JP5619976B2 - Copper alloy sheet with excellent heat dissipation and repeated bending workability - Google Patents
Copper alloy sheet with excellent heat dissipation and repeated bending workability Download PDFInfo
- Publication number
- JP5619976B2 JP5619976B2 JP2013192227A JP2013192227A JP5619976B2 JP 5619976 B2 JP5619976 B2 JP 5619976B2 JP 2013192227 A JP2013192227 A JP 2013192227A JP 2013192227 A JP2013192227 A JP 2013192227A JP 5619976 B2 JP5619976 B2 JP 5619976B2
- Authority
- JP
- Japan
- Prior art keywords
- axis
- copper alloy
- mass
- rotation angle
- alloy plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 50
- 230000017525 heat dissipation Effects 0.000 title claims description 16
- 238000005452 bending Methods 0.000 title description 27
- 239000013078 crystal Substances 0.000 claims description 40
- 239000000463 material Substances 0.000 claims description 40
- 239000010949 copper Substances 0.000 claims description 31
- 229910052802 copper Inorganic materials 0.000 claims description 19
- 239000012535 impurity Substances 0.000 claims description 12
- 229910052718 tin Inorganic materials 0.000 claims description 9
- 229910052725 zinc Inorganic materials 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 23
- 238000005097 cold rolling Methods 0.000 description 17
- 238000000137 annealing Methods 0.000 description 12
- 238000001953 recrystallisation Methods 0.000 description 10
- 229910052698 phosphorus Inorganic materials 0.000 description 9
- 239000011889 copper foil Substances 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 229910052738 indium Inorganic materials 0.000 description 6
- 229910052726 zirconium Inorganic materials 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000020169 heat generation Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000003252 repetitive effect Effects 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/10—Alloys based on copper with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
Description
本発明は、放熱用電子部品及び大電流用電子部品等に好適な銅合金板に関するものであり、特に、照明用などのLED実装基板をはじめとするフレキシブルプリント基板(FPC)として好適な銅合金板、特に放熱性及び繰返し曲げ加工性に優れた銅合金板、ならびにこれを用いた電子機器部品等に関する。 The present invention relates to a copper alloy plate suitable for electronic components for heat dissipation, electronic components for large currents, and the like, and in particular, a copper alloy suitable as a flexible printed circuit board (FPC) including LED mounting substrates for lighting and the like. The present invention relates to a plate, particularly a copper alloy plate excellent in heat dissipation and repetitive bending workability, and an electronic device component using the same.
LED照明は、従来の白熱電球や蛍光灯などと比較して低消費電力、長寿命、高速応答性等の長所を有し、製品価格の低下と共に、急速に普及が進んでおり、室内用照明に加えて、液晶テレビや液晶モニターなどのバックライト、自動車の照明用など、各種用途も広がっている。 LED lighting has advantages such as low power consumption, long life, and high-speed response compared to conventional incandescent bulbs and fluorescent lamps, etc., and it is rapidly spreading as product prices decrease. In addition, various applications such as backlights for LCD TVs and LCD monitors, and lighting for automobiles are also expanding.
LED自体は半導体であるため、定格範囲内での使用では発光素子自身は長寿命であるが、発光素子を覆う樹脂材料は熱により劣化しやすく、発熱により容易に透明度が低下して照明用の使用に適さなくなる。また、LEDは、発光特性や放熱性に配慮して、種々のパッケージ形状のものが製造されているが、小さなスペースで使用する場合には、省スペース化や成形方法など、様々な工夫が必要である。 Since the LED itself is a semiconductor, the light emitting element itself has a long life when used within the rated range. However, the resin material covering the light emitting element is easily deteriorated by heat, and the transparency is easily lowered by heat generation. Unsuitable for use. In addition, LEDs are manufactured in various package shapes in consideration of light emission characteristics and heat dissipation. However, when used in a small space, various devices such as space saving and molding methods are required. It is.
発熱の問題への対応として、FPCから効率良く放熱するため、FPCに放熱板を張り合わせることが提案されており、また、省スペース化については、FPC上にLEDを配置することが試みられている(特許文献1)。 In order to deal with the problem of heat generation, in order to efficiently dissipate heat from the FPC, it has been proposed to attach a heat sink to the FPC, and for space saving, an attempt has been made to place an LED on the FPC. (Patent Document 1).
また、照明装置として、LEDを配置した回路基板に複雑な加工を行い、立体成形を行うことも提案されている(特許文献2)。 In addition, as a lighting device, it has been proposed to perform complicated processing on a circuit board on which LEDs are arranged to perform three-dimensional molding (Patent Document 2).
LEDをFPC上に実装した場合、基板である樹脂の放熱性が十分でないため、長時間の使用で発光素子を覆う樹脂が熱劣化し、照明としての寿命が短くなってしまう。
発熱への対応として、FPCに放熱板としてアルミニウム板を張り合わせた場合、FPCの回路を構成している銅配線との線熱膨張係数の違いにより、FPC回路にそりが生じるという問題がある。さらに、熱による膨張、収縮を繰り返すことで、FPCの銅配線が繰返し引張り応力を受け、破断に至ることもある。
放熱板として銅板を用いた場合には上記問題は発生しないが、銅はアルミニウムよりも加工硬化係数が大きいため、複雑な形状にFPCを成型する際に、曲げ部にクラックが発生し易い。クラックが発生すると、これを車載などの繰返し振動が加わる環境下で使用する場合、クラックが進展して破断に至るなどの問題が生じる。
When the LED is mounted on the FPC, the heat dissipation of the resin that is the substrate is not sufficient, so that the resin that covers the light emitting element is deteriorated by heat for a long time, and the lifetime as illumination is shortened.
As a countermeasure to heat generation, when an aluminum plate is bonded to the FPC as a heat dissipation plate, there is a problem that warpage occurs in the FPC circuit due to a difference in linear thermal expansion coefficient from the copper wiring constituting the FPC circuit. Furthermore, by repeating expansion and contraction due to heat, the copper wiring of the FPC repeatedly receives tensile stress and may break.
When a copper plate is used as the heat radiating plate, the above problem does not occur. However, since copper has a larger work hardening coefficient than aluminum, cracks are likely to occur in the bent portion when FPC is molded into a complicated shape. When a crack occurs, when it is used in an environment where repeated vibration is applied, such as in-vehicle, a problem such as the crack progressing and breaking occurs.
このような曲げ加工性に関わる問題は、FPC基板用以外の放熱板においても発生しており、その一例として、スマートフォンやタブレットPCの液晶に用いられている液晶フレームと呼ばれる放熱部品が挙げられる。
一方、放熱部品に用いられる銅合金板は導電率が高いという特徴から、例えば、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子といった、大電流用電子部品としてもよく用いられる。大電流を流す部品は、通電時の発熱を軽減する目的から、例えば0.3〜2.0mmといった厚い銅合金板から加工されることが多いが、厚みが大きくなると曲げ加工の際にクラックが発生しやすくなるため、曲げ加工性に関わる問題は大電流用電子部品においても深刻である。
本発明は上記の課題を解決するためになされたものであり、放熱性、導電性、繰返し曲げ加工性、及び、形状維持性に優れた銅合金板を提供することを課題とする。
Such a problem relating to bending workability has also occurred in heat sinks other than those for FPC boards, and one example thereof is a heat dissipating component called a liquid crystal frame used in the liquid crystal of smartphones and tablet PCs.
