以下、本発明を実施するための形態について説明する。
[表面処理溶融めっき鋼材]
本実施形態に係る表面処理溶融めっき鋼材は、鋼材の表面上にアルミニウム・亜鉛合金めっき層(以下、「めっき層」という)(α)がめっきされ、更にその上層にチタン化合物およびジルコニウム化合物から選ばれる少なくとも1種の化合物(A)を造膜成分とする皮膜(β)が被覆されている。鋼材としては、薄鋼板、厚鋼板、型鋼、鋼管、鋼線等の種々の部材が挙げられる。すなわち、鋼材の形状は特に制限されない。めっき層は、溶融めっき処理により形成される。
[めっき層(α)]
めっき層(α)は、構成元素としてAl、Zn、Si及びMgを含む。めっき層内のAl含有量は25〜75質量%、Mg含有量は0.1〜10質量%である。このため、Alによって特にめっき層の表面の耐食性が向上すると共に、Znによる犠牲防食作用によって特に溶融めっき鋼材の切断端面におけるエッジクリープが抑制されて、溶融めっき鋼材に高い耐食性が付与される。更に、Siによってめっき層中のAlと鋼材との間の過度の合金化が抑制され、めっき層と鋼材との間に介在する合金層(後述)が溶融めっき鋼材の加工性を損なうことが抑制される。更に、めっき層がZnよりも卑な金属であるMgを含有することで、めっき層の犠牲防食作用が強化され、溶融めっき鋼材の耐食性が更に向上する。
めっき層は0.2〜15体積%のSi−Mg相を含む。Si−Mg相はSiとMgとの金属間化合物で構成される相であり、めっき層中に分散して存在する。
めっき層におけるSi−Mg相の体積割合は、めっき層をその厚み方向に切断した場合の切断面におけるSi−Mg相の面積割合と等しい。めっき層の切断面におけるSi−Mg相は、電子顕微鏡観察により明瞭に確認され得る。このため、切断面におけるSi−Mg相の面積割合を測定することで、めっき層におけるSi−Mg相の体積割合を間接的に測定することができる。
めっき層中のSi−Mg相の体積割合が高いほど、めっき層におけるしわの発生が抑制される。これは、溶融めっき鋼材の製造時に溶融めっき金属が冷却されることで凝固してめっき層が形成されるプロセスにおいて、溶融めっき金属が完全に凝固する前にSi−Mg相が溶融めっき金属中で析出し、このSi−Mg相が溶融めっき金属の流動を抑制するためと考えられる。このSi−Mg相の体積割合は0.2〜10%であればより好ましく、0.4〜5%であれば更に好ましい。
めっき層はSi−Mg相と、それ以外のZnとAlを含有する相により構成される。ZnとAlを含有する相は、主としてα−Al相(デンドライト組織)及びZn−Al−Mg共晶相(インターデンドライト組織)で構成される。ZnとAlを含有する相は、めっき層の組成に応じて更にMg−Zn2から構成される相(Mg−Zn2相)、Siから構成される相(Si相)、Fe−Al金属間化合物から構成される相(Fe−Al相)等、各種の相を含み得る。ZnとAlを含有する相は、めっき層中のSi−Mg相を除いた部分を占める。従って、めっき層におけるZnとAlを含有する相の体積割合は99.9〜60%の範囲、好ましくは99.9〜80%の範囲、更に好ましくは99.8〜90%の範囲、特に好ましくは99.6〜95%の範囲である。
めっき層中のMg全量に対するSi−Mg相中のMgの質量比率は、3質量%以上である。Si−Mg相に含まれないMgは、ZnとAlを含有する相中に含まれる。ZnとAlを含有する相においては、Mgはα−Al相中、Zn−Al−Mg共晶相中、Mg−Zn2相中、めっき表面に形成されるMg含有酸化物皮膜中等に含まれる。Mgがα−Al相中に含まれる場合には、α−Al相中にMgが固溶する。
めっき層中のMg全量に対するSi−Mg相中のMgの質量比率は、Si−Mg相がMg2Siの化学量論組成を有しているとみなされた上で算出され得る。尚、実際にはSi−Mg相はSi及びMg以外のAl、Zn、Cr、Fe等の元素を少量含む可能性が有り、Si−Mg相中のSiとMgとの組成比も化学量論組成から若干変動している可能性があるが、これらを考慮してSi−Mg相中のMg量を厳密に決定することは非常に困難である。このため、本発明においては、めっき層中のMg全量に対するSi−Mg相中のMgの質量比率が決定される際には、前記の通り、Si−Mg相がMg2Siの化学量論組成を有しているとみなされる。
めっき層中のMg全量に対するSi−Mg相中のMgの質量比率は、次の式(1)により算出され得る。
R=A/(M×CMG/100)×100 …(1)
Rはめっき層中のMg全量に対するSi−Mg相中のMgの質量比率(質量%)を、Aはめっき層の平面視単位面積当たりの、めっき層中のSi−Mg相に含まれるMg含有量(g/m2)を、Mはめっき層の平面視単位面積当たりの、めっき層の質量(g/m2)を、CMGはめっき層中の全Mgの含有量(質量%)を、それぞれ示す。
Aは、次の式(2)から算出され得る。
A=V2×ρ2×α …(2)
V2はめっき層の平面視単位面積当たりの、めっき層中のSi−Mg相の体積(m3/m2)を示す。ρ2はSi−Mg相の密度を示し、その値は1.94×106(g/m3)である。αはSi−Mg相中のMgの含有質量比率を示し、その値は0.63である。
V2は、次の式(3)から算出され得る。
V2=V1×R2/100 …(3)
V1はめっき層の平面視単位面積あたりの、めっき層の全体体積(m3/m2)を、R2はめっき層中のSi−Mg相の体積比率(体積%)を、それぞれ示す。
V1は、次の式(4)から算出され得る。
V1=M/ρ1 …(4)
ρ1は、めっき層全体の密度(g/m3)を示す。ρ1の値は、めっき層の組成に基づいてめっき層の構成元素の常温での密度を加重平均することで算出され得る。
本実施形態では、めっき層中のMgが上記のように高い比率でSi−Mg相中に含まれる。このため、めっき層の表層に存在するMg量が少なくなり、これによりめっき層の表層におけるMg系酸化皮膜の形成が抑制される。従って、Mg系酸化皮膜に起因するめっき層のしわが、抑制される。Mg全量に対するSi−Mg相中のMgの割合が多いほど、しわの発生が抑制される。この割合は5質量%以上であればより好ましく、20質量%以上であれば更に好ましく、50質量%以上であれば特に好ましい。Si−Mg相中のMgの、Mg全量に対する割合の上限は特に制限されず、この割合が100質量%であってもよい。
めっき層における50nm深さの最外層内では、大きさが直径4mm、深さ50nmとなるいかなる領域においても、Mg含有量が60質量%未満である。このめっき層の最外層におけるMg含有量は、グロー放電発光分光分析(GD-OES:Glow Discharge - Optical Emission Spectroscopy)により測定される。
めっき層の最外層でのMg含有量が少ないほど、Mg系酸化皮膜に起因するしわが抑制される。このMg含有量は、めっき層の最外層における大きさが直径4mm、深さ50nmとなるいかなる領域でも、40質量%未満であればより好ましく、20質量%未満であれば更に好ましく、10質量%未満であれば特に好ましい。
めっき層の表面でのSi−Mg相の面積比率が30%以下であることが好ましい。めっき層中にSi−Mg相が存在すると、めっき層の表面ではSi−Mg相が薄く網目状に形成されやすくなり、このSi−Mg相の面積比率が大きいとめっき層の外観が変化する。Si−Mg相のめっき表面分布状態が不均一な場合は、目視によってめっき層の外観に光沢のムラが観察される。この光沢のムラは、タレと呼ばれる外観不良である。めっき層の表面でのSi−Mg相の面積比率が30%以下であれば、タレが抑制され、めっき層の外観が向上する。更に、めっき層の表面にSi−Mg相が少ないことは、めっき層の耐食性が長期に亘って維持されるためにも有効である。めっき層の表面へのSi−Mg相の析出を抑制すると、相対的にはめっき層内部へのSi−Mg相の析出量が増大する。そのため、めっき層内部のMg量が多くなり、これによりめっき層においてMgの犠牲防食作用が長期に亘って発揮されるようになり、これによりめっき層の高い耐食性が長期に亘って維持されるようになる。めっき層の外観向上及びめっき層の耐食性の維持のためには、めっき層の表面でのSi−Mg相の面積比率は、20%以下であればより好ましく、10%以下であれば更に好ましく、5%以下であれば特に好ましい。
めっき層におけるMgの含有量は上記の通り0.1〜10質量%の範囲である。Mgの含有量が0.1質量%未満であるとめっき層の耐食性が充分に確保されなくなってしまう。この含有量が10質量%より多くなると耐食性の向上作用が飽和するだけでなく、溶融めっき鋼材の製造時に溶融めっき浴中にドロスが発生しやすくなってしまう。このMgの含有量は更に0.5質量%以上であることが好ましく、更に1.0質量%以上であることが好ましい。またこのMgの含有量は特に5.0質量%以下であることが好ましく、更に3.0質量%以下であることが好ましい。Mgの含有量が1.0〜3.0質量%の範囲であれば特に好ましい。
めっき層におけるAlの含有量は25〜75質量%の範囲である。この含有量が25質量%以上であればめっき層中のZn含有量が過剰とならず、めっき層の表面における耐食性が充分に確保される。この含有量が75質量%以下であればZnによる犠牲防食効果が充分に発揮されると共にめっき層の硬質化が抑制されて溶融めっき鋼材の加工性が高くなる。更に、溶融めっき鋼材の製造時に溶融めっき金属の流動性が過度に低くならないようにすることでめっき層のしわを更に抑制する観点からも、Alの含有量は75質量%以下である。このAlの含有量は特に45質量%以上であることが好ましい。またこのAlの含有量は特に65質量%以下であることが好ましい。Alの含有量が45〜65質量%の範囲であれば特に好ましい。
めっき層におけるSiの含有量は、Alの含有量に対して0.5〜10質量%の範囲であることが好ましい。SiのAlに対する含有量が0.5質量%以上であるとめっき層中のAlと鋼材との過度の合金化が充分に抑制される。この含有量が10質量%より多くなるとSiによる作用が飽和するだけでなく溶融めっき鋼材の製造時に溶融めっき浴2中にドロスが発生しやすくなってしまう。このSiの含有量は特に1.0質量%以上であることが好ましい。またこのSiの含有量は特に5.0質量%以下であることが好ましい。Siの含有量が1.0〜5.0質量%の範囲であれば特に好ましい。
更に、めっき層中のSi:Mgの質量比が100:50〜100:300の範囲であることが好ましい。この場合、めっき層中のSi−Mg層の形成が特に促進され、めっき層におけるしわの発生が更に抑制される。このSi:Mgの質量比は更に100:70〜100:250であることが好ましく、更に100:100〜100:200であることが好ましい。
