[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5634003B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP5634003B2
JP5634003B2 JP2007256972A JP2007256972A JP5634003B2 JP 5634003 B2 JP5634003 B2 JP 5634003B2 JP 2007256972 A JP2007256972 A JP 2007256972A JP 2007256972 A JP2007256972 A JP 2007256972A JP 5634003 B2 JP5634003 B2 JP 5634003B2
Authority
JP
Japan
Prior art keywords
light
light emitting
layer
wavelength
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007256972A
Other languages
Japanese (ja)
Other versions
JP2009088299A (en
Inventor
佐野 雅彦
雅彦 佐野
久嗣 笠井
久嗣 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2007256972A priority Critical patent/JP5634003B2/en
Publication of JP2009088299A publication Critical patent/JP2009088299A/en
Application granted granted Critical
Publication of JP5634003B2 publication Critical patent/JP5634003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、反射構造を有する発光素子備える発光装置に関する。 The present invention relates to a light emitting device having a light emitting element having a reflective structure.

発光素子より放出される光源光と、これに励起されて光源光と異なる色相の光を放出できる波長変換部材とを組み合わせることで、光の混色の原理により、多様な色彩の光を出射可能な発光装置が開発されている。特に近年では、より低消費電力で長寿命の次世代照明として注目を集めており、更なる発光出力の向上及び耐候性に優れた質の高い発光装置が求められている。   By combining the light source light emitted from the light emitting element and the wavelength conversion member that can be excited by this and emit light of a different hue from the light source light, light of various colors can be emitted based on the principle of light color mixing Light emitting devices have been developed. In particular, in recent years, it has attracted attention as a next-generation illumination with lower power consumption and longer life, and there is a demand for a high-quality light-emitting device with further improved light-emitting output and excellent weather resistance.

上記の発光装置において、出力に関する改善方法の一例として、光源からの一次光や、波長変換後の二次光が、発光装置を構成する部材に進向した際に、光の一部が吸収されて光損失を招くのを抑止する策が講じられている。一案として、発光素子の電極の表面に、高反射率を示すAg層を被覆する発光装置が開発されている(特許文献1)。例えば、図13に示す発光素子100は、配線基板等に実装された際に、電極形成面側(図13における下側)と対向する基板101側(上側)を主発光面とするフェイスダウン型の素子であり、これを示すために上下逆に図示されている。すなわち、発光素子100は、基板101上に、n型半導体層102、活性層103、p型半導体層104を順に積層してなり、n型半導体層102の露出領域にはn側電極106を、またp型半導体層104上にはp側電極105をそれぞれ備える。さらに、p型電極105は、高反射率を示すAg層からなる第1の金属層105aと、この表面を被覆する第2の金属層105bから構成される。   In the above light emitting device, as an example of an improvement method related to output, when primary light from a light source or secondary light after wavelength conversion proceeds to a member constituting the light emitting device, a part of the light is absorbed. Measures are taken to prevent the loss of light. As one proposal, a light-emitting device has been developed in which the surface of an electrode of a light-emitting element is coated with an Ag layer having a high reflectance (Patent Document 1). For example, when the light emitting element 100 shown in FIG. 13 is mounted on a wiring board or the like, a face-down type whose main light emitting surface is the substrate 101 side (upper side) opposite to the electrode formation surface side (lower side in FIG. 13). These elements are shown upside down to show this. That is, the light emitting element 100 is formed by sequentially stacking an n-type semiconductor layer 102, an active layer 103, and a p-type semiconductor layer 104 on a substrate 101, and an n-side electrode 106 is formed in an exposed region of the n-type semiconductor layer 102. A p-side electrode 105 is provided on the p-type semiconductor layer 104. Further, the p-type electrode 105 is composed of a first metal layer 105a made of an Ag layer exhibiting a high reflectivity and a second metal layer 105b covering the surface.

この構造であれば、発光装置内の光源からの一次光、二次光が電極105側へと進向する際、高反射率を示すAg層によって光を反射させ、主発光面である基板100側へと導光できるため、金属電極への光吸収を抑制し、光取り出し効率を向上させることができる。   With this structure, when the primary light and the secondary light from the light source in the light emitting device advance toward the electrode 105 side, the light is reflected by the Ag layer exhibiting high reflectivity, and the substrate 100 which is the main light emitting surface. Since light can be guided to the side, light absorption to the metal electrode can be suppressed and light extraction efficiency can be improved.

しかしながらAgは高温度、高湿度下、電界下における腐食やイオンマイグレーションを起こしやすい虞がある。マイグレーションが起これば、電極層が乱れ、発光強度の低下や短絡による寿命の短縮という問題が生じる。したがって、これを抑制するために、例えば図13の発光素子100では、Ag層である第1反射層を、V、Ti等のAg以外の金属元素からなる第2の金属層105bでもって被覆している。その他、Agを含む合金層でもって電極を構成するなど、何らかのマイグレーション対策を図る必要があり、このため製造工数や部品数が増加しコスト高につながるという問題があった。   However, Ag tends to cause corrosion and ion migration under high temperature, high humidity, and electric field. If migration occurs, the electrode layer is disturbed, and there arises a problem that the emission intensity is reduced and the life is shortened due to a short circuit. Therefore, in order to suppress this, for example, in the light emitting device 100 of FIG. 13, the first reflective layer, which is an Ag layer, is covered with the second metal layer 105b made of a metal element other than Ag such as V or Ti. ing. In addition, it is necessary to take some measures against migration, such as forming an electrode with an alloy layer containing Ag. For this reason, there is a problem that the number of manufacturing steps and the number of parts increase, leading to high costs.

さらには、Ag等の金属製の反射膜に代用できる、非金属製の反射膜を用いた反射構造が提案されている(特許文献2)。すなわち、発光素子の半導体層表面に、透光性電極を介して、開口部・分離部を有した透光性絶縁性膜と、その開口部・分離部を通じて、透光性電極に導通するパッド電極を設け、さらに、その透光性絶縁膜に誘電体多層膜反射膜を設ける。これにより外部量子効率が向上し、光源からの出射光の光取り出し効率が改善される。   Furthermore, a reflective structure using a non-metallic reflective film that can be substituted for a metallic reflective film such as Ag has been proposed (Patent Document 2). That is, a light-transmitting insulating film having an opening / separation part through a light-transmitting electrode on the surface of the semiconductor layer of the light-emitting element, and a pad that conducts to the light-transmitting electrode through the opening / separation part An electrode is provided, and a dielectric multilayer reflection film is provided on the light-transmitting insulating film. Thereby, the external quantum efficiency is improved, and the light extraction efficiency of the emitted light from the light source is improved.

一方で、反射層に、反射対応領域を広域化した誘電体多層膜を備えることで、発光素子からの出射光が、角度をもって反射膜へと入射した際も反射でき、すなわち、垂直方向のみならず斜め入射の光をも好適に反射する機能を付与した反射構造が提案されている(特許文献3)。
特開平11−220171号公報 特開2005−197289号公報 特開平7−226535号公報
On the other hand, by providing the reflective layer with a dielectric multilayer film with a wide reflection-corresponding region, the light emitted from the light emitting element can be reflected even when it is incident on the reflective film at an angle, that is, only in the vertical direction. In addition, there has been proposed a reflection structure having a function of suitably reflecting even obliquely incident light (Patent Document 3).
JP-A-11-220171 JP 2005-197289 A JP-A-7-226535

しかしながら、上記の反射構造を有する発光素子を発光装置の光源として採用した場合、素子からの出射光単独での出力は向上するものの、この出力を高めた素子を、波長変換部材を有する発光装置の励起光源として適用したところ、予期したほどの混合色光における出力を得られなかった。   However, when the light-emitting element having the above-described reflection structure is employed as the light source of the light-emitting device, the output of the light emitted from the element alone is improved, but the element with the increased output is used for the light-emitting device having the wavelength conversion member. When applied as an excitation light source, the output of mixed color light as expected was not obtained.

本発明は、従来のこのような問題点を解消するためになされたものである。本発明の目的は、高出力で所望の色彩を有する発光波長を放出可能な、耐候性に優れた発光を実現できる発光素子備える発光装置を提供することにある。 The present invention has been made to solve the conventional problems. An object of the present invention is to provide a light emitting device having capable of emitting an emission wavelength having a desired color with high output, the light-emitting element can realize luminescence with excellent weather resistance.

上記の目的を達成するために、本発明の第1の発光装置は、発光層を有する半導体構造と、半導体構造の一方の主面側に設けられた光取り出し面と、半導体構造の他方の主面側に備えられ、半導体構造に電気的に接続される電極とを有する発光素子と、前記発光素子の周囲を被覆するように配置された、該発光素子からの出射光の波長を変換可能な波長変換部材と、を有する発光装置であって、前記半導体構造と前記電極との間に反射構造が形成されており、前記反射構造は、前記発光層からの光の波長に対応する中心波長を反射する第1反射層と、該第1反射層と前記電極との間に積層される、前記波長変換部材により波長変換された光の波長に対応する、前記第一反射層の中心波長よりも長い中心波長を反射する第2反射層とから構成され、前記第1反射層と第2反射層の少なくとも一方の中心波長が、可視光域であり、前記第1反射層及び第2反射層の中心波長は、互いに色相が異なり、補色の関係にあり、前記反射構造は、2種以上からなる材料膜を積層させた誘電体多層膜であることを特徴とする。
In order to achieve the above object, a first light emitting device of the present invention includes a semiconductor structure having a light emitting layer, a light extraction surface provided on one main surface side of the semiconductor structure, and the other main structure of the semiconductor structure. provided on the surface side, convertible an electrode electrically connected to the semiconductor structure, a light emitting device having a, the periphery of the light emitting element is arranged so as to cover the wavelength of the light emitted from the light emitting element A wavelength conversion member, wherein a reflection structure is formed between the semiconductor structure and the electrode, and the reflection structure has a center wavelength corresponding to the wavelength of light from the light emitting layer. From the center wavelength of the first reflection layer corresponding to the wavelength of the light that is wavelength-converted by the wavelength conversion member , which is laminated between the first reflection layer and the electrode, configure even longer central wavelength and a second reflection layer that reflects The central wavelength of at least one of the first reflective layer and the second reflective layer is in the visible light range, and the central wavelengths of the first reflective layer and the second reflective layer have different hues and have a complementary color relationship. Ah is, the reflecting structure, characterized by a dielectric multilayer film der Rukoto as a laminate of a material layer composed of two or more.

また、本発明の第2の発光装置は、第1反射層4aの中心波長が発光層からの光の波長より短波長であり、第2反射層4bの中心波長が発光層からの光の波長より長波長であることを特徴とする。 In the second light emitting device of the present invention, the center wavelength of the first reflective layer 4a is shorter than the wavelength of light from the light emitting layer, and the center wavelength of the second reflective layer 4b is the wavelength of light from the light emitting layer. It has a longer wavelength.

また、本発明の第の発光装置は、第1反射層4aの反射光の中心波長が、発光層8からの光の波長に対して0.8倍以上1.0倍未満であり、第2反射層4bの反射光の中心波長が、発光層8からの光の波長に対して、1.15倍以上1.40倍以下であることを特徴とする。 In the third light emitting device of the present invention, the center wavelength of the reflected light of the first reflective layer 4a is 0.8 times or more and less than 1.0 times the wavelength of the light from the light emitting layer 8, The center wavelength of the reflected light of the two reflecting layer 4b is 1.15 times or more and 1.40 times or less with respect to the wavelength of the light from the light emitting layer 8.

また、本発明の第の発光装置は、発光層8が発する光の波長が360nm乃至650nmにあることを特徴とする。 The fourth light emitting device of the present invention is characterized in that the wavelength of the light emitted from the light emitting layer 8 is 360 nm to 650 nm.

また、本発明の第の発光装置は、反射構造4は、さらに第3反射層を有しており、第3反射層の反射光の中心波長が、第1反射層4a及び第2反射層4bの中心波長との間の波長域内にあることを特徴とする。 In the fifth light emitting device of the present invention, the reflection structure 4 further includes a third reflection layer, and the center wavelengths of the reflected light of the third reflection layer are the first reflection layer 4a and the second reflection layer. It is characterized by being in a wavelength region between the central wavelength of 4b.

また、本発明の第の発光装置は、反射構造4は、2種以上からなる材料膜を積層させた誘電体多層膜であることを特徴とする。 In the sixth light emitting device of the present invention, the reflecting structure 4 is a dielectric multilayer film in which two or more kinds of material films are laminated.

また、本発明の第の発光装置は、複数の反射構造4を所定の間隔を経て水平方向に配列した反射構造群34が、複数段にわたって略平行に離間されて積層されており、各段の反射構造群34は、下段に位置される反射構造4の水平方向における離間領域の開口の少なくとも一部を覆うように、上段の反射構造4が形成されてなることを特徴とする。 In the seventh light emitting device of the present invention, a plurality of reflecting structures 34 in which a plurality of reflecting structures 4 are arranged in a horizontal direction with a predetermined interval are stacked in a plurality of stages so as to be separated from each other in parallel. The reflective structure group 34 is characterized in that the upper reflective structure 4 is formed so as to cover at least a part of the opening in the separation region in the horizontal direction of the reflective structure 4 positioned in the lower stage.

また、本発明の第7の発光装置は、反射構造が、半導体構造上の少なくとも側面に絶縁性膜を介して形成されていることを特徴とする。 In the seventh light-emitting device of the present invention, the reflective structure is formed on at least a side surface of the semiconductor structure with an insulating film interposed therebetween.

また、本発明の第の発光装置は、半導体構造11の主面に透光性導電層13が被覆され、さらに、透光性導電層13上の少なくとも一部には反射構造4が形成されており、電極3は、反射構造4及び透光性導電層13とに接する金属電極層23を備えることを特徴とする。 In the ninth light emitting device of the present invention, the main surface of the semiconductor structure 11 is covered with the translucent conductive layer 13, and the reflective structure 4 is formed on at least a part of the translucent conductive layer 13. The electrode 3 includes a metal electrode layer 23 in contact with the reflective structure 4 and the translucent conductive layer 13.

また、本発明の第10の発光装置は、波長変換部材12が、発光素子10の光取り出し面18に接して、または近接して配置されていることを特徴とする。 The tenth light emitting device of the present invention is characterized in that the wavelength conversion member 12 is disposed in contact with or close to the light extraction surface 18 of the light emitting element 10.

また、本発明の第11の発光装置は、発光素子は、360nm乃至800nmに発光ピーク波長を有するLEDであり、波長変換部材12は、LAG、BAM、BAM:Mn、YAG、CCA、SCA、SCESN、SESN、CESN、CASBN及びCaAlSiN3:Euよりなる群から選択される蛍光体の少なくとも1種を含むことを特徴とする。 In the eleventh light-emitting device of the present invention, the light-emitting element is an LED having a light emission peak wavelength at 360 to 800 nm, and the wavelength conversion member 12 is LAG, BAM, BAM: Mn, YAG, CCA, SCA, SCESN. , SESN, CESN, CASBN, and CaAlSiN 3 : containing at least one phosphor selected from the group consisting of Eu.

本発明の発光装置によれば、光取り出し面と対向する面側に形成された電極へと進行した光を、反射構造でもって光取り出し面側へと反射できる。これにより電極での吸収による光損失を低減し、外部量子効率を高めることができる。 According to the light emitting device of the present invention, the light that has traveled to the electrode formed on the surface facing the light extraction surface can be reflected toward the light extraction surface by the reflection structure. As a result, light loss due to absorption at the electrode can be reduced, and external quantum efficiency can be increased.

また、本発明の発光装置であれば、特に、発光素子からの出射光の波長を変換可能な波長変換部材を有する発光装置の出力光を改善できる。なぜなら、活性層からの出力光のみならず、二次光、すなわち波長変換部材でもって波長変換された光をも高効率に反射できるため、混合色を構成する成分光の出力を増加でき、ひいては装置全体としての出射光の出力を向上できるからである。また、各々の成分光は、素子内の同一の反射構造でもって反射されるため、一次光及び二次光の集光性、指向性に優れた発光装置とできる。さらに、波長選択性を有する反射構造を使用することにより、反射される一次光及び二次光の色相の差を修正できるため、発光装置間における、混合色の色ムラを低減できる。 Moreover, if it is the light-emitting device of this invention, especially the output light of the light-emitting device which has the wavelength conversion member which can convert the wavelength of the emitted light from a light emitting element can be improved. Because not only the output light from the active layer but also the secondary light, that is, the light whose wavelength is converted by the wavelength conversion member, can be reflected with high efficiency, the output of the component light constituting the mixed color can be increased, and consequently This is because the output of the emitted light as the entire apparatus can be improved. In addition, since each component light is reflected by the same reflection structure in the element, a light emitting device excellent in the condensing property and directivity of the primary light and the secondary light can be obtained. Furthermore, since the difference in hue between the reflected primary light and secondary light can be corrected by using a reflective structure having wavelength selectivity, color unevenness of the mixed colors between the light emitting devices can be reduced.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための、光装置を例示するものであって、本発明は光装置を以下のものに特定しない。さらに、本明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」、及び「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。特に実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。 Embodiments of the present invention will be described below with reference to the drawings. However, embodiments described below, to give a concrete form to technical ideas of the present invention, intended to illustrate the light emission device, the present invention does not specify the light emission device in the following. Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the embodiments are indicated in the “claims” and “means for solving problems” sections. It is appended to the members shown. However, the members shown in the claims are not limited to the members in the embodiments. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the examples are not intended to limit the scope of the present invention only unless otherwise specified, but are merely illustrative examples. Only.

なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、本明細書において、層上などでいう「上」とは、必ずしも上面に接触して形成される場合に限られず、離間して上方に形成される場合も含んでおり、層と層の間に介在層が存在する場合も包含する意味で使用する。   Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. Further, in this specification, the term “upper” as used on a layer or the like is not necessarily limited to the case where the upper surface is formed in contact with the upper surface, but includes the case where the upper surface is separated from the upper surface. It is used to include the case where there is an intervening layer between them.

(実施の形態1)
本発明の実施の形態1に係る発光装置1を図1の断面図に示す。この図の発光装置1に搭載される発光素子10は、窒化物半導体素子の一例であるLEDチップを採用しており、このLEDチップを配線基板9の一であるサブマウント上にフリップチップ実装している。フリップチップ実装とは、電極形成面と対向する成長基板5側を主光取出し面とする実装方式であり、フェイスダウン実装とも呼ばれる。図1の発光素子10は、フリップチップ実装であることを示すため、上下逆に表示している。
(Embodiment 1)
A light-emitting device 1 according to Embodiment 1 of the present invention is shown in a sectional view of FIG. The light emitting element 10 mounted on the light emitting device 1 in this figure employs an LED chip that is an example of a nitride semiconductor element, and this LED chip is flip-chip mounted on a submount that is one of the wiring boards 9. ing. Flip chip mounting is a mounting method in which the growth substrate 5 side facing the electrode forming surface is the main light extraction surface, and is also referred to as face-down mounting. The light-emitting element 10 in FIG. 1 is displayed upside down to indicate that it is flip-chip mounting.

また、図1の発光装置1において、フリップチップ実装された発光素子10の近傍には、波長変換部材12が配置されており、この波長変換部材12でもって、活性層8より放出される光の波長を変換する。これにより、活性層8からの出射光と、波長変換部材でもって波長変換された光との加色混合により、所望の光を発光可能な発光装置とできる。   Further, in the light emitting device 1 of FIG. 1, a wavelength conversion member 12 is disposed in the vicinity of the light emitting element 10 that is flip-chip mounted. With the wavelength conversion member 12, the light emitted from the active layer 8 is emitted. Convert wavelength. Thereby, it is possible to obtain a light emitting device capable of emitting desired light by additive color mixing of the light emitted from the active layer 8 and the light wavelength-converted by the wavelength conversion member.

また、発光素子10は、発光層8を有する半導体構造11を備える。図1の発光素子10では、対向する一対の主面を有する成長基板5の一方の主面上に、半導体構造11としての窒化物半導体層を積層して形成されている。具体的に、図1の発光素子10では、成長基板5の下面側に、第1の窒化物半導体層6、活性層8、第2の窒化物半導体層7とを順に備える窒化物半導体層11が積層されている。また、第1の窒化物半導体層6及び第2の窒化物半導体層7には、電気的に接続される第1の電極3A及び第2の電極3Bを各々備える。発光素子10は、第1の電極3A及び第2の電極3Bを介して、外部より電力が供給されると、活性層8から光を放出し、図1における成長基板5の上面側から、主に光が取り出される。すなわち図1の発光素子10では、成長基板5において、電極3A、3Bの装着面側(図1の下側)と対向する他方の主面側(図1の上側)を主な光取り出し面18とする。   The light emitting element 10 includes a semiconductor structure 11 having a light emitting layer 8. In the light emitting device 10 of FIG. 1, a nitride semiconductor layer as the semiconductor structure 11 is laminated on one main surface of a growth substrate 5 having a pair of opposing main surfaces. Specifically, in the light emitting device 10 of FIG. 1, a nitride semiconductor layer 11 including a first nitride semiconductor layer 6, an active layer 8, and a second nitride semiconductor layer 7 in this order on the lower surface side of the growth substrate 5. Are stacked. The first nitride semiconductor layer 6 and the second nitride semiconductor layer 7 are each provided with a first electrode 3A and a second electrode 3B that are electrically connected. When power is supplied from the outside through the first electrode 3A and the second electrode 3B, the light emitting element 10 emits light from the active layer 8, and from the upper surface side of the growth substrate 5 in FIG. The light is extracted. That is, in the light emitting element 10 of FIG. 1, the other main surface side (upper side in FIG. 1) opposite to the mounting surface side (lower side in FIG. 1) of the electrodes 3A and 3B on the growth substrate 5 is the main light extraction surface 18. And

さらに、第1の電極3A、第2の電極3Bからなる一組の電極3は、反射構造4をそれぞれ有する。反射構造4としては、例えば多層構造からなる誘電体多層膜4が挙げられる。図1の例における誘電体多層膜4は、屈折率の異なる2種以上の材料膜を交互に積層させた多層構造であり、半導体構造11と電極3との間の少なくとも一部に設けられて、所望の波長光を選択的に反射できる。また、図2は、図1の発光装置における第2の電極3B近傍の拡大図である。誘電体多層膜4の詳細な構造については後述するが、図2の例では、第1反射層4a及び第2反射層4bから構成される誘電体多層膜4が、互いに離間されて水平に形成されている。また、第1反射層4aは、発光層8からの光を中心波長とする反射域を有しており、一方、第2反射層4bは、発光層8からの光の中心波長とは異なる波長を中心波長とする反射域を有する。さらに、第1反射層4aと第2反射層4bの少なくとも一方の中心波長は可視光域にある。また、誘電体多層膜4は、第1反射層4a及び第2反射層4bに加えて、これらの反射層の中心波長とは異なる反射特性を備えた第3反射層を有してもよい。第3反射層の中心波長は、第1反射層4a及び第2反射層4bの中心波長との間の波長域内にあることが好ましい。これにより、誘電体多層膜4の干渉作用による透過率の谷の発生を抑制でき、所定の波長範囲において、連続的に高効率な反射効果を実現できるからである。また、誘電体多層膜4における反射層の積層順は特に限定されない。以下に発光装置1の各部材の詳細な説明を記す。   Further, each set of electrodes 3 including the first electrode 3A and the second electrode 3B has a reflective structure 4. Examples of the reflective structure 4 include a dielectric multilayer film 4 having a multilayer structure. The dielectric multilayer film 4 in the example of FIG. 1 has a multilayer structure in which two or more kinds of material films having different refractive indexes are alternately stacked, and is provided at least at a part between the semiconductor structure 11 and the electrode 3. The light having a desired wavelength can be selectively reflected. FIG. 2 is an enlarged view of the vicinity of the second electrode 3B in the light emitting device of FIG. Although the detailed structure of the dielectric multilayer film 4 will be described later, in the example of FIG. 2, the dielectric multilayer film 4 composed of the first reflective layer 4a and the second reflective layer 4b is formed horizontally and spaced apart from each other. Has been. The first reflective layer 4a has a reflection region having the light from the light emitting layer 8 as a central wavelength, while the second reflective layer 4b has a wavelength different from the central wavelength of the light from the light emitting layer 8. Has a reflection region with a center wavelength. Furthermore, the central wavelength of at least one of the first reflective layer 4a and the second reflective layer 4b is in the visible light range. In addition to the first reflective layer 4a and the second reflective layer 4b, the dielectric multilayer film 4 may include a third reflective layer having a reflective characteristic different from the center wavelength of these reflective layers. The central wavelength of the third reflective layer is preferably in a wavelength range between the central wavelengths of the first reflective layer 4a and the second reflective layer 4b. This is because the generation of a trough in the transmittance due to the interference action of the dielectric multilayer film 4 can be suppressed, and a highly efficient reflection effect can be realized continuously in a predetermined wavelength range. Further, the order of stacking the reflective layers in the dielectric multilayer film 4 is not particularly limited. Below, detailed description of each member of the light-emitting device 1 is described.

(発光素子)
図3は、図1の発光素子10であって、フリップチップ実装する前の状態、すなわち成長基板5を最下層にして、その上方に半導体構造11を積層した状態を示す概略断面図である。実際の発光装置の製造工程では、成長基板5の上面に各層が積層された窒化物半導体素子を上下逆にして図1のように実装する。また、図4は発光素子10の平面図であって、反射構造が形成される製造工程を説明する説明図、図5、図6は一製造工程における発光素子の平面図をそれぞれ示す。なお、同様の構成要素については同符号を付して、その詳細な説明を省略している。以下に半導体素子の製造方法を、図1〜図6を使用して説明する。
(Light emitting element)
FIG. 3 is a schematic cross-sectional view showing the light emitting device 10 of FIG. 1 before flip-chip mounting, that is, the state in which the growth substrate 5 is the bottom layer and the semiconductor structure 11 is stacked thereon. In the actual manufacturing process of the light emitting device, the nitride semiconductor element having each layer laminated on the upper surface of the growth substrate 5 is mounted upside down as shown in FIG. 4 is a plan view of the light-emitting element 10 and is an explanatory diagram for explaining a manufacturing process in which a reflective structure is formed. FIGS. 5 and 6 are plan views of the light-emitting element in one manufacturing process. In addition, the same code | symbol is attached | subjected about the same component and the detailed description is abbreviate | omitted. Below, the manufacturing method of a semiconductor element is demonstrated using FIGS.

発光素子10として、例えば図3に示すLEDのような窒化物半導体素子では、成長基板5であるサファイヤ基板の上に、第1の窒化物半導体層6であるn型半導体層、活性層8である発光層、第2の窒化物半導体層7であるp型半導体層を順にエピタキシャル成長させた窒化物半導体層11と、さらに窒化物半導体層11の上に形成された透光性導電層13とを有する。結晶成長方法としては、例えば、有機金属気相成長法(MOCVD:metal-organic chemical vapor deposition)、ハイドライド気相成長法(HVPE)、ハイドライドCVD法、MBE(molecularbeam epitaxy)などの方法が利用できる。   In the nitride semiconductor element such as the LED shown in FIG. 3 as the light emitting element 10, the n-type semiconductor layer as the first nitride semiconductor layer 6 and the active layer 8 are formed on the sapphire substrate as the growth substrate 5. A nitride semiconductor layer 11 obtained by epitaxially growing a certain light emitting layer and a p-type semiconductor layer as the second nitride semiconductor layer 7 in this order, and a translucent conductive layer 13 formed on the nitride semiconductor layer 11 Have. Examples of the crystal growth method that can be used include metal-organic chemical vapor deposition (MOCVD), hydride vapor deposition (HVPE), hydride CVD, and MBE (molecular beam epitaxy).

続いて、発光層8およびp型半導体層7の一部を選択的にエッチング除去して、n型半導体層6の一部を露出させ、さらに、第1の電極3Aであるn型パッド電極を形成している。またn型電極3Aと同一面側であって、透光性導電層13上には、第2の電極3Bであるp型パッド電極が形成される。さらに、n型パッド電極3A及びp型パッド電極3Bの所定の表面のみを露出し、他の部分は絶縁性の保護膜で被覆できる。なお、n型パッド電極は、n型半導体層6の露出領域に、透光性導電層13を介して形成してもよい。以下に半導体発光素子1の各構成要素に関して、具体的に説明する。   Subsequently, the light emitting layer 8 and a part of the p-type semiconductor layer 7 are selectively removed by etching to expose a part of the n-type semiconductor layer 6, and an n-type pad electrode which is the first electrode 3A is further removed. Forming. A p-type pad electrode, which is the second electrode 3B, is formed on the same surface side as the n-type electrode 3A and on the translucent conductive layer 13. Further, only predetermined surfaces of the n-type pad electrode 3A and the p-type pad electrode 3B are exposed, and other portions can be covered with an insulating protective film. Note that the n-type pad electrode may be formed in the exposed region of the n-type semiconductor layer 6 with the translucent conductive layer 13 interposed therebetween. Hereinafter, each component of the semiconductor light emitting device 1 will be specifically described.

(成長基板)
成長基板5は、半導体層11をエピタキシャル成長させることができる基板で、基板の大きさや厚さ等は特に限定されない。窒化物半導体における基板としては、C面、R面、及びA面のいずれかを主面とするサファイアやスピネル(MgAl24)のような絶縁性基板、また炭化珪素(6H、4H、3C)、シリコン、ZnS、ZnO、Si、GaAs、ダイヤモンド、及び窒化物半導体と格子接合するニオブ酸リチウム、ガリウム酸ネオジウム等の酸化物基板、GaNやAlN等の窒化物半導体基板があり、そのオフアングルした基板(例えば、サファイアC面で0.01°〜3.0°)も用いることができる。また、成長基板5を半導体層11形成後に除去した基板の無い半導体素子構造、その取り出した半導体層を支持基板、例えば導電性基板に接着、フリップチップ実装した構造等とすること、また別の透光性部材・透光性基板を半導体層に接着した構造とするもできる。具体的には、半導体層の光取り出し側の主面に成長基板、接着した部材・基板を有する場合は透光性とし、不透光性、遮光性、光吸収性の成長基板の場合は除去し、そのような基板に半導体層を接着する場合は、半導体層主面の光反射側に設ける構造とする。光取り出し側の透光性基板・部材から半導体層に電荷を供給する場合は、導電性のものを用いると良い。その他、ガラス、樹脂などの透光性部材により半導体層が接着・被覆されて、支持された構造の素子でも良い。成長用基板の除去は、例えば装置又はサブマウントのチップ載置部に保持して、研磨、LLO(Laser Lift Off)で実施できる。また、透光性の異種基板であっても、基板除去することで、光取り出し効率、出力を向上させることができ、好ましい。
(Growth substrate)
The growth substrate 5 is a substrate on which the semiconductor layer 11 can be epitaxially grown, and the size and thickness of the substrate are not particularly limited. As a substrate in a nitride semiconductor, an insulating substrate such as sapphire or spinel (MgAl 2 O 4 ) whose main surface is any of C-plane, R-plane, and A-plane, and silicon carbide (6H, 4H, 3C). ), Silicon, ZnS, ZnO, Si, GaAs, diamond, and nitride semiconductor substrates such as lithium niobate and neodymium gallium oxide, and nitride semiconductor substrates such as GaN and AlN. A substrate (for example, 0.01 ° to 3.0 ° on the sapphire C surface) can also be used. Further, the semiconductor substrate structure without the substrate removed after the growth substrate 5 is formed after the semiconductor layer 11 is formed, the semiconductor layer taken out thereof is bonded to a supporting substrate, for example, a conductive substrate, a flip chip mounted structure, or the like. A structure in which a light-sensitive member / translucent substrate is bonded to a semiconductor layer can also be used. Specifically, if there is a growth substrate on the main surface on the light extraction side of the semiconductor layer, or a bonded member / substrate, it is made translucent, and if it is an opaque substrate, light-shielding, light-absorbing growth substrate, it is removed. When a semiconductor layer is bonded to such a substrate, the structure is provided on the light reflecting side of the main surface of the semiconductor layer. In the case where charges are supplied to the semiconductor layer from the light transmitting substrate / member on the light extraction side, it is preferable to use a conductive one. In addition, an element having a structure in which a semiconductor layer is bonded and covered with a light-transmitting member such as glass or resin may be used. The removal of the growth substrate can be carried out by polishing or LLO (Laser Lift Off) while being held on the chip mounting portion of the apparatus or submount, for example. Moreover, even if it is a translucent dissimilar board | substrate, light extraction efficiency and an output can be improved by removing a board | substrate, and it is preferable.

(半導体層)
半導体層11としては、実施例及び以下で説明する窒化物半導体が、可視光域の短波長域、近紫外域、若しくはそれより短波長域である点、その点と光変換部材(蛍光体)とを組み合わせた発光装置において好適に用いられる。また、それに限定されずに、InGaAs系、GaP系などの半導体でも良い。
(Semiconductor layer)
As the semiconductor layer 11, the nitride semiconductor described in Examples and below is a short wavelength region in the visible light region, a near ultraviolet region, or a shorter wavelength region, the point and a light conversion member (phosphor). Are suitably used in a light emitting device in combination. In addition, the semiconductor is not limited thereto, and may be an InGaAs-based or GaP-based semiconductor.

(発光素子構造)
半導体層による発光素子構造は、後述する第1導電型(n型)、第2導電型(p型)層との間に活性層を有する構造が出力、効率上好ましいが、それに限定されず後述する構造など、その他の発光構造でも良い。各導電型層に、絶縁、半絶縁性、逆導電型構造が一部に設けられても良く、またそれらが第1、2導電型層に対し付加的に設けられた構造でも良く、別の回路構造、例えば保護素子構造、を付加的に有しても良く、また上記基板が発光素子の導電型の一部を担う構造でも良い。
(Light emitting element structure)
The light emitting element structure using a semiconductor layer is preferably a structure having an active layer between a first conductivity type (n-type) and a second conductivity type (p-type) layer, which will be described later. Other light emitting structures such as a structure to be used may be used. Each conductive type layer may be provided with an insulating, semi-insulating, and reverse conductive type structure in part, or may be a structure in which they are additionally provided for the first and second conductive type layers. A circuit structure, for example, a protective element structure may be additionally provided, and the substrate may be a part of the conductivity type of the light emitting element.

半導体層に設けられる電極は、実施例及び以下で説明する一方の主面側に第1導電型(n型)、第2導電型(p型)層の電極が設けられる構造が好ましいが、それに限定されず半導体層の各主面に対向して各々電極が設けられる構造、例えば上記基板除去構造において除去側に電極を設ける構造でも良い。   The electrode provided in the semiconductor layer preferably has a structure in which electrodes of the first conductivity type (n-type) and second conductivity type (p-type) layers are provided on one main surface side described in the examples and below. There is no limitation, and a structure in which electrodes are provided to face each main surface of the semiconductor layer, for example, a structure in which electrodes are provided on the removal side in the substrate removal structure may be employed.