On the other hand, a copper alloy plate used for a heat dissipation component is often used as a high-current electronic component such as a high-current connector or terminal used in an electric vehicle, a hybrid vehicle, or the like because of its high conductivity. For the purpose of reducing heat generation during energization, parts that pass a large current are often machined from a thick copper alloy plate such as 0.3 to 2.0 mm. However, when the thickness increases, cracks occur during bending. Since it is likely to occur, problems related to bending workability are also serious in high-current electronic components.
This invention is made | formed in order to solve said subject, and makes it a subject to provide the copper alloy plate excellent in heat dissipation, electroconductivity, repeated bending workability, and shape maintenance property.
本発明者は上記課題を解決するために研究を重ねたところ、特定の結晶方位の極密度を大きくすることで、繰返し曲げ加工性等を向上させることができることを見出した。 The present inventor conducted researches to solve the above problems, and found that repeated bending workability and the like can be improved by increasing the pole density of a specific crystal orientation.
以上の知見を背景にして完成した本発明は一側面において、Agを0〜1.0質量%、Tiを0〜0.08質量%、Niを0〜2.0質量%、Znを0〜3.5質量%、Cr、Fe、In、P、Si、Sn及びZrの群から選択された一種以上を合計で0〜0.5質量%含有し、残部がCu及び不可避的不純物からなり、
導電率が60%IACS以上であり、
引張強さが350MPa以上であり、
結晶の[001]方位と材料のND方向とを含む面に垂直な方向を軸とした回転角をΦ、ND方向を軸とした回転角をφ1、[001]方向を軸とした回転角をφ2と表記した場合に、ND軸を回転軸としてφ1だけ回転させた後に、ND軸とz軸とを一致させるためにΦだけ回転させ、最後に[001]軸周りにφ2だけ回転させることで材料のND,TD,RDと結晶の[001],[010],[100]とが一致する角度の組であるオイラー角(φ1,Φ,φ2)につき、オイラー角(40,45,0)の結晶方位の極密度が18以下である銅合金板である。
In one aspect, the present invention completed with the above knowledge in the background, Ag is 0 to 1.0 mass%, Ti is 0 to 0.08 mass%, Ni is 0 to 2.0 mass%, and Zn is 0 to 0 mass%. 3.5% by mass, containing one or more selected from the group consisting of Cr, Fe, In, P, Si, Sn and Zr in a total of 0 to 0.5% by mass, the balance consisting of Cu and inevitable impurities,
Conductivity is 60% IACS or higher,
The tensile strength is 350 MPa or more,
The rotation angle about the direction perpendicular to the plane including the [001] orientation of the crystal and the ND direction of the material is Φ, the rotation angle about the ND direction is φ1, and the rotation angle about the [001] direction is When it is expressed as φ2, after rotating by φ1 with the ND axis as the rotation axis, it is rotated by φ to match the ND axis and the z axis, and finally it is rotated by φ2 around the [001] axis. Euler angles (40, 45, 0) for Euler angles (φ1, Φ, φ2), which are pairs of angles where ND, TD, RD of the material and [001], [010], [100] of the crystal coincide with each other This is a copper alloy plate having a crystal orientation pole density of 18 or less.
本発明に係る銅合金板は一実施形態において、Ag、Ti、Ni、Zn、Cr、Fe、In、P、Si、Sn及びZrからなる群から選択された一種以上を合計で0.01質量%以上含有する。 In one embodiment, the copper alloy sheet according to the present invention is 0.01 mass in total of at least one selected from the group consisting of Ag, Ti, Ni, Zn, Cr, Fe, In, P, Si, Sn, and Zr. % Or more.
本発明に係る銅合金板は別の一実施形態において、Zrを0.01〜0.20質量%含有し、残部がCu及び不可避的不純物からなる。 In another embodiment, the copper alloy plate according to the present invention contains 0.01 to 0.20 mass% of Zr, with the balance being Cu and inevitable impurities.
本発明に係る銅合金板は更に別の一実施形態において、Snを0.01〜0.20質量%含有し、残部がCu及び不可避的不純物からなる。 In yet another embodiment, the copper alloy plate according to the present invention contains 0.01 to 0.20 mass% of Sn, with the balance being Cu and inevitable impurities.
本発明に係る銅合金板は更に別の一実施形態において、Feを0.05〜0.35質量%、Pを0.01〜0.12質量%、Snを0〜0.03質量%、Niを0〜0.1質量%、Znを0〜0.5質量%含有し、残部がCu及び不可避的不純物からなる。 In yet another embodiment, the copper alloy plate according to the present invention is 0.05 to 0.35 mass% Fe, 0.01 to 0.12 mass% P, 0 to 0.03 mass% Sn, Ni is contained in an amount of 0 to 0.1 mass%, Zn is contained in an amount of 0 to 0.5 mass%, and the balance is made of Cu and inevitable impurities.
本発明に係る銅合金板は別の一実施形態において、前記オイラー角(40,45,0)の結晶方位の極密度が0.5以上である。 In another embodiment of the copper alloy plate according to the present invention, the pole density of the crystal orientation of the Euler angles (40, 45, 0) is 0.5 or more.
本発明に係る銅合金板は更に別の一実施形態において、前記オイラー角(40,45,0)の結晶方位の極密度が1以上9以下である。 In still another embodiment of the copper alloy plate according to the present invention, the pole density of the crystal orientation of the Euler angles (40, 45, 0) is 1 or more and 9 or less.
本発明に係る銅合金板は更に別の一実施形態において、引張り強さが200℃で30分間加熱後に250MPa以上である。 In yet another embodiment, the copper alloy sheet according to the present invention has a tensile strength of 250 MPa or more after heating at 200 ° C. for 30 minutes.
本発明に係る銅合金板は更に別の一実施形態において、放熱用電子部品に用いられる。 In yet another embodiment, the copper alloy plate according to the present invention is used for heat dissipating electronic components.
本発明に係る銅合金板は更に別の一実施形態において、大電流用電子部品に用いられる。 In yet another embodiment, the copper alloy plate according to the present invention is used for a high-current electronic component.
本発明に係る銅合金板は更に別の一実施形態において、FPC基板用である。 In yet another embodiment, the copper alloy plate according to the present invention is for an FPC board.
本発明に係る銅合金板は更に別の一実施形態において、LED照明を実装したFPC基板用である。 In yet another embodiment, the copper alloy plate according to the present invention is for an FPC board on which LED lighting is mounted.
本発明に係る銅合金板は更に別の一実施形態において、厚みが0.05〜0.3mmである。 In yet another embodiment, the copper alloy plate according to the present invention has a thickness of 0.05 to 0.3 mm.
本発明は別の一側面において、本発明の銅合金板を用いた電子機器部品である。 Another aspect of the present invention is an electronic device component using the copper alloy plate of the present invention.
本発明は更に別の一側面において、本発明の銅合金板を用いたLED照明を実装したFPCである。 In still another aspect, the present invention is an FPC in which LED lighting using the copper alloy plate of the present invention is mounted.
本発明によれば、放熱性、導電性、繰返し曲げ加工性、及び、形状維持性に優れた銅合金板を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the copper alloy plate excellent in heat dissipation, electroconductivity, repeated bending workability, and shape maintenance property can be provided.