めっき層は、構成元素として更にCrを含有することが好ましい。この場合、Crによってめっき層中のSi−Mg相の成長が促進され、めっき層中のSi−Mg相の体積割合が高くなると共に、めっき層中のMg全量に対するSi−Mg相中のMgの割合が高くなる。これにより、めっき層のしわが更に抑制される。めっき層におけるCrの含有量は0.02〜1.0質量%の範囲であることが好ましい。めっき層におけるCrの含有量が1.0質量%より多くなると前記作用が飽和するだけでなく、溶融めっき鋼材の製造時に溶融めっき浴2中にドロスが発生しやすくなってしまう。このCrの含有量は特に0.05質量%以上であることが好ましい。またこのCrの含有量は特に0.5質量%以下であることが好ましい。このCrの含有量は、更に0.07〜0.2質量%の範囲であることが好ましい。
めっき層がCrを含有する場合、めっき層における50nm深さの最外層内でのCrの含有量が100〜500質量ppmであることが好ましい。この場合、めっき層の耐食性が更に向上する。これは、最外層にCrが存在するとめっき層に不働態皮膜が形成され、このためにめっき層のアノード溶解が抑制されるためと考えられる。このCrの含有量は更に150〜450質量ppmであることが好ましく、更に200〜400質量ppmであることが好ましい。
めっき層と鋼材との間にはAlとCrとを含有する合金層が介在することが好ましい。本発明では、合金層はめっき層とは異なる層とみなされる。合金層は、構成元素として、AlとCr以外に、Mn、Fe、Co、Ni、Cu、Zn、Sn等の種々の金属元素を含有してもよい。このような合金層が存在すると、合金層中のCrによってめっき層中のSi−Mg相の成長が促進され、めっき層中のSi−Mg相の体積割合が高くなると共に、めっき層中のMg全量に対するSi−Mg相中のMgの割合が高くなる。これにより、めっき層のしわやタレが更に抑制される。特に、合金層中のCrの含有割合の、めっき層内のCrの含有割合に対する比が、2〜50であることが好ましい。この場合、めっき層内の合金層付近においてSi−Mg相の成長が促進されることで、めっき層の表面でのSi−Mg相の面積比率が低くなり、このためタレが更に抑制されると共にめっき層の耐食性が更に長期に亘って維持される。合金層中のCrの含有割合の、めっき層内のCrの含有割合に対する比は、更に3〜40であることが好ましく、更に4〜25であることが好ましい。合金層中のCr量は、めっき層の断面をエネルギー分散型X線分析装置(EDS)を用いて測定することで導出され得る。
合金層の厚みは0.05〜5μmの範囲であることが好ましい。この厚みが0.05μm以上であれば、合金層による上記作用が効果的に発揮される。この厚みが5μm以下であれば、合金層によって溶融めっき鋼材の加工性が損なわれにくくなる。
めっき層がCrを含有すると、めっき層の加工後の耐食性も向上する。その理由は次の通りであると考えられる。めっき層が厳しい加工を受けると、めっき層にクラックが生じる場合がある。その際、クラックを通じてめっき層内に水や酸素が浸入してしまい、めっき層内の合金が直接腐食因子に晒されてしまう。しかし、めっき層の特に表層に存在するCr並びに合金層に存在するCrはめっき層の腐食反応を抑制し、これによりクラックを起点とした腐食の拡大が抑制される。めっき層の加工後の耐食性が特に向上するためには、めっき層における50nm深さの最外層内でのCrの含有量が300質量ppm以上であることが好ましく、特に200〜400質量ppmの範囲であることが好ましい。また、めっき層の加工後の耐食性を特に向上させるためには、合金層中のCrの含有割合の、めっき層内のCrの含有割合に対する比が20以上であることが好ましく、特に20〜30の範囲であることが好ましい。
めっき層は構成元素として更にSrを含有することが好ましい。この場合、Srによってめっき層中のSi−Mg層の形成が特に促進される。更に、Srによって、めっき層の表層におけるMg系酸化皮膜の形成が抑制される。これは、Mg系酸化皮膜よりもSrの酸化膜の方が優先的に形成されやすくなることで、Mg系酸化皮膜の形成が阻害されるためであると考えられる。これにより、めっき層におけるしわの発生が更に抑制される。めっき層中のSrの含有量は1〜1000質量ppmの範囲であることが好ましい。このSrの含有量が1質量ppm未満であると上述の作用が発揮されなくなり、この含有量が1000質量ppmより多くなるとSrの作用が飽和してしまうだけでなく、溶融めっき鋼材の製造時に溶融めっき浴2中にドロスが発生しやすくなってしまう。このSrの含有量は特に5質量ppm以上であることが好ましい。またこのSrの含有量は特に500質量ppm以下であることが好ましく、更に300質量ppm以下であることが好ましい。このSrの含有量は、更に20〜50質量ppmの範囲であることが好ましい。
めっき層は構成元素として更にFeを含有することが好ましい。この場合、Feによってめっき層中のSi−Mg層の形成が特に促進される。更に、Feはめっき層のミクロ組織及びスパングル組織の微細化にも寄与し、これによりめっき層の外観及び加工性が向上する。めっき層におけるFeの含有量は0.1〜0.6質量%の範囲であることが好ましい。このFeの含有量が0.1質量%未満であるとめっき層のミクロ組織及びスパングル組織が粗大化してめっき層の外観が悪化すると共に加工性が悪化してしまう。この含有量が0.6質量%より多くなるとめっき層のスパングルがあまりにも微細化し、或いは消失してしまってスパングルによる外観向上がなされなくなると共に、溶融めっき鋼材の製造時に溶融めっき浴2中にドロスが発生しやすくなってめっき層の外観が更に悪化してしまう。このFeの含有量は特に0.2質量%以上であることが好ましい。またこのFeの含有量は特に0.5質量%以下であることが好ましい。Feの含有量が0.2〜0.5質量%の範囲であれば特に好ましい。
めっき層は、構成元素として更にアルカリ土類元素、Sc、Y、ランタノイド元素、Ti及びBから選択される元素を含有してもよい。
アルカリ土類元素(Be、Ca、Ba、Ra)、Sc、Y、及びランタノイド元素(La、Ce、Pr、Nd、Pm、Sm、Eu等)は、Srと同様の作用を発揮する。めっき層におけるこれらの成分の含有量の総量は、質量比率で1.0質量%以下であることが好ましい。
Ti及びBのうち少なくとも一方をめっき層が含有すると、めっき層のα−Al相(デンドライト組織)が微細化することでスパングルが微細化し、このため、スパングルによるめっき層の外観が向上する。更に、Ti及びBのうち少なくとも一方によりめっき層でのしわの発生が更に抑制される。これは、Ti及びBの作用によりSi−Mg相も微細化し、この微細化したSi−Mg相が、溶融めっき金属が凝固してめっき層が形成されるプロセスにおいて溶融めっき金属の流動を効果的に抑制するためと考えられる。更に、このようなめっき組織の微細化によって曲げ加工時のめっき層内の応力の集中が緩和されて大きなクラックの発生等が抑制され、めっき層の曲げ加工性が更に向上する。前記作用が発揮されるためには、溶融めっき浴2中のTi及びBの含有量の合計が、質量比率で0.0005〜0.1質量%の範囲であることが好ましい。このTi及びBの含有量の合計は特に0.001質量%以上であることが好ましい。またこのTi及びBの含有量の合計は特に0.05質量%以下であることが好ましい。Ti及びBの含有量の合計が0.001〜0.05質量%の範囲であれば特に好ましい。
Znは、めっき層の構成元素全体のうち、Zn以外の構成元素を除いた残部を占める。
めっき層は構成元素として上記以外の元素を含まないことが好ましい。特にめっき層は、Al、Zn、Si、Mg、Cr、Sr、及びFeのみを構成元素として含有すること、或いは、Al、Zn、Si、Mg、Cr、Sr、及びFe、並びにアルカリ土類元素、Sc、Y、ランタノイド元素、Ti及びBから選択される元素のみを構成元素として含有することが、好ましい。
但し、言うまでもないが、めっき層は、Pb、Cd、Cu、Mn等の不可避的不純物を含有してもよい。この不可避的不純物の含有量はできるだけ少ない方が好ましく、特にこの不可避的不純物の含有量の合計がめっき層に対して質量比率で1質量%以下であることが好ましい。
[皮膜(β)]
めっき層(α)の上層に被覆されている皮膜(β)はチタン化合物及びジルコニウム化合物から選ばれる少なくとも1種の化合物(A)を必須の造膜成分とする。前記化合物(A)を造膜成分とする皮膜(β)は腐食因子(水や酸素等)のバリヤー性(耐食性)に優れる上に、比較的高い融点を有していることから耐熱性にも優れる。すなわち、前記化合物(A)を造膜成分とする皮膜(β)が被覆されている溶融めっき鋼材は耐白錆性、特に加熱された後の耐白錆性が良好である。
以下に、皮膜(β)の構成について説明する。
<皮膜(β)の付着量について>
上記皮膜(β)の付着量は特に限定されないが、0.1g/m2以上2.0g/m2以下であることが好ましく、より好ましくは0.2g/m2以上1.5g/m2以下、更に好ましくは0.3g/m2以上1.0g/m2以下である。皮膜(β)の付着量が0.1g/m2未満であると、十分な耐食性が得られないことがある。一方、皮膜(β)の付着量が2.0g/m2超であると、経済的に不利であるばかりか、皮膜(β)の凝集力が不足し、脆くなり、耐食性が低下する場合がある。
ここで、皮膜(β)の付着量は、皮膜(β)形成用の処理薬剤の基材めっき鋼材への塗布前後の質量差を測定すること、塗布後の皮膜を剥離した前後のめっき鋼材の質量差を測定すること、又は、皮膜を蛍光X線分析して予め皮膜中の含有量が分かっている元素の存在量を測定すること等、既存の手法から適切に選択した方法で求めればよい。
<化合物(A)について>
皮膜(β)形成用の処理薬剤に含有させるチタン化合物及びジルコニウム化合物としては特に限定するものではないが、チタン化合物としては、例えば、シュウ酸チタンカリウム、硫酸チタニル、塩化チタン、チタンラクテート、チタンイソプロポキシド、チタン酸イソプロピル、チタンエトキシド、チタン2−エチル−1−ヘキサノラート、チタン酸テトライソプロピル、チタン酸テトラ−n−ブチル、チタニアゾル、チタンフッ化水素酸、又はその塩等が挙げられる。これらのチタン化合物のうち、チタニアゾルや、チタンラクテート、チタンフッ化水素酸又はその塩などが耐食性の観点から好ましい。
また、ジルコニウム化合物としては、例えば、硝酸ジルコニル、酢酸ジルコニル、硫酸ジルコニル、炭酸ジルコニウムアンモニウム、炭酸ジルコニウムカリウム、炭酸ジルコニウムナトリウム、ジルコニウムアセテート、ジルコニウムフッ化水素酸、又はその塩等が挙げられる。これらのジルコニウム化合物のうち、ジルコニウムフッ化水素酸、又はその塩、炭酸ジルコニウム錯イオンを含有するジルコニウム化合物が耐食性の観点から好ましい。炭酸ジルコニウム錯イオンを含有するジルコニウム化合物としては特に限定するものではないが、例えば、炭酸ジルコニウム錯イオン〔Zr(CO3)2(OH)2〕2-もしくは〔Zr(CO3)3(OH)〕3-のアンモニウム塩、カリウム塩、ナトリウム塩などが挙げられる。
<リン酸化合物(B)について>
上記皮膜(β)は、更にリン酸化合物(B)を含有することが耐食性を向上させる上で好ましい。リン酸化合物(B)はリン酸イオンを放出する化合物であることが更に好ましい。リン酸化合物(B)を含有させた場合には、皮膜(β)形成時、それを形成するための処理薬剤がめっき層に接触した際、または皮膜(β)形成後に皮膜(β)からリン酸化合物由来のリン酸イオンが溶出した際に、めっき層表面のMg系酸化皮膜と反応し、めっき層表面に難溶性のリン酸Mg系皮膜を形成する。これにより、耐白錆性を大幅に向上させることができる。リン酸化合物(B)がリン酸イオンを放出しない、すなわち環境中で非溶解性の場合は、非溶解性のリン酸化合物(B)が水、酸素等の腐食因子の移動を阻害することにより耐食性を向上する。
リン酸化合物(B)としては、特に限定されないが、例えば、オルトリン酸、メタリン酸、ピロリン酸、三リン酸、四リン酸等のリン酸類及びこれらの塩や、アミノトリ(メチレンホスホン酸)、1−ヒドロキシエチリデン−1,1−ジホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)等のホスホン酸類及びこれらの塩や、フィチン酸等の有機リン酸類及びこれらの塩等を挙げることができる。塩類のカチオン種としては特に制限されず、例えば、Cu、Co、Fe、Mn、Sn、V、Mg、Ba、Al、Ca、Sr、Nb、Y、Ni及びZn等が挙げられる。これらのリン酸化合物は、単独で用いてもよく、2種以上を併用してもよい。
リン酸化合物(B)の含有量は、皮膜(β)中に1質量%以上40質量%以下であることが好ましく、より好ましくは2質量%以上30質量%以下である。リン酸化合物(B)の含有量が1質量%未満であると、耐食性の向上効果が得られない場合があり、40質量%超であると、耐食性が低下したり、皮膜を形成するための処理薬剤の安定性が低下したりする(より具体的には、ゲル化や凝集物の沈殿等の不具合が発生する)場合がある。
<シリカ粒子(C)について>
上記皮膜(β)は、更にシリカ粒子(C)を含有する皮膜であることが耐食性や耐傷付き性を向上させる上で好ましい。該皮膜は、上記皮膜(β)を形成するための処理薬剤に、更にシリカ粒子を含有させたものを塗布乾燥することにより形成することができる。
シリカ粒子(C)としては、特に限定されないが、例えば、スノーテックスC、スノーテックスO、スノーテックスN、スノーテックスS、スノーテックスUP、スノーテックスPS−M、スノーテックスPS−L、スノーテックス20、スノーテックス30、スノーテックス40(何れも日産化学工業社製)、アデライトAT−20N、アデライトAT−20A、アデライトAT−20Q(何れも旭電化工業社製)などのコロイダルシリカや、アエロジル50、アエロジル130、アエロジル200、アエロジル300、アエロジル380、アエロジルTT600、アエロジルMOX80、アエロジルMOX170(何れも日本アエロジル社製)などの気相シリカ等を使用することができる。これらのシリカ粒子は、単独で用いてもよく、2種以上を併用してもよい。
上記シリカ粒子(C)の含有量は、皮膜(β)中に1質量%以上30質量%以下であることが好ましく、より好ましくは2質量%以上25質量%以下である。シリカ粒子(C)の含有量が1質量%未満であると、耐食性や耐傷付き性の向上効果が得られない場合があり、30質量%超であると、耐食性が低下する場合がある。
<バナジウム化合物(D)について>
上記皮膜(β)は、更にバナジウム化合物(D)を含有する皮膜であることが耐食性、特に表面処理溶融めっき鋼材加工部の耐食性を向上させる上で好ましい。該皮膜は、上記皮膜(β)を形成するための処理薬剤に、更にバナジウム化合物を含有させたものを塗布乾燥することにより形成することができる。
バナジウム化合物(D)としては、特に限定されないが、例えば、五酸化バナジウム、メタバナジン酸、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、オキシ三塩化バナジウム、三酸化バナジウム、二酸化バナジウム、オキシ硫酸バナジウム、バナジウムオキシアセチルアセトネート、バナジウムアセチルアセトネート、三塩化バナジウム、リンバナドモリブデン酸などを使用することができる。また、バナジウム化合物(D)として、5価のバナジウム化合物を水酸基、カルボニル基、カルボキシル基、1級〜3級アミノ基、アミド基、リン酸基及びホスホン酸基よりなる群から選ばれる少なくとも1種の官能基を有する有機化合物により、4価〜2価に還元したものも使用可能である。更に、バナジウム化合物(D)として、オキソバナジウムカチオンと、塩酸、硝酸、リン酸、硫酸などの無機酸アニオン又は蟻酸、酢酸、プロピオン酸、酪酸、蓚酸等の有機酸アニオンとの塩や、グリコール酸バナジル、デヒドロアスコルビン酸バナジルのような、有機酸とバナジル化合物のキレートを用いても差し支えはない。これらのバナジウム化合物は、単独で用いてもよく、2種以上を併用してもよい。
上記バナジウム化合物(D)の含有量は、皮膜(β)中に1質量%以上30質量%であることが好ましく、より好ましくは2質量%以上25質量%以下である。バナジウム化合物(D)の含有量が1質量%未満であると、耐食性の向上効果が得られない場合があり、30質量%超であると、耐水性が低下し、耐食性が低下する場合がある。
<コバルト化合物(E)について>
上記皮膜(β)は、更にコバルト化合物(E)を含有する皮膜であることが耐食性、耐黒変性を向上させる上で好ましい。該皮膜は、上記皮膜(β)を形成するための処理薬剤に、更にコバルト化合物を含有させたものを塗布乾燥することにより形成することができる。
コバルト化合物(E)としては、特に限定されないが、例えば、炭酸コバルト、硝酸コバルト、硫酸コバルト、酢酸コバルトなどを使用することができる。これらのコバルト化合物は、単独で用いてもよく、2種以上を併用してもよい。
上記コバルト化合物(E)の含有量は、皮膜(β)中に0.1質量%以上30質量%以下であることが好ましく、より好ましくは2質量%以上25質量%以下である。コバルト化合物(E)の含有量が0.1質量%未満であると、耐食性、耐黒変性の向上効果が得られない場合があり、30質量%超であると、耐食性が低下する場合がある。
<着色顔料について>
上記皮膜(β)は、表面処理溶融めっき鋼材の意匠性を高めるために、更に着色顔料を含有してもよい。着色顔料の種類としては、特に限定はされず、例えば、二酸化チタン、カーボンブラック、グラファイト、酸化鉄、酸化鉛、コールダスト、タルク、カドミウムイエロー、カドミウムレッド、クロムイエロー等の着色無機顔料や、フタロシアニンブルー、フタロシアニングリーン、キナクリドン、ペリレン、アンスラピリミジン、カルバゾールバイオレット、アントラピリジン、アゾオレンジ、フラバンスロンイエロー、イソインドリンイエロー、アゾイエロー、インダスロンブルー、ジブロムアンザスロンレッド、ペリレンレッド、アゾレッド、アントラキノンレッド等の着色有機顔料や、アルミニウム粉、アルミナ粉、ブロンズ粉、銅粉、スズ粉、亜鉛粉、リン化鉄、金属コーティングマイカ粉、二酸化チタンコーティングマイカ粉、二酸化チタンコーティングガラス粉、二酸化チタンコーティングアルミナ粉等の光輝材などを挙げることができる。
<潤滑剤について>
更に、上記皮膜(β)には、潤滑剤として、例えば、二硫化モリブデン、グラファイト、二硫化タングステン、窒化ホウ素、フッ化黒鉛、フッ化セリウム、メラミンシアヌレート、フッ素樹脂系ワックス、ポリオレフィン系ワックス等を添加して、本発明の表面処理溶融めっき鋼材の耐傷付き性を向上させることも可能である。
<皮膜(β)中の粒子状成分について>
上記皮膜(β)中には、必要に応じ、着色顔料、潤滑剤が粒子状成分として存在することがある。
一般に、薄い皮膜中に含まれる粒子の形状や大きさを特定することが困難な場合がある。とは言え、皮膜の形成に用いる処理薬剤中に含まれている粒子状成分は、皮膜の形成過程で何らかの物理的又は化学的変化(例えば、粒子同士の結合や凝集、溶媒への有意の溶解、他の構成成分との反応など)を被らない限り、皮膜形成後においても、処理薬剤中に存在していたときの形状や大きさを保持していると見なすことができる。本発明で用いる粒子状成分である着色顔料や潤滑剤は、皮膜(β)の形成に用いる処理薬剤の溶媒には有意に溶解せず、且つ溶媒や他の皮膜構成成分と反応しないように選ばれる。また、これらの粒子状成分の処理薬剤中での存在形態の保持性を高める目的で、必要に応じて、予め公知の界面活性剤や分散用樹脂等の分散剤で溶媒中に分散したものを処理薬剤の原料として使用することもできる。従って、本発明において規定している皮膜中に含まれるこれらの粒子状成分の粒子径は、皮膜(β)の形成に用いた処理薬剤中でのそれらの粒子径でもって表すことができる。
具体的に述べると、本発明で用いる粒子状成分である着色顔料や潤滑剤の粒子径は、動的光散乱法(ナノトラック法)によって測定できる。動的散乱法によれば、温度と粘度と屈折率が既知の分散媒中の微粒子の径を簡単に求めることができる。本発明で用いる粒子状成分は、処理薬剤の溶媒に有意に溶解せず、且つ溶媒や他の皮膜構成成分と反応しないように選ばれるので、所定の分散媒中で粒子径を測定して、それを処理薬剤中における粒子状成分の粒子径として採用することができる。動的光散乱法では、分散媒中に分散しブラウン運動している微粒子にレーザー光を照射して粒子からの散乱光を観測し、光子相関法により自己相関関数を求め、キュムラント法を用いて粒子径を測定する。動的光散乱法による粒径測定装置として、例えば、大塚電子社製のFPAR−1000を使用することができる。本発明では、測定対象の粒子を含有する分散体サンプルを25℃で測定してキュムラント平均粒子径を求め、合計5回の測定の平均値を当該粒子の平均粒子径とする。動的光散乱法による平均粒子径の測定については、例えば、ジャーナル・オブ・ケミカル・フィジックス(Journal of Chemical Physics)第57巻11号(1972年12月)第4814頁、に詳しく記載されている。
また、皮膜(β)中に、着色顔料や潤滑剤が粒子状成分として存在する場合、皮膜(β)を断面から観察し、直接その形状や粒子径を測定することも可能である。皮膜(β)の断面観察の方法としては特に制限はないが、常温乾燥型エポキシ樹脂中に表面処理溶融めっき鋼材を皮膜の垂直断面が見えるように埋め込み、その埋め込み面を機械研磨した後に、SEM(走査型電子顕微鏡)で観察する方法や、FIB(集束イオンビーム)装置を用いて、表面処理溶融めっき鋼材から皮膜の垂直断面が見えるように厚さ50nm〜100nmの観察用試料を切り出し、皮膜断面をTEM(透過型電子顕微鏡)で観察する方法等が好適に使用可能である。
[表面処理溶融めっき鋼材の製造方法]
本実施形態に係る表面処理溶融めっき鋼材は、鋼材1の表面上にアルミニウム・亜鉛合金めっきし、更にその上層にチタン化合物及びジルコニウム化合物から選ばれる少なくとも1種の化合物(A)を造膜成分とする皮膜(β)を被覆することで製造される。
[溶融めっき鋼材の製造方法]
好ましい実施形態では、溶融めっき鋼材の製造時に、めっき層の構成元素の組成と一致する組成を有する溶融めっき浴が準備される。溶融めっき処理により鋼材とめっき層との間に合金層が形成されるが、それによる組成の変動は無視し得るほどに小さい。
本実施形態では、例えば25〜75質量%のAl、0.5〜10質量%のMg、0.02〜1.0質量%のCr、Alに対して0.5〜10質量%のSi、1〜1000質量ppmのSr、0.1〜1.0質量%のFe、及びZnを含有する溶融めっき浴が準備される。Znは、溶融めっき浴中の成分全体のうち、Zn以外の成分を除いた残部を占める。溶融めっき浴中のSi:Mgの質量比は、100:50〜100:300の範囲であることが好ましい。
溶融めっき浴は、更にアルカリ土類元素、Sc、Y、ランタノイド元素、Ti、及びBから選択される成分を含有してもよい。これらの成分は、必要に応じて溶融めっき浴2中に含有される。溶融めっき浴2中におけるアルカリ土類元素(Be、Ca、Ba、Ra)、Sc、Y、及びランタノイド元素(La、Ce、Pr、Nd、Pm、Sm、Eu等)の含有量の総量は、質量比率で1.0%以下であることが好ましい。溶融めっき浴2がTi及びBの少なくとも一方からなる成分を含有する場合、溶融めっき浴2中のTi及びBの含有量の合計は、質量比率で0.0005〜0.1%の範囲であることが好ましい。
溶融めっき浴は、上記以外の成分を含まないことが好ましい。特に溶融めっき浴はAl、Zn、Si、Mg、Cr、Sr、及びFeのみを含有することが好ましい。溶融めっき浴は、Al、Zn、Si、Mg、Cr、Sr、及びFe、並びにアルカリ土類元素、Sc、Y、ランタノイド元素、Ti及びBから選択される元素のみを含有することも好ましい。
例えば、溶融めっき浴2を準備するにあたり、溶融めっき浴2に、好ましくは質量比率でAlを25〜75%、Crを0.02〜1.0%、SiをAlに対して0.5〜10%、Mgを0.1〜0.5%、Feを0.1〜0.6%、Srを1〜500ppmの範囲で含有させ、或いは更にアルカリ土類元素、ランタノイド元素、Ti及びBから選択される成分を含有させ、残部をZnとすることが好ましい。
但し、言うまでもないが、溶融めっき浴は、Pb、Cd、Cu、Mn等の不可避的不純物を含有してもよい。この不可避的不純物の含有量はできるだけ少ないことが好ましく、特にこの不可避的不純物の含有量の合計が溶融めっき浴に対して質量比率で1質量%以下であることが好ましい。
このような組成を有する溶融めっき浴2を用いて鋼材1に対して溶融めっき処理を施すと、Alによって特にめっき層の表面の耐食性が向上すると共に、Znによる犠牲防食作用によって特に溶融めっき鋼材の切断端面におけるエッジクリープが抑制されて、溶融めっき鋼材に高い耐食性が付与される。
更に、めっき層がZnよりも卑な金属であるMgを含有することで、めっき層の犠牲防食作用が更に強化され、溶融めっき鋼材の耐食性が更に向上する。
更に、溶融めっき処理により形成されるめっき層には、しわが発生しにくくなる。従来、Mgを含有する溶融した金属(溶融めっき金属)が溶融めっき処理によって鋼材1に付着すると、この溶融めっき金属の表層でMgが濃化しやすくなり、このためにMg系酸化皮膜が形成され、このMg系酸化皮膜に起因してめっき層にしわが発生しやすかった。しかしながら、上記組成を有する溶融めっき浴2が用いられることでめっき層が形成されると、鋼材1に付着した溶融めっき金属の表層におけるMgの濃化が抑制され、溶融めっき金属が流動してもめっき層の表面にしわが発生しにくくなる。更にこの溶融めっき金属内部の流動性が低減されて、溶融めっき金属の流動自体が抑制され、このため前記しわが更に発生しにくくなる。
前記のようなMgの濃化及び溶融めっき金属の流動の抑制は、次の様な機序によりなされると考えられる。
鋼材1の表面上に付着した溶融めっき金属が冷却されて凝固する過程で、まずα−Al相が初晶として析出し、デンドライト状に成長する。このようにAlリッチなα−Al相の凝固が進行すると、残部の溶融めっき金属中(すなわち、溶融めっき金属の未だ凝固していない成分中)のMgとSi濃度が除々に高くなる。次に鋼材1が冷却されてその温度が更に低下すると、残部の溶融めっき金属の中からSiを含有するSi含有相(Si−Mg相)が凝固析出する。このSi−Mg相は、上述の通りMgとSiとの合金で構成される相である。このSi−Mg相の析出・成長がCr、Fe及びSrによって促進される。このSi−Mg相に溶融めっき金属中のMgが取り込まれることで、溶融めっき金属の表層へのMgの移動が阻害され、この溶融めっき金属の表層でのMgの濃化が抑制される。
更に、溶融めっき金属中のSrもMgの濃化抑制に寄与する。これは溶融めっき金属中でSrはMgと同様に酸化しやすい元素であることから、SrがMgと競争的にめっき表面で酸化膜を形成し、結果としてMg系酸化皮膜の形成が抑制されるためであると考えられる。
更に、前記のように初晶であるα−Al相以外の残部の溶融めっき金属中でSi−Mg相が凝固成長することで、溶融めっき金属が固液混相状態となり、このため溶融めっき金属自体の流動性が低下し、その結果としてめっき層表面のしわの発生が抑制される。
Feはめっき層のミクロ組織やスパングルを制御する上で重要である。Feがめっき層の組織に影響を与える理由は、現時点では必ずしも明確ではないが、Feは溶融めっき金属中でSiと合金化し、この合金が溶融めっき金属の凝固時に凝固核となるためであると考えられる。
更に、SrはMgと同様に卑な元素であることから、Srによってめっき層の犠牲防食作用が更に強化され、溶融めっき鋼材の耐食性が更に向上する。SrはSi相及びSi−Mg相の析出形態の針状化を抑制する作用も発揮し、このためSi相及びSi−Mg相が球状化して、めっき層におけるクラックの発生が抑制される。
溶融めっき処理時には、めっき層と鋼材1との間に、溶融めっき金属中のAlの一部を含有する合金層も形成される。例えば鋼材1に後述するプレめっきが施されていない場合には、めっき浴中のAlと鋼材1中のFeとを主体とするFe−Al系の合金層が形成される。鋼材1に後述するプレめっきが施されている場合には、めっき浴中のAlとプレめっきの構成元素の一部或いは全部とを含み、或いは更に鋼材1中のFeを含む合金層が形成される。
めっき浴がCrを含有する場合、合金層は構成元素としてAlと共に更にCrを含む。合金層は、めっき浴の組成、プレめっきの有無、鋼材1の組成などに応じて、構成元素として、AlとCr以外に、Si、Mn、Fe、Co、Ni、Cu、Zn、Sn等の種々の金属元素を含有し得る。
合金層中には、溶融めっき金属中のCrの一部がめっき層中よりも高い濃度で含有されるようになる。このような合金層が形成されると、合金層中のCrによってめっき層中のSi−Mg相の成長が促進され、めっき層中のSi−Mg相の体積割合が高くなると共に、めっき層中のMg全量に対するSi−Mg相中のMgの割合が高くなる。これにより、めっき層のしわが更に抑制される。更に、合金層が形成されることで、溶融めっき鋼材の耐食性が更に向上する。すなわち、めっき層内の合金層付近においてSi−Mg相の成長が促進されることで、めっき層の表面でのSi−Mg相の面積比率が低くなり、このためめっき層におけるタレが抑制されると共にめっき層の耐食性が更に長期に亘って維持される。特に、合金層中のCrの含有割合の、めっき層内のCrの含有割合に対する比が、2〜50であることが好ましい。この合金層中のCrの含有割合の、めっき層内のCrの含有割合に対する比は、更に3〜40であることが好ましく、更に4〜25であることが好ましい。合金層中のCr量は、めっき層の断面をエネルギー分散型X線分析装置(EDS)を用いて測定することで導出され得る。
合金層の厚みが過大であると溶融めっき鋼材の加工性は低下するが、溶融めっき浴2中のSiの作用によって前記合金層の過剰な成長が抑制され、このため、溶融めっき鋼材の良好な加工性が確保される。合金層の厚みは0.05〜5μmの範囲であることが好ましい。合金層の厚みが前記範囲であると、溶融めっき鋼材の耐食性が充分に向上すると共に、加工性も充分に向上する。
更に、めっき層内では、その表面付近でCrの濃度が一定範囲に保たれ、それに伴ってめっき層の耐食性が更に向上する。この理由は、明確ではないが、Crが酸素と結合することでめっき層の表面付近に複合酸化膜が形成されるためであると推測される。このようなめっき層の耐食性向上のためには、めっき層における50nm深さの最外層内でのCrの含有量が100〜500質量ppmとなることが好ましい。
溶融めっき浴がCrを含有すると、めっき層の折り曲げ加工変形後の耐食性も向上する。その理由は次の通りであると考えられる。厳しい折り曲げ加工変形を受けると、めっき層及びめっき層上の塗装皮膜にクラックが生じる場合がある。その際、クラックを通じてめっき層内に水や酸素が浸入してしまい、めっき層内の合金が直接腐食因子に晒されてしまう。しかし、めっき層の特に表層に存在するCr並びに合金層に存在するCrはめっき層の腐食反応を抑制し、これによりクラックを起点とした腐食の拡大が抑制される。
上記好ましい実施形態で扱われる溶融めっき金属は、七成分以上の元素を含む多元系溶融金属であり、その凝固過程は極めて複雑であって理論的に予測することは困難であるが、本発明者らは実験での観察等を通じて、上記重要な知見を得るに至った。
溶融めっき浴2の組成が上記のように調整されることで、上記の通りめっき層におけるしわやタレの抑制、並びに溶融めっき鋼材の耐食性と加工性の確保が、達成され得る。
この溶融めっき浴2におけるAlの含有量が25%未満となると、めっき層中のZn含有量が過剰となって、めっき層の表面における耐食性が不充分となり、この含有量が75%より多くなるとZnによる犠牲防食効果が低下すると共にめっき層が硬質化して溶融めっき鋼材の折り曲げ加工性が低下してしまう。更に、この含有量が75%より多くなると溶融めっき金属の流動性が大きくなってしまい、めっき層におけるしわの発生が誘発されるおそれがある。このAlの含有量は特に45%以上であることが好ましい。またこのAlの含有量は特に65%以下であることが好ましい。特にAlの含有量が45〜65%の範囲であることが好ましい。
溶融めっき浴2におけるCrの含有量が0.02%未満であれば、めっき層の耐食性が充分に確保され難くなると共にめっき層のしわやタレが充分に抑制され難くなり、この含有量が1.0%より多くなると耐食性の向上作用が飽和するだけでなく溶融めっき浴2中にドロスが発生しやすくなってしまう。このCrの含有量は特に0.05%以上であることが好ましい。またこのCrの含有量は特に0.5%以下であることが好ましい。このCrの含有量は、更に0.07〜0.2%の範囲であることが好ましい。
溶融めっき浴2におけるSiのAlに対する含有量が0.5%未満であると上述の作用が発揮されなくなり、この含有量が10%より多くなるとSiによる作用が飽和するだけでなく溶融めっき浴2中にドロスが発生しやすくなってしまう。このSiの含有量は特に1.0%以上であることが好ましい。またこのSiの含有量は特に5.0%以下であることが好ましい。更にこのSiの含有量が1.0〜5.0%の範囲であることが好ましい。
溶融めっき浴2におけるMgの含有量が0.1%未満であるとめっき層の耐食性が充分に確保されなくなってしまい、この含有量が10%より多くなると耐食性の向上作用が飽和するだけでなく溶融めっき浴2中にドロスが発生しやすくなってしまう。このMgの含有量は更に0.5%以上であることが好ましく、更に1.0%以上であることが好ましい。またこのMgの含有量は特に5.0%以下であることが好ましく、更に3.0%以下であることが好ましい。特にMgの含有量が1.0〜3.0%の範囲であることが好ましい。
溶融めっき浴2におけるFeの含有量が0.1%未満であるとめっき層のミクロ組織及びスパングル組織が粗大化してめっき層の外観が悪化すると共に加工性が悪化するおそれがあり、この含有量が0.6%より多くなるとめっき層のスパングルがあまりにも微細化し、或いは消失してしまってスパングルによる外観向上がなされなくなると共に、溶融めっき浴2中にドロスが発生しやすくなってしまう。Feの含有量は特に0.2%以上であることが好ましい。Feの含有量は特に0.5%以下であることが好ましい。特にFeの含有量が0.2〜0.5%の範囲であることが好ましい。
溶融めっき浴2におけるSrの含有量が1ppm未満であると上述の作用が発揮されなくなり、この含有量が500ppmより多くなるとSrの作用が飽和してしまうだけでなく、溶融めっき浴2中にドロスが発生しやすくなってしまう。Srの含有量は特に5ppm以上であることが好ましい。Srの含有量は特に300ppm以下であることが好ましい。Srの含有量は更に20〜50ppmの範囲であることが好ましい。
溶融めっき浴2がアルカリ土類元素及びランタノイド元素から選択される成分を含有する場合、アルカリ土類元素(Be、Ca、Ba、Ra)、Sc、Y、及びランタノイド元素(La、Ce、Pr、Nd、Pm、Sm、Eu等)は、Srと同様の作用を発揮する。溶融めっき浴2中におけるこれらの成分の含有量の総量は、上述の通り質量比率で1.0%以下であることが好ましい。
溶融めっき浴2が特にCaを含有する場合には、溶融めっき浴におけるドロスの発生が著しく抑制される。溶融めっき浴がMgを含有する場合には、Mgの含有量が10質量%以下であってもある程度のドロスの発生は避けがたく、溶融めっき鋼材の良好な外観が確保されるためにはめっき浴からのドロスの除去が必要となるが、溶融めっき浴が更にCaを含有すると、Mgに起因するドロスの発生が著しく抑制される。これにより、溶融めっき鋼材の外観がドロスにより悪化することが更に抑制されると共に、溶融めっき浴からドロスを除去するために要する手間が軽減される。溶融めっき浴2中のCaの含有量は100〜5000質量ppmの範囲であることが好ましい。この含有量が100質量ppm以上であることで、溶融めっき浴中のドロスの発生が効果的に抑制される。Caの含有量が過剰であるとこのCaに起因するドロスが発生するおそれがあるが、Caの含有量が5000質量ppm以下であることで、Caに起因するドロスが抑制される。この含有量は更に200〜1000質量ppmの範囲であることが好ましい。
Ti及びBのうち少なくとも一方を溶融めっき浴2中に含有させると、めっき層のα−Al相(デンドライト組織)が微細化することでめっき層のスパングルが微細化し、このため、スパングルによるめっき層の外観が向上する。更に、めっき層でのしわの発生が更に抑制される。これは、Ti及びBの作用によりSi−Mg相も微細化し、この微細化したSi−Mg相が、溶融めっき金属が凝固してめっき層が形成されるプロセスにおいて溶融めっき金属の流動を効果的に抑制するためと考えられる。更に、このようなめっき組織の微細化によって曲げ加工時のめっき層内の応力の集中が緩和されて大きなクラックの発生等が抑制され、曲げ加工性が更に向上する。前記作用が発揮されるためには、溶融めっき浴2中のTi及びBの含有量の合計が、質量比率で0.0005〜0.1%の範囲であることが好ましい。このTi及びBの含有量の合計は特に0.001%以上であることが好ましい。このTi及びBの含有量の合計は特に0.05%以下であることも好ましい。特にTi及びBの含有量の合計が0.001〜0.05%の範囲であることが好ましい。
このような溶融めっき浴2を用いる溶融めっき処理によりめっき層が形成される。このめっき層においては、上記のとおり表層におけるMgの濃化が抑制される。これにより、上記のとおり、めっき層における50nm深さの最外層内で、大きさが直径4mm、深さ50nmとなるいかなる領域においても、Mg含有量が60質量%未満となることが好ましい。この場合、めっき層の最外層でのMg系酸化皮膜の量が特に少なくなり、Mg系酸化皮膜に起因するしわが更に抑制される。最外層におけるMg含有量が少ないほど、Mg系酸化皮膜に起因するしわが抑制される。このMg含有量は、40質量%未満であればより好ましく、20質量%未満であれば更に好ましく、10質量%未満であれば特に好ましい。特にめっき層の厚み50nmの最外層内に、Mg含有量が60質量%以上となる部分が存在しなくなることが好ましく、更にMg含有量が40質量%以上となる部分が存在しないことが好ましく、Mg含有量が20質量%以上となる部分が存在しなければ更に好ましい。
Mg含有量の物理的意味について説明する。化学量論組成のMgO酸化物中のMg含有量は約60質量%である。すなわち、Mg含有量が60質量%未満ということは、化学量論組成のMgO(MgO単独の酸化皮膜)が、めっき層の最外層に存在せず、或いはこの化学量論組成のMgOの形成が著しく抑制されていることを意味する。本実施形態ではめっき層の最外層におけるMgの過剰な酸化が抑制されることにより、MgO単独の酸化皮膜の形成が抑制される。めっき層の最外層ではAl、Zn、Sr等のMg以外の元素の酸化物を少量もしくは多量に含有する複合酸化物が形成され、このため相対的にめっき層の表層におけるMgの含有量が低下していると考えられる。
めっき層の最外層におけるMg含有量は、グロー放電発光分光分析装置(Glow Discharge spectrometer)を用いて分析をすることができる。精度の良い定量濃度分析値を得ることが困難である場合、めっき層に含まれる複数の各元素の濃度曲線を比較することで、MgO単独の酸化皮膜がめっき層の最外層に認められないことを確かめればよい。
めっき層中のSi−Mg相の体積割合は0.2〜15体積%の範囲であることが好ましい。このSi−Mg相の体積割合は0.2〜10%であればより好ましく、0.3〜8%であれば更に好ましく、0.4〜5%であれば特に好ましい。Si−Mg相がこのようにめっき層中に存在すると、めっき層形成時のMgがSi−Mg相に充分に取り込まれると共に溶融めっき金属の流動がSi−Mg相によって充分阻害され、その結果、めっき層のしわの発生が更に抑制される。
溶融めっき鋼材においては、上記のようにめっき層の表面のしわが抑制されることによって、特にめっき層の表面に、高さが200μmより大きいと共に急峻度が1.0よりも大きい隆起が存在しなくなることが好ましい。急峻度とは、(隆起の高さ(μm))÷(隆起の底面の幅(μm))で規定される値である。隆起の底面は、隆起の周囲の平坦面を含む仮想的な平面と隆起とが交わる箇所のことである。隆起の高さとは隆起の底面から隆起の先端までの高さである。急峻度が低い場合、めっき層の外観が更に向上する。更に、めっき層に重ねて後述するように皮膜(β)が形成される場合に、隆起が前記皮膜(β)を突き破ることが防止されると共に、前記皮膜(β)の厚みが容易に均一化され得るようになる。これにより、皮膜(β)層が形成された表面処理溶融めっき鋼材の外観が向上すると共に、皮膜(β)層によって表面処理溶融めっき鋼材が更に優れた耐食性等を発揮し得るようになる。
このようなMgの濃化の程度、Si−Mg相の状態、合金層の厚み及びめっき層の表面の隆起の急峻度の調整は、鋼材1に上記組成の溶融めっき浴2を用いて溶融めっき処理を施すことで達成され得る。
溶融めっき処理にあたっては、Cr、Mn、Fe、Co、Ni、Cu、Zn、Snから選択される少なくとも一種の成分を含有するプレめっき層が形成されている鋼材1に、めっき層形成のための溶融めっき処理が施されてもよい。前記溶融めっき処理を施す前の鋼材1にプレめっき処理が施されることで、この鋼材1の表面上にプレめっき層が形成される。このプレめっき層によって、溶融めっき処理時の鋼材1と溶融めっき金属との濡れ性が向上し、鋼材1とめっき層との間の密着性が改善する。
プレめっき層は、プレめっき層を構成する金属の種類に依存するが、めっき層の表面外観や耐食性の更なる向上にも寄与する。例えばCrを含有するプレめっき層が形成される場合、鋼材1とめっき層との間でCrを含有する合金層の形成が促進され、溶融めっき鋼材の耐食性が更に向上する。例えばFeやNiを含有するプレめっき層が形成される場合、鋼材1と溶融めっき金属との濡れ性が向上してめっき層の密着性が大きく改善し、更にSi−Mg相の析出が促進され、めっき層の表面外観が更に向上する。Si−Mg相の析出の促進は、プレめっき層と溶融めっき金属との反応に起因して生じると考えられる。
プレめっき層の付着量は特に限定されないが、鋼材1の片面上での付着量が0.1〜3g/m2の範囲であることが好ましい。この付着量が0.1g/m2未満であれば、プレめっき層による鋼材表面の被覆が困難であり、プレめっきによる改善効果が十分に発揮されない。またこの付着量が3g/m2を超える場合は、改善効果が飽和するばかりでなく製造コスト高となる。
以下に、鋼材1に対して溶融めっき処理を施すための溶融めっき処理装置の概要、並びに溶融めっき処理の好適な処理条件について説明する。
処理対象である鋼材1は炭素鋼、合金鋼、ステンレス鋼、ニッケルクロム鋼、ニッケルクロムモリブデン鋼、クロム鋼、クロムモリブデン鋼、マンガン鋼などの鉄鋼から形成されている部材である。鋼材1としては、薄鋼板、厚鋼板、型鋼、鋼管、鋼線等の種々の部材が挙げられる。すなわち、鋼材1の形状は特に制限されない。
鋼材1には、溶融めっき処理の前にフラックス処理が施されていてもよい。このフラックス処理により、鋼材1の溶融めっき浴2との濡れ性及び密着性が改善され得る。鋼材1には、溶融めっき浴2に浸漬される前に加熱焼鈍・還元処理が施されてもよいし、この処理が省略されてもよい。上記の通り鋼材1には溶融めっき処理の前にプレめっき処理が施されてもよい。
以下では、鋼材1として板材(鋼板1a)が採用される場合、すなわち溶融めっき鋼板が製造される場合の、溶融めっき鋼材(溶融めっき鋼板)の製造工程について説明する。
図1に示される溶融めっき処理装置は、鋼板1aを連続的に搬送する搬送装置を備える。この搬送装置は、繰出機3、巻取機12、及び複数の搬送ロール15で構成されている。この搬送装置では、長尺な鋼板1aのコイル13(第一のコイル13)を繰出機3が保持する。この第一のコイル13が繰出機3で巻き解かれ、鋼板1aが搬送ロール15で支えられながら巻取機12まで搬送される。更にこの鋼板1aを巻取機12が巻回し、この巻取機12が鋼板1aのコイル12(第二のコイル12)を保持する。
この溶融めっき処理装置では、前記搬送装置による鋼板1aの搬送経路の上流側から順に、加熱炉4、焼鈍・冷却部5、スナウト6、ポット7、噴射ノズル9、冷却装置10、調質圧延・形状矯正装置11が順次設けられている。加熱炉4は鋼板1aを加熱する。この加熱炉4は無酸化炉等で構成される。焼鈍・冷却部5は鋼板1aを加熱焼鈍し、それに続いて冷却する。この焼鈍・冷却部5は加熱炉4に連結されており、上流側に焼鈍炉が、下流側に冷却帯(冷却機)がそれぞれ設けられている。この焼鈍・冷却部5内は還元性雰囲気に保持されている。スナウト6はその内部で鋼板1aが搬送される筒状の部材であり、その一端が前記焼鈍・冷却部5に連結され、他端がポット7内の溶融めっき浴2内に配置される。スナウト6内は焼鈍・冷却部5内と同様に還元性雰囲気に保持される。ポット7は溶融めっき浴2を貯留する容器であり、その内部にはシンクロール8が配置されている。噴射ノズル9は鋼板1aに向けてガスを噴射する。噴射ノズル9はポット7の上方に配置される。この噴射ノズル9は、ポット7から引き上げられた鋼板1aの両面に向けてガスを噴射できる位置に配置される。冷却装置10は鋼板に付着している溶融めっき金属を冷却する。この冷却装置10としては、空冷機、ミスト冷却機等が設けられ、この冷却装置10で鋼板1aが冷却される。調質圧延・形状矯正装置11は、めっき層が形成された鋼板1aの調質圧延及び形状矯正をおこなう。この調質圧延・形状矯正装置11は、鋼板1aに対して調質圧延をおこなうためのスキンパスミル等や、調質圧延後の鋼板1aに対して形状矯正をおこなうためのテンションレベラー等を備える。
この溶融めっき処理装置を用いた溶融めっき処理では、まず繰出機3から鋼板1aが巻き解かれて連続的に繰り出される。この鋼板1aが加熱炉4で加熱された後、還元性雰囲気の焼鈍・冷却部5に搬送され、焼鈍炉で焼き鈍されると同時に、鋼板1aの表面に付着している圧延油等の除去や酸化膜の還元除去などの表面の清浄化がなされた後、冷却帯で冷却される。次に、鋼板1aはスナウト6を通過し、更にポット7に侵入してこのポット7内の溶融めっき浴2中に浸漬される。鋼板1aはポット7内でシンクロール8に支えられることでその搬送方向が上方へ転換され、溶融めっき浴2から引き出される。これにより鋼板1aに溶融めっき金属が付着する。
次に、この鋼板1aの両面に噴射ノズル9からガスが噴射されることで、鋼板1aに付着した溶融めっき金属の付着量が調整される。このようなガスの噴射による付着量の調整方法をガスワイピング法という。この溶融めっき金属の付着量は鋼板1aの両面を併せて40〜200g/m2の範囲に調整されることが好ましい。
ガスワイピング法において鋼板1aへ噴射されるガス(ワイピングガス)の種類として、大気、窒素、アルゴン、ヘリウム、水蒸気等が挙げられる。これらのワイピングガスは予備加熱されてから鋼板1aへ噴射されてもよい。本実施形態では特定組成の溶融めっき浴2が用いられることで、溶融めっき金属中のMgの表面酸化濃化(溶融めっき金属の表層におけるMgの酸化並びにMg濃度の上昇)が本質的に抑制される。このため、たとえワイピングガス中に酸素が含まれ、若しくはワイピングガスの噴射に随伴する気流中に酸素が含まれていても、発明の効果を損なうことなくめっき付着量(鋼板1a上に付着している溶融めっき金属の量)の調整が可能となる。
めっき付着量の調整方法は、勿論前記ガスワイピング法に限られず、種々の付着量制御法を適用することができる。ガスワイピング法以外の付着量制御法としては、例えば溶融めっき浴2の浴面直上に配置された一対のロール間に鋼板1aを通過させるロール絞り法、溶融めっき浴2から引き出された鋼板1aに近接して遮蔽板を配置してこの遮蔽板で溶融めっき金属を払拭する方法、鋼板1aに付着している溶融めっき金属に対して電磁力を用いて下方へ移動する力を加える電磁力ワイピング法、外的な力を加えず自然重力落下を利用してめっき付着量を調整する方法等が挙げられる。二種以上のめっき付着量の調整方法が組み合わされてもよい。
次にこの鋼板1aは噴射ノズル9の配置位置よりも更に上方に搬送された後、二つの搬送ロール15に支えられることで下方へ折り返すように搬送される。すなわち鋼板1aは逆U字状の経路を搬送される。この逆U字状の経路において、鋼板1aが冷却装置10で空冷やミスト冷却等により冷却される。これにより、鋼板1aの表面上に付着した溶融めっき金属が凝固し、めっき層が形成される。
冷却装置10によって冷却されることにより溶融めっき金属の凝固が完全に終了するためには、鋼板1a上が冷却装置10により、溶融めっき金属(或いはめっき層)の表面温度が300℃以下になるまで冷却されることが好ましい。溶融めっき金属の表面温度は、例えば放射温度計などで測定される。このようにめっき層が形成されるためには、この鋼板1aがめっき浴2より引き出されてから鋼板1a上の溶融めっき金属の表面が300℃に冷却されるまでの間の冷却速度が5〜100℃/secの範囲であることが好ましい。鋼板1aの冷却速度を制御するために、冷却装置10が、鋼板1aの温度をその搬送方向及び板幅方向に沿って調節するための温度制御機能を備えることが好ましい。冷却装置10は、鋼板1aの搬送方向に沿って複数に分割されていてもよい。図1では、噴射ノズル9の配置位置よりも更に上方に搬送される経路において鋼板1aを冷却する一次冷却装置101と、一次冷却装置101よりも下流側で鋼板1aを冷却する二次冷却装置102とが設けられている。一次冷却装置101と二次冷却装置102とが更に複数に分割されていてもよい。この場合、例えば一次冷却装置101で鋼板1aを溶融めっき金属の表面が300℃或いはそれ以下の温度になるまで冷却し、更に二次冷却装置102で鋼板1aを、調質圧延・形状矯正装置11へ導入される際の温度が100℃以下となるように冷却することができる。
鋼板1aが冷却される過程では、鋼板1a上の溶融めっき金属の表面温度が500℃以上である間の溶融めっき金属の表面の冷却速度が50℃/sec以下であることが好ましい。この場合、めっき層の表面におけるSi−Mg相の析出が特に抑制され、このためタレの発生が抑制される。この温度域での冷却速度がSi−Mg相の析出挙動に影響する理由は現時点で必ずしも明確ではないが、この温度域での冷却速度が速いと溶融めっき金属における厚み方向の温度勾配が大きくなり、このため温度がより低い溶融めっき金属の表面で優先的にMg−Si層の析出が促進されてしまい、その結果、めっき最表面でのSi−Mg相の析出量が多くなってしまうと考えられる。この温度域での冷却速度は、40℃/sec以下であれば更に好ましく、35℃/sec以下であれば特に好ましい。
冷却後の鋼板1aには調質圧延・形状矯正装置11で調質圧延が施された後、形状矯正が施される。調質圧延による圧下率は0.3〜3%の範囲であることが好ましい。形状矯正による鋼板1aの伸び率は3%以下であることが好ましい。
続いて、鋼板1aは巻取機12で巻き取られ、この巻取機12で鋼板1aのコイル14が保持される。
このような溶融めっき処理時においては、ポット7内の溶融めっき浴2の温度は、この溶融めっき浴2の凝固開始温度より高く且つ前記凝固開始温度よりも40℃高い温度以下の温度であることが好ましい。ポット7内の溶融めっき浴2の温度が溶融めっき浴2の凝固開始温度より高く且つ前記凝固開始温度よりも25℃高い温度以下の温度であれば更に好ましい。このように溶融めっき浴2の温度の上限が制限されると、鋼板1aが溶融めっき浴2から引き出されてから、この鋼板1aに付着した溶融めっき金属が凝固するまでに要する時間が短縮される。その結果、鋼板1aに付着している溶融めっき金属が流動可能な状態にある時間も短縮され、このためめっき層にしわが更に発生しにくくなる。前記溶融めっき浴2の温度が、溶融めっき浴2の凝固開始温度よりも20℃高い温度以下であれば、めっき層におけるしわの発生が特に著しく抑制される。
鋼板1aが溶融めっき浴2から引き出される際には、非酸化性雰囲気又は低酸化性雰囲気中へ引き出されてもよく、更にこの非酸化性雰囲気又は低酸化性雰囲気中で鋼板1aに対してガスワイピング法による溶融めっき金属の付着量の調整が施されてもよい。そのためには、例えば図2に示すように、溶融めっき浴2から引き出された鋼材1の、溶融めっき浴2よりも上流側の搬送経路(溶融めっき浴2から上方へと向かう搬送経路)が、中空の部材22で囲まれると共に、この中空の部材22の内部が窒素ガスなどの非酸化性ガス又は低酸化性ガスで満たされることが好ましい。非酸化性ガス又は低酸化性ガスとは、大気に比較して酸素濃度が低いガスを意味する。非酸化性ガス又は低酸化性ガスの酸素濃度は1000ppm以下であることが好ましい。非酸化性ガス又は低酸化性ガスで満たされた雰囲気が非酸化性雰囲気又は低酸化性雰囲気であり、この雰囲気中では酸化反応が抑制される。噴射ノズル9は中空の部材22の内側に配置される。中空の部材22は、溶融めっき浴2内(溶融めっき浴2の上部)からこの溶融めっき浴2の上方に亘って、鋼材1の搬送経路を囲むように設けられている。更に、噴射ノズル9から噴射されるガスも、窒素ガスなどの非酸化性ガス又は低酸化性ガスであることが好ましい。この場合、溶融めっき浴2から引き出された鋼板1aは非酸化性雰囲気又は低酸化性雰囲気に曝されるため、鋼板1aに付着した溶融めっき金属の酸化が抑制され、この溶融めっき金属の表層にMg系酸化皮膜が更に形成されにくくなる。このため、めっき層におけるしわの発生が更に抑制される。中空の部材22が使用される代わりに、鋼板1aの搬送経路を含む溶融めっき処理装置の一部、或いは溶融めっき処理装置の全部が、非酸化性雰囲気又は低酸化性雰囲気中に配置されてもよい。
溶融めっき処理後の鋼板1aに対して、更に過時効処理が施されることも好ましい。この場合、溶融めっき鋼材の加工性が更に向上する。過時効処理は、鋼板1aを一定温度範囲内に一定時間保持することで施される。
図3は、過時効処理に用いられる装置を示し、このうち図3(a)は加熱装置を、図3(b)は保温容器20をそれぞれ示す。加熱装置は、溶融めっき処理後の鋼板1aが連続的に搬送される搬送装置を備える。この搬送装置は、溶融めっき処理装置における搬送装置と同様に繰出機16、巻取機17、及び複数の搬送ロール21で構成されている。この搬送装置による鋼板1aの搬送経路には、誘導加熱炉等の加熱炉18が設けられている。保温容器20は、内部に鋼板1aのコイル19が保持可能であり、且つ断熱性を有する容器であれば、特に制限されない。保温容器20は大型の容器(保温室)であってもよい。
鋼板1aに過時効処理が施される場合には、まず溶融めっき処理後の鋼板1aのコイル14が溶融めっき処理装置の巻取機12からクレーンや台車等で運搬され、加熱装置の繰出機16に保持される。加熱装置ではまず繰出機16から鋼板1aが巻き解かれて連続的に繰り出される。この鋼板1aは加熱炉18で過時効処理に適した温度まで加熱されてから、巻取機17で巻き取られ、この巻取機17で鋼板1aのコイル19が保持される。
続いて、鋼板1aのコイル19が巻取機17からクレーンや台車等で運搬されて、保温容器20内に保持される。この保温容器20内に前記鋼板1aのコイル19が一定時間保持されることで、鋼板1aに対して過時効処理が施される。
本実施形態により鋼板1aの表面上に形成されるめっき層はMgを含有し、めっき層の表面には僅かながらMg系酸化皮膜が存在することから、過時効処理時に鋼板1aのコイルにおいてめっき層同士が重ねられていても、めっき層間で焼き付きや溶着が生じにくい。このため、たとえ過時効処理時の保温時間が長時間であり、或いは保温温度が高温であっても、焼き付きが生じにくくなり、鋼板1aに充分な過時効処理が施され得る。これにより溶融めっき鋼板の加工性を大きく向上すると共に過時効処理の効率が向上する。
過時効処理にあたっては、特に加熱装置による加熱後の鋼板1aの温度が180〜220℃の範囲であること、すなわち鋼板1aの温度が前記範囲内である状態で鋼板が保温容器外から保温容器内へ移されることが好ましい。保温容器内での鋼板1aの保持時間y(hr)は、下記式(5)を充足することが好ましい。
5.0×1022×t-10.0≦y≦7.0×1024×t-10.0 …(5)
(但し、150≦t≦250)
式(5)中のt(℃)は、前記保持時間y(hr)中における鋼板1aの温度(保持温度)であり、鋼板1aに温度変動が生じる場合にはその最低温度である。
尚、本実施形態では、溶融めっき処理装置及び加熱装置が別個の装置であるが、溶融めっき処理装置が加熱炉21を備えることで溶融めっき処理装置が加熱装置を兼ねてもよい。これらの装置においては、必要に応じて種々の要素が追加、除去、置換等されることで適宜設計変更されてもよい。本実施形態による溶融めっき処理装置及び加熱装置は、鋼材1が鋼板1aである場合に適するが、溶融めっき処理装置、加熱装置等の構成は鋼材1の形状等に応じて種々設計変更が可能である。鋼材1に対してめっき前処理が施される場合には、このめっき前処理も、鋼材1の種類、形状等に応じて種々変更可能である。
[めっき層への表面処理方法]
本発明の各実施形態に係る表面処理溶融めっき鋼材は、上述した溶融めっき処理が施された鋼材の上層に上述した皮膜(β)を形成することにより製造する。また、皮膜(β)を形成する前に、前記めっき層(α)にニッケルめっき処理やコバルトめっき処理などが施されてもよいし、純水や各種有機溶剤液による洗浄や、酸、アルカリや各種エッチング剤を任意に含む水溶液や各種有機溶剤液による洗浄などが施されてもよい。このようにめっき層(α)の表面が洗浄されると、めっき層(α)の表層にMg系酸化皮膜が少量存在したり、めっき層(α)の表面に無機系及び有機系の汚れ等が付着していたりしても、これらのMg系酸化皮膜や汚れ等がめっき層(α)から除去され、これによりめっき層(α)と皮膜(β)との密着性が改善され得る。以下に、皮膜(β)の形成方法の詳細について述べる。
<皮膜(β)の形成方法>
皮膜(β)の形成方法としては、特に限定されないが、例えば、水系溶媒中に上記チタン化合物及びジルコニウム化合物から選ばれる少なくとも1種の化合物を含有する処理薬剤を、基材となるめっき鋼材上に塗布し、加熱乾燥することにより形成することができる。ここで、水系溶媒とは、水が溶媒の主成分である溶媒であることを意味する。溶媒中に占める水の量は50質量%以上であることが好ましい。水以外の溶媒は有機溶剤系溶媒でもよいが、労働安全衛生法の有機溶剤中毒予防規則で定義される有機溶剤含有物(労働安全衛生法施行令の別表第六の二に掲げられた有機溶剤を重量の5%を超えて含有するもの)には該当しないものであることがより好ましい。
皮膜(β)を形成するための処理薬剤は、特定の方法に限定されず、任意の方法で得ることができる。一例として、好ましい処理薬剤を例に説明すれば、分散媒である水系溶媒中に皮膜(β)の構成成分を添加し、ディスパーで攪拌し、溶解又は分散する方法が挙げられる。また、処理薬剤中には、各構成成分の溶解性又は分散性を向上させるために、必要に応じて、公知の親水性溶剤等、例えば、エタノール、イソプロピルアルコール、t−ブチルアルコール及びプロピレングリコールなどのアルコール類や、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルなどのセロソルブ類や、酢酸エチル、酢酸ブチルなどのエステル類や、アセトン、メチルエチルケトン及びメチルイソブチルケトンなどのケトン類を添加してもよい。
上記処理薬剤のめっき鋼材への塗布方法としては、特に制限されることなく、公知の任意の方法を用いることができる。例えば、塗布方法として、ロールコート、カーテン塗装、スプレー塗布、バーコート、浸漬、静電塗布などを利用可能である。
処理薬剤から皮膜(β)を形成する際の加熱乾燥方法としては、特に制限されることなく、任意の方法で行うことができる。例えば、処理薬剤を塗布する前に予めめっき鋼材を加熱しておくか、塗布後にめっき鋼材を加熱するか、あるいはこれらを組み合わせて乾燥を行うことができる。加熱方法にも特に制限はなく、熱風、誘導加熱、近赤外線、直火等を単独又は組み合わせて使用して、処理薬剤を乾燥させて焼付けることができる。乾燥焼付温度は、到達板温で100℃〜250℃であることが好ましく、120℃〜230℃であることが更に好ましく、130℃〜220℃であることが最も好ましい。到達板温が100℃未満であると、皮膜の造膜が不十分で、耐食性、耐傷付き性、耐汚染性が低下することがあり、250℃超であると、焼付硬化が過剰になり、耐食性が低下することがある。乾燥焼付時間(加熱時間)は1秒〜60秒であることが好ましく、3秒〜20秒であることが更に好ましい。乾燥焼付時間が1秒未満であると、皮膜の造膜が不十分で、耐食性、耐傷付き性、耐汚染性が低下することがあり、60秒超であると、生産性が低下する。
本実施形態により製造される表面処理溶融めっき鋼材は、めっき層のしわやタレ発生に伴うめっき表面の凹凸が抑制されていることから、従来の高Al含有、且つMg含有めっき鋼材と比較して外観が良好である。また、皮膜(β)の効果により、耐白錆性、特に加熱された後の耐白錆性にも優れる。耐白錆性、特に加熱された後の耐白錆性は、従来の高Al含有、且つMg含有めっき鋼材では考慮されていなかった特性である。
この表面処理溶融めっき鋼材は、建材、自動車用の材料、家電製品用の材料、その他各種の用途に採用されることができ、耐白錆性、特に加熱された後の耐白錆性が要求される用途に好適に採用されることができる。
溶融めっき鋼材として溶融めっき鋼板を使用した実施例により本発明を更に説明する。しかし、本発明は以下の実施例に限定されるものではない。
(1)溶融めっき鋼板(溶融めっき鋼材)
まず、溶融めっき鋼板の作製方法、及びそれにより得られた溶融めっき鋼板の評価試験方法、試験結果について説明する。
[1.1.溶融めっき鋼板の作製方法]
鋼材1として厚み0.80mm、幅1000mmの長尺の鋼板1a(低炭素アルミニウムキルド鋼製)を用いた。この鋼板1aに対し、図1に示す溶融めっき処理装置を用いて、溶融めっき処理を施した。処理条件は表1〜3に示すとおりである。表1〜3に示される凝固開始温度は、Zn−Al二元系の浴の状態図の液相曲線から導き出した値であり、表1〜3に示す各溶融めっき浴組成におけるAlの含有量に対応する値である。なお、水準M68、M69では、鋼鈑1aに溶融めっき処理を施す前に、Niプレめっきを施すことで、水準M68では付着量(片面)0.5g/m2、水準M69では付着量(片面)2.0g/m2のプレめっき層を形成した。水準M70では、Zn−10%Crプレめっき処理を施し、付着量(片面)1.0g/m2のプレめっき層を形成した。他の実施例及び比較例ではプレめっき処理を施さなかった。
鋼板1aの溶融めっき浴2への侵入時の温度は580℃とした。
鋼板1aを溶融めっき浴2から引き出す際には空気雰囲気中に引き出し、ガスワイピングも空気雰囲気中で施した。但し、水準M71については、溶融めっき浴2より上流側の鋼板1aの搬送経路をシールボックス(中空の部材22)で囲むと共に、このシールボックスの内部に噴射ノズル9を配置し、このシールボックスの内部を窒素雰囲気とすると共に、中空の部材22の内側で窒素ガスによるガスワイピングをおこなった。
冷却装置10では、鋼板1aを、溶融めっき金属(めっき層)の表面温度が300℃になるまで冷却した。冷却時の冷却速度は45℃/secとした。但し、水準M76、M77については溶融めっき金属の表面温度が500℃以上である温度域での冷却速度を変更し、この過程における、水準M76での冷却速度を38℃/sec、水準M77での冷却速度を28℃/secとした。
調質圧延時の圧下率は1%、形状矯正時の鋼板1aの伸び率は1%とした。
[1.2.溶融めっき鋼板の評価試験]
前記[1.1.溶融めっき鋼板の作製]で得られた溶融めっき鋼板について、次の評価試験をおこなった。
(1.2.1.Si−Mg相の体積比率評価)
溶融めっき鋼板を厚み方向に切断してサンプルを得た。このサンプルを、その切断面が表出するように樹脂に埋め込んだ後、切断面を鏡面状に研磨した。この切断面を電子顕微鏡により観察したところ、この切断面には、めっき層にSi−Mg相が分布している様子が明瞭に現れた。
水準M5で得られた溶融めっき鋼板の切断面を電子顕微鏡により撮影して得られた画像を、図4(a)に示す。更に、Si−Mg相の析出が認められた部分について、エネルギー分散型X線分析装置(EDS)を用いて元素分析を行った。その結果を図4(b)に示す。この結果によると、MgとSiの2元素のみが強く検出されていることが分かる。O(酸素)も検出されているが、これは、サンプル作製段階でサンプルに吸着した酸素が検出されたためである。
めっき層の切断面における、厚み方向と直交する方向の長さが20mmの範囲について、撮像画像に基づく画像解析を行うことで、この切断面におけるSi−Mg相の面積率(%)を測定した。Si−Mg相は濃い灰色の色調を示し、他の相と明確に区別されるため、画像解析により容易に判別することが可能であった。
これにより得られた面積率(%)がSi−Mg相の体積比率と一致するとみなして、Si−Mg相の体積比率を評価した。その結果を表4〜6に示す。
(1.2.2.全Mg量に対するSi−Mg相中のMg量の質量比率評価)
上述の式(1)〜(4)により、めっき層における全Mg量に対するSi−Mg相中のMg量の質量比率を算出した。その結果を表4〜6に示す。
(1.2.3.表層Mg量評価)
溶融めっき鋼板におけるめっき層に含まれる成分の、深さ方向(めっき層の厚み方向)の元素分析を、グロー放電発光分光分析(GD-OES:Glow Discharge - Optical Emission Spectroscopy)によりおこなった。測定にあたっては、測定領域の直径を4mm、出力を35W、測定雰囲気をArガス、測定圧力を600Pa、放電モードをノーマルスパッタ、Duty Cycle0.1、分析時間を80秒、サンプリング時間を0.02sec/pointとする条件で、めっき層に含まれる元素の発光強度を測定した。得られた発光強度値を定量濃度値(質量%濃度)に換算する為、成分濃度が既知の7000系Al合金、鉄鋼材料等の標準試料の元素分析も別途おこなった。尚、通常、GD-OESデータは、発光強度のスパッタ時間に対する変化の形であるため、測定終了後のサンプルの断面観察によりスパッタ深さを測定し、このスパッタ深さを合計スパッタ時間で除することでスパッタ速度を算出し、GD-OES深さ方向プロファイルにおけるめっき層の深さ位置を特定した。
水準M5及び水準M50については、分析結果をそれぞれ図5(a)及び図5(b)に示す。これによると、水準M50ではめっき層の表層においてMgの濃度が急激に上昇していることが確認できる。
この結果に基づき、めっき層における50nm深さの最外層内での、大きさが直径4mm、深さ50nmとなる領域における、Mgの含有量を導出した。その結果を表4〜6に示す。
(1.2.4.表層Cr量評価)
表層Mg量評価の場合と同様にして、GD−OESにより、大きさが直径4mmで、めっき層最表面から深さ50nmとなる領域におけるCr発光強度の積分値を測定した。同様に、めっき層全体のCr発光強度の積分値も測定し、更にこの値に対する、前記領域におけるCr発光強度の積分値の比を求めた。このCr発光強度の積分値の比と、ICPによるめっき層全体のCr量の化学分析値とに基づいて、大きさが直径4mmで、めっき層最表面から深さ50nmとなる領域における、Crの含有量を算出した。その結果を表4〜6に示す。
(1.2.5.めっき層表面のSi−Mg相の面積比率の評価)
めっき層の表面を電子顕微鏡により観察した。水準M5について、めっき層の表面を電子顕微鏡により撮影した写真を図6に示す。この観察結果によれば、めっき層の表面にSi−Mg相が分布している様子が確認できる。この結果に基づいて、めっき層の表面におけるSi−Mg相の面積を測定し、これに基づいて、めっき層表面におけるSi−Mg相の面積比率を算出した。その結果を表4〜6に示す。
(1.2.6.合金層の評価)
溶融めっき鋼板を厚み方向に切断してサンプルを得た。このサンプルを、その切断面が表出するように樹脂に埋め込んだ後、切断面を鏡面状に研磨した。この切断面には、めっき層と鋼板1aとの界面に介在する合金層が現れた。この合金層の厚みを測定した。さらに研磨面から収束イオンビーム装置により、研磨面の10μm×20μm部分をサンプリングし、50nm厚み以下に加工したマイクロサンプルを作製した。このマイクロサンプルについて、エネルギー分散型X線分析装置(EDS)を用い、加速電圧200kV、プローブ径1nmの条件で、合金層内のCr濃度を定量分析した。
この結果に基づき、合金層内でのCrの質量割合の、めっき層内でのCrの質量割合に対する比を算出した。その結果を表4〜6に示す。
(1.2.7.外観評価)
溶融めっき鋼板におけるめっき層の表面の外観を目視及び光学顕微鏡により観察した。図7(a)は水準M5におけるめっき層の表面を撮影した写真を示す。図7(b)は水準M10におけるめっき層の表面を撮影した写真を示す。図8(a)は水準M62におけるめっき層の表面の光学顕微鏡写真を示す。図8(b)は水準M5におけるめっき層の表面の光学顕微鏡写真を示す。図9は水準M50におけるめっき層の外観を撮影した写真を示す。
この観察結果に基づいて、めっき層の表面のしわの程度を、下記基準により評価した。その結果を表4〜6に示す。
◎:しわが認められない。
○:しわが軽微(図7(a)に示される程度のしわ)。
△:しわが中程度(図7(b)に示されるよりは良好)。
×:しわが著しい(図7(b)に示される程度のしわ)。
しわの程度が○と△の間程度の評価の場合には、○−△と評価した。
更に、この観察結果に基づいて、めっき層の表面のタレの程度を、下記基準により評価した。その結果を表4〜6に示す。
○:タレが認められない。
×:タレが認められる(図9に示される程度のタレ)。
更に、この観察結果に基づいて、めっき層に付着しているドロスの程度を、下記基準により評価した。その結果を表4〜6に示す。
○:めっき層の表面に、凹凸を伴うドロスの付着がなく、或いは凹凸を伴うドロスの付着が1m2あたり5箇所未満認められる。
×:めっき層の表面に、凹凸を伴うドロスの付着が1m2あたり5箇所以上認められる。
更に、しわ、タレ、及びドロスを除くめっき層の外観的な特徴を観察したところ、水準M78ではスパングルの粗大化が認められた(表4〜6の「その他」の欄参照)。
(1.2.8.過時効処理評価)
水準M5の溶融めっき鋼板のコイルに対し、保温温度t(℃)及び保温時間y(hr)を変化させて、過時効処理を施した。その結果を下記のように評価した。
◎:コイルにめっき層間で凝着が生じず、且つ加工性が向上した。
○:コイルにめっき層間で凝着が生じないが、加工性は改善しない。
×:コイルにめっき層間で凝着が生じた。
この結果を図10のグラフに示す。このグラフ中の横軸は保温温度t(℃)、縦軸は保温時間y(hr)の各試験条件を示す。このグラフ中の試験時の保温温度t(℃)及び保温時間y(hr)に対応する位置に、その保温温度及び保温時間における評価結果を示している。グラフ中の破線で挟まれている領域は、保温温度t(℃)及び保温時間y(hr)が下記式(5)を充足する領域である。
5.0×1022×t-10.0≦y≦7.0×1024×t-10.0 …(5)
(但し、150≦t≦250)
(2)表面処理溶融めっき鋼板(表面処理溶融めっき鋼材)
続いて、表面処理溶融めっき鋼材の作製方法、及びそれにより得られた表面処理溶融めっき鋼板の評価試験方法、試験結果について説明する。
[2.1.表面処理溶融めっき鋼板の作製]
(2.1.1.皮膜及び表面処理溶融めっき鋼板)
皮膜を形成するための処理薬剤は、表7に示すチタン化合物及びジルコニウム化合物から選ばれる少なくとも1種の化合物(A)と、表8に示すリン酸化合物(B)と、表9に示すシリカ粒子(C)と、表10に示すバナジウム化合物(D)と、表11に示すコバルト化合物(E)とを、表12〜18に示す配合量(固形分の質量%)で配合し、塗料用分散機を用いて攪拌することで調製した。前記[1.1]で作製した溶融めっき鋼板の表面に、上記処理薬剤を所定の付着量になるようにロールコーターで塗装し、所定の到達板温度になるように加熱乾燥し、皮膜を形成させることで表面処理溶融めっき鋼板を得た。該表面処理溶融めっき鋼板の皮膜構成及び皮膜の付着量、到達板温度も表12〜18に示す。
(2.1.2.評価試験)
前記(2.1.1)で得た表面処理溶融めっき鋼板から、70mm×150mmサイズの試験片を切り出し、加工部耐食性、加熱後耐食性、耐傷付き性、及び耐汚染性を下記に示す評価方法及び評価基準にて評価した。その評価結果を表19〜25に示す。
〔加工部耐食性〕
前記試験片の中央部にエリクセン試験機(JIS Z 2247のA寸法に準拠)にて6mm押し出し加工したのち、端面をテープシールし、JIS Z 2371に準拠した塩水噴霧試験(SST)を24時間、72時間行い、エリクセン加工を施した部分の各々の試験時間における錆発生状況を観察し、下記の評価基準で評価した。
5:白錆発生面積が1%未満。
4:白錆発生面積が1%以上、5%未満。
3:白錆発生面積が5%以上、10%未満。
2:白錆発生面積が10%以上、30%未満。
1:白錆発生面積が30%以上。
〔加熱後平板耐食性〕
前記試験片を加熱処理(大気雰囲気にて300℃で24hr)し、その加熱処理後の試験片の端面をテープシールし、JIS Z 2371に準拠した塩水噴霧試験(SST)を72時間行い、試験後の錆発生状況を観察し、下記の評価基準で評価した。
5:白錆発生面積が1%未満。
4:白錆発生面積が1%以上、5%未満。
3:白錆発生面積が5%以上、10%未満。
2:白錆発生面積が10%以上、30%未満。
1:白錆発生面積が30%以上。
〔耐傷付き性〕
前記試験片をラビングテスター(大平理化工業社製)に設置後、ラビングテスターの摺動冶具先端に前記試験片と平行になるように30mm×30mmの段ボール紙を取り付け、その段ボール紙を9.8N(1.0kgf)の荷重で5往復、及び10往復擦った後の皮膜状態を下記の評価基準で評価した。
5:擦り面に全く痕跡が認められない。
4:擦り面に極僅かに摺動傷が付く(目を凝らして何とか摺動傷が判別できるレベル)。
3:擦り面に僅かに摺動傷が付く(目を凝らすと容易に摺動傷が判別できるレベル)。
2:擦り面に明確な摺動傷が付く(瞬時に摺動傷が判別できるレベル)。
1:擦り面の皮膜が脱落し、下地の金属板が露出する。
〔耐汚染性〕
前記試験片に指を押し付けることで指紋を付着させ、1時間常温で静置した後に脱脂綿で指紋を拭き取り、指紋の跡残りを下記の評価基準で評価した。
5:指紋跡が全くない。
4:指紋痕が極僅かに残る(目を凝らして何とか指紋跡が判別できるレベル)。
3:指紋痕が僅かに残る(目を凝らすと容易に指紋跡が判別できるレベル)。
2:指紋痕が残る(瞬時に指紋跡が判別できるが、指紋跡がない部位と色調は明確に変化がない)。
1:指紋痕がはっきり残る(瞬時に指紋跡が判別できて、指紋跡がない部位と色調も明確に変化がある)。
表19〜25に示すように、本発明の実施例は、いずれの評価試験においても評点3点以上の優れた加工部耐食性、加熱後耐食性、耐傷付き性、及び耐汚染性を示した。一方、溶融めっき層の内容が本発明の範囲を外れた比較例1〜10は加工部耐食性、加熱後耐食性が劣っていた。皮膜を被覆していない比較例11は加工部耐食性、加熱後耐食性、耐傷付き性、及び耐汚染性が劣っていた。
以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想定し得ることは明らかであり、それらについても当然に発明の技術的範囲に属するものと了解される。