(窒化物半導体層)
窒化物半導体としては、一般式がInxAlyGa1-x-yN(0≦x、0≦y、x+y≦1)であって、BやP、Asを混晶してもよい。また、n型半導体層6、p型半導体層7は、単層、多層を特に限定しない。窒化物半導体層11には活性層である発光層8を有し、この活性層は単一(SQW)又は多重量子井戸構造(MQW)とする。以下に窒化物半導体層11の詳細を示す。
(Nitride semiconductor layer)
As the nitride semiconductor, the general formula In x Al y Ga 1-xy N (0 ≦ x, 0 ≦ y, x + y ≦ 1) A, B and P, may be mixed with As. Further, the n-type semiconductor layer 6 and the p-type semiconductor layer 7 are not particularly limited to a single layer or a multilayer. The nitride semiconductor layer 11 has a light emitting layer 8 as an active layer, and this active layer has a single (SQW) or multiple quantum well structure (MQW). Details of the nitride semiconductor layer 11 will be described below.

成長基板上に、バッファ層などの窒化物半導体の下地層、例えば低温成長薄膜GaNとGaN層を介して、n型窒化物半導体層、例えばSiドープGaNのn型コンタクト層とGaN/InGaNのn型多層膜層、p型窒化物半導体層、例えばMgドープのInGaN/AlGaNのp型多層膜層とMgドープGaNのp型コンタクト層を有し、さらにそのp型、n型層の間に活性層を有する構造を用いる。   An n-type nitride semiconductor layer such as a Si-doped GaN n-type contact layer and a GaN / InGaN n-type layer are formed on a growth substrate via a nitride semiconductor underlayer such as a buffer layer, for example, a low-temperature growth thin film GaN and a GaN layer. Type multilayer film layer, p-type nitride semiconductor layer, eg, Mg-doped InGaN / AlGaN p-type multilayer film layer and Mg-doped GaN p-type contact layer, and further active between the p-type and n-type layers A structure having a layer is used.

また、窒化物半導体の発光層8(活性層)は、例えば、AlaInbGa1-a-bN(0≦a≦1、0≦b≦1、a+b≦1)からなる井戸層と、AlcIndGa1-c-dN(0≦c≦1、0≦d≦1、c+d≦1)からなる障壁層とを含む量子井戸構造を有する。活性層に用いられる窒化物半導体は、ノンドープ、n型不純物ドープ、p型不純物ドープのいずれでもよいが、好ましくはノンドープ又はn型不純物ドープの窒化物半導体を用いることにより発光素子を高出力化することができる。障壁層は井戸層よりもバンドギャップエネルギーの大きな窒化物半導体が用いられる。井戸層にAlを含ませることで、GaNのバンドギャップエネルギーである波長365nmより短い波長を得ることができる。活性層から放出する光の波長は、発光素子の目的、用途等に応じて360nm〜650nm付近、好ましくは380nm〜560nmの波長とする。 The light emitting layer 8 (active layer) of nitride semiconductor includes, for example, a well layer made of Al a In b Ga 1-ab N (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, a + b ≦ 1), Al having c In d Ga 1-cd N (0 ≦ c ≦ 1,0 ≦ d ≦ 1, c + d ≦ 1) quantum well structure including a made of the barrier layer. The nitride semiconductor used for the active layer may be any of non-doped, n-type impurity doped, and p-type impurity doped. Preferably, the non-doped or n-type impurity doped nitride semiconductor is used to increase the output of the light emitting device. be able to. As the barrier layer, a nitride semiconductor having a band gap energy larger than that of the well layer is used. By including Al in the well layer, a wavelength shorter than the wavelength 365 nm which is the band gap energy of GaN can be obtained. The wavelength of light emitted from the active layer is approximately 360 to 650 nm, preferably 380 to 560 nm, depending on the purpose and application of the light-emitting element.

井戸層の組成はInGaNが、可視光・近紫外域に好適に用いられ、その時の障壁層の組成は、GaN、InGaNが良い。井戸層の膜厚は、好ましくは1nm以上30nm以下、より好ましくは2nm以上20nm以下であり、1つの井戸層の単一量子井戸、障壁層などを介した複数の井戸層の多重量子井戸構造とできる。   The composition of the well layer is preferably InGaN, and the composition of the barrier layer at that time is preferably GaN or InGaN. The film thickness of the well layer is preferably 1 nm or more and 30 nm or less, more preferably 2 nm or more and 20 nm or less, and a single quantum well of one well layer, a multiple quantum well structure of a plurality of well layers through a barrier layer, and the like it can.

また、窒化物半導体層11の積層構造としては、MIS接合、PIN接合やPN接合を有したホモ構造、ヘテロ構造あるいはダブルへテロ構成のものが挙げられる。また、各層を超格子構造としたり、活性層である発光層8を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる。   Further, examples of the laminated structure of the nitride semiconductor layer 11 include a homostructure having a MIS junction, a PIN junction, and a PN junction, a heterostructure, and a double hetero configuration. In addition, each layer may have a superlattice structure, or a single quantum well structure or a multiple quantum well structure in which the light emitting layer 8 as an active layer is formed in a thin film in which a quantum effect is generated.

次に、p型半導体層7の表面に所定の形状をなすマスクを形成し、p型半導体層7及び活性層である発光層8をエッチングする。これにより図4(a)に示すように、所定の位置のn型半導体層6を構成するn型コンタクト層6aが露出される。   Next, a mask having a predetermined shape is formed on the surface of the p-type semiconductor layer 7, and the p-type semiconductor layer 7 and the light emitting layer 8 which is an active layer are etched. As a result, as shown in FIG. 4A, the n-type contact layer 6a constituting the n-type semiconductor layer 6 at a predetermined position is exposed.

(光反射構造)
本発明の発光素子の基本的な構造について具体的には、半導体層の互いに対向する2つの主面は、一方を光取り出し側、他方を光反射側とする。この光反射側には、光反射構造が設けられ、特に活性層などの発光構造を有する領域に設けられる。
(Light reflection structure)
Specifically, with respect to the basic structure of the light emitting element of the present invention, one of two opposing main surfaces of the semiconductor layer is a light extraction side and the other is a light reflection side. On this light reflecting side, a light reflecting structure is provided, particularly in a region having a light emitting structure such as an active layer.

光反射構造は、電極構造の一部、電極構造との重畳構造、電極構造との面内分離構造、などとして設けられ、好適には発光構造に対応して発光面積を大きく、電荷注入効率を高めるように重畳構造とする。具体的には、半導体層接触側の電極である透光性導電層と、素子外部と接続する外部接続用(パッド)電極との間に、反射構造が設けられる。この電極間の反射構造は、電極間を導通するような構造になる。具体的には、以下に示す導通経路と反射領域とが面内に分離して配置された構造とすることが好ましいが、これに限らず導電性の反射構造としても良い。この面内分離の反射構造は、分離領域に導通構造を有しているため、絶縁性で構成することができる。尚、光取り出し側に電極を設ける場合は、部分電極、光透過性電極、透光性電極、それらを組み合わせた構造を用いることができる。   The light reflecting structure is provided as a part of the electrode structure, an overlapping structure with the electrode structure, an in-plane separation structure with the electrode structure, etc., and preferably has a large light emitting area corresponding to the light emitting structure and has a charge injection efficiency. A superposition structure is adopted so as to increase the height. Specifically, a reflective structure is provided between the translucent conductive layer, which is an electrode on the semiconductor layer contact side, and an external connection (pad) electrode connected to the outside of the element. The reflection structure between the electrodes is a structure that conducts between the electrodes. Specifically, it is preferable to have a structure in which a conduction path and a reflection region described below are arranged separately in a plane, but the present invention is not limited to this, and a conductive reflection structure may be used. This in-plane separation reflective structure has a conductive structure in the separation region, and thus can be configured to be insulative. In the case where an electrode is provided on the light extraction side, a partial electrode, a light transmissive electrode, a light transmissive electrode, or a structure in which these are combined can be used.

本発明の反射構造には、発光波長に反射率が依存する反射部を有し、具体的には、以下の誘電体多層膜、DBRなどを用いる。この波長依存性反射部の他に、半導体層、透光性部材(波長依存性反射部、電極)との屈折率差により反射させる透光性膜、金属反射膜を付加的に有していても良く、その場合、これら透光性の部材は半導体層側に、遮光性の金属反射膜はその外側にそれぞれ配置される。また、波長依存性膜、透光性膜の配置は、特に限定されないが、好適には半導体層側から順に透光性膜、波長依存性膜を設けると、透光性膜による屈折率差の反射機能と、波長依存成膜による波長、方向依存の反射とを機能分離して各機能を高めることでき好ましい。   The reflective structure of the present invention has a reflective portion whose reflectance depends on the emission wavelength. Specifically, the following dielectric multilayer film, DBR, or the like is used. In addition to this wavelength-dependent reflective part, it additionally has a translucent film and a metal reflective film that are reflected by the difference in refractive index with the semiconductor layer and the translucent member (wavelength-dependent reflective part, electrode). In this case, these translucent members are disposed on the semiconductor layer side, and the light-shielding metal reflective film is disposed on the outside thereof. Further, the arrangement of the wavelength-dependent film and the light-transmitting film is not particularly limited. It is preferable that each function can be enhanced by separating the reflection function and the reflection depending on the wavelength and direction depending on the wavelength-dependent film formation.

また、これら反射構造は、各々1つ設けた構造だけでなく、後述するように多重構造、例えば各膜・部材を備えた反射構造を繰り返した重畳構造、反射構造の各膜・部材を複数備えた、若しくは多重化した構造、とすることができる。具体的には、前者の反射構造の重畳化は、後述する図10のような構造であり、後者の構成膜・部材の多重化は、多種の波長依存性膜、例えば中心波長の異なる誘電体多層膜を積層するような構造、とする。尚、反射構造を構成する各膜・部材は、一体的に形成する例を以下に示すが、これに限らず、各膜・部材を互いに異なる形状、パターンとすることもできる。   These reflection structures are not only provided with a single structure, but also have multiple structures such as a superposition structure in which a reflection structure provided with each film / member is repeated, and a plurality of films / members with a reflection structure. Or a multiplexed structure. Specifically, the former reflection structure is superimposed as shown in FIG. 10 to be described later, and the latter multiplexing of constituent films and members is a variety of wavelength-dependent films such as dielectrics having different center wavelengths. A structure in which a multilayer film is stacked. In addition, although the example which forms each film | membrane and member which comprises a reflecting structure integrally is shown below, not only this but each film | membrane and member can also be made into a mutually different shape and pattern.

以上では、発光構造に対応して設けられる反射構造について述べたが、これに限らず、後述のn電極領域のような非発光領域、半導体層の側面若しくは発光構造の側面、又は素子表面の領域に、反射構造を設けること、例えば後述の保護膜に対応して重畳的に設けることができる。   In the above, the reflective structure provided corresponding to the light emitting structure has been described. However, the present invention is not limited to this, and a non-light emitting region such as an n electrode region described later, a side surface of a semiconductor layer or a side surface of a light emitting structure, or a region of an element surface In addition, a reflective structure can be provided, for example, in a superposed manner corresponding to a protective film described later.

以下、反射構造における透光性導電層(電極)、誘電体多層膜、絶縁性膜(透光性膜)、電極、並びに保護膜を順に説明する。   Hereinafter, the translucent conductive layer (electrode), dielectric multilayer film, insulating film (translucent film), electrode, and protective film in the reflective structure will be described in order.

(透光性導電層)
さらに、p型半導体層7上に、透光性導電層13を形成する。図4(b)に示すように、p型半導体層7及び露出したn型半導体層6のほぼ全面に導電層が形成されることにより、電流をp型半導体層7全体に均一に広げ、透光性を備えることで、その上に反射構造を設けることができる。
(Translucent conductive layer)
Further, a light transmissive conductive layer 13 is formed on the p-type semiconductor layer 7. As shown in FIG. 4B, a conductive layer is formed on almost the entire surface of the p-type semiconductor layer 7 and the exposed n-type semiconductor layer 6, thereby spreading the current uniformly over the entire p-type semiconductor layer 7. By providing light, a reflective structure can be provided thereon.

また、透光性導電層13の被覆領域は、n型半導体層6及びp型半導体層7の双方の半導体層のみならず、どちらか一方の半導体層のみに限定することもできる。図4(b’)の例では、透光性導電層13をn型半導体層6上に形成せず、p型半導体層7のみに被覆している。   Further, the covering region of the translucent conductive layer 13 can be limited not only to the semiconductor layers of both the n-type semiconductor layer 6 and the p-type semiconductor layer 7 but to only one of the semiconductor layers. In the example of FIG. 4B ′, the translucent conductive layer 13 is not formed on the n-type semiconductor layer 6 but only the p-type semiconductor layer 7 is covered.

透光性導電層13は、透明電極など数々の種類があるが、好ましくはZn、In、Snよりなる群から選択された少なくとも一種の元素を含む酸化物とする。具体的には、ITO、ZnO、In23、SnO2等、Zn、In、Snの酸化物を含む透光性導電層13を形成することが望ましく、好ましくはITOを使用する。あるいはNi等の金属を30Å等の薄膜の金属膜、その他の金属の酸化物、窒化物、それらの化合物、窓部の開口部を有する金属膜のような光透過構造、以上の複合物でもよい。このように、露出したp型半導体層7のほぼ全面に導電層が形成されることにより、電流をp型半導体層7全体に均一に広げることができる。 The translucent conductive layer 13 includes various types such as a transparent electrode, but is preferably an oxide containing at least one element selected from the group consisting of Zn, In, and Sn. Specifically, it is desirable to form the light-transmitting conductive layer 13 containing an oxide of Zn, In, or Sn, such as ITO, ZnO, In 2 O 3 , or SnO 2 , and preferably ITO is used. Alternatively, a metal such as Ni may be a thin metal film such as 30 mm, other metal oxides, nitrides, compounds thereof, a light transmission structure such as a metal film having a window opening, or a composite of the above. . As described above, the conductive layer is formed on almost the entire surface of the exposed p-type semiconductor layer 7, whereby the current can be spread uniformly over the entire p-type semiconductor layer 7.

また、透光性導電層13の厚さは、その層の光吸収性と電気抵抗・シート抵抗、すなわち、光の反射構造と電流広がりを考慮した厚さとし、例えば1μm以下、具体的には10nmから500nmとする。また、活性層8から放出される光の波長λに対してλ/4のおよそ整数倍とすることが光取り出し効率が上がるので好ましい。   The thickness of the translucent conductive layer 13 is a thickness that takes into consideration the light absorption and electrical resistance / sheet resistance of the layer, that is, the light reflection structure and the current spread, for example, 1 μm or less, specifically 10 nm. To 500 nm. Further, it is preferable that the wavelength is approximately an integral multiple of λ / 4 with respect to the wavelength λ of the light emitted from the active layer 8 because the light extraction efficiency is increased.

(誘電体多層膜)
具体的に、図2、図3、図4(c)に示す誘電体多層膜4は、窒化物半導体層11と電極3との界面19の少なくとも一部に形成され、好ましくは所定のパターンで半導体層、透光性導電層の略全体を覆うように形成される。また、誘電体多層膜4の面内配置の個数は特に限定されないが、複数の多層膜を形成する場合は、互いに離間されることが好ましい。特に、図3に示すように、絶縁性膜16を介して反射構造が形成される場合、透光性導電層13との界面19上の少なくとも一部を開口するよう、所定の間隔をもって離間しつつ水平に配置することが好ましい。これにより、電極より供給される電力の導通経路32(図2の矢印参照)を封鎖することなく、外部電極側から窒化物半導体層11側へと給電できる。
(Dielectric multilayer film)
Specifically, the dielectric multilayer film 4 shown in FIGS. 2, 3, and 4C is formed on at least a part of the interface 19 between the nitride semiconductor layer 11 and the electrode 3, and preferably has a predetermined pattern. It is formed so as to cover substantially the entire semiconductor layer and translucent conductive layer. Further, the number of in-plane arrangements of the dielectric multilayer film 4 is not particularly limited, but when a plurality of multilayer films are formed, they are preferably separated from each other. In particular, as shown in FIG. 3, when a reflective structure is formed through the insulating film 16, the reflective structure is spaced at a predetermined interval so as to open at least a part on the interface 19 with the translucent conductive layer 13. However, it is preferable to arrange them horizontally. Thus, power can be supplied from the external electrode side to the nitride semiconductor layer 11 side without blocking the conduction path 32 (see the arrow in FIG. 2) of the power supplied from the electrode.

実施の形態1に係る誘電体多層膜4は、屈折率の異なる2種以上からなる材料膜を交互に積層させた多層構造である。誘電体多層膜4は、所定の波長を高効率に反射できる。これは、誘電体多層膜4が、屈折率の異なる膜を1/4波長の厚みで交互に積層した多層膜である。また、誘電体多層膜4の例は、Si、Ti、Zr、Nb、Ta、Alからなる群より選択された少なくとも一種の酸化物または窒化物から選択された少なくとも2つを繰り返し積層した誘電体多層膜が好ましい。さらに好ましくは非金属元素からなる材質、あるいは酸化物の積層構造とし、例えば(SiO2/TiO2n(ただしnは自然数)の積層構造等で構成される。 The dielectric multilayer film 4 according to the first embodiment has a multilayer structure in which two or more kinds of material films having different refractive indexes are alternately stacked. The dielectric multilayer film 4 can reflect a predetermined wavelength with high efficiency. This is a multilayer film in which the dielectric multilayer film 4 is formed by alternately laminating films having different refractive indexes with a thickness of ¼ wavelength. An example of the dielectric multilayer film 4 is a dielectric in which at least two selected from at least one oxide or nitride selected from the group consisting of Si, Ti, Zr, Nb, Ta, and Al are repeatedly stacked. A multilayer film is preferred. More preferably, it is made of a material composed of a non-metallic element or a laminated structure of oxides, for example, a (SiO 2 / TiO 2 ) n (n is a natural number) laminated structure.

図3に示す誘電体多層膜4は、活性層8からの光を中心波長とする第1反射層4aと、この中心波長とは異なる波長を中心波長とする第2反射層4bとが積層された構造を備える。また、第2反射層4bは、第1反射層4aよりも、長波長な中心波長かつ広範囲な反射帯域を有することができる。具体的に、第2反射層4bは、発光層8からの光の波長に対して1.15倍〜1.40倍、好ましくは1.20倍〜1.35倍の波長域に相当する反射特性を有する。また、第1反射層4a及び第2反射層4bの少なくとも一の反射層は、その中心波長が可視光域であり、双方の反射層は互いに色相が異なることが好ましい。   The dielectric multilayer film 4 shown in FIG. 3 is formed by laminating a first reflective layer 4a having the central wavelength of light from the active layer 8 and a second reflective layer 4b having a central wavelength different from the central wavelength. With a structure. The second reflective layer 4b can have a longer center wavelength and a wider reflection band than the first reflective layer 4a. Specifically, the second reflection layer 4b is a reflection corresponding to a wavelength region of 1.15 times to 1.40 times, preferably 1.20 times to 1.35 times the wavelength of light from the light emitting layer 8. Has characteristics. In addition, it is preferable that at least one of the first reflective layer 4a and the second reflective layer 4b has a central wavelength in the visible light range, and both reflective layers have different hues.

第2反射層4bは、好ましくは中心波長が一定で一対、さらに好ましくは複数対の層で構成され、また、別の形態として好ましくはその一定の中心波長の層を複数組、例えば2組、例えば後述の実施例の第2、3反射層、若しくはそれ以上有しても良く、好適には1組か2組とする。また、上記の波長域に対応できるよう、所定の等差級数或いは等比級数を満たす連続的に変化した膜厚でもって、多層膜中の層ごとに厚み、或いは、上記の波長域内であって中心波長を徐々にずらした複数の層ペアを有して広帯域化させることができる。   The second reflective layer 4b is preferably composed of a pair of layers having a constant center wavelength, more preferably a plurality of pairs. Further, as another form, a plurality of layers having the constant center wavelength are preferably formed, for example, two sets. For example, you may have the 2nd, 3rd reflective layer of the below-mentioned Example, or more, and it is set as 1 set or 2 sets suitably. Further, in order to cope with the above wavelength range, the thickness of each layer in the multilayer film, or within the above wavelength range, with a continuously changing film thickness satisfying a predetermined difference series or geometric series. A plurality of layer pairs whose center wavelengths are gradually shifted can be used to broaden the band.

図3の例の反射構造4では、狭い波長域に相当する第1反射層4aと、広い波長域に対応する第2反射層4bを有する。これにより、エネルギー変換量の誤差により生じるストークスシフトのバラツキによって、二次光における波長のバラツキを、広帯域な第2反射層4bでもってカバーできる。すなわち、各々の反射構造を、混色光の成分光の発光特性にそれぞれ対応させることにより、成分光の出力を高められるため、結果、高出力な混合色とできる。また、反射の波長域を選択することで、演色性の向上した出射光とできる他、一方で、所望としない色相を有する二次光の出力が強調されるのを低減させるフィルターの役割も担うことができる。   The reflective structure 4 in the example of FIG. 3 includes a first reflective layer 4a corresponding to a narrow wavelength range and a second reflective layer 4b corresponding to a wide wavelength range. Thereby, the dispersion of the wavelength in the secondary light can be covered with the broadband second reflection layer 4b due to the dispersion of the Stokes shift caused by the error of the energy conversion amount. That is, the output of component light can be increased by making each reflection structure correspond to the light emission characteristics of component light of mixed color light, and as a result, a high output mixed color can be obtained. Moreover, by selecting the reflection wavelength range, it is possible to obtain outgoing light with improved color rendering, and on the other hand, it also serves as a filter that reduces the enhancement of the output of secondary light having an undesired hue. be able to.

特に可視光である青色系の励起光源に黄色系の蛍光体を組み合わせた発光装置の場合、単一の蛍光体のみで白色LEDを構成できるため、光学特性の調整が容易で、かつ高い変換効率を得られる。また、紫外光からの色変換に比べて、ストークスシフトが小さく本質的なエネルギー変換を改善できる。さらに青色LEDの透過光を利用できるため発光効率が高い。したがって、上記の色相の組み合わせによる光源光と蛍光とを有する発光装置に、該色相に応じた反射構造をそれぞれ搭載することにより、光損失を低減でき一層の高出力となる。   In particular, in the case of a light emitting device in which a yellow fluorescent material is combined with a blue excitation light source that is visible light, a white LED can be configured with only a single fluorescent material, so that optical characteristics can be easily adjusted and high conversion efficiency can be achieved. Can be obtained. In addition, compared with color conversion from ultraviolet light, the Stokes shift is small and essential energy conversion can be improved. Furthermore, since the transmitted light of the blue LED can be used, the luminous efficiency is high. Therefore, by mounting each of the light emitting devices having the light source light and the fluorescence by the combination of the hues, the reflection structure corresponding to the hue, the light loss can be reduced and the output can be further increased.

また、発光装置より放出される混色光の成分光における波長に対応した反射構造とすることで、成分光の色相を略統一できるため、発光素子または発光装置間での発光色のバラツキを低減できる。さらに、誘電体多層膜において、反射の中心波長を、光源光、および励起後の波長変換部材の発光波長に限定することで、広範囲な波長をグレーティングさせたものと比較して薄型とでき、製造工程の簡略化が実現する。加えて、光源である一次光が角度をもって誘電体多層膜へと入射した場合の、長波長側へと遷移した傾斜光をも第2反射層4bでもって反射可能であり、素子の光取り出し効率を向上できる。   In addition, since the hue of the component light can be substantially unified by adopting a reflection structure corresponding to the wavelength of the component light of the mixed color light emitted from the light emitting device, variation in the emission color between the light emitting elements or the light emitting devices can be reduced. . Furthermore, in the dielectric multilayer film, the center wavelength of reflection is limited to the light source light and the emission wavelength of the wavelength conversion member after excitation, so that it can be made thinner compared to a grating with a wide range of wavelengths. Simplification of the process is realized. In addition, when the primary light as the light source is incident on the dielectric multilayer film at an angle, the inclined light that has shifted to the long wavelength side can also be reflected by the second reflective layer 4b, and the light extraction efficiency of the device Can be improved.

(誘電体多層膜の形成パターン)
誘電体多層膜4を形成するパターンは、任意のパターンを使用できる。これらのパターンは、レジストパターンの上からRlE(reactive ion etching)やイオンミリング(ion milling)、リフトオフ等の方法により形成する。好ましい開口部形状としては、図5に示すストライプ状、図6に示すドット状、またはブロック状とする。図4(c)の例では、誘電体多層膜4の開口部35がドット状にパターニングされている。また、誘電体多層膜4は、図3に示すように、少なくとも開口部35を備えることで、透光性導電層13の露出領域を有する。このように部分的にITOが表出してパッド電極と接触するような構造とすることで、図2に示すようにこの領域が導通経路32となり、接触抵抗を実質的に低減して順方向電圧を低下させることができる。なお、誘電体多層膜4の形成パターンは上記の例に限られず、例えばドットの形状を円形、楕円形、矩形状、多角形状などとしたり、またブロック状のパターンの縦横幅を適宜変更したり、そのブロック状の形状を三角形状や円形、半円形、多角形状としたり、これらの配置を千鳥状としたり、種々の形成部・開口部の形状、配置としても良い。また全体に均一に配置する例に限られず、領域ごとに大きさや密度を適宜変更したり、上記のパターンを組み合わせたり、もできる。
(Dielectric multilayer film formation pattern)
Any pattern can be used as the pattern for forming the dielectric multilayer film 4. These patterns are formed on the resist pattern by a method such as RlE (reactive ion etching), ion milling, or lift-off. A preferable opening shape is a stripe shape shown in FIG. 5, a dot shape shown in FIG. 6, or a block shape. In the example of FIG. 4C, the opening 35 of the dielectric multilayer film 4 is patterned in a dot shape. Further, as shown in FIG. 3, the dielectric multilayer film 4 includes at least an opening 35, thereby having an exposed region of the translucent conductive layer 13. As shown in FIG. 2, this region becomes a conduction path 32 as a structure in which ITO is partially exposed and makes contact with the pad electrode, so that the contact resistance is substantially reduced and the forward voltage is reduced. Can be reduced. The formation pattern of the dielectric multilayer film 4 is not limited to the above example. For example, the dot shape may be a circle, an ellipse, a rectangle, a polygon, or the like, and the vertical and horizontal widths of the block pattern may be changed as appropriate. The block shape may be triangular, circular, semicircular, or polygonal, the arrangement may be staggered, or the shape and arrangement of various forming portions / openings may be used. Moreover, it is not restricted to the example arrange | positioned uniformly to the whole, A magnitude | size and a density can be changed suitably for every area | region, or said pattern can be combined.

尚、図4(c)の平面図において、反射構造はp型半導体層7上のみに形成されているが、図3に示すように、n型半導体層6にも設けることができる。反射構造が、第1及び第2電極3A、3Bの双方に形成されれば、両領域に進行した光を選択的に反射して、所定の波長を有する光の損失を効率的に低減できる。また、実施の形態1の発光装置では、両電極が同一面側に配置されているため、双方の電極に反射構造を形成すれば、発光素子の主面のほぼ全体に反射構造領域を備えることとなり、光取り出し効率を高めることができる。   In the plan view of FIG. 4C, the reflective structure is formed only on the p-type semiconductor layer 7, but can also be provided on the n-type semiconductor layer 6 as shown in FIG. If the reflection structure is formed on both the first and second electrodes 3A and 3B, the light that has traveled to both regions can be selectively reflected to efficiently reduce the loss of light having a predetermined wavelength. In the light emitting device of the first embodiment, since both electrodes are arranged on the same surface side, if a reflecting structure is formed on both electrodes, a reflecting structure region is provided on almost the entire main surface of the light emitting element. Thus, the light extraction efficiency can be increased.

また、図3の発光素子10において、双方の電極3に形成される誘電体多層膜4、さらに好ましくは反射構造の光学的特性は略同じとする。これにより、誘電体多層膜4が両電極で略同じであると、発光装置1の光源による色ムラを低減できる他、両方を同時形成することにより製造工程の簡略化が図れる。一方、各電極3A、3Bに装着される各々の誘電体多層膜4は、その光学的特性に差を設けても良い。例えば、電極の部位による光の入射角度や、波長変換部材との離間距離などを考慮して、反射層の膜厚を決定することができる。   In the light emitting device 10 of FIG. 3, the optical characteristics of the dielectric multilayer film 4 formed on both electrodes 3, more preferably the reflective structure, are substantially the same. Thereby, when the dielectric multilayer film 4 is substantially the same for both electrodes, color unevenness due to the light source of the light-emitting device 1 can be reduced, and the manufacturing process can be simplified by forming both simultaneously. On the other hand, the dielectric multilayer films 4 attached to the electrodes 3A and 3B may have a difference in optical characteristics. For example, the film thickness of the reflective layer can be determined in consideration of the incident angle of light by the electrode part, the distance from the wavelength conversion member, and the like.

(絶縁性膜)
また、図2の窒化物半導体素子10では、半導体構造11上に適宜形成される透光性導電層13と誘電体多層膜4との間に、透光性の絶縁性膜16を介することができ、好ましくは反射構造内に設けられる。この透光性の絶縁性膜16は、発光素子10からの光を効率よく反射させ、一部を多層膜4に透過させるように高い透光性を有する。そのため絶縁性膜16は、好ましくは酸化物とし、さらに好ましくはSi、Alよりなる群から選択された少なくとも一種の元素の酸化物とする。具体的には、SiO2、Al23等とし、好ましくはSiO2を使用する。
(Insulating film)
In the nitride semiconductor device 10 of FIG. 2, a translucent insulating film 16 is interposed between the translucent conductive layer 13 and the dielectric multilayer film 4 that are appropriately formed on the semiconductor structure 11. And preferably provided within the reflective structure. The light-transmitting insulating film 16 has a high light-transmitting property so that the light from the light-emitting element 10 is efficiently reflected and part of the light-transmitting insulating film 16 is transmitted through the multilayer film 4. Therefore, the insulating film 16 is preferably an oxide, more preferably an oxide of at least one element selected from the group consisting of Si and Al. Specifically, SiO 2 , Al 2 O 3 or the like is used, and preferably SiO 2 is used.

絶縁性膜16の厚さは特に限定するものではなく、10nm〜2μm程度の厚さで形成可能である。特に、絶縁性膜16の上面に形成される金属電極層と共に設けられる場合の絶縁性膜16の膜厚は、10nmから500nmとすることが好ましい。   The thickness of the insulating film 16 is not particularly limited, and can be formed to a thickness of about 10 nm to 2 μm. In particular, the thickness of the insulating film 16 when provided together with the metal electrode layer formed on the upper surface of the insulating film 16 is preferably 10 nm to 500 nm.

(電極)
透光性導電層13上に誘電体多層膜4を含む反射構造が形成された後、図3、図4(d)に示すように、金属電極層23が形成され、透光性導電層に電気的に接続される。金属電極層23は、p型半導体層7及びn型半導体層6側に適宜設けられた透光性導電層13、及び反射構造である誘電体多層膜4に接して、第1の電極3Aと第2の電極3B側にそれぞれ形成される。
(electrode)
After the reflective structure including the dielectric multilayer film 4 is formed on the translucent conductive layer 13, as shown in FIGS. 3 and 4D, a metal electrode layer 23 is formed, and the translucent conductive layer is formed on the translucent conductive layer. Electrically connected. The metal electrode layer 23 is in contact with the translucent conductive layer 13 appropriately provided on the p-type semiconductor layer 7 and the n-type semiconductor layer 6 side, and the dielectric multilayer film 4 having a reflective structure, and the first electrode 3A and Each is formed on the second electrode 3B side.

金属電極層は、発光素子と外部電極とを電気的に接続させ、パッド電極として機能する。例えば、金属電極層表面にAuバンプのような導電部材24を配置し、導電部材を介して、発光素子の電極と、これに対向された外部電極との電気的接続させる。また、金属電極層は透光性導電層13と一部が電気的に直接接続される。パッド電極には既存の構成が適宜採用できる。例えばAu、Pt、Pd、Rh、Ni、W、Mo、Cr、Tiのいずれかの金属またはこれらの合金やそれらの組み合わせから成る。金属電極層の一例として、下面からW/Pt/Au、Rh/Pt/Au、W/Pt/Au/Ni、Pt/AuもしくはTi/Rhの積層構造が採用できる。   The metal electrode layer electrically connects the light emitting element and the external electrode and functions as a pad electrode. For example, a conductive member 24 such as an Au bump is disposed on the surface of the metal electrode layer, and the electrode of the light emitting element is electrically connected to the external electrode opposed thereto via the conductive member. Further, the metal electrode layer is partly and directly connected to the translucent conductive layer 13. An existing configuration can be appropriately employed for the pad electrode. For example, it is made of any metal of Au, Pt, Pd, Rh, Ni, W, Mo, Cr, Ti, an alloy thereof, or a combination thereof. As an example of the metal electrode layer, a laminated structure of W / Pt / Au, Rh / Pt / Au, W / Pt / Au / Ni, Pt / Au, or Ti / Rh can be employed from the lower surface.

本実施の形態において、金属電極層は、透光性導電層13の少なくとも一部に接して形成される。また本発明に係る他の実施の形態における金属電極層の一部は、透光性導電層13に設けた貫通孔内に延在させて、あるいは透光性導電層13より外側にて、窒化物半導体層に直接接触する接触部として、設けてもよい。このように、金属電極層一部の接触部によって密着性を高めることができる。   In the present embodiment, the metal electrode layer is formed in contact with at least a part of the translucent conductive layer 13. In addition, a part of the metal electrode layer according to another embodiment of the present invention may be nitrided by extending into a through hole provided in the translucent conductive layer 13 or outside the translucent conductive layer 13. You may provide as a contact part which contacts a physical-semiconductor layer directly. Thus, adhesion can be enhanced by the contact part of the metal electrode layer.

また、p型窒化物半導体層7側およびn型窒化物半導体層6側に形成される金属電極層は、用いる金属の種類や膜厚を同じ構成とすることが好ましく、なぜなら同時に形成することで、別々に形成する場合と比較して、金属電極層の形成の工程を簡略化することができる。別々に設ける場合のn型窒化物半導体層側の電極は、例えば、n型窒化物半導体層6側から順に積層させたW/Pt/Au電極(その膜厚として、例えばそれぞれ20nm/200nm/500nm)や、さらにNiを積層させたW/Pt/Au/Ni、あるいはTi/Rh/Pt/Au電極等が利用できる。   The metal electrode layers formed on the p-type nitride semiconductor layer 7 side and the n-type nitride semiconductor layer 6 side preferably have the same type and thickness of the metal used, because they are formed simultaneously. Compared with the case of forming separately, the process of forming a metal electrode layer can be simplified. The electrode on the n-type nitride semiconductor layer side when provided separately is, for example, a W / Pt / Au electrode laminated in order from the n-type nitride semiconductor layer 6 side (the film thickness is, for example, 20 nm / 200 nm / 500 nm, respectively) In addition, a W / Pt / Au / Ni or Ti / Rh / Pt / Au electrode in which Ni is further laminated can be used.

(保護膜)
金属電極層23を形成した後、外部領域との接続領域を除いて半導体発光素子10のほぼ全面に絶縁性の保護膜14を形成できる。図4(e)の例では、n型電極3A部分及びp型電極3B部分に被覆される保護膜14に、開口部21、22がそれぞれ形成される。保護膜14にはSiO2、TiO2、Al23、ポリイミド等が利用できる。尚、実施例で示すように、絶縁性膜16と保護膜14とを同一部材で併用させてもよく、すなわち保護膜14と絶縁膜16とを同一工程、同一膜として形成することで工程簡略化でき好ましい。
(Protective film)
After the metal electrode layer 23 is formed, the insulating protective film 14 can be formed on almost the entire surface of the semiconductor light emitting device 10 except for the connection region with the external region. In the example of FIG. 4E, openings 21 and 22 are formed in the protective film 14 covering the n-type electrode 3A portion and the p-type electrode 3B portion, respectively. For the protective film 14, SiO 2 , TiO 2 , Al 2 O 3 , polyimide, or the like can be used. In addition, as shown in the embodiment, the insulating film 16 and the protective film 14 may be used together in the same member, that is, the process is simplified by forming the protective film 14 and the insulating film 16 as the same process and the same film. This is preferable.

なお、以上の例ではp電極およびn電極が同一面側に存在する発光素子をフリップチップ実装する例を説明したが、本発明を、発光素子が有する一対の電極が、発光層を上下に挟み込む、いわゆる縦型の発光素子にも採用できる。縦型の発光素子の電極では、少なくとも、発光素子を載置する配線基板側の電極に、反射層を設けることで、該反射層へと進行した光を、対向する光取り出し表面側へ反射できる。これに加えて、光取り出し表面側に形成された電極にも反射構造を形成して、電極への光吸収を抑制し、これにより外部量子効率を高めることができる。   In the above example, the example in which the light emitting element in which the p electrode and the n electrode exist on the same surface is flip-chip mounted has been described. However, the present invention is a pair of electrodes that the light emitting element sandwiches the light emitting layer up and down. It can also be used for so-called vertical light-emitting elements. In the electrode of the vertical light emitting element, at least the electrode on the wiring board side on which the light emitting element is mounted is provided with a reflective layer, so that the light traveling to the reflective layer can be reflected to the opposite light extraction surface side. . In addition, a reflection structure can be formed on the electrode formed on the light extraction surface side to suppress light absorption to the electrode, thereby increasing the external quantum efficiency.

(発光装置)
上記の方法で得られた発光素子を配線基板上にフリップチップ実装して発光装置を得る。一例として図1に示される発光装置1の製造方法を図7を用いて説明する。まず図7(a)に示すように、サブマウント基板9となるウェハ25上に、発光素子10をフリップチップ実装するパターンに従い、バンプ24を形成する。次に図7(b)に示すように、このバンプ24を介して発光素子10をフリップチップ実装する。この例では一のサブマウント基板9を形成する領域に、各々2個のLEDチップを並べて実装している。さらに図7(c)で、スクリーン印刷を行う。スクリーン印刷は、メタルマスクをウェハ25上に配置して、被覆層26を構成する樹脂を塗布し、スキージで押し広げる。そして樹脂26を硬化後、メタルマスクを外して図7(d)に示すようにダイシングを行い、サブマウント基板サイズに切り出す。切り出されたサブマウント基板9は各々、図7(e)に示すように支持体27上に共晶ダイボンディングにより共晶層28を介して固定される。ここでは共晶ハンダとして、Au−Snを使用し、約290℃で共晶を行った。その後、図7(e)に示すようにサブマウント基板9の電極と支持体27の電極29とをワイヤボンディング31で配線する。さらに図7(g)に示すように、LEDチップの外周を覆うように樹脂製のレンズ36を接着材等により固定して、発光装置を得る。
(Light emitting device)
The light-emitting element obtained by the above method is flip-chip mounted on a wiring board to obtain a light-emitting device. As an example, a method of manufacturing the light emitting device 1 shown in FIG. 1 will be described with reference to FIG. First, as shown in FIG. 7A, bumps 24 are formed on a wafer 25 to be a submount substrate 9 according to a pattern for flip-chip mounting the light emitting element 10. Next, as shown in FIG. 7B, the light emitting element 10 is flip-chip mounted through the bumps 24. In this example, two LED chips are mounted side by side in a region where one submount substrate 9 is formed. Further, screen printing is performed in FIG. In the screen printing, a metal mask is placed on the wafer 25, a resin constituting the coating layer 26 is applied, and is spread with a squeegee. After the resin 26 is cured, the metal mask is removed and dicing is performed as shown in FIG. Each of the cut out submount substrates 9 is fixed on a support 27 through a eutectic layer 28 by eutectic die bonding as shown in FIG. Here, Au—Sn was used as eutectic solder, and eutectic was performed at about 290 ° C. Thereafter, as shown in FIG. 7E, the electrode of the submount substrate 9 and the electrode 29 of the support 27 are wired by wire bonding 31. Further, as shown in FIG. 7G, a resin lens 36 is fixed with an adhesive or the like so as to cover the outer periphery of the LED chip, thereby obtaining a light emitting device.

ただ、発光素子10の周囲を被覆する樹脂26の配置方法は特に限定されない。例えば樹脂26が配置される領域の界面を構成したパッケージを形成し、この内部に樹脂26を充填することもできる。また、発光素子は発光装置の所定の載置部に直接実装される形態、すなわちサブマウントを備えなくても良い。また、上記個々に切り出されたサブマウント基板、若しくは、それにレンズ等を接着、封止されたものを、発光装置とすることもできる。   However, the arrangement method of the resin 26 covering the periphery of the light emitting element 10 is not particularly limited. For example, it is possible to form a package that forms an interface of the region where the resin 26 is disposed, and to fill the inside with the resin 26. Further, the light emitting element may not be provided with a form that is directly mounted on a predetermined mounting portion of the light emitting device, that is, a submount. Further, the submount substrate cut out individually, or a substrate to which a lens or the like is bonded and sealed can be used as a light emitting device.

(波長変換部材)
また、図1に示すように、封止部材としての樹脂26には、発光素子10の光で励起されて蛍光を発する蛍光物質等の波長変換部材12が混入される。つまり、光源からの光の一部が、波長変換部材としての蛍光体を励起することで、主光源の波長とは異なった波長を持つ光が得られ、この結果、混色による所望の色相を有する出射光を実現できる。この波長変換部材12としては蛍光体が好適に利用できる。なぜなら蛍光体は光散乱性及び光反射性の機能をも備えているため、波長変換機能に加えて光散乱部材としての役割を果たし、光の拡散効果を得ることができるからである。蛍光体は、樹脂26中に、ほぼ均一の割合で混合することも、部分的に偏在するように配合することもできる。例えば、発光素子に近接すると上記反射構造に到達する蛍光体の光が多くなり、発光出力、効率の高い発光装置とできる。また、発光素子10から所定の距離だけ離間させることにより、発光素子10で発生した熱が蛍光物質に伝達し難くして蛍光物質の劣化を抑制できる。また、蛍光体は、発光装置の表面上において一層からなる発光層中に二種類以上存在してもよいし、二層からなる発光層中にそれぞれ一種類あるいは二種類以上存在してもよい。これにより所望の波長を有する発光装置を実現できる。尚、樹脂以外にガラスなどの透光性部材、並びに蛍光体粒子の凝集体、その結晶体の部材を用いることもできる。
(Wavelength conversion member)
Further, as shown in FIG. 1, a wavelength conversion member 12 such as a fluorescent material that emits fluorescence when excited by the light of the light emitting element 10 is mixed in the resin 26 as a sealing member. That is, a part of the light from the light source excites the phosphor as the wavelength conversion member, so that light having a wavelength different from the wavelength of the main light source is obtained, and as a result, a desired hue due to color mixing is obtained. Output light can be realized. As the wavelength conversion member 12, a phosphor can be preferably used. This is because the phosphor also has functions of light scattering and light reflection, so that it can serve as a light scattering member in addition to the wavelength conversion function, and can obtain a light diffusion effect. The phosphor can be mixed in the resin 26 at a substantially uniform ratio or can be mixed so as to be partially unevenly distributed. For example, when the light comes close to the light emitting element, more phosphor light reaches the reflecting structure, and a light emitting device with high light emission output and high efficiency can be obtained. Further, by separating the light emitting element 10 from the light emitting element 10 by a predetermined distance, it is difficult for heat generated in the light emitting element 10 to be transmitted to the fluorescent substance, and deterioration of the fluorescent substance can be suppressed. Further, two or more kinds of phosphors may be present in the light emitting layer composed of one layer on the surface of the light emitting device, or one or more kinds of phosphors may be present in the light emitting layer composed of two layers. Thereby, a light emitting device having a desired wavelength can be realized. In addition to the resin, a translucent member such as glass, an aggregate of phosphor particles, and a member of the crystal can also be used.

代表的な蛍光体12としては、銅で付括された硫化カドミ亜鉛やセリウムで付括されたYAG系蛍光体及びLAG系蛍光体が挙げられる。特に、高輝度且つ長時間の使用時においては(Re1-xSmx3(Al1-yGay512:Ce(0≦x<1、0≦y≦1、但し、Reは、Y、Gd、La、Luからなる群より選択される少なくとも一種の元素である。)等が好ましい。またYAG、LAG、BAM、BAM:Mn、CCA、SCA、SCESN、SESN、CESN、CASBN及びCaAlSiN3:Euからなる群から選択される少なくとも1種を含む蛍光体が使用できる。 Typical phosphors 12 include cadmium zinc sulfide associated with copper and YAG phosphors and LAG phosphors associated with cerium. In particular, at the time of high luminance and long-term use (Re 1-x Sm x) 3 (Al 1-y Ga y) 5 O 12: Ce (0 ≦ x <1,0 ≦ y ≦ 1, where, Re Is at least one element selected from the group consisting of Y, Gd, La, and Lu. The YAG, LAG, BAM, BAM: Mn, CCA, SCA, SCESN, SESN, CESN, CASBN and CaAlSiN 3: phosphor containing at least one selected from the group consisting of Eu can be used.

実施の形態1の波長変換部材12としては、YAG蛍光体を使用して、光源からの出射光と、その一部が該蛍光体12により励起されて出射光とは異なる波長を有する光との混色により、例えば白色を得ることができる。また、蛍光体としては、ガラスや樹脂に蛍光体を混合した蛍光体ガラスや蛍光体含有樹脂を用いてもよい。また、光源から発する熱に耐性のあるもの、使用環境に左右されない耐候性のあるものがより望ましい。   As the wavelength conversion member 12 of the first embodiment, a YAG phosphor is used, and light emitted from the light source and light having a wavelength different from that of the emitted light, part of which is excited by the phosphor 12 By mixing colors, for example, white can be obtained. Further, as the phosphor, phosphor glass or phosphor-containing resin obtained by mixing phosphor in glass or resin may be used. Further, those that are resistant to heat generated from the light source and those that are weather resistant not affected by the use environment are more desirable.

発光装置1において、蛍光体は、2種類以上の蛍光体を混合させてもよい。黄〜赤色発光を有する窒化物蛍光体等を用いて赤味成分を増し、平均演色評価数Raの高い照明や電球色LED等を実現することもできる。具体的には、発光素子の発光波長に合わせてCIEの色度図上の色度点の異なる蛍光体の量を調整し含有させることでその蛍光体間と発光素子で結ばれる色度図上の任意の点を発光させることができる。その他に、近紫外〜可視光を黄色〜赤色域に変換する窒化物蛍光体、酸窒化物蛍光体、珪酸塩蛍光体、L2SiO4:Eu(Lはアルカリ土類金属)、特に(SrxMae1-x2SiO4:Eu(MaeはCa、Baなどのアルカリ土類金属)などが挙げられる。窒化物系蛍光体、オキシナイトライド(酸窒化物)蛍光体としては、Sr−Ca−Si−N:Eu、Ca−Si−N:Eu、Sr−Si−N:Eu、Sr−Ca−Si−O−N:Eu、Ca−Si−O−N:Eu、Sr−Si−O−N:Euなどがあり、アルカリ土類窒化ケイ素蛍光体としては、一般式LSi222:Eu、一般式LxSiy(2/3x+4/3y):Eu若しくはLxSiyz(2/3x+4/3y-2/3z):Eu(Lは、Sr、Ca、SrとCaのいずれか)で表される。 In the light emitting device 1, two or more kinds of phosphors may be mixed as the phosphor. It is also possible to increase the reddish component using a nitride phosphor having yellow to red light emission, and to realize illumination with high average color rendering index Ra, light bulb color LED, and the like. Specifically, by adjusting the amount of phosphors having different chromaticity points on the CIE chromaticity diagram according to the light emission wavelength of the light emitting device, the phosphors are connected with each other on the chromaticity diagram. Any point can be made to emit light. In addition, a nitride phosphor, oxynitride phosphor, silicate phosphor, L 2 SiO 4 : Eu (L is an alkaline earth metal) that converts near-ultraviolet to visible light into a yellow to red region, particularly (Sr x Mae 1-x ) 2 SiO 4 : Eu (Mae is an alkaline earth metal such as Ca or Ba). Examples of nitride phosphors and oxynitride (oxynitride) phosphors include Sr—Ca—Si—N: Eu, Ca—Si—N: Eu, Sr—Si—N: Eu, and Sr—Ca—Si. —O—N: Eu, Ca—Si—O—N: Eu, Sr—Si—O—N: Eu, and the like. As the alkaline earth silicon nitride phosphor, the general formula LSi 2 O 2 N 2 : Eu , general formula L x Si y N (2 / 3x + 4 / 3y): Eu or L x Si y O z N ( 2 / 3x + 4 / 3y-2 / 3z): Eu (L is, Sr, Ca, One of Sr and Ca).

具体的に、実施の形態1に係る蛍光体12では、図1に示されているように半導体発光素子1近傍に偏在して分布されている。これにより半導体発光素子1からの出射光を反射あるいは散乱させる効果が高まり、発光装置より放出される光の出射角を広範囲とできるため四方に拡散された光を得ることができる。さらに、波長変換部材を、発光素子の周囲近傍に均一に被覆することで、発光装置の部位による波長変換量をほぼ一定とでき、これにより発光装置毎の光ムラを低減でき、光損失が低減できる。また、発光素子からの出射光が波長変換部材に進行するまでの距離を略一定とできるため、波長変換量、及び拡散量が安定する。すなわち、一次光と二次光との混合比を略一定とでき、色ムラ及び光ムラの低減された出射光を得ることができる。   Specifically, the phosphor 12 according to the first embodiment is unevenly distributed near the semiconductor light emitting element 1 as shown in FIG. As a result, the effect of reflecting or scattering the light emitted from the semiconductor light emitting element 1 is enhanced, and the light emitted from the light emitting device can have a wide range of light emission angles, so that light diffused in all directions can be obtained. Furthermore, by uniformly covering the periphery of the light emitting element with the wavelength conversion member, the amount of wavelength conversion by the part of the light emitting device can be made almost constant, thereby reducing light unevenness for each light emitting device and reducing light loss. it can. Moreover, since the distance until the emitted light from the light emitting element travels to the wavelength conversion member can be made substantially constant, the wavelength conversion amount and the diffusion amount are stabilized. That is, the mixing ratio of the primary light and the secondary light can be made substantially constant, and outgoing light with reduced color unevenness and light unevenness can be obtained.

また、封止部材である樹脂26の材料は透光性であれば特に限定されず、シリコーン樹脂組成物、変性シリコーン樹脂組成物等を使用することが好ましいが、エポキシ樹脂組成物、変性エポキシ樹脂組成物、アクリル樹脂組成物等の透光性を有する絶縁樹脂組成物を用いることができる。また、これらの樹脂を少なくとも一種以上含むハイブリッド樹脂等、耐候性に優れた封止部材も利用できる。さらに、ガラス、シリカゲル等の耐光性に優れた無機物を用いることもできる。さらにまた、封止部材の発光面側を所望の形状にすることによってレンズ効果を持たせることができ、発光素子チップからの発光を集束させることができる。実施の形態1では封止部材としてシリコーン樹脂を使用した。   The material of the resin 26 as the sealing member is not particularly limited as long as it is translucent, and it is preferable to use a silicone resin composition, a modified silicone resin composition, etc. An insulating resin composition having translucency such as a composition and an acrylic resin composition can be used. Moreover, sealing members excellent in weather resistance, such as hybrid resins containing at least one of these resins, can also be used. Furthermore, inorganic materials having excellent light resistance such as glass and silica gel can be used. Furthermore, a lens effect can be provided by making the light emitting surface side of the sealing member have a desired shape, and light emitted from the light emitting element chip can be focused. In Embodiment 1, a silicone resin is used as the sealing member.

(添加部材)
また、封止部材は、波長変換部材の他、粘度増量剤、顔料、蛍光物質等、使用用途に応じて適切な部材を添加することができ、これによって良好な指向特性を有する発光装置が得られる。同様に外来光や発光素子からの不要な波長をカットするフィルター効果を持たせたフィルター材として各種着色剤を添加させることもできる。
(Additive components)
In addition to the wavelength converting member, the sealing member can be added with an appropriate member such as a viscosity extender, a pigment, or a fluorescent material depending on the intended use, thereby obtaining a light emitting device having good directivity characteristics. It is done. Similarly, various colorants can be added as a filter material having a filter effect of cutting unnecessary wavelengths from extraneous light and light emitting elements.

ここで本明細書において拡散剤とは、例えば中心粒径が1nm以上5μm未満のものは、発光素子10及び蛍光物質からの光を良好に乱反射させ、大きな粒径の蛍光物質を用いることによって生じやすい色ムラを抑制することができ、また、発光スペクトルの半値幅を狭めることができ、色純度の高い発光装置が得られる。一方、1nm以上1μm未満の拡散剤は、発光素子10からの光波長に対する干渉効果が低い反面、透明度が高く、光度を低下させることなく樹脂粘度を高めることができる。   Here, in the present specification, the diffusing agent means that, for example, a material having a center particle diameter of 1 nm or more and less than 5 μm is produced by favorably irregularly reflecting light from the light emitting element 10 and the fluorescent material and using a fluorescent material having a large particle size. Color unevenness that is easy to suppress can be suppressed, and the half-value width of the emission spectrum can be narrowed, so that a light-emitting device with high color purity can be obtained. On the other hand, a diffusing agent having a wavelength of 1 nm or more and less than 1 μm has a low interference effect on the light wavelength from the light-emitting element 10, but has a high transparency and can increase the resin viscosity without reducing the light intensity.

(フィラー)
さらに、封止部材中に蛍光物質の他にフィラーを含有させてもよい。具体的な材料としては、拡散剤と同様のものが使用できる。ただ、拡散剤とフィラーとは中心粒径が異なり、本明細書においてはフィラーの中心粒径は5μm以上100μm以下とすることが好ましい。このような粒径のフィラーを封止部材中に含有させると、光散乱作用により発光装置の色度バラツキが改善される他、封止部材の耐熱衝撃性を高めることができる。
(Filler)
Further, a filler may be contained in the sealing member in addition to the fluorescent material. As a specific material, the same material as the diffusing agent can be used. However, the diffusing agent and the filler have different center particle sizes. In this specification, the center particle size of the filler is preferably 5 μm or more and 100 μm or less. When a filler having such a particle size is contained in the sealing member, the chromaticity variation of the light emitting device is improved by the light scattering action, and the thermal shock resistance of the sealing member can be enhanced.

また、発光装置に搭載される発光素子の発光層から出力される出射光の発光ピーク波長は特に限定されないが、例えば近紫外線から可視光の短波長領域である240nm〜500nm付近、好ましくは380nm〜420nm若しくは450nm〜470nmに発光スペクトルを有する半導体発光素子を用いることができる。実施の形態1においては、上記製造方法にて得られた発光素子10を使用した。   Further, the emission peak wavelength of the emitted light output from the light emitting layer of the light emitting element mounted on the light emitting device is not particularly limited. For example, the short wavelength region from near ultraviolet to visible light is around 240 nm to 500 nm, preferably from 380 nm to A semiconductor light-emitting element having an emission spectrum at 420 nm or 450 nm to 470 nm can be used. In Embodiment 1, the light-emitting element 10 obtained by the above manufacturing method was used.

(実施の形態2)
実施の形態2に係る発光素子の概略断面図を図8に示す。なお、実施の形態2に係る発光装置は、実施の形態1に係る発光装置と比較して、搭載される発光素子の反射構造のみが相違しており、他の構造は実質的に同じである。したがって、実施の形態2に係る発光素子20において、実施の形態1に係る発光素子10と同様の構成要素については同符号を付して、その詳細な説明を省略する。
(Embodiment 2)
A schematic cross-sectional view of the light-emitting element according to Embodiment 2 is shown in FIG. Note that the light-emitting device according to Embodiment 2 is different from the light-emitting device according to Embodiment 1 only in the reflection structure of the light-emitting element mounted, and the other structures are substantially the same. . Therefore, in the light emitting element 20 according to Embodiment 2, the same components as those of the light emitting element 10 according to Embodiment 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図8に示される発光素子20は、実施の形態1と同様の反射構造4が複数積層された反射構造群34を有する。誘電体多層膜4は、互いに離間されて並列されており、平面状に配置された複数の誘電体多層膜4を、便宜上、第1段目の反射構造群34Aと称する。   The light emitting element 20 shown in FIG. 8 has a reflective structure group 34 in which a plurality of reflective structures 4 similar to those in the first embodiment are stacked. The dielectric multilayer films 4 are spaced apart from each other in parallel, and the plurality of dielectric multilayer films 4 arranged in a plane are referred to as a first-stage reflection structure group 34A for convenience.

この第1段目の反射構造群34Aに加えて、積層方向側(上方)に、第2段目の反射構造群34Bが形成される。また、第1段目の反射構造群34A及び第2段目の反射構造群34Bは、積層方向からの平面視において、少なくとも第1段目の反射構造群34Aの開口部領域の一部を覆うように配置される。これにより、電極3の表面側からの平面視において、反射構造の形成領域が増大するため、光取り出し効率を向上させることができる。   In addition to the first-stage reflection structure group 34A, a second-stage reflection structure group 34B is formed on the stacking direction side (upward). The first-stage reflective structure group 34A and the second-stage reflective structure group 34B cover at least a part of the opening region of the first-stage reflective structure group 34A in plan view from the stacking direction. Are arranged as follows. Thereby, in the planar view from the surface side of the electrode 3, since the formation area of a reflection structure increases, light extraction efficiency can be improved.

具体的に、図8に示すように、第1段目の反射構造群34Aの上面に、ITO等の透光性導電層13を介して、第2段目の反射構造群34Bが積層される。さらに、第1段目の反射構造群34A及び第2段目の反射構造群34Bは当接されず離間しており、これにより、反射構造群34の上側に形成される金属電極層23側から活性層8への導通経路32(図2参照)が設けられ、半導体構造11へ給電される。   Specifically, as shown in FIG. 8, a second-stage reflection structure group 34B is laminated on the upper surface of the first-stage reflection structure group 34A via a light-transmitting conductive layer 13 such as ITO. . Further, the first-stage reflecting structure group 34A and the second-stage reflecting structure group 34B are separated from each other without being in contact with each other, and thereby, from the side of the metal electrode layer 23 formed on the upper side of the reflecting structure group 34. A conduction path 32 (see FIG. 2) to the active layer 8 is provided to supply power to the semiconductor structure 11.

また、図8の例では誘電体多層膜群を2段に積層したが、積層の階数は2段に限定されず3段以上とでき、2段同様に下層の誘電体多層膜群の開口部領域の上方に、透光性導電層を介して、上層の誘電体多層膜群が形成される。これにより、導通経路を備えて、光取り出し面18からの平面視において、反射構造の形成領域を増加させられる。また、上記の反射構造群34の、最上面側に金属電極層23が設けられるのは実施の形態1と同様である。   In the example of FIG. 8, the dielectric multilayer film group is laminated in two stages, but the number of layers is not limited to two, but can be three or more, and the opening of the lower dielectric multilayer film group can be similarly formed in two stages. An upper dielectric multilayer film group is formed above the region via a light-transmitting conductive layer. Thereby, the conductive path is provided, and the formation region of the reflection structure can be increased in a plan view from the light extraction surface 18. Further, the metal electrode layer 23 is provided on the uppermost surface side of the reflection structure group 34 as in the first embodiment.

(実施の形態3)
さらに、反射構造における他の実施の形態を図9に示す。実施の形態3に係る発光素子は、実施の形態2に係る発光素子と比較して、反射構造のみが相違であり、他の構造は実質的に同じである。したがって、実施の形態3に係る発光素子30において、実施の形態2に係る発光素子20と同様の構成要素については同符号を付して、その詳細な説明を省略する。
(Embodiment 3)
Furthermore, FIG. 9 shows another embodiment of the reflecting structure. The light emitting element according to the third embodiment is different from the light emitting element according to the second embodiment only in the reflection structure, and the other structures are substantially the same. Therefore, in the light emitting element 30 according to Embodiment 3, the same components as those of the light emitting element 20 according to Embodiment 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

図9の例では、第1反射層4aと第2反射層4bの双方が、積層方向(図9における上下方向)に連結されず、それぞれが分離されて、水平方向に交互に並列されている。ただ、双方の反射層の並列順序は交互に限定されず、混合色を構成する成分光の配分比率に相当するよう、各反射層の形成領域を決定することができ、好ましくは、各反射層が一定の間隔で離間され、双方の反射層が均等に混合した配置に形成され、部位による色ムラが低減された混合色とできる。また、双方の反射層を縦型に積層せずに、分離して水平に並列させるため、反射構造を薄型とできる。ひいては、発光素子、発光装置の薄型化が実現できる。   In the example of FIG. 9, both the first reflective layer 4 a and the second reflective layer 4 b are not connected in the stacking direction (up and down direction in FIG. 9), but are separated from each other and alternately arranged in parallel in the horizontal direction. . However, the parallel order of both the reflective layers is not limited alternately, and the formation area of each reflective layer can be determined so as to correspond to the distribution ratio of the component light constituting the mixed color. Are formed at an arrangement in which both reflection layers are evenly mixed and the color unevenness due to the parts is reduced. In addition, since both the reflective layers are separated in a vertical manner without being stacked vertically, the reflective structure can be made thin. As a result, the light-emitting element and the light-emitting device can be thinned.

(実施の形態4)
さらに、反射構造における他の実施の形態を図10に示す。実施の形態4に係る発光素子は、実施の形態2に係る発光素子と比較して、反射構造のみが相違であり、他の構造は実質的に同じである。したがって、実施の形態4に係る発光素子40において、実施の形態2に係る発光素子20と同様の構成要素については同符号を付して、その詳細な説明を省略する。
(Embodiment 4)
Furthermore, FIG. 10 shows another embodiment of the reflecting structure. The light-emitting element according to Embodiment 4 is different from the light-emitting element according to Embodiment 2 only in the reflective structure, and the other structures are substantially the same. Therefore, in the light emitting element 40 according to the fourth embodiment, the same components as those of the light emitting element 20 according to the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図10の例では、相互に分離した第1反射層4a及び第2反射層4bが、水平方向において変位して、上下に積層された反射構造群34を有する。つまり、反射構造群34は、同一の中心波長を有する第1反射層4aが水平に形成された第1段目の反射構造群34Aと、この上方であって、さらに第1反射層4aの開口部領域を中心に、第2反射層4bが水平に形成された第2段目の反射構造群34Bとから構成され、実施の形態3同様に透光性導電層13を介して積層される。すなわち、電極3の表面側からの平面視において、第1反射層4a同士の離間領域を埋めるように、第2反射層4bが配置される。この構造により、反射構造を平面的及び立体的に配置して、所望の特性の素子を得ることができる。   In the example of FIG. 10, the first reflective layer 4 a and the second reflective layer 4 b separated from each other have a reflective structure group 34 that is displaced in the horizontal direction and is stacked vertically. That is, the reflective structure group 34 includes a first-stage reflective structure group 34A in which the first reflective layer 4a having the same center wavelength is formed horizontally, and an opening of the first reflective layer 4a. The second reflective layer 4b is formed horizontally with the second region 4b centered on the partial region, and is laminated via the translucent conductive layer 13 as in the third embodiment. In other words, the second reflective layer 4b is arranged so as to fill the space between the first reflective layers 4a in a plan view from the surface side of the electrode 3. With this structure, it is possible to obtain an element having desired characteristics by arranging the reflecting structure in a planar and three-dimensional manner.

また、図10の例では、各段に水平に配列される反射層の中心波長を同一としたが、図9に示すように、隣接する反射層の中心波長を相違としてもよく、すなわち数種類の反射層からなる反射層群が、複数段にわたって形成されてもよい。   In the example of FIG. 10, the center wavelengths of the reflective layers arranged horizontally in each stage are the same. However, as shown in FIG. 9, the center wavelengths of the adjacent reflective layers may be different. A reflective layer group composed of reflective layers may be formed in a plurality of stages.

(比較例1、実施例1〜5)
上記の手順によって、反射構造がそれぞれ相違する発光素子とする。比較例1、実施例1〜5の発光素子は、□1mmのLEDであって、反射構造に誘電体多層膜を備える。また、電極構造は、各導電型の半導体層上に透光性導電層(ITO)を設けて、絶縁性膜(SiO2)/誘電体多層膜の順に積層されてなる反射構造を有する。比較例1、実施例1〜5の各発光素子は、誘電体多層膜4の構成が相違しており、他の構造については上記の発光素子と実質的に同一であるため、詳細な説明を省略する。
(Comparative example 1, Examples 1-5)
The light emitting elements having different reflection structures are obtained by the above procedure. The light emitting elements of Comparative Example 1 and Examples 1 to 5 are □ 1 mm LEDs, and include a dielectric multilayer film in a reflective structure. The electrode structure has a reflective structure in which a light-transmitting conductive layer (ITO) is provided on each conductive type semiconductor layer and an insulating film (SiO 2 ) / dielectric multilayer film is laminated in this order. Each of the light emitting elements of Comparative Example 1 and Examples 1 to 5 is different in the configuration of the dielectric multilayer film 4 and the other structure is substantially the same as the above light emitting element. Omitted.

反射構造は、図6に示すように、一辺を10μmとする正方形状のドット状の開口部を有し、これを格子状の格子点に配置されてなる。隣接するドット間の距離は30μmとする。また、誘電体多層膜は、窒化物半導体層上に形成された60nm程度の透光性導電層(ITO)に、さらに0.5μm程度の絶縁性膜(SiO2)を介して形成され、それらが反射構造を構成する。さらに、誘電体多層膜4の表面側には、外部電極の接続領域として、Ti−Rhからなる金属電極層が積層されて電極が構成され、一部に設けられた反射構造の開口部35で透光性導電層に導通する。また、図3の断面図に示すように、絶縁性膜16は、半導体構造11の露出部表面に形成されており、保護膜と併用される。すなわち、保護膜と絶縁性膜とを別個の工程で設けずして、双方は同一工程、同一材料で形成される。さらにこの実施例では、反射構造が、外部電極23との導通部となる開口部を透光性導電層上に設けて、半導体層の露出部の略全面に設けられる。 As shown in FIG. 6, the reflecting structure has square dot-shaped openings each having a side of 10 μm, and these openings are arranged at lattice-like lattice points. The distance between adjacent dots is 30 μm. In addition, the dielectric multilayer film is formed on a light-transmitting conductive layer (ITO) of about 60 nm formed on the nitride semiconductor layer via an insulating film (SiO 2 ) of about 0.5 μm. Constitutes a reflective structure. Further, on the surface side of the dielectric multilayer film 4, a metal electrode layer made of Ti—Rh is laminated as an external electrode connection region to constitute an electrode, and a reflective structure opening 35 provided in a part thereof. Conductive to the translucent conductive layer. As shown in the cross-sectional view of FIG. 3, the insulating film 16 is formed on the exposed surface of the semiconductor structure 11 and is used in combination with the protective film. That is, the protective film and the insulating film are not provided in separate steps, and both are formed in the same step and the same material. Further, in this embodiment, the reflection structure is provided on the substantially entire surface of the exposed portion of the semiconductor layer by providing an opening serving as a conductive portion with the external electrode 23 on the translucent conductive layer.

比較例1の反射構造では、光源の発光ピークスペクトルに相当した反射特性を有する第1反射層4aのみから構成される。具体的に、第1反射層4aは、Nb23とSiO2とからなる2層膜を4ペア積層し、それぞれの反射の中心波長を460nmとする。 The reflective structure of Comparative Example 1 includes only the first reflective layer 4a having a reflective characteristic corresponding to the light emission peak spectrum of the light source. Specifically, in the first reflective layer 4a, four pairs of two-layer films composed of Nb 2 O 3 and SiO 2 are stacked, and the central wavelength of each reflection is set to 460 nm.

また、実施例1に係る誘電体多層膜は、LEDの発光ピーク波長である第1反射層の中心波長(460nm)に加えて、さらに該ピーク波長よりも長波長側に反射特性を有する第2反射層から成る。第2反射層の中心波長は、光源により励起されて波長変換された波長域内にある。ただし、長波長側の変換光の発光ピーク(波長約560nm)における半値幅は、それよりも短波長側のLED光の発光ピークにおける半値幅よりも広くなる。このため、第2反射層の中心波長をそれよりも長波長側とする。実施例1では、第2反射層の中心波長を575nmとし、すなわち第1反射層の中心波長の1.25倍に相当する。また、実施例1に係るLED光とその変換光のピーク波長と同様に、各反射層の中心波長に相当する色相は互いに相違しており、かつ両者は補色の関係にある。   In addition to the center wavelength (460 nm) of the first reflective layer, which is the light emission peak wavelength of the LED, the dielectric multilayer film according to Example 1 further has a reflection characteristic on the longer wavelength side than the peak wavelength. It consists of a reflective layer. The center wavelength of the second reflective layer is in a wavelength region that is excited by the light source and wavelength-converted. However, the half width at the emission peak of the converted light on the long wavelength side (wavelength of about 560 nm) is wider than the half width at the emission peak of the LED light on the short wavelength side. For this reason, the center wavelength of the second reflective layer is set to the longer wavelength side. In Example 1, the center wavelength of the second reflective layer is 575 nm, that is, 1.25 times the center wavelength of the first reflective layer. Further, similar to the peak wavelength of the LED light and the converted light according to Example 1, the hues corresponding to the center wavelengths of the respective reflective layers are different from each other, and both have a complementary color relationship.

また、実施例2に係る誘電体多層膜は、光源波長(460nm)の0.8倍に相当する368nmを反射特性とする第1反射層と、光源波長(460nm)の1.2倍に相当する552nmを反射特性とする第2反射層とで構成される。   The dielectric multilayer film according to Example 2 corresponds to the first reflective layer having a reflection characteristic of 368 nm corresponding to 0.8 times the light source wavelength (460 nm) and 1.2 times the light source wavelength (460 nm). And a second reflection layer having a reflection characteristic of 552 nm.

さらに、実施例3〜5の誘電体多層膜は、3種の中心波長を有する反射層より構成される。光源波長(460nm)を基準とした際の各反射層における具体的な各中心波長、及び積層ペア数は以下の通りである。
実施例3:第1反射層(368nm(0.8倍))2ペア/第3反射層(460nm(1.0倍))2ペア/第2反射層(552nm(1.2倍))2ペア
実施例4:第1反射層(431nm(0.9375倍))3ペア/第3反射層(518nm(1.125倍))3ペア/第2反射層(621nm(1.35倍))3ペア
実施例5:第1反射層(437nm(0.95倍))3ペア/第3反射層(529nm(1.15倍))3ペア/第2反射層(621nm(1.35倍))3ペア
尚、実施例1〜5の各誘電体多層膜は、比較例1と同様の材質からなる2層膜の膜厚を変化させることで、各中心波長とする。
Furthermore, the dielectric multilayer films of Examples 3 to 5 are each composed of a reflective layer having three central wavelengths. Specific center wavelengths and the number of stacked pairs in each reflective layer when the light source wavelength (460 nm) is used as a reference are as follows.
Example 3: First reflective layer (368 nm (0.8 times)) 2 pairs / third reflective layer (460 nm (1.0 times)) 2 pairs / second reflective layer (552 nm (1.2 times)) 2 Pair Example 4: First reflective layer (431 nm (0.9375 times)) 3 pairs / third reflective layer (518 nm (1.125 times)) 3 pairs / second reflective layer (621 nm (1.35 times)) Example 3: First reflective layer (437 nm (0.95 times)) 3 pairs / third reflective layer (529 nm (1.15 times)) 3 pairs / second reflective layer (621 nm (1.35 times)) 3 pairs In addition, each dielectric multilayer film of Examples 1-5 is set to each central wavelength by changing the film thickness of a two-layer film made of the same material as that of Comparative Example 1.

ここで、実施例3〜5は、上記第2反射層に加えて、変換光のピーク波長より短波長、すなわちLED光と変換光の各ピーク波長間に中心波長の第3反射層を有する。またその第2反射層は、第3反射層より、更には変換光のピーク波長より、長波長側の中心波長を有している。また、実施例2〜5は第1反射層をLED光のピーク波長より短波長側を中心波長としている。   Here, in Examples 3 to 5, in addition to the second reflective layer, a third reflective layer having a shorter wavelength than the peak wavelength of the converted light, that is, a center wavelength between the peak wavelengths of the LED light and the converted light is provided. The second reflective layer has a center wavelength longer than the third reflective layer and further from the peak wavelength of the converted light. In Examples 2 to 5, the first reflective layer has a wavelength shorter than the peak wavelength of the LED light as the center wavelength.

また、比較例1及び実施例1〜5の発光素子を、波長変換部材である蛍光体の有無の点で相違する発光装置に搭載して得られる発光特性、駆動電圧、発光出力φe、外部量子効率ηex、中心波長λd、光束φv、電力効率WPE(Watt Per Energy)、発光効率(lm/W)、を表1に示す。表1における出力比及び光束比は、比較例1の値との比率、[各実施例]/[比較例1]、で示す。また、図11に、比較例1及び実施例1〜5に係る発光素子の反射構造の反射率のグラフを示す。図12には、実施例1、2と比較例1の発光装置における発光スペクトルを示す。尚、表中、「装置B」と表記している発光装置は、図1に示すような発光装置で、そのサブマウントに、各実施・比較例の発光素子を2個、直列に配線接続して、波長変換部材を樹脂と共に被覆され、白色発光するものである。また、表中「装置A」とは、2本一組の各極性用のリード(計4本)の内、一方の組のマウント用リードのカップ内に、発光素子1個を搭載し、樹脂レンズ一体で封止して得られる青色発光の装置である。また、表2についても同様である。 In addition, the light emission characteristics, drive voltage, light emission output φ e , external emission obtained by mounting the light emitting elements of Comparative Example 1 and Examples 1 to 5 on light emitting devices that differ in the presence or absence of a phosphor as a wavelength conversion member, Table 1 shows the quantum efficiency ηex, the center wavelength λ d , the luminous flux φ v , the power efficiency WPE (Watt Per Energy), and the light emission efficiency (lm / W). The output ratio and the luminous flux ratio in Table 1 are indicated by the ratio to the value of Comparative Example 1, [Each Example] / [Comparative Example 1]. Moreover, the graph of the reflectance of the reflection structure of the light emitting element which concerns on FIG. 11 at the comparative example 1 and Examples 1-5 is shown. FIG. 12 shows emission spectra in the light emitting devices of Examples 1 and 2 and Comparative Example 1. In the table, the light-emitting device indicated as “device B” is a light-emitting device as shown in FIG. 1, and two light-emitting elements of each of the implementation and comparative examples are connected in series to the submount. Thus, the wavelength conversion member is coated with resin and emits white light. In the table, “apparatus A” means that one light-emitting element is mounted in a cup of one set of mounting leads out of a set of two leads for each polarity (a total of four leads). It is a blue light emitting device obtained by sealing with a lens integrated. The same applies to Table 2.

Figure 0005634003
Figure 0005634003

表1に示すように、いずれの実施例の発光素子においても波長変換部材を含有する発光装置において、その比較例1に比し発光特性が向上し、その比較例との光束比も向上する。換言すると、単一の色相のみを出射する発光装置において、発光特性の向上は、反射層における中心波長の数量に依存しないが、複数の色相に相当する波長を出射可能な発光装置においては、各色相に対応する反射層を有することで、発光特性が5〜10%程度向上する(表1の波長変換部材あり参照)。実施例1と2の比較により、光源に対応する第1反射層の中心波長を短波長側へシフトさせ、第2反射層の中心波長との波長域を拡大した場合においても、発光特性の改善がなされる。具体的には、第1反射層の中心波長を、光源の波長に対して0.8倍以上1.0倍未満とし、又は/かつ、第2反射層の中心波長を1.20倍以上1.35倍以下とし、各反射層の中心波長の波長差を離間させることで、上記の効果が顕著に得られる。従って、LED光と変換光のピーク間波長域より、第1、2反射層の中心波長間を大きくして、好ましくは、短波長側の第1反射層の中心波長をLED光のピーク波長より短波長とし、長波長側の第2反射層の中心波長を変換光のピーク波長と同程度かそれより長波長とすること、例えば変換光ピークの半値となる波長よりピーク側(ピーク値の半値以上の波長域)、具体的にはピーク波長に±20nmの範囲に含まれることが好ましい。さらに好ましくは第1、2反射層の中心波長間に、LED光ピーク波長と変換光ピーク波長若しくはピーク値の半値以上の波長域の一部が包含され、具体的には波長域の1/4以上が包含される。このように、従来における多層膜反射層の中心波長を、入射角が高角度の成分に対応させるように、すなわちLED光の波長より長波長のものを追加、若しくは長波長側に広帯域化、させる構造に比して、本発明では短波長側の中心波長(第1反射層)を有する点、また、その反射層の中心波長の間をLED−変換光ピーク間、若しくはLEDピーク波長−変換光の短波長側の半値の波長間より広く離間させている点で相違し、これにより発光素子、発光装置の特性を向上させている。具体的には、LED−変換光ピーク間(約100nm)に比して、各実施例の第1、2反射層の中心波長間は、実施例1で115nm、実施例2、3、5で184nm、実施例4で190nm、またその比、[第1、2反射層の中心波長間]/[LED−変換光ピーク間]、は、1.15、1.84、1.90である。このことから、LED−変換光ピーク間と第1、2反射層の中心波長間の比を、1.1〜3倍程度、好ましくは1.3〜2.5倍程度とすると良いことがわかる。   As shown in Table 1, in any light emitting device of any of the examples, in the light emitting device containing the wavelength conversion member, the light emission characteristics are improved as compared with Comparative Example 1, and the luminous flux ratio with the comparative example is also improved. In other words, in a light emitting device that emits only a single hue, the improvement in light emission characteristics does not depend on the number of central wavelengths in the reflective layer, but in a light emitting device that can emit wavelengths corresponding to a plurality of hues, By having the reflective layer corresponding to the hue, the light emission characteristics are improved by about 5 to 10% (see the presence of the wavelength conversion member in Table 1). Comparison of Examples 1 and 2 improves the light emission characteristics even when the center wavelength of the first reflective layer corresponding to the light source is shifted to the short wavelength side and the wavelength range with the center wavelength of the second reflective layer is expanded. Is made. Specifically, the center wavelength of the first reflective layer is set to 0.8 to 1.0 times the wavelength of the light source, and / or the center wavelength of the second reflective layer is 1.20 times to 1 The effect described above is remarkably obtained by setting the wavelength difference of .35 times or less and separating the wavelength difference between the central wavelengths of the respective reflective layers. Therefore, the central wavelength of the first and second reflective layers is made larger than the peak wavelength range of the LED light and the converted light, and preferably the central wavelength of the first reflective layer on the short wavelength side is made larger than the peak wavelength of the LED light The center wavelength of the second reflection layer on the long wavelength side is set to be the same as or longer than the peak wavelength of the converted light, for example, the peak side (half value of the peak value) from the wavelength that is half the converted light peak. The above wavelength range), specifically, the peak wavelength is preferably included in a range of ± 20 nm. More preferably, the LED light peak wavelength and the converted light peak wavelength or a part of the wavelength range of half or more of the peak value is included between the center wavelengths of the first and second reflective layers, specifically, 1/4 of the wavelength range. The above is included. In this manner, the center wavelength of the conventional multilayer reflective layer is made to correspond to a component having a high incident angle, that is, a wavelength longer than the wavelength of the LED light is added, or the band is widened to the longer wavelength side. Compared to the structure, the present invention has a short wavelength side central wavelength (first reflective layer), and between the central wavelengths of the reflective layer, LED peak-converted light peak or LED peak wavelength-converted light. This is different in that it is spaced apart from the half-wavelength on the short wavelength side, thereby improving the characteristics of the light-emitting element and the light-emitting device. Specifically, the distance between the central wavelengths of the first and second reflective layers in each example is 115 nm in Example 1, and in Examples 2, 3, and 5, compared to the distance between the LED-converted light peak (about 100 nm). 184 nm, 190 nm in Example 4, and the ratio thereof [between the central wavelengths of the first and second reflective layers] / [between LED and converted light peak] are 1.15, 1.84, and 1.90. From this, it is understood that the ratio between the LED-converted light peak and the center wavelength of the first and second reflective layers should be about 1.1 to 3 times, preferably about 1.3 to 2.5 times. .

また、実施例3〜5は、第1、2反射層に加えて、第3反射層を波長域両端の第1、2反射層の中心波長の間に中心波長を有している。実施例3は実施例2にLED光ピーク波長に相当する第3反射層を有し、実施例4は実施例2同様にLED光ピーク波長の短波長側、変換光ピーク波長の長波長側に対応する第1、2反射層に加えて、変換光ピーク波長に略相当する第3反射層を有し、実施例5は実施例2に比して第1、2反射層の中心波長間を同一として、その中心波長の両端をより長波長側に設定している。実施例2に比して、実施例3、4は光束及びその比が低下する傾向にあるが、実施例3は特に低下が大きい。このことから、第3反射層はLED−変換光ピーク間の領域に設けられることが好ましく、そのLED−変換光ピーク間中心(490nm)より長波長側、第1、2反射層の中心波長間の中心(実施例5では529nm)より長波長側が好ましい。   In Examples 3 to 5, in addition to the first and second reflective layers, the third reflective layer has a central wavelength between the central wavelengths of the first and second reflective layers at both ends of the wavelength range. Example 3 has a third reflective layer corresponding to the LED light peak wavelength in Example 2, and Example 4 has a short wavelength side of the LED light peak wavelength and a long wavelength side of the converted light peak wavelength as in Example 2. In addition to the corresponding first and second reflective layers, a third reflective layer substantially corresponding to the converted light peak wavelength is provided, and Example 5 has a distance between the center wavelengths of the first and second reflective layers as compared with Example 2. As the same, both ends of the center wavelength are set to the longer wavelength side. Compared with Example 2, Examples 3 and 4 tend to decrease the luminous flux and its ratio, but Example 3 has a particularly large decrease. From this, it is preferable that the third reflective layer is provided in a region between the LED and the converted light peak, which is longer than the center between the LED and the converted light peak (490 nm), between the center wavelengths of the first and second reflective layers. The longer wavelength side than the center (529 nm in Example 5) is preferable.

(比較例2〜3、実施例6〜7)
さらに、比較例2〜3、実施例6〜7の反射構造では、上記の実施例1と比して、膜厚が50nm程度の透光性導電層(ITO)と誘電体多層膜層との間における、絶縁性膜(SiO2)の介在の有無の点で相違する。反射構造である誘電体多層膜の開口部パターンは、実施例1と同様のドット状とする。
(Comparative Examples 2-3, Examples 6-7)
Furthermore, in the reflective structures of Comparative Examples 2-3 and Examples 6-7, compared with Example 1 above, the light-transmitting conductive layer (ITO) having a film thickness of about 50 nm and the dielectric multilayer film layer There is a difference in the presence or absence of an insulating film (SiO 2 ). The opening pattern of the dielectric multilayer film having a reflective structure is formed in the same dot shape as in the first embodiment.

具体的に、比較例2及び実施例6の反射構造は、上記比較例1と同様、すなわち反射の中心波長を460nmとする第1反射層のみから構成される。ただし、比較例2は絶縁性膜を備えておらず、一方、実施例6の発光素子は絶縁性膜を備える。また、比較例3及び実施例7の反射構造は、光源(460nm)を基準とする0.7倍以上1.2倍以下であって、公差0.1毎に相当する中心波長の層を1ペアずつ、計6ペア積層したものである。すなわち、複数の反射層を有する。ただし、比較例3は絶縁性膜を備えず、一方、実施例7の発光素子は絶縁性膜を有する。該各発光素子を、波長変換部材を含有する発光装置に搭載して得られる発光特性を表2に示す。表2より、絶縁性膜を有する電極構造では、反射構造に依らず、発光特性が向上する。   Specifically, the reflective structures of Comparative Example 2 and Example 6 are configured by only the first reflective layer having the central wavelength of reflection of 460 nm, similar to Comparative Example 1 described above. However, Comparative Example 2 does not include an insulating film, while the light-emitting element of Example 6 includes an insulating film. In addition, the reflection structures of Comparative Example 3 and Example 7 are 0.7 to 1.2 times with respect to the light source (460 nm), and one layer having a center wavelength corresponding to each tolerance of 0.1 is provided. A total of 6 pairs are stacked one by one. That is, it has a plurality of reflective layers. However, Comparative Example 3 does not include an insulating film, while the light-emitting element of Example 7 has an insulating film. Table 2 shows light emission characteristics obtained by mounting each light emitting element on a light emitting device containing a wavelength conversion member. From Table 2, in the electrode structure having the insulating film, the light emission characteristics are improved regardless of the reflection structure.

Figure 0005634003
Figure 0005634003

本発明の発光装置は、照明用光源、LEDディスプレイ、バックライト光源、信号機、照明式スイッチ、各種センサ及び各種インジケータ等に好適に利用できる。 The light emitting device of the present invention can be suitably used for illumination light sources, LED displays, backlight light sources, traffic lights, illumination switches, various sensors, various indicators, and the like.

実施の形態1に係る発光装置の概略断面図である。1 is a schematic cross-sectional view of a light emitting device according to Embodiment 1. FIG. 実施の形態1に係る発光装置の一部拡大断面図である。3 is a partially enlarged cross-sectional view of the light emitting device according to Embodiment 1. FIG. 実施の形態1に係る発光素子の断面図である。3 is a cross-sectional view of the light-emitting element according to Embodiment 1. FIG. 実施の形態1に係る発光素子の、反射構造が形成される製造工程を説明する説明図である。FIG. 6 is an explanatory diagram illustrating a manufacturing process of the light emitting element according to Embodiment 1 in which a reflective structure is formed. 透光性導電層の上面に誘電体多層膜を設けた例を示す略平面図である。It is a schematic plan view showing an example in which a dielectric multilayer film is provided on the upper surface of a translucent conductive layer. 透光性導電層の上面に誘電体多層膜を設けた他の例を示す略平面図である。FIG. 6 is a schematic plan view showing another example in which a dielectric multilayer film is provided on the upper surface of a translucent conductive layer. 実施の形態1に係る発光装置の製造方法を示す模式図である。6 is a schematic diagram showing a method for manufacturing the light emitting device according to Embodiment 1. FIG. 実施の形態2に係る発光素子の断面図である。4 is a cross-sectional view of a light emitting element according to Embodiment 2. FIG. 実施の形態3に係る発光素子の断面図である。6 is a cross-sectional view of a light-emitting element according to Embodiment 3. FIG. 実施の形態4に係る発光素子の断面図である。6 is a cross-sectional view of a light emitting element according to Embodiment 4. FIG. 比較例1実施例1〜5の反射構造における反射率を示すグラフである。It is a graph which shows the reflectance in the reflection structure of the comparative example 1 Examples 1-5. 実施例と比較例に係る発光装置の発光スペクトル図である。It is an emission spectrum figure of the light-emitting device which concerns on an Example and a comparative example. 従来の発光素子を示す断面図である。It is sectional drawing which shows the conventional light emitting element.

1…発光装置
3…電極
3A…第1の電極(n型パッド電極)
3B…第2の電極(p型パッド電極)
4…反射構造(誘電体多層膜)
4a…第1反射層
4b…第2反射層
5…成長基板(サファイヤ基板)
6…第1の窒化物半導体層(n型半導体層)
6a…n型コンタクト層
7…第2の窒化物半導体層(p型半導体層)
8…発光層(活性層)
9…配線基板(サブマウント基板)
10、20、30、40…発光素子(窒化物半導体素子)
11…半導体構造(窒化物半導体層)
12…波長変換部材(蛍光体)
13…透光性導電層(透光性電極、ITO)
14…保護膜
16…絶縁性膜(保護膜)
18…光取り出し面
19…界面
21、22…保護膜の開口部
23…金属電極層
24…導電部材(バンプ)
25…ウェハ
26…被覆層(樹脂)
27…支持体
28…共晶層
29…支持体の電極
31…ワイヤボンディング
32…導通経路
34…反射構造群
34A…第1段目の反射構造群
34B…第2段目の反射構造群
35…開口部
36…レンズ
100…発光装置
101…基板
102…n型半導体層
103…発光層
104…p型半導体層
105…p側電極
105a…Ag層
105b…金属層
106…n側電極
DESCRIPTION OF SYMBOLS 1 ... Light-emitting device 3 ... Electrode 3A ... 1st electrode (n-type pad electrode)
3B ... Second electrode (p-type pad electrode)
4 ... Reflective structure (dielectric multilayer)
4a ... 1st reflective layer 4b ... 2nd reflective layer 5 ... Growth substrate (sapphire substrate)
6: First nitride semiconductor layer (n-type semiconductor layer)
6a ... n-type contact layer 7 ... second nitride semiconductor layer (p-type semiconductor layer)
8 ... Light emitting layer (active layer)
9 ... Wiring board (submount board)
10, 20, 30, 40 ... Light emitting device (nitride semiconductor device)
11 ... Semiconductor structure (nitride semiconductor layer)
12 ... Wavelength conversion member (phosphor)
13 ... translucent conductive layer (translucent electrode, ITO)
14 ... Protective film 16 ... Insulating film (protective film)
DESCRIPTION OF SYMBOLS 18 ... Light extraction surface 19 ... Interface 21, 22 ... Opening part of protective film 23 ... Metal electrode layer 24 ... Conductive member (bump)
25 ... Wafer 26 ... Coating layer (resin)
DESCRIPTION OF SYMBOLS 27 ... Support body 28 ... Eutectic layer 29 ... Electrode 31 of support body ... Wire bonding 32 ... Conduction path 34 ... Reflection structure group 34A ... First-stage reflection structure group 34B ... Second-stage reflection structure group 35 ... Opening 36 ... Lens 100 ... Light emitting device 101 ... Substrate 102 ... n-type semiconductor layer 103 ... Light emitting layer 104 ... p-type semiconductor layer 105 ... p-side electrode 105a ... Ag layer 105b ... Metal layer 106 ... n-side electrode

Claims (10)

発光層を有する半導体構造と、
前記半導体構造の一方の主面側に設けられた光取り出し面と、
前記半導体構造の他方の主面側に備えられ、前記半導体構造に電気的に接続される電極と、
を有する発光素子と、
前記発光素子の周囲を被覆するように配置された、該発光素子からの出射光の波長を変換可能な波長変換部材と、
を有する発光装置であって、
前記半導体構造と前記電極との間に反射構造が形成されており、
前記反射構造は、前記発光層からの光の波長に対応する中心波長を反射する第1反射層と、該第1反射層と前記電極との間に積層される、前記波長変換部材により波長変換された光の波長に対応する、前記第一反射層の中心波長よりも長い中心波長を反射する第2反射層とから構成され、
前記第1反射層と第2反射層の少なくとも一方の中心波長が、可視光域であり、
前記第1反射層及び第2反射層の中心波長は、互いに色相が異なり、補色の関係にあり、
前記反射構造は、2種以上からなる材料膜を積層させた誘電体多層膜であることを特徴とする発光装置。
A semiconductor structure having a light emitting layer;
A light extraction surface provided on one main surface side of the semiconductor structure;
An electrode provided on the other main surface side of the semiconductor structure and electrically connected to the semiconductor structure;
A light emitting device having
Wherein arranged so as to cover the periphery of the light emitting element, a conversion wavelength converting member wavelength of the light emitted from the light emitting element,
A light emitting device comprising:
A reflective structure is formed between the semiconductor structure and the electrode;
The reflective structure includes a first reflective layer that reflects a central wavelength corresponding to a wavelength of light from the light emitting layer, and a wavelength conversion by the wavelength conversion member that is laminated between the first reflective layer and the electrode. A second reflective layer that reflects a central wavelength longer than the central wavelength of the first reflective layer, corresponding to the wavelength of the emitted light,
The center wavelength of at least one of the first reflective layer and the second reflective layer is a visible light region,
The central wavelength of the first reflective layer and the second reflective layer have different colors from each other, Ri near relationship complementary,
The reflective structure, light-emitting device according to claim dielectric multilayer der Rukoto as a laminate of a material layer composed of two or more.
請求項1に記載の発光装置において、
前記第1反射層の中心波長が前記発光層からの光の波長より短波長であり、
前記第2反射層の中心波長が前記発光層からの光の波長より長波長であることを特徴とする発光装置。
The light-emitting device according to claim 1.
The center wavelength of the first reflective layer is shorter than the wavelength of light from the light emitting layer;
The light emitting device characterized in that a center wavelength of the second reflective layer is longer than a wavelength of light from the light emitting layer.
請求項1又は2に記載の発光装置において、
前記第1反射層の反射光の中心波長が、前記発光層からの光の波長に対して0.8倍以上1.0倍未満であり、
前記第2反射層の反射光の中心波長が、前記発光層からの光の波長に対して、1.15倍以上1.40倍以下であることを特徴とする発光装置。
The light-emitting device according to claim 1 or 2,
The center wavelength of the reflected light of the first reflective layer is 0.8 times or more and less than 1.0 times the wavelength of the light from the light emitting layer,
The light emitting device characterized in that the central wavelength of the reflected light of the second reflective layer is 1.15 to 1.40 times the wavelength of the light from the light emitting layer.
請求項1乃至3のいずれか一に記載の発光装置において、
前記発光層が発する光の波長が360nm乃至650nmにあることを特徴とする発光装置。
The light emitting device according to any one of claims 1 to 3,
The light emitting device, wherein a wavelength of light emitted from the light emitting layer is 360 nm to 650 nm.
請求項1乃至4のいずれか一に記載の発光装置において、
前記反射構造は、さらに第3反射層を有しており、
該第3反射層の反射光の中心波長が、前記第1反射層と第2反射層の中心波長との間の波長域内にあることを特徴とする発光装置。
The light emitting device according to any one of claims 1 to 4,
The reflective structure further includes a third reflective layer,
A light emitting device, wherein a central wavelength of reflected light of the third reflective layer is in a wavelength region between the central wavelengths of the first reflective layer and the second reflective layer.
請求項1乃至5のいずれか一に記載の発光装置において、
複数の前記反射構造を所定の間隔を経て水平方向に配列した反射構造群が、複数段にわたって略平行に離間されて積層されており、
各段の反射構造群は、下段に位置される反射構造の水平方向における離間領域の開口の少なくとも一部を覆うように、上段の反射構造が形成されてなることを特徴とする発光装置。
The light emitting device according to any one of claims 1 to 5,
A plurality of the reflection structures arranged in a horizontal direction with a predetermined interval are laminated in a plurality of stages, spaced apart from each other substantially in parallel,
The light emitting device according to claim 1, wherein each of the reflective structure groups in each stage is formed with an upper reflective structure so as to cover at least a part of an opening in a horizontally spaced region of the reflective structure positioned in the lower stage.
請求項1乃至6のいずれか一に記載の発光装置において、
前記反射構造は、前記半導体構造上の少なくとも側面に絶縁性膜を介して形成されていることを特徴とする発光装置。
The light emitting device according to any one of claims 1 to 6,
The light-emitting device, wherein the reflection structure is formed on at least a side surface of the semiconductor structure with an insulating film interposed therebetween.
請求項1乃至7のいずれか一に記載の発光装置において、
前記半導体構造の主面に透光性導電層が被覆され、さらに、該透光性導電層上の少なくとも一部には前記反射構造が形成されており、
前記電極は、前記反射構造及び前記透光性導電層とに接する金属電極層を備えることを特徴とする発光装置。
The light emitting device according to any one of claims 1 to 7,
The main surface of the semiconductor structure is covered with a translucent conductive layer, and the reflective structure is formed on at least a part of the translucent conductive layer,
The light emitting device, wherein the electrode includes a metal electrode layer in contact with the reflective structure and the translucent conductive layer.
請求項1乃至8のいずれか一に記載の発光装置において、
前記波長変換部材が、前記発光素子の光取り出し面に接して、または近接して配置されていることを特徴とする発光装置。
The light emitting device according to any one of claims 1 to 8,
The light emitting device, wherein the wavelength conversion member is disposed in contact with or close to a light extraction surface of the light emitting element.
請求項1乃至9のいずれか一に記載の発光装置において、
前記発光素子は、360nm乃至800nmに発光ピーク波長を有するLEDであり、
前記波長変換部材は、LAG、BAM、BAM:Mn、YAG、CCA、SCA、SCESN、SESN、CESN、CASBN及びCaAlSiN3:Euよりなる群から選択される蛍光体の少なくとも1種を含むことを特徴とする発光装置。
The light emitting device according to any one of claims 1 to 9,
The light emitting element is an LED having an emission peak wavelength at 360 nm to 800 nm,
The wavelength conversion member includes at least one phosphor selected from the group consisting of LAG, BAM, BAM: Mn, YAG, CCA, SCA, SCESN, SESN, CESN, CASBN, and CaAlSiN 3 : Eu. A light emitting device.
JP2007256972A 2007-09-29 2007-09-29 Light emitting device Active JP5634003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007256972A JP5634003B2 (en) 2007-09-29 2007-09-29 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007256972A JP5634003B2 (en) 2007-09-29 2007-09-29 Light emitting device

Publications (2)

Publication Number Publication Date
JP2009088299A JP2009088299A (en) 2009-04-23
JP5634003B2 true JP5634003B2 (en) 2014-12-03

Family

ID=40661313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007256972A Active JP5634003B2 (en) 2007-09-29 2007-09-29 Light emitting device

Country Status (1)

Country Link
JP (1) JP5634003B2 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9484499B2 (en) 2007-04-20 2016-11-01 Cree, Inc. Transparent ohmic contacts on light emitting diodes with carrier substrates
US8368100B2 (en) 2007-11-14 2013-02-05 Cree, Inc. Semiconductor light emitting diodes having reflective structures and methods of fabricating same
JP5181758B2 (en) * 2008-03-19 2013-04-10 日亜化学工業株式会社 Semiconductor light emitting device and manufacturing method thereof
US8000571B2 (en) * 2009-04-29 2011-08-16 Sharp Laboratories Of America, Inc. Light emitting device and planar waveguide with single-sided periodically stacked interface
DE102009019524B4 (en) * 2009-04-30 2023-07-06 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor body with a reflective layer system
US20100327300A1 (en) * 2009-06-25 2010-12-30 Koninklijke Philips Electronics N.V. Contact for a semiconductor light emitting device
JP4756403B2 (en) 2009-06-30 2011-08-24 カシオ計算機株式会社 Light source device and projector
JP2011035324A (en) * 2009-08-05 2011-02-17 Showa Denko Kk Semiconductor light emitting element, lamp, electronic apparatus, and mechanical apparatus
US8963178B2 (en) 2009-11-13 2015-02-24 Seoul Viosys Co., Ltd. Light emitting diode chip having distributed bragg reflector and method of fabricating the same
TWI531088B (en) * 2009-11-13 2016-04-21 首爾偉傲世有限公司 Light emitting diode chip having distributed bragg reflector
KR101712543B1 (en) * 2010-02-12 2017-03-07 서울바이오시스 주식회사 Light emitting diode chip having distributed bragg reflector and method of fabricating the same
US8637888B2 (en) 2009-12-11 2014-01-28 Toyoda Gosei Co., Ltd. Semiconductor light emitting element, light emitting device using semiconductor light emitting element, and electronic apparatus
JP5719110B2 (en) * 2009-12-25 2015-05-13 日亜化学工業株式会社 Light emitting element
JP5381822B2 (en) * 2010-03-10 2014-01-08 豊田合成株式会社 Semiconductor light emitting device and manufacturing method thereof
KR101143473B1 (en) * 2010-05-06 2012-05-08 (주) 이피웍스 Wafer level LED interposer
JP5633477B2 (en) 2010-08-27 2014-12-03 豊田合成株式会社 Light emitting element
KR101769075B1 (en) * 2010-12-24 2017-08-18 서울바이오시스 주식회사 Light emitting diode chip and method of fabricating the same
DE102011015726B9 (en) 2011-03-31 2023-07-13 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Semiconductor chip, display with a plurality of semiconductor chips and method for their production
JPWO2013011674A1 (en) * 2011-07-15 2015-02-23 パナソニック株式会社 Semiconductor light emitting device
JP2013135082A (en) * 2011-12-26 2013-07-08 Toyoda Gosei Co Ltd Light-emitting device
EP2784832B1 (en) 2012-01-13 2019-03-27 Semicon Light Co. Ltd. Semiconductor light emitting device
EP2648237B1 (en) * 2012-04-02 2019-05-15 Viavi Solutions Inc. Broadband dielectric reflectors for LED
JP2012169667A (en) * 2012-05-11 2012-09-06 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
EP2782148B1 (en) 2012-07-18 2020-05-06 Semicon Light Co. Ltd. Semiconductor light-emitting device
CN108550672A (en) * 2012-07-18 2018-09-18 世迈克琉明有限公司 Light emitting semiconductor device
KR101370576B1 (en) 2012-07-30 2014-03-07 주식회사 세미콘라이트 Semiconductor light emimitting device
KR101371545B1 (en) * 2012-07-30 2014-03-07 주식회사 세미콘라이트 Semiconductor light emimitting device
EP2782147B1 (en) 2012-07-18 2020-03-11 Semicon Light Co. Ltd. Method for manufacturing semiconductor light-emitting element
KR101370575B1 (en) * 2012-07-30 2014-03-07 주식회사 세미콘라이트 Semiconductor light emimitting device
KR101944410B1 (en) * 2012-09-18 2019-01-31 엘지이노텍 주식회사 Light emitting device
JP5468158B2 (en) * 2013-04-18 2014-04-09 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
USD826871S1 (en) 2014-12-11 2018-08-28 Cree, Inc. Light emitting diode device
JP6476854B2 (en) 2014-12-26 2019-03-06 日亜化学工業株式会社 Method for manufacturing light emitting device
JP6827265B2 (en) * 2015-01-05 2021-02-10 シチズン電子株式会社 LED light emitting device
CN104505451A (en) * 2015-01-15 2015-04-08 佛山市香港科技大学Led-Fpd工程技术研究开发中心 Multilayer long-distance fluorescent powder coated LED packaging unit, die and manufacturing method
KR102471102B1 (en) 2015-10-23 2022-11-25 서울바이오시스 주식회사 Light emitting diode chip having distributed bragg reflector
JP6683003B2 (en) 2016-05-11 2020-04-15 日亜化学工業株式会社 Semiconductor element, semiconductor device, and method for manufacturing semiconductor element
JP2018190830A (en) * 2017-05-08 2018-11-29 豊田合成株式会社 Semiconductor light-emitting device
DE102018101700A1 (en) * 2018-01-25 2019-07-25 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6366018B1 (en) * 1998-10-21 2002-04-02 Sarnoff Corporation Apparatus for performing wavelength-conversion using phosphors with light emitting diodes
JP2005123238A (en) * 2003-10-14 2005-05-12 Matsushita Electric Ind Co Ltd Semiconductor light emitting device and method of manufacturing the same
JP4604488B2 (en) * 2003-12-26 2011-01-05 日亜化学工業株式会社 Nitride semiconductor light emitting device and manufacturing method thereof
JP2005294820A (en) * 2004-03-12 2005-10-20 Showa Denko Kk Group iii nitride semiconductor light-emitting element, method of forming the element, and lamp and light source using the same
JP2006040998A (en) * 2004-07-23 2006-02-09 Hitachi Cable Ltd Semiconductor light emitting device and epitaxial wafer therefor
JP2006066449A (en) * 2004-08-24 2006-03-09 Toshiba Corp Semiconductor light emitting device
JP2007027540A (en) * 2005-07-20 2007-02-01 Matsushita Electric Ind Co Ltd Semiconductor light-emitting device and illuminator using same
US7847302B2 (en) * 2005-08-26 2010-12-07 Koninklijke Philips Electronics, N.V. Blue LED with phosphor layer for producing white light and different phosphor in outer lens for reducing color temperature
JP4849866B2 (en) * 2005-10-25 2012-01-11 京セラ株式会社 Lighting device
WO2007105626A1 (en) * 2006-03-10 2007-09-20 Matsushita Electric Works, Ltd. Light-emitting device
JP2007243076A (en) * 2006-03-11 2007-09-20 Nichia Chem Ind Ltd Light emitting device and manufacturing method of light emitting device

Also Published As

Publication number Publication date
JP2009088299A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP5634003B2 (en) Light emitting device
US10734559B2 (en) Light-emitting diode (LED), LED package and apparatus including the same
TWI381553B (en) A light-emitting element and a light-emitting device using the same
JP5186800B2 (en) Nitride semiconductor light emitting device, light emitting device including the same, and method for manufacturing nitride semiconductor light emitting device
JP6056150B2 (en) Semiconductor light emitting device
JP4882792B2 (en) Semiconductor light emitting device
KR101517644B1 (en) Light-emitting device and its manufacturing method
US8742438B2 (en) Semiconductor light-emitting device, method for manufacturing the same, and light-emitting apparatus including the same
JP5689225B2 (en) Light emitting device
JP5040355B2 (en) Semiconductor light emitting device and light emitting device having the same
US20090072250A1 (en) Chip type semiconductor light emitting device
US10629783B2 (en) Light emitting device
JP2009164423A (en) Light-emitting element
US9490403B2 (en) Color converting element and light emitting device including the same
KR20080025687A (en) White semiconductor light emitting element and manufacturing method thereof
JP5967269B2 (en) Light emitting device
JP5560674B2 (en) Semiconductor light emitting device
KR102464320B1 (en) Light emitting device package
JP5983068B2 (en) Semiconductor light emitting element and light emitting device
JP3950898B2 (en) White semiconductor light emitting device and method for producing the same
JP2023105255A (en) Light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131211

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141014

R150 Certificate of patent or registration of utility model

Ref document number: 5634003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250