(銅箔の成分)
合金元素添加のベースのCuとしてはJIS H3100 C1020に規格する無酸素銅又はJIS H3100 C1100に規格するタフピッチ銅が適する。酸素濃度は、タフピッチ銅では0.02〜0.05質量%、無酸素銅では0.001質量%以下が通常である。
本発明の銅合金板は、Agを0〜1.0質量%、Tiを0〜0.08質量%、Niを0〜2.0質量%、Znを0〜3.5質量%、Cr、Fe、In、P、Si、Sn及びZrの群から選択された一種以上を合計で0〜0.5質量%含有し、残部がCu及び不可避的不純物からなる。
Cuと比較し酸化しやすいCr、Fe、In、Ni、P、Si、Sn、Ti、Zn及びZrは、無酸素銅溶湯中に添加するのが一般的である。酸素を含有する溶銅にP、Si等の脱酸剤を添加して酸素濃度を10ppm以下に下げた後、これら合金元素を添加しても良い。AgはCuより酸化し難いので、タフピッチ銅溶湯中、無酸素銅溶湯中ともに添加できる。
(Copper foil components)
As the base Cu to which the alloy element is added, oxygen free copper standardized to JIS H3100 C1020 or tough pitch copper standardized to JIS H3100 C1100 is suitable. The oxygen concentration is usually 0.02 to 0.05 mass% for tough pitch copper and 0.001 mass% or less for oxygen-free copper.
The copper alloy sheet of the present invention is composed of 0 to 1.0 mass% Ag, 0 to 0.08 mass% Ti, 0 to 2.0 mass% Ni, 0 to 3.5 mass% Zn, Cr, One or more selected from the group consisting of Fe, In, P, Si, Sn and Zr is contained in a total amount of 0 to 0.5% by mass, and the balance is made of Cu and inevitable impurities.
In general, Cr, Fe, In, Ni, P, Si, Sn, Ti, Zn, and Zr, which are easily oxidized as compared with Cu, are added to the oxygen-free copper melt. After adding a deoxidizer such as P or Si to the molten copper containing oxygen to reduce the oxygen concentration to 10 ppm or less, these alloy elements may be added. Since Ag is harder to oxidize than Cu, it can be added to both the tough pitch copper melt and the oxygen free copper melt.
銅箔の耐熱性を改善するために、銅にAg、Ti、Ni、Zn、Cr、Fe、In、P、Si、Sn及びZrからなる群から選択された一種以上を合計で0.01質量%以上添加してもよい。添加元素の合計濃度が0.01質量%を下回ると、添加元素の効果が発現せず耐熱性が不足するおそれがある。
Agは添加による導電率の低下の影響が小さいため、特に制限はないが、添加濃度が高くなると共にコストが増加するため、1.0質量%以下とする。
添加による導電率低下の影響が大きいCr、Fe、In、P、Si、Sn、Zrは、これら元素の合計につき、0.5質量%以下、また、特に影響が大きいTiは、0.08質量%以下とする。また、Niは2.0質量%以下、Znは3.5質量%以下とする。
In order to improve the heat resistance of the copper foil, a total of 0.01 mass of one or more selected from the group consisting of Ag, Ti, Ni, Zn, Cr, Fe, In, P, Si, Sn, and Zr is added to copper. % Or more may be added. When the total concentration of the additive elements is less than 0.01% by mass, the effects of the additive elements are not exhibited and the heat resistance may be insufficient.
Ag is not particularly limited since the effect of the decrease in conductivity due to the addition is small, but it is 1.0% by mass or less because the addition concentration increases and the cost increases.
Cr, Fe, In, P, Si, Sn, and Zr, which have a large effect on the decrease in conductivity due to the addition, are 0.5% by mass or less with respect to the total of these elements. % Or less. Ni is 2.0% by mass or less, and Zn is 3.5% by mass or less.
高い耐熱性を有し、本発明に特に好適な銅合金板の例として、Zrを0.01〜0.20質量%(好ましくは0.01〜0.15質量%)含有し、残部がCu及び不可避的不純物からなる銅合金板、Snを0.01〜0.20質量%(好ましくは0.01〜0.15質量%)含有し、残部がCu及び不可避的不純物からなる銅合金板、Feを0.05〜0.35質量%(好ましくは0.08〜0.35質量%)、Pを0.01〜0.12質量%(好ましくは0.02〜0.12質量%)、Snを0〜0.03質量%、Niを0〜0.1質量%(好ましくは0〜0.03質量%)、Znを0〜0.5質量%(好ましくは0〜0.4質量%)含有し、残部がCu及び不可避的不純物からなる銅合金板等が挙げられる。 As an example of a copper alloy plate having high heat resistance and particularly suitable for the present invention, Zr is contained in an amount of 0.01 to 0.20 mass% (preferably 0.01 to 0.15 mass%), and the balance is Cu. And a copper alloy plate made of unavoidable impurities, containing 0.01 to 0.20% by mass (preferably 0.01 to 0.15% by mass) of Sn, with the balance being Cu and unavoidable impurities, 0.05 to 0.35 mass% (preferably 0.08 to 0.35 mass%) of Fe, 0.01 to 0.12 mass% (preferably 0.02 to 0.12 mass%) of P, Sn is 0-0.03% by mass, Ni is 0-0.1% by mass (preferably 0-0.03% by mass), and Zn is 0-0.5% by mass (preferably 0-0.4% by mass). And a copper alloy plate containing the balance of Cu and inevitable impurities.
(放熱性)
加熱された材料を効率よく冷却するには、接合する放熱材として熱伝導が良い材料が求められる。熱伝導率は、一般に、材料の導電率が高いものほど良い。LED照明点灯時の発熱を考えると、LEDの実装密度や照明装置の形状などの影響要因もあるが、導電率が60%IACS以上であればよく、70%IACS以上であればより好ましい。
(Heat dissipation)
In order to efficiently cool the heated material, a material having good heat conduction is required as a heat dissipation material to be joined. In general, the higher the conductivity of the material, the better the thermal conductivity. Considering the heat generated when the LED lighting is turned on, there are influential factors such as the LED mounting density and the shape of the lighting device, but the conductivity may be 60% IACS or more, and more preferably 70% IACS or more.
(繰返し曲げ加工性)
繰返し曲げ加工性については、集合組織との関係を調べたところ、理由は定かではないが、特定の結晶方位の極密度と、繰返し曲げ性とに相関が見られた。具体的には、図1に示すように、結晶の[001]方位と材料のND方向とを含む面に垂直な方向を軸とした回転角をΦ、ND方向を軸とした回転角をφ1、[001]方向を軸とした回転角をφ2と表記した場合に、ND軸を回転軸としてφ1だけ回転させた後に、ND軸とz軸とを一致させるためにΦだけ回転させ、最後に[001]軸周りにφ2だけ回転させることで材料のND,TD,RDと結晶の[001],[010],[100]とが一致する角度の組であるオイラー角(φ1,Φ,φ2)につき、オイラー角(40,45,0)の結晶方位の極密度が18以下に制御されていればよく、13以下に制御されていれば好ましく、さらに9以下に制御されていればより好ましい。また、オイラー角(40,45,0)の結晶方位の極密度の下限は繰返し曲げ性の観点からは特に限定する必要は無いが、例えば0.01以上、又は0.05以上であり、典型的には0.1以上である。ここで、「RD」は圧延方向、「ND」は圧延面に垂直な方向、「TD」は幅方向である。
(Repeated bending workability)
As for the repetitive bending workability, the relationship with the texture was examined. The reason was not clear, but a correlation was observed between the pole density of a specific crystal orientation and the repetitive bending property. Specifically, as shown in FIG. 1, the rotation angle about the direction perpendicular to the plane including the [001] orientation of the crystal and the ND direction of the material is Φ, and the rotation angle about the ND direction is φ1 , When the rotation angle about the [001] direction is expressed as φ2, after rotating by φ1 with the ND axis as the rotation axis, the rotation is rotated by φ to match the ND axis and the z axis, and finally The Euler angles (φ1, Φ, φ2) are a set of angles where the ND, TD, RD of the material and the [001], [010], [100] of the crystal coincide with each other by rotating by φ2 around the [001] axis. ), The pole density of the crystal orientation of the Euler angles (40, 45, 0) may be controlled to 18 or less, preferably 13 or less, and more preferably 9 or less. . Further, the lower limit of the pole density of the crystal orientation of Euler angles (40, 45, 0) is not particularly limited from the viewpoint of repeated bendability, but is 0.01 or more, or 0.05 or more, for example. Specifically, it is 0.1 or more. Here, “RD” is the rolling direction, “ND” is the direction perpendicular to the rolling surface, and “TD” is the width direction.
(形状維持性)
材料を所定の形状に成形した後、初期の加工形状を維持するには、ある程度の材料強度が必要である。加工形状の構造などの影響要因もあるが、材料強度である引張強さが350MPa未満の場合には、材料に加わる力で容易に変形する。このため、引張強さは350MPa以上である必要がある。強度の上限については特に設定しないが、材料の加工度を上げることで強度を高くした場合には、一般に曲げ加工性が劣化することが知られており、従って、曲げ加工性とのバランスを考慮して材料を加工すれば良い。また、引張強さは400MPa以上であるのがより好ましい。
(Shape maintenance)
After the material is formed into a predetermined shape, a certain level of material strength is required to maintain the initial processed shape. Although there are influential factors such as the structure of the processed shape, when the tensile strength, which is the material strength, is less than 350 MPa, it is easily deformed by the force applied to the material. For this reason, the tensile strength needs to be 350 MPa or more. The upper limit of strength is not particularly set, but it is generally known that when the strength is increased by increasing the workability of the material, bending workability is generally deteriorated. Therefore, the balance with bending workability is considered. Then, the material can be processed. Further, the tensile strength is more preferably 400 MPa or more.
(耐熱性)
耐熱性については、LED照明の特性から、照明機器として長時間使用できるよう、通常は150℃未満の温度で使用されるように設計される。この熱によって材料が軟化した場合には初期の加工形状を維持することができない。このような現象を避けるため、耐熱性を確保することは重要である。一方、照明機器としては数万時間程度の使用が想定されるが、これをそのまま再現する長時間の加熱試験は現実的ではないため、目安として、実使用条件よりも高温で短時間、ここでは200℃で30分間保持する条件で加熱し、引張強さ250MPa以上の場合に耐熱性が良好と判断した。また、200℃で30分間加熱後に300MPa以上を維持するのがより好ましい。なお、耐熱性は結晶方位の極密度との相関が見られ、結晶の[001]方位と材料のND方向とを含む面に垂直な方向を軸とした回転角をΦ、ND方向を軸とした回転角をφ1、[001]方向を軸とした回転角をφ2と表記した場合に、ND軸を回転軸としてφ1だけ回転させた後に、ND軸とz軸とを一致させるためにΦだけ回転させ、最後に[001]軸周りにφ2だけ回転させることで材料のND,TD,RDと結晶の[001],[010],[100]とが一致する角度の組であるオイラー角(φ1,Φ,φ2)につき、オイラー角(40,45,0)の結晶方位の極密度が0.5未満となると耐熱性が不良となることがある。このため、当該オイラー角(40,45,0)の結晶方位の極密度は0.5以上に制御されているのが好ましく、1以上に制御されているのがより好ましい。
(Heat-resistant)
About heat resistance, from the characteristic of LED lighting, it is designed so that it may be normally used at the temperature of less than 150 degreeC so that it can be used as lighting equipment for a long time. When the material is softened by this heat, the initial processed shape cannot be maintained. In order to avoid such a phenomenon, it is important to ensure heat resistance. On the other hand, it is assumed that the lighting equipment will be used for several tens of thousands of hours, but a long-time heating test that reproduces this as it is is not realistic. Heating was carried out at 200 ° C. for 30 minutes, and when the tensile strength was 250 MPa or more, it was judged that the heat resistance was good. Moreover, it is more preferable to maintain 300 MPa or more after heating at 200 ° C. for 30 minutes. The heat resistance has a correlation with the pole density of the crystal orientation, and the rotation angle about the direction perpendicular to the plane including the [001] orientation of the crystal and the ND direction of the material is Φ, and the ND direction is the axis. When the rotation angle is expressed as φ1 and the rotation angle with the [001] direction as the axis is φ2, after rotating the ND axis as the rotation axis by φ1, only Φ is used to make the ND axis and the z axis coincide with each other. By rotating and finally rotating around the [001] axis by φ2, Euler angles (a set of angles at which the ND, TD, and RD of the material coincide with the [001], [010], and [100] of the crystal) With regard to (φ1, φ, φ2), when the pole density of the crystal orientation of Euler angles (40, 45, 0) is less than 0.5, the heat resistance may be poor. For this reason, the pole density of the crystal orientation of the Euler angles (40, 45, 0) is preferably controlled to 0.5 or more, and more preferably controlled to 1 or more.
(厚み)
本発明に係る銅合金板の厚みは、0.05〜0.3mmであるのが好ましい。銅合金板の厚みが0.05mm未満であると材料が薄いために形状を維持するのが困難という問題が生じることがあり、0.3mm超であるとFPC基板等の用途においては材料が厚すぎるために製品の重量が重くなりすぎるという問題が生じることがある。また、このように、本発明に係る銅合金板は銅箔の形態も含んでいる。
なお、FPC基板以外の放熱用電子部品の用途、大電流用電子部品の用途等においては、厚みが0.3〜2.0mmの銅合金板も好適に用いられることがある。
ここで、大電流用電子部品としては、特に限定されず一般に大電流用として用いられるものを含み、例えば、10アンペア以上、より典型的には30アンペア以上、さらに典型的には50アンペア以上の電流が流れる電子部品を示す。電気自動車用やハイブリッド自動車等用のコネクタでは100アンペア以上の電流が流れるものもある。
(Thickness)
The thickness of the copper alloy plate according to the present invention is preferably 0.05 to 0.3 mm. If the thickness of the copper alloy plate is less than 0.05 mm, there is a problem that it is difficult to maintain the shape because the material is thin. If it is more than 0.3 mm, the material is thick in applications such as an FPC board. This may cause a problem that the product becomes too heavy. In addition, as described above, the copper alloy plate according to the present invention includes a form of copper foil.
In addition, a copper alloy plate having a thickness of 0.3 to 2.0 mm may be suitably used in applications such as heat dissipation electronic components other than FPC boards and high current electronic components.
Here, the electronic component for large current is not particularly limited and includes those generally used for large current. For example, it is 10 amperes or more, more typically 30 amperes or more, and more typically 50 amperes or more. An electronic component through which a current flows is shown. Some connectors for electric vehicles and hybrid vehicles carry a current of 100 amperes or more.
(製造プロセス)
銅合金板の成分、形状維持性及び結晶方位の極密度が上記の特性範囲にあれば、製造条件によらず、本発明の効果は発現する。本発明の銅合金板は、例えば、次のようなプロセスによって製造することができる。
(Manufacturing process)
The effects of the present invention will be manifested regardless of the production conditions if the copper alloy sheet components, shape maintainability, and crystal density extreme density are within the above-mentioned characteristic ranges. The copper alloy plate of the present invention can be manufactured, for example, by the following process.
圧延銅箔の製造プロセスは、電気銅を純銅の原料に使用し、必要に応じて合金元素を添加した後、鋳造して厚み100〜300mmのインゴットを製造する。このインゴットを熱間圧延して厚み5〜20mm程度とした後、冷間圧延と焼鈍を繰り返して、冷間圧延で所定の厚みに仕上げる。
先述の形状維持性及び結晶方位の極密度を満たす銅箔は、最終再結晶焼鈍の昇温速度、ならびに最終再結晶焼鈍の直後に行われる最終冷間圧延の加工条件である総加工度、及び、1パス目の加工度を調整することで得られる。ここで、最終再結晶焼鈍とは、製品の厚みまで加工する最終冷間圧延の前の再結晶焼鈍である。また、最終冷間圧延では、一対のロール間に材料を繰返し通過させ(以下「パス」とする)、厚みを仕上げていく。ここで、1パス目とは、最終再結晶焼鈍後の材料を製品の厚みに仕上げる最終冷間圧延における最初のパスを示す。
最終再結晶焼鈍の昇温速度は12〜50℃/sであれば良い。昇温速度が12℃/s未満である場合、及び、50℃/s超である場合は、先述の繰返し曲げ加工性を満たすことが困難である。
最終冷間圧延の総加工度の上限値は特に限定はされない。最終冷間圧延の総加工度は一般的には85%以下である。加工度は、圧延前と圧延後との厚みの差を圧延前の厚みで除した値を百分率で表したものである。また、総加工度の下限値については、合金成分や濃度により異なり、引張強さの下限値を超えるように設定すれば良い。例えば、Snを0.12質量%含む銅箔については、最終冷間圧延の総加工度は50%以上であればよく、60%以上であればより好ましい。
最終冷間圧延の1パス目の加工度は20%以下であれば良い。最終冷間圧延の1パス目の加工度が20%を超える場合は、本発明に係る結晶方位の極密度の規定を満たすことができず、先述の繰り返し曲げ加工性を満たすことが困難である。
The manufacturing process of a rolled copper foil uses electrolytic copper as a raw material for pure copper, adds an alloying element as necessary, and casts to produce an ingot having a thickness of 100 to 300 mm. This ingot is hot-rolled to a thickness of about 5 to 20 mm, and then cold-rolling and annealing are repeated to finish it to a predetermined thickness by cold-rolling.
The copper foil that satisfies the above-mentioned shape maintenance property and the extreme density of the crystal orientation is the temperature increase rate of the final recrystallization annealing, the total workability that is the processing conditions of the final cold rolling performed immediately after the final recrystallization annealing, and It is obtained by adjusting the processing degree of the first pass. Here, the final recrystallization annealing is a recrystallization annealing before the final cold rolling for processing to the thickness of the product. In the final cold rolling, the material is repeatedly passed between a pair of rolls (hereinafter referred to as “pass”) to finish the thickness. Here, the first pass indicates the first pass in the final cold rolling in which the material after the final recrystallization annealing is finished to the product thickness.
The temperature increase rate of the final recrystallization annealing may be 12 to 50 ° C./s. When the rate of temperature increase is less than 12 ° C./s and when it exceeds 50 ° C./s, it is difficult to satisfy the above-described repeated bending workability.
The upper limit value of the total workability of the final cold rolling is not particularly limited. The total degree of work in final cold rolling is generally 85% or less. The degree of work is a percentage obtained by dividing the difference in thickness between before and after rolling by the thickness before rolling. Further, the lower limit value of the total workability varies depending on the alloy components and the concentration, and may be set so as to exceed the lower limit value of the tensile strength. For example, for a copper foil containing 0.12% by mass of Sn, the total degree of work in the final cold rolling may be 50% or more, and more preferably 60% or more.
The degree of processing in the first pass of the final cold rolling may be 20% or less. When the degree of workability in the first pass of final cold rolling exceeds 20%, it is difficult to satisfy the above-mentioned repetitive bending workability because it is not possible to satisfy the definition of the extreme density of crystal orientation according to the present invention. .
(用途)
本発明の銅合金板は、リードフレーム、コネクタ、端子、ピン、リレー、スイッチ、ソケット、バスバー、放熱板、二次電池用箔材等の電子機器部品等に使用することができる。特に、本発明の銅合金板は、放熱用電子部品である放熱板の用途として有用であり、その中でも、LED照明を実装したFPCの材料、スマートフォンやタブレットPCで用いられる液晶フレーム等として好適に用いられる。さらに、電気自動車、ハイブリッド自動車等で用いられる大電流用コネクタや端子等の大電流用電子部品としても、特に好適に用いられる。
(Use)
The copper alloy plate of the present invention can be used for electronic equipment parts such as lead frames, connectors, terminals, pins, relays, switches, sockets, bus bars, heat sinks, and foil materials for secondary batteries. In particular, the copper alloy plate of the present invention is useful as a heat sink that is an electronic component for heat dissipation, and among them, it is suitably used as an FPC material mounted with LED lighting, a liquid crystal frame used in smartphones and tablet PCs, and the like. Used. Furthermore, it is particularly preferably used as a high-current electronic component such as a high-current connector or terminal used in an electric vehicle, a hybrid vehicle, or the like.
以下に本発明の実施例を示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention are shown below, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.
[圧延銅箔の製造]
表1〜3に記載の各種銅母材に、表1〜3に記載の各種元素を添加し、厚み100mmのインゴットを鋳造した。次に、インゴットを熱間圧延にて5mmまで圧延し、酸化スケールを除去した後、冷間圧延と焼鈍を繰り返し、最終冷間圧延にて表1〜3に記載の条件で0.05〜1.2mmまで圧延した。なお、最終冷間圧延の直前に最終再結晶焼鈍を行った。最終再結晶焼鈍は表1〜3に記載の昇温速度で、材料温度が最高で500℃となるよう加熱し、室温(25℃)から500℃まで到達する時間から、昇温速度を算出した。そして、材料温度が500℃に到達後、直ちに冷却を行った。
[Manufacture of rolled copper foil]
Various elements described in Tables 1 to 3 were added to various copper base materials described in Tables 1 to 3 to cast ingots having a thickness of 100 mm. Next, the ingot is rolled to 5 mm by hot rolling, and after removing the oxide scale, cold rolling and annealing are repeated, and 0.05 to 1 under the conditions shown in Tables 1 to 3 by final cold rolling. Rolled to 2 mm. The final recrystallization annealing was performed immediately before the final cold rolling. The final recrystallization annealing was performed at the rate of temperature increase described in Tables 1 to 3, and the material temperature was heated to 500 ° C. at maximum, and the rate of temperature increase was calculated from the time to reach 500 ° C. from room temperature (25 ° C.). . And it cooled immediately after material temperature reached | attained 500 degreeC.
[形状維持性]
JIS Z 2241に準じて、圧延平行方向が長手方向となるように採取したJIS13B号試験片を供試材とし、引張り試験により引張強さを求めた。引張り試験では、ORIENTEC社製のUTM−10Tを用い、引張り速度5mm/分にて、同一試料につきn=2で測定した平均値を測定値とした。引張強さが350MPa以上のとき、形状維持性を○とし、引張強さが350MPa未満のとき、形状維持性を×と評価した。
[Shape maintenance]
In accordance with JIS Z 2241, a JIS No. 13B test piece collected so that the rolling parallel direction was the longitudinal direction was used as a test material, and the tensile strength was obtained by a tensile test. In the tensile test, UTM-10T manufactured by ORIENTEC Co., Ltd. was used, and the average value measured at n = 2 for the same sample at a tensile speed of 5 mm / min was used as the measured value. When the tensile strength was 350 MPa or more, the shape maintaining property was evaluated as ◯, and when the tensile strength was less than 350 MPa, the shape maintaining property was evaluated as x.
[放熱性]
最終冷間圧延後の板厚にて、JIS H 0505に準拠した四端子法により測定した導電率(%IACS)にて評価した。
[Heat dissipation]
The plate thickness after the final cold rolling was evaluated by the conductivity (% IACS) measured by the four-terminal method based on JIS H 0505.
[結晶方位の極密度]
20mm四方に切り出した試料を結晶方位の極密度測定に供した。結晶の[001]方位と材料のND方向とを含む面に垂直な方向を軸とした回転角をΦ、ND方向を軸とした回転角をφ1、[001]方向を軸とした回転角をφ2と表記した場合に、ND軸を回転軸としてφ1だけ回転させた後に、ND軸とz軸とを一致させるためにΦだけ回転させ、最後に[001]軸周りにφ2だけ回転させることで材料のND,TD,RDと結晶の[001],[010],[100]とが一致する角度の組であるオイラー角(φ1,Φ,φ2)につき、(40,45,0)の結晶方位の極密度を評価した。具体的には、まず、株式会社リガク製X線回折装置RINT-2000を用いて、Schultzの反射法による正極点測定を行った。次に、測定したデータについて、株式会社リガク製ソフトウェアPole Figure DataProcessingを用いて極点図化し、株式会社ノルム工学製Standard ODFを用いてオイラー角を主軸とするオイラー空間における結晶粒方位分布関数ODF(Orientation Dsitribution Function)を求め、当該オイラー角の極密度を評価した。
[Polar density of crystal orientation]
A sample cut into a 20 mm square was subjected to measurement of polar density of crystal orientation. The rotation angle about the direction perpendicular to the plane including the [001] orientation of the crystal and the ND direction of the material is Φ, the rotation angle about the ND direction is φ1, and the rotation angle about the [001] direction is When it is expressed as φ2, after rotating by φ1 with the ND axis as the rotation axis, it is rotated by φ to match the ND axis and the z axis, and finally it is rotated by φ2 around the [001] axis. A crystal of (40, 45, 0) per Euler angle (φ1, Φ, φ2), which is a set of angles where the ND, TD, RD of the material and the [001], [010], [100] of the crystal coincide with each other. The pole density of the orientation was evaluated. Specifically, first, positive electrode spot measurement was performed by a Schultz reflection method using an X-ray diffractometer RINT-2000 manufactured by Rigaku Corporation. Next, the measured data is converted into a pole figure using the Pole Figure DataProcessing software manufactured by Rigaku Corporation, and the grain orientation distribution function ODF (Orientation) in the Euler space whose main axis is the Euler angle using the Standard ODF manufactured by Norm Engineering Co., Ltd. Dstribution Function) was determined and the extreme density of the Euler angle was evaluated.
[耐熱性]
上記のJIS13B号試験片を用い、これを加熱炉に入れて温度が200℃に達した後に30分間保持して試料を取り出し、空冷して引張り試験に供した。引張り試験は、上記と同じ条件で実施した。耐熱性の評価基準は以下の通りとした:
○:引張強さ300MPa以上
△:引張強さ250MPa以上〜300MPa未満
×:引張強さ250MPa未満
[Heat-resistant]
Using the above JIS13B test piece, the sample was put in a heating furnace and, after the temperature reached 200 ° C., held for 30 minutes, the sample was taken out, air-cooled, and subjected to a tensile test. The tensile test was performed under the same conditions as described above. The evaluation criteria for heat resistance were as follows:
○: Tensile strength 300 MPa or more Δ: Tensile strength 250 MPa or more to less than 300 MPa ×: Tensile strength less than 250 MPa
[繰返し曲げ加工性]
以下の手順で、繰返し曲げ加工性を評価した。
(1)圧延平行方向および直角方向につき、長さ50mm×幅10mmに試料を切り出した。
(2)曲げR=0.5mmにて、90°にV曲げ加工し、これを元の短冊状に曲げ戻した後、90°V曲げ加工と曲げ戻しを繰り返した。
(3)上記操作を繰り返して、1回毎に90°V曲げした時の曲げ加工部を50倍に拡大観察し、クラックまたは破断発生の有無を確認した。そして、クラックまたは破断が発生しない最大曲げ回数を調査した。クラックが発生しない最大曲げ回数が5回以上を「◎」、4回を「○」、3回を「△」、3回未満を「×」として評価した。
表1〜3に評価条件及び結果を示す。
[Repeated bending workability]
Repeated bending workability was evaluated by the following procedure.
(1) A sample was cut into a length of 50 mm and a width of 10 mm in the rolling parallel direction and the perpendicular direction.
(2) V-bending was performed at 90 ° at a bending R = 0.5 mm, and this was bent back to the original strip shape, and then 90 ° V bending and bending back were repeated.
(3) The above operation was repeated, and the bent portion when bent 90 ° V every time was magnified 50 times to confirm whether cracks or breakage occurred. Then, the maximum number of bendings at which cracks or breakage did not occur was investigated. The maximum number of bendings at which cracks did not occur was evaluated as “」 ”for 4 times or more,“ ◯ ”for 4 times,“ Δ ”for 3 times, and“ x ”for less than 3 times.
Tables 1 to 3 show the evaluation conditions and results.
実施例1〜45は、いずれも各元素の濃度が上限値以下であり、引張強さが350MPa以上、結晶の[001]方位と材料のND方向とを含む面に垂直な方向を軸とした回転角をΦ、ND方向を軸とした回転角をφ1、[001]方向を軸とした回転角をφ2と表記した場合に、ND軸を回転軸としてφ1だけ回転させた後に、ND軸とz軸とを一致させるためにΦだけ回転させ、最後に[001]軸周りにφ2だけ回転させることで材料のND,TD,RDと結晶の[001],[010],[100]とが一致する角度の組であるオイラー角(φ1,Φ,φ2)につき、オイラー角(40,45,0)の結晶方位の極密度が18以下であることから、いずれも形状維持性、放熱性(導電率)、及び繰返し曲げ加工性に優れていた。
比較例1は、添加元素濃度が高すぎるため、導電率が低くて放熱性が悪かった。
比較例2と6は、最終冷間圧延における1パス目の加工度が20%を超えているため、結晶方位の極密度の規定を満たしておらず、繰返し曲げ加工性が悪かった。
比較例3と7は、最終再結晶焼鈍における昇温速度が12℃/s未満となっているため、結晶方位の極密度の規定を満たしておらず、繰返し曲げ加工性が悪かった。
比較例4は、最終再結晶焼鈍における昇温速度が50℃/sを超えているため、結晶方位の極密度の規定を満たしておらず、繰返し曲げ加工性が悪かった。
比較例5は、最終冷間圧延における圧延総加工度が低すぎるため、引張り強さが350MPa未満となっており、形状維持性が悪かった。
In each of Examples 1 to 45, the concentration of each element is not more than the upper limit, the tensile strength is 350 MPa or more, and the direction perpendicular to the plane including the [001] orientation of the crystal and the ND direction of the material is used as an axis. When the rotation angle is Φ, the rotation angle with the ND direction as the axis is φ1, and the rotation angle with the [001] direction as the axis is φ2, the ND axis is rotated by φ1 as the rotation axis. Rotate by φ to match the z-axis, and finally rotate by φ2 around the [001] axis, so that the materials ND, TD, RD and crystal [001], [010], [100] For the Euler angles (φ1, Φ, φ2), which are a set of coincident angles, the pole density of the crystal orientation of the Euler angles (40, 45, 0) is 18 or less. Excellent electrical conductivity) and repeated bending workability.
In Comparative Example 1, since the additive element concentration was too high, the conductivity was low and the heat dissipation was poor.
In Comparative Examples 2 and 6, since the degree of work in the first pass in the final cold rolling exceeds 20%, the definition of the extreme density of the crystal orientation is not satisfied, and the repeated bending workability is poor.
In Comparative Examples 3 and 7, the rate of temperature increase in the final recrystallization annealing was less than 12 ° C./s, so that the definition of the extreme density of the crystal orientation was not satisfied, and the repeated bending workability was poor.
In Comparative Example 4, since the rate of temperature increase in the final recrystallization annealing exceeded 50 ° C./s, the definition of the extreme density of the crystal orientation was not satisfied, and the repeated bending workability was poor.
In Comparative Example 5, since the total degree of rolling in the final cold rolling was too low, the tensile strength was less than 350 MPa, and the shape maintainability was poor.
Claims (15)
導電率が60%IACS以上であり、
引張強さが350MPa以上であり、
結晶の[001]方位と材料のND方向とを含む面に垂直な方向を軸とした回転角をΦ、ND方向を軸とした回転角をφ1、[001]方向を軸とした回転角をφ2と表記した場合に、ND軸を回転軸としてφ1だけ回転させた後に、ND軸とz軸とを一致させるためにΦだけ回転させ、最後に[001]軸周りにφ2だけ回転させることで材料のND,TD,RDと結晶の[001],[010],[100]とが一致する角度の組であるオイラー角(φ1,Φ,φ2)につき、オイラー角(40,45,0)の結晶方位の極密度が18以下である銅合金板。 Cu and unavoidable impurities,
Conductivity is 60% IACS or higher,
The tensile strength is 350 MPa or more,
The rotation angle about the direction perpendicular to the plane including the [001] orientation of the crystal and the ND direction of the material is Φ, the rotation angle about the ND direction is φ1, and the rotation angle about the [001] direction is When it is expressed as φ2, after rotating by φ1 with the ND axis as the rotation axis, it is rotated by φ to match the ND axis and the z axis, and finally it is rotated by φ2 around the [001] axis. Euler angles (40, 45, 0) for Euler angles (φ1, Φ, φ2), which are pairs of angles where ND, TD, RD of the material and [001], [010], [100] of the crystal coincide with each other A copper alloy plate having a polar density of 18 or less.
導電率が60%IACS以上であり、
引張強さが350MPa以上であり、
結晶の[001]方位と材料のND方向とを含む面に垂直な方向を軸とした回転角をΦ、ND方向を軸とした回転角をφ1、[001]方向を軸とした回転角をφ2と表記した場合に、ND軸を回転軸としてφ1だけ回転させた後に、ND軸とz軸とを一致させるためにΦだけ回転させ、最後に[001]軸周りにφ2だけ回転させることで材料のND,TD,RDと結晶の[001],[010],[100]とが一致する角度の組であるオイラー角(φ1,Φ,φ2)につき、オイラー角(40,45,0)の結晶方位の極密度が18以下である銅合金板。 0.01 to 0.5% by mass of Sn, 0.01 to 0.5% by mass of Zr, 0.01 to 0.08% by mass of Ti, 0.01 to 1.0% by mass of Ag, 0.0. Containing any one selected from the group of 01-0.5 mass% Cr and 0.01-3.5 mass% Zn, the balance consisting of Cu and inevitable impurities,
Conductivity is 60% IACS or higher,
The tensile strength is 350 MPa or more,
The rotation angle about the direction perpendicular to the plane including the [001] orientation of the crystal and the ND direction of the material is Φ, the rotation angle about the ND direction is φ1, and the rotation angle about the [001] direction is When it is expressed as φ2, after rotating by φ1 with the ND axis as the rotation axis, it is rotated by φ to match the ND axis and the z axis, and finally it is rotated by φ2 around the [001] axis. Euler angles (40, 45, 0) for Euler angles (φ1, Φ, φ2), which are pairs of angles where ND, TD, RD of the material and [001], [010], [100] of the crystal coincide with each other A copper alloy plate having a polar density of 18 or less.
導電率が60%IACS以上であり、
引張強さが350MPa以上であり、
結晶の[001]方位と材料のND方向とを含む面に垂直な方向を軸とした回転角をΦ、ND方向を軸とした回転角をφ1、[001]方向を軸とした回転角をφ2と表記した場合に、ND軸を回転軸としてφ1だけ回転させた後に、ND軸とz軸とを一致させるためにΦだけ回転させ、最後に[001]軸周りにφ2だけ回転させることで材料のND,TD,RDと結晶の[001],[010],[100]とが一致する角度の組であるオイラー角(φ1,Φ,φ2)につき、オイラー角(40,45,0)の結晶方位の極密度が18以下である銅合金板。 Contains 0.01 to 2.0% by mass of Ni or 0.01 to 0.5% by mass of In and 0.01 to 0.5% by mass of Si, with the balance being Cu and inevitable Consisting of impurities,
Conductivity is 60% IACS or higher,
The tensile strength is 350 MPa or more,
The rotation angle about the direction perpendicular to the plane including the [001] orientation of the crystal and the ND direction of the material is Φ, the rotation angle about the ND direction is φ1, and the rotation angle about the [001] direction is When it is expressed as φ2, after rotating by φ1 with the ND axis as the rotation axis, it is rotated by φ to match the ND axis and the z axis, and finally it is rotated by φ2 around the [001] axis. Euler angles (40, 45, 0) for Euler angles (φ1, Φ, φ2), which are pairs of angles where ND, TD, RD of the material and [001], [010], [100] of the crystal coincide with each other. A copper alloy plate having a polar density of 18 or less.
導電率が60%IACS以上であり、
引張強さが350MPa以上であり、
結晶の[001]方位と材料のND方向とを含む面に垂直な方向を軸とした回転角をΦ、ND方向を軸とした回転角をφ1、[001]方向を軸とした回転角をφ2と表記した場合に、ND軸を回転軸としてφ1だけ回転させた後に、ND軸とz軸とを一致させるためにΦだけ回転させ、最後に[001]軸周りにφ2だけ回転させることで材料のND,TD,RDと結晶の[001],[010],[100]とが一致する角度の組であるオイラー角(φ1,Φ,φ2)につき、オイラー角(40,45,0)の結晶方位の極密度が18以下である銅合金板。 Containing 0.01 to 0.5% by mass of Fe and 0.01 to 0.5% by mass of P, with the balance consisting of Cu and inevitable impurities,
Conductivity is 60% IACS or higher,
The tensile strength is 350 MPa or more,
The rotation angle about the direction perpendicular to the plane including the [001] orientation of the crystal and the ND direction of the material is Φ, the rotation angle about the ND direction is φ1, and the rotation angle about the [001] direction is When it is expressed as φ2, after rotating by φ1 with the ND axis as the rotation axis, it is rotated by φ to match the ND axis and the z axis, and finally it is rotated by φ2 around the [001] axis. Euler angles (40, 45, 0) for Euler angles (φ1, Φ, φ2), which are pairs of angles where ND, TD, RD of the material and [001], [010], [100] of the crystal coincide with each other A copper alloy plate having a polar density of 18 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013192227A JP5619976B2 (en) | 2012-09-28 | 2013-09-17 | Copper alloy sheet with excellent heat dissipation and repeated bending workability |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012218880 | 2012-09-28 | ||
JP2012218880 | 2012-09-28 | ||
JP2013192227A JP5619976B2 (en) | 2012-09-28 | 2013-09-17 | Copper alloy sheet with excellent heat dissipation and repeated bending workability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014080678A JP2014080678A (en) | 2014-05-08 |
JP5619976B2 true JP5619976B2 (en) | 2014-11-05 |
Family
ID=50785130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013192227A Active JP5619976B2 (en) | 2012-09-28 | 2013-09-17 | Copper alloy sheet with excellent heat dissipation and repeated bending workability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5619976B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014080679A (en) * | 2012-09-28 | 2014-05-08 | Jx Nippon Mining & Metals Corp | Copper alloy sheet having excellent heat dissipation and repeated bendability |
JP2014080680A (en) * | 2012-09-28 | 2014-05-08 | Jx Nippon Mining & Metals Corp | Copper alloy sheet having excellent heat dissipation and repeated bendability |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6472477B2 (en) * | 2017-03-30 | 2019-02-20 | Jx金属株式会社 | Cu-Ni-Si copper alloy strip |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4904455B2 (en) * | 2004-09-21 | 2012-03-28 | Dowaメタルテック株式会社 | Copper alloy and manufacturing method thereof |
JP5312920B2 (en) * | 2008-11-28 | 2013-10-09 | Jx日鉱日石金属株式会社 | Copper alloy plate or strip for electronic materials |
JP5320642B2 (en) * | 2009-04-17 | 2013-10-23 | 株式会社Shカッパープロダクツ | Copper alloy manufacturing method and copper alloy |
EP2610359A4 (en) * | 2010-08-27 | 2017-08-02 | Furukawa Electric Co., Ltd. | Copper alloy sheet and method for producing same |
EP2610358A4 (en) * | 2010-08-27 | 2017-05-03 | Furukawa Electric Co., Ltd. | Copper alloy sheet and manufacturing method for same |
JP5432201B2 (en) * | 2011-03-30 | 2014-03-05 | Jx日鉱日石金属株式会社 | Copper alloy sheet with excellent heat dissipation and repeated bending workability |
JP6226511B2 (en) * | 2012-02-14 | 2017-11-08 | Jx金属株式会社 | Copper alloy sheet with excellent heat dissipation and repeated bending workability |
-
2013
- 2013-09-17 JP JP2013192227A patent/JP5619976B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014080679A (en) * | 2012-09-28 | 2014-05-08 | Jx Nippon Mining & Metals Corp | Copper alloy sheet having excellent heat dissipation and repeated bendability |
JP2014080680A (en) * | 2012-09-28 | 2014-05-08 | Jx Nippon Mining & Metals Corp | Copper alloy sheet having excellent heat dissipation and repeated bendability |
Also Published As
Publication number | Publication date |
---|---|
JP2014080678A (en) | 2014-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5432201B2 (en) | Copper alloy sheet with excellent heat dissipation and repeated bending workability | |
JP6188273B2 (en) | Copper alloy sheet with excellent heat dissipation and repeated bending workability | |
JP6226511B2 (en) | Copper alloy sheet with excellent heat dissipation and repeated bending workability | |
JP2017075396A (en) | Copper alloy sheet excellent in heat release property and repeated flexure processability | |
JP5619977B2 (en) | Copper alloy sheet with excellent heat dissipation and repeated bending workability | |
JP6270417B2 (en) | Copper alloy sheet with excellent conductivity and stress relaxation properties | |
JP5475914B1 (en) | Copper alloy sheet with excellent heat dissipation and repeated bending workability | |
JP6328380B2 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
JP5619976B2 (en) | Copper alloy sheet with excellent heat dissipation and repeated bending workability | |
JP6099543B2 (en) | Copper alloy sheet with excellent conductivity, stress relaxation resistance and formability | |
JP6113061B2 (en) | Copper alloy sheet with excellent electrical conductivity, stress relaxation resistance and formability | |
JP2017155340A (en) | Copper alloy sheet excellent in conductivity and stress relaxation characteristic | |
JP2018154910A (en) | Copper alloy sheet having excellent strength and electric conductivity | |
JP6196429B2 (en) | Copper alloy sheet with excellent heat dissipation and repeated bending workability | |
JP2017002407A (en) | Copper alloy sheet excellent in conductivity and stress relaxation characteristic | |
JP6196511B2 (en) | Copper alloy sheet with excellent heat dissipation and repeated bending workability | |
JP2017066532A (en) | Copper alloy sheet having excellent conductivity and stress relaxation properties | |
JP6047466B2 (en) | Copper alloy sheet with excellent conductivity and bending deflection coefficient | |
WO2014041865A1 (en) | Copper alloy plate having excellent electroconductive properties and stress relaxation properties | |
JP2016164311A (en) | Copper alloy sheet excellent in heat releasing property and processability in repeated bending | |
JP2017075395A (en) | Copper alloy sheet excellent in heat release property and repeated flexure processability | |
JP2017179503A (en) | Copper alloy sheet excellent in strength and conductivity | |
JP2016183417A (en) | Copper alloy sheet excellent in heat release property and repeated flexure processing property | |
JP2014055347A (en) | Copper alloy sheet excellent in conductivity and stress relief properties | |
JP2014205864A (en) | Copper alloy sheet excellent in conductivity and stress relaxation property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140204 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20140204 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20140226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140415 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140708 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140728 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140819 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140917 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5619976 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |