジン22への出力要求がなされたときにエンジン22からパワーを迅速に出力するために、エンジン22の回転を保持する必要があると判断し、以下の処理を行なう。まず、エンジン22の目標回転数Ne*に予め定められた所定回転数Nsetを設定し(ステップS180)、触媒劣化抑制フラグFcの値を調べ(ステップS190)、触媒劣化抑制フラグFcが値0のときには、燃料噴射を停止する燃料カット指令をエンジンECU24に送信し(ステップS200)、触媒劣化抑制フラグFcが値1のときには、触媒劣化抑制制御を実行するために、リーン雰囲気にならないように吸入空気量に対してストイキとなる燃料噴射を実行する燃料噴射指令をエンジンECU24に送信する(ステップS210)。そして、次式(7)によりモータMG1の目標回転数Nm1*を計算すると共に計算した目標回転数Nm1*と入力したモータMG1の回転数Nm1とに基づいて式(8)によりモータMG1から出力すべきトルク指令Tm1*を計算し(ステップS220)、計算したトルク指令Tm1*を用いてステップS290〜S310の処理によりモータMG2のトルク指令Tm2*を設定し、設定したトルク指令Tm1*,Tm2*をモータECU40に送信して(ステップS320)、駆動制御ルーチンを終了する。ここで、式(7)は式(1)と同一である。式(8)は、式(2)の右辺第一項を削除したものと同一である。
Nm1*=Ne*・(1+ρ)/ρ-Nm2/ρ (7)
Tm1*=k1(Nm1*-Nm1)+k2∫(Nm1*-Nm1)dt (8)
エンジン22の回転数Neを所定回転数Nsetに保持した状態からステップS130で要求パワーPe*が閾値Pstop以上と判定され、エンジン22への出力要求がなされたときには、エンジン22が運転されており且つ要求パワーPe*が閾値Pstop以上のときに実行されるステップS260〜S320の処理が実行されるから、エンジン22を目標回転数Ne*と目標トルクTe*の運転ポイントで運転すると共にバッテリ50の入出力制限Win,Woutの範囲内で要求トルクTr*が駆動軸32に出力されるようエンジン22とモータMG1とモータMG2とを制御する。
上述したように、エンジン22への出力要求がなされていないときに車速Vが判定車速Vaj以上で触媒劣化抑制フラグFcが値0のときには、エンジン22への燃料噴射を停止した状態でエンジン22の回転数Neが所定回転数Nsetに保持されると共にバッテリ50の入出力制限Win,Woutの範囲内で要求トルクTr*が駆動軸32に出力されるようエンジン22とモータMG1とモータMG2とを制御し、エンジン22への出力要求がなされていないときに車速Vが判定車速Vaj以上で触媒劣化抑制フラグFcが値1のときには、触媒劣化抑制制御を実行するためにエンジン22への燃料噴射を維持した状態でエンジン22の回転数Neが所定回転数Nsetに保持されると共にバッテリ50の入出力制限Win,Woutの範囲内で要求トルクTr*が駆動軸32に出力されるようエンジン22とモータMG1とモータMG2とを制御する。エンジン22を停止したときとエンジン22の回転数Neを所定回転数Nsetで保持したときの共線図の一例を図7に示す。図中、左のS軸はモータMG1の回転数Nm1であるサンギヤの回転数を示し、C軸はエンジン22の回転数Neであるキャリアの回転数を示し、R軸はモータMG2の回転数Nm2であるリングギヤ(駆動軸32)の回転数Nrを示す。エンジン22を停止しているときにエンジン22への出力要求がなされると、エンジン22をモータリングして燃料噴射と点火とを行なってエンジン22を始動しその後にスロットル開度の制御を行なう必要があるが、エンジン22への燃料噴射を停止した状態でエンジン22の回転数Neを所定回転数Nsetで保持しているときにエンジン22への出力要求がなされたときには、燃料噴射と点火とを開始してスロットル開度の制御を行なうだけでエンジン22から迅速にパワーを出力することができる。触媒劣化抑制制御によりエンジン22の爆発燃焼を継続している状態でエンジン22の回転数Neを所定回転数Nsetに保持しているときにエンジン22への出力要求がなされたときには、スロットル開度の制御を行なうだけでエンジン22から迅速にパワーを出力することができる。このように、エンジン22への出力要求がなされていないときに車速Vが判定車速Vaj以上のときには、エンジン22の回転数Neを所定回転数Nsetに保持することにより、エンジン22への出力要求がなされたときにエンジン22から迅速にパワーを出力することができ、運転フィーリングを良好に保つことができる。ここで、判定車速Vajは、触媒温度Tcが高いほど大きな値となるから、触媒温度Tcが高いほどエンジン22の回転数Neが所定回転数Nsetに保持される頻度は小さくなる。このことは、エンジン22への出力要求がなされたときにエンジン22から迅速にパワーを出力することができるという効果を若干犠牲にするが、触媒温度Tcが高いために触媒劣化抑制制御を伴ってエンジン22の回転数Neを所定回転数Nsetに保持する頻度を小さくすることができるから、浄化触媒134aの劣化を抑制しつつ、燃費の悪化を抑制することができる。以上のことから、触媒温度Tcが高いほどエンジン22の回転数Neが所定回転数Nsetに保持される頻度は小さくすることにより、浄化触媒134aの劣化を抑制しつつ、燃費の悪化と運転フィーリングの悪化とを抑制することができる。
ステップS160でエンジン22の運転が停止されると、次にこのルーチンが実行されたときには、ステップS120ではエンジン22は運転中ではない、即ち、エンジン22は停止中であると判定され、要求パワーPe*がエンジン22を始動するための閾値Pstart以上であるか否かを判定する(ステップS230)。ここで、閾値Pstartとしては、エンジン22を比較的効率よく運転することができるパワー領域の下限値近傍の値を用いることができるが、頻繁なエンジン22の運転停止と始動とが生じないように上述したエンジン22を運転停止するための閾値Pstopより大きな値を用いるのが好ましい。要求パワーPe*が閾値Pstart未満のときには、エンジン22の運転停止状態を継続すべきと判断し、上述したステップS170,S290〜S320の処理を実行する。
ステップS230で要求パワーPe*が閾値Pstart以上であると判定されると、判定車速Vajとバッテリ50の蓄電割合SOCとに基づく出力補正値Waをバッテリ50の出力制限Woutに加えたものを新たな出力制限Woutとして設定し(ステップS240)、設定した出力制限Woutの範囲内でエンジン22を始動し(ステップS250)、エンジン22の始動が完了すると、エンジン22を燃費最適動作ライン上で運転しながらバッテリ50の入出力制限Win,Woutの範囲内で要求トルクTr*を駆動軸32に出力するようエンジン22の目標回転数Ne*,目標トルクTe*,モータMG1,MG2のトルク指令Tm1*,Tm2*を設定して送信する上述したステップS260〜S320の処理を実行して本ルーチンを終了する。ここで、出力補正値Waは、実施例では、判定車速Vajと蓄電割合SOCと出力補正値Waとの関係を予め定めて出力補正値設定用マップとしてROM74に記憶しておき、判定車速Vjと蓄電割合SOCとが与えられるとマップから対応する出力補正値Waを導出するものとした。出力補正値設定用マップの一例を図8に示す。図示するように、出力補正値Waは、判定車速Vajが大きいほど大きくなる傾向に、且つ、蓄電割合SOCが大きいほど大きくなる傾向に定められる。判定車速Vajは、触媒温度Tcが高いほど大きな値として設定されるから、出力補正値Waは触媒温度Tcが高いほど大きな値として定められることになる。こうした出力補正値Waだけ大きく補正された出力制限Woutは、エンジン22の始動の間だけ用いられ、エンジン22の始動が終了すると、ステップS100で入力した出力制限Woutが用いられることになる。即ち、実施例では、エンジン22を始動する間だけ出力制限Woutを一時的に大きく補正するのである。エンジン22の始動は、エンジン22が運転停止しているときにエンジン22への出力要求がなされたとき、即ち運転者がアクセルペダル83を踏み込んだときなどに実行される。運転者によりアクセルペダル83が踏み込まれてエンジン22を始動するときを考えると、アクセルペダル83の踏み込みにより大きな要求トルクTr*が要求される。エンジン22は始動されていないため、エンジン22を始動している最中はモータMG2から要求トルクTr*を出力するために大きなパワーを出力する必要がある。また、エンジン22の始動にはエンジン22のモータリングも必要になるため、これにもパワーが必要となる。これらのパワーはバッテリ50からの電力で賄われるから、エンジン22を始動しているときにはバッテリ50から大きな電力を出力する必要が生じる。実施例では、こうした一時的にバッテリ50から大きな電力の出力が可能になるようにするために、出力補正値Waにより出力制限Woutが一時的に大きくなるよう補正するのである。エンジン22を始動しているときに必要な電力は、車速Vが大きいほど大きくなるため、判定車速Vajが大きいほど大きな値となるよう出力補正値Waを定めることにより、出力制限Woutの一時的な補正量を適正なものとすることができる。また、蓄電割合SOCが大きいほどバッテリ50から大きな電力を出力することができるから、蓄電割合SOCが大きいほど大きな値となるよう出力補正値Waを定めることにより、出力制限Woutの一時的な補正量を適正なものとすることができる。なお、エンジン22の始動は、モータMG1からトルクを出力してエンジン22をモータリングすると共に燃料噴射と点火をして行ない、その間の駆動制御は、モータMG1からトルク出力することによって駆動軸32に作用するトルクをキャンセルするキャンセルトルクと要求トルクTr*との和のトルクをモータMG2から出力することによって行なう。エンジン22の始動時の制御の詳細は、本発明の中核をなさないのでこれ以上の説明は省略する。
以上説明した実施例のハイブリッド自動車20によれば、エンジン22への出力要求がなされていないときにエンジン22の回転数Neが所定回転数Nsetに保持されるようにする判定車速Vajを触媒温度Tcが高いほど大きな値とすることにより、触媒温度Tcが高いほどエンジン22の回転数Neが所定回転数Nsetに保持される頻度、特に触媒劣化抑制制御を伴ってエンジン22の回転数Neが所定回転数Nsetに保持される頻度を小さくすることができる。このことは、エンジン22への出力要求がなされたときにエンジン22から迅速にパワーを出力することができるという効果を若干犠牲にするが、触媒温度Tcが高いために触媒劣化抑制制御を伴ってエンジン22の回転数Neを所定回転数Nsetに保持する頻度を小さくすることができるから、浄化触媒134aの劣化を抑制しつつ、燃費の悪化を抑制することができる。もとより、エンジン22への出力要求がなされていないときに車速Vが判定車速Vaj以上のときには、エンジン22の回転数Neを所定回転数Nsetに保持することにより、エンジン22への出力要求がなされたときにエンジン22から迅速にパワーを出力することができ、運転フィーリングを良好に保つことができる。これらの結果、浄化触媒134aの劣化を抑制しつつ、燃費の悪化と運転フィーリングの悪化とを抑制することができる。
また、実施例のハイブリッド自動車20によれば、エンジン22を停止しているときにエンジン22への出力要求がなされ、エンジン22を始動する際にバッテリ50の出力制限Woutを一時的に大きく補正する出力補正値Waを、判定車速Vajが大きいほど大きくなる傾向に且つバッテリ50の蓄電割合SOCが大きいほど大きくなる傾向に定めることにより、出力制限Woutの一時的な補正量を適正なものとすることができる。もとより、車速Vが判定車速Vaj未満であるためにエンジン22の運転を停止している最中に運転者にアクセルペダル83を踏み込んだときには、エンジン22を始動する必要からエンジン22からのパワー出力に時間を要しても、モータMG2から出力するパワーを大きくすることができ、運転フィーリングの悪化をある程度抑制することができる。
実施例のハイブリッド自動車20では、エンジン22の始動が完了するまでバッテリ50の出力制限Woutを一時的に大きく補正するものとしたが、エンジン22の始動が開始されてから所定時間経過するまでバッテリ50の出力制限Woutを一時的に大きく補正するものとしてもよい。
実施例のハイブリッド自動車20では、モータMG2からの動力を駆動軸32に出力するものとしたが、図9の変形例のハイブリッド自動車120に例示するように、モータMG2からの動力を駆動軸32が接続された車軸(駆動輪63a,63bが接続された車軸)とは異なる車軸(図9における車輪64a,64bに接続された車軸)に接続するものとしてもよい。また、排気浄化装置が排気系に取り付けられたエンジンと、エンジンをモータリング可能な第1モータと、走行用の動力を出力可能な第2モータと、第1モータおよび第2モータと電力のやりとりが可能なバッテリと、を備えるものであれば、如何なるタイプのハイブリッド車としてもよい。
実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、浄化触媒134aが「触媒」に相当し、浄化装置134が「排気浄化装置」に相当し、エンジン22が「エンジン」に相当し、モータMG1が「第1モータ」に相当し、モータMG2が「第2モータ」に相当し、バッテリ50が「バッテリ」に相当し、HVECU70とエンジンECU24とモータECU40とバッテリECU52とを組み合わせたものが「制御手段」に相当する。
なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、ハイブリッド車の製造産業などに利用可能である。
20,120 ハイブリッド自動車、22 エンジン、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、30 プラネタリギヤ、32 駆動軸、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、50 バッテリ、52 バッテリ用電子制御ユニット(バッテリECU)、62 デファレンシャルギヤ、63a,63b 駆動輪、64a,64b 車輪、70 ハイブリッド用電子制御ユニット(HVECU)、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、122 エアクリーナ、124 スロットルバルブ、126 燃料噴射弁、128 吸気バルブ、130 点火プラグ、132 ピストン、134 浄化装置、134a 浄化触媒、134b 温度センサ、135a 空燃比センサ、135b 酸素センサ、136 スロットルモータ、138 イグニッションコイル、140 クランクポジションセンサ、142 水温センサ、144 カムポジションセンサ、146 スロットルバルブポジションセンサ、148 エアフローメータ、149 温度センサ、150 可変バルブタイミング機構、MG1,MG2 モータ。

Claims (2)

  1. 排気を浄化するための触媒を有する排気浄化装置が排気系に取り付けられたエンジンと、前記エンジンをモータリング可能な第1モータと、走行用の動力を出力可能な第2モータと、前記第1モータおよび前記第2モータと電力のやりとりが可能なバッテリと、前記エンジンへの出力要求がないときに車速が判定車速未満のときには前記エンジンの回転数を値0として前記エンジンの運転を停止するよう前記エンジンと前記第1モータと前記第2モータとを制御し、前記エンジンへの出力要求がないときに車速が前記判定車速以上のときであって前記触媒の劣化を抑制する必要があるときには前記エンジンへの燃料噴射を伴って前記エンジンの回転が保持されるよう前記エンジンと前記第1モータと前記第2モータとを制御し、前記エンジンへの出力要求がないときに車速が前記判定車速以上のときであって前記触媒の劣化を抑制する必要がないときには前記エンジンへの燃料噴射を停止して前記エンジンの回転が保持されるよう前記エンジンと前記第1モータと前記第2モータとを制御する制御手段と、を備えるハイブリッド車において、
    前記制御手段は、前記触媒の温度が高いほど大きな値を前記判定車速として用いる手段である、
    ことを特徴とするハイブリッド車。
  2. 請求項1記載のハイブリッド車であって、
    前記制御手段は、前記バッテリの状態に基づく出力制限の範囲内で前記第1モータと前記第2モータとを制御する手段であり、更に、前記エンジンへの出力要求がない状態から前記エンジンへの出力要求がなされたときには、所定時間経過するまでは前記判定車速が大きいほど及び/又は前記バッテリに蓄電された蓄電量が大きいほど大きくなる補正値により前記出力制限を補正して用いる手段である、
    ことを特徴とするハイブリッド車。

JP2012025892A 2012-02-09 2012-02-09 ハイブリッド車 Expired - Fee Related JP5751185B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012025892A JP5751185B2 (ja) 2012-02-09 2012-02-09 ハイブリッド車

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012025892A JP5751185B2 (ja) 2012-02-09 2012-02-09 ハイブリッド車

Publications (2)

Publication Number Publication Date
JP2013163393A JP2013163393A (ja) 2013-08-22
JP5751185B2 true JP5751185B2 (ja) 2015-07-22

Family

ID=49175055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012025892A Expired - Fee Related JP5751185B2 (ja) 2012-02-09 2012-02-09 ハイブリッド車

Country Status (1)

Country Link
JP (1) JP5751185B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7388332B2 (ja) * 2020-10-12 2023-11-29 トヨタ自動車株式会社 二次電池の劣化判定装置
JP7388334B2 (ja) * 2020-10-22 2023-11-29 トヨタ自動車株式会社 二次電池の劣化判定装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074385A (ja) * 2001-08-31 2003-03-12 Honda Motor Co Ltd 内燃機関の制御装置
JP4259288B2 (ja) * 2003-11-19 2009-04-30 トヨタ自動車株式会社 車両用内燃機関の制御装置
JP4525455B2 (ja) * 2004-06-17 2010-08-18 トヨタ自動車株式会社 内燃機関の制御装置
JP4513629B2 (ja) * 2005-03-29 2010-07-28 トヨタ自動車株式会社 車両の制御装置
JP4544163B2 (ja) * 2006-01-19 2010-09-15 トヨタ自動車株式会社 車両及びその制御方法

Also Published As

Publication number Publication date
JP2013163393A (ja) 2013-08-22

Similar Documents

Publication Publication Date Title
JP4183013B1 (ja) 車両およびその制御方法
JP4321520B2 (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
JP4175370B2 (ja) ハイブリッド車両およびその制御方法
JP4207966B2 (ja) 動力出力装置およびその制御方法並びに車両
JP4544163B2 (ja) 車両及びその制御方法
JP2010179780A (ja) ハイブリッド車およびその制御方法
JP2009286282A (ja) ハイブリッド自動車およびその制御方法
JP2009062907A (ja) 内燃機関装置およびこれを搭載する車両、内燃機関装置の制御方法
JP2014073693A (ja) ハイブリッド自動車
JP2013193533A (ja) ハイブリッド車
JP5459144B2 (ja) ハイブリッド車
JP5217991B2 (ja) ハイブリッド車およびその制御方法
JP2012111408A (ja) ハイブリッド車
JP5904131B2 (ja) ハイブリッド車両の制御装置およびハイブリッド車両
JP5716425B2 (ja) ハイブリッド自動車
JP2010188935A (ja) ハイブリッド車およびその制御方法
JP2010105626A (ja) 車両およびその制御方法
JP5751185B2 (ja) ハイブリッド車
JP2007309113A (ja) 動力出力装置、それを搭載した車両及び動力出力装置の制御方法
JP5991145B2 (ja) ハイブリッド自動車
JP2013112101A (ja) ハイブリッド車
JP5246090B2 (ja) ハイブリッド車およびその制御方法
JP2009279965A (ja) ハイブリッド車およびその制御方法
JP2013067297A (ja) ハイブリッド自動車
JP2010188934A (ja) ハイブリッド車およびその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150504

R151 Written notification of patent or utility model registration

Ref document number: 5751185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees