[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5641739B2 - 有機半導体膜形成用溶液、及び有機半導体デバイス - Google Patents

有機半導体膜形成用溶液、及び有機半導体デバイス Download PDF

Info

Publication number
JP5641739B2
JP5641739B2 JP2010012242A JP2010012242A JP5641739B2 JP 5641739 B2 JP5641739 B2 JP 5641739B2 JP 2010012242 A JP2010012242 A JP 2010012242A JP 2010012242 A JP2010012242 A JP 2010012242A JP 5641739 B2 JP5641739 B2 JP 5641739B2
Authority
JP
Japan
Prior art keywords
compound
carbon atoms
group
double bond
organic semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010012242A
Other languages
English (en)
Other versions
JP2011151257A (ja
Inventor
池田 吉紀
吉紀 池田
尚志 城
尚志 城
和男 瀧宮
和男 瀧宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010012242A priority Critical patent/JP5641739B2/ja
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to KR1020127004942A priority patent/KR101604513B1/ko
Priority to CN201410083086.9A priority patent/CN103880860B/zh
Priority to EP10811854.8A priority patent/EP2471796B1/en
Priority to PCT/JP2010/064272 priority patent/WO2011024804A1/ja
Priority to CN2010800383494A priority patent/CN102548998A/zh
Priority to US13/392,996 priority patent/US9056871B2/en
Priority to TW099128877A priority patent/TWI492948B/zh
Publication of JP2011151257A publication Critical patent/JP2011151257A/ja
Application granted granted Critical
Publication of JP5641739B2 publication Critical patent/JP5641739B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Thin Film Transistor (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Description

本発明は、新規な有機半導体膜形成用溶液、及びこのような有機半導体膜形成用溶液の使用方法に関する。また、本発明は、このような有機半導体膜形成用溶液を用いて得られる有機半導体デバイスに関する。
有機半導体化合物は、有機薄膜トランジスタ(TFT)、有機キャリア輸送層、有機発光デバイス等のための有機半導体層への利用に関して、様々な研究がなされている。特に、有機半導体化合物からなる有機半導体層を有する薄膜トランジスタは、低コスト且つ軽量のデバイスとして、現在のシリコンベーストランジスタを代替することが期待されている。また、有機半導体層は、軽量で且つフレキシブルであること等、有機材料に特有の利点を活用することで、スマートタグ、軽量ディスプレイ等への応用も期待されている。
したがって、有機半導体層を形成するための有機半導体化合物に関しては多くの研究がなされている(特許文献1〜5、及び非特許文献1)。これらの有機半導体化合物のなかでも、縮合多環芳香族化合物が、材料の安定性、キャリアの移動度等に関して好ましいことが分かってきている。
なお、ディールス−アルダー(Diels−Alder)反応と呼ばれる反応が、有機合成の分野で知られている。この反応は、共役二重結合をもった化合物の1位及び4位に、二重結合又は三重結合を有する化合物を付加して、6員環の環式化合物を生成するものである。また、このディールス−アルダー反応を用いて、ナフタレンに対してヘキサクロロシクロペンタジエンを付加させることが提案されている(非特許文献2及び3)。
特開2006−89413号公報 特開2008−290963号公報 国際公開WO2006/077888号公報 特開2008−290963号公報 国際公開第2008/050726号
"Facile Synthesis of Highly π−Extended Heteroarenes, Dinaphtho[2,3−b:2‘,3‘−f]chalcogenopheno[3,2−b]chalcogenophenes, and Their Application to Field−Effect Transistors", Tatsuya Yamamoto, and Kazuo Takimiya, J. Am. Chem. Soc., 2007, 129 (8), pp 2224−2225 "Dienophilic Reactions of Aromatic Double Bonds in the Synthesis of β−Substituted Naphthalenes", A. A. Danish, M. Silverman, Y. A. Tajima, J. Am. Chem. Soc., 1954, 76 (23), pp 6144−6150 "Tandem Diels−Alder−Diels−Alder Reaction Displaying High Stereoselectivity: Reaction of Hexachlorocyclopentadiene with Naphthalene.", Lacourcelle, Claire; Poite, Jean Claude; Baldy, Andre; Jaud, Joel; Negrel, Jean Claude; Chanon, Michel, Acta Chemica Scandinavica 47, 0092−0094
有機半導体層の形成においては、有機半導体化合物を含有する溶液を基材に塗布し、そして溶媒を除去する溶液法(キャスト、スピンコート、プリント等)、及び有機半導体化合物を基材に蒸着させる蒸着法が知られている。溶液法は一般に、製造コスト、製造速度等に関して好ましいことが知られている。
しかしながら、有機半導体化合物として好ましいことが知られている縮合多環芳香族化合物は、非極性で且つ結晶性が高いことから、溶液に溶解させることが難しい。したがって、縮合多環芳香族化合物による有機半導体層の形成、特に低分子の縮合多環芳香族化合物による有機半導体層の形成では、蒸着法を用いることが一般的であった。
そこで本発明では、溶液法を用いて縮合多環芳香族化合物からなる有機半導体層(有機半導体膜)を安定的に形成することを可能にする新規な有機半導体膜形成用溶液、及びこのような有機半導体膜形成用溶液の使用方法を提供する。また、本発明では、このような有機半導体膜形成用溶液を用いて得られる有機半導体デバイスを提供する。
本発明の発明者は、ジナフトチエノチオフェン等の化合物に特定の化合物を付加させた構造を有する付加化合物を含有する有機半導体膜形成用溶液が、上記の課題を解決できることを見出して、本発明に想到した。
有機半導体膜を形成するための本発明の溶液は、有機溶媒、前記有機溶媒に溶解している第1の付加化合物、及び前記有機溶媒に溶解しており且つ前記第1の付加化合物の結晶化を抑制する結晶化抑制剤を含有している。
ここで、この第1の付加化合物は、下記の式(I)の縮合多環芳香族化合物に、二重結合を有する第1の化合物(II’)が二重結合を介して脱離可能に付加されてなる構造を有する:
ArArAr (I)
(Ar〜Arは、下記に記載のとおり)。
また、結晶化抑制剤は、下記の(a)〜(c)からなる群より選択される少なくとも1種の化合物である:
(a)式(I)の縮合多環芳香族化合物に二重結合を有する第2の化合物(II”)が二重結合を介して脱離可能に付加されてなる構造を有する第2の付加化合物、
(b)二重結合を有する第1の化合物(II’)であって、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる化合物(II’)、及び
(c)二重結合を有する第2の化合物(II”)であって、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる化合物(II”)。
有機半導体膜を生成する本発明の方法は、有機半導体膜を形成するための本発明の溶液を、基材に塗布して、膜を作製するステップ、そしてこの膜を減圧及び/又は加熱して、第1の付加化合物から二重結合を有する第1の化合物(II’)を脱離及び除去して、式(I)の縮合多環芳香族化合物からなる有機半導体膜を得るステップを含む。また、有機半導体デバイスを製造する本発明の方法は、有機半導体膜を生成する本発明の方法によって有機半導体膜を生成するステップを含む。
本発明の有機半導体デバイスは、有機半導体膜を有し、この有機半導体膜が、下記の式(I)を有する有機半導体化合物で作られており、この有機半導体膜が、下記の式(I)の縮合多環芳香族化合物に二重結合を有する第1の化合物(II’)が二重結合を介して脱離可能に付加されてなる第1の付加化合物を含有しており、且つ有機半導体膜が、下記の式(I)の縮合多環芳香族化合物に二重結合を有する第1の化合物(II’)が二重結合を介して脱離可能に付加されてなる第1の付加化合物、及び下記の(a)〜(c)からなる群より選択される少なくとも1種の化合物を含有している:
ArArAr (I)
(Ar〜Arは、下記に記載のとおり)。
なお、本発明に関して、第1及び第2の「付加化合物」はそれぞれ、式(I)の縮合多環芳香族化合物に、二重結合を有する第1の化合物(II’)及び第2の化合物(II’)が二重結合を介して脱離可能に付加されてなる構造を有する任意の化合物を意味しており、その具体的な合成方法によっては限定されるものではない。また、この付加化合物は、式(I)の縮合多環芳香族化合物に二重結合を有する第1の化合物(II’)及び/又は第2の化合物(II’)が1分子付加した構造を有する付加化合物だけでなく、式(I)の縮合多環芳香族化合物に二重結合を有する第1の化合物(II’)及び/又は第2の化合物(II’)が2分子、3分子、4分子、又はそれよりも多く付加した構造を有する付加化合物であってもよい。
本発明に関して、「芳香族環」は、ベンゼン環と同様に共役している環を意味するものとし、例えばベンゼン環と並んで、フラン環、チオフェン環、ピロール環、イミダゾール環のような複素芳香族環を挙げることができる。また本発明に関して、「立体異性体」は、同一の構造式を有する化合物がその中の原子又は原子団の立体配置を異にすることによっておこる異性を意味し、光学異性体、幾何異性体、及び回転異性体等を包含する。
なお、以下の説明において、「第1の付加化合物」及び「第2の付加化合物」は、簡単のために、「付加化合物」としてまとめて言及することがある。同様に、「二重結合を有する第1の化合物(II’)」及び「二重結合を有する第2の化合物(II’)」は、簡単のために、「二重結合を有する化合物(II)」としてまとめて言及することがある。
第1及び第2の付加化合物は、ディールス−アルダー反応を用いて、ジナフトチエノチオフェン等の式(I)の縮合多環芳香族化合物に、ヘキサクロロシクロペンタジエン等の二重結合を有する化合物(II)を二重結合を介して脱離可能に付加させることによって得られるものである。この付加化合物は、二重結合を有する化合物(II)の付加によって生じる極性の増加及び/又は結晶性の低下によって、溶媒に対する溶解性を増加させることができる。したがってこの付加化合物を含有している本発明の半導体膜形成用溶液によれば、蒸着法よりも一般に容易な溶液法を用いて、縮合多環芳香族化合物からなる有機半導体層を形成することが可能となる。
また、本発明の半導体膜形成用溶液は、特定の化合物を結晶化抑制剤として含有していることによって、溶液法による有機半導体膜の形成の際に、第1の付加化合物の結晶化を抑制し、それによって優れた有機半導体膜を提供すること、且つ/又は効率的に有機半導体膜を提供することができる。
図1は、実施例1の有機半導体膜形成用溶液から得られた固形物を示す写真である。 図2は、実施例1の有機半導体膜形成用溶液から得られたFETの有機半導体膜を示す写真である。 図3は、比較例1の有機半導体膜形成用溶液から得られた固形物を示す写真である。 図4は、比較例1の有機半導体膜形成用溶液から得られたFETの有機半導体膜を示す写真である。 図5は、参考例1A及び参考比較例1で用いた電界効果トランジスタ(FET)の構造の概略図である。 図6は、参考例1Aで得られた電界効果トランジスタの出力特性を示す図である。 図7は、参考例1Aで得られた電界効果トランジスタの伝達特性を示す図である。 図8は、参考例10Aの付加化合物の熱脱離特性を示す図である。 図9は、参考例10Aで得られた電界効果トランジスタの出力特性を示す図である。 図10は、参考例10Aで得られた電界効果トランジスタの伝達特性を示す図である。 図11は、参考例10Aで得られた有機半導体膜中の残留付加化合物についてのNMR結果を示す図である。
《有機半導体膜形成用溶液》
有機半導体膜を形成するための本発明の溶液は、有機溶媒、有機溶媒に溶解している第1の付加化合物、及び有機溶媒に溶解しており且つ第1の付加化合物の結晶化を抑制する結晶化抑制剤を含有している。
ここで、この第1の付加化合物は、下記の式(I)の縮合多環芳香族化合物に、二重結合を有する第1の化合物(II’)が二重結合を介して脱離可能に付加されてなる構造を有する:
ArArAr (I)
(Ar及びArはそれぞれ独立に、2〜5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
Arは、1個の芳香族環からなる置換又は非置換の芳香族環部分、及び2〜5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成しており、且つ
ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成している)。
また、結晶化抑制剤は、下記の(a)〜(c)からなる群より選択される少なくとも1種の化合物である:
(a)式(I)の縮合多環芳香族化合物に二重結合を有する第2の化合物(II”)が二重結合を介して脱離可能に付加されてなる構造を有する第2の付加化合物、
(b)二重結合を有する第1の化合物(II’)であって、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる化合物(II’)、及び
(c)二重結合を有する第2の化合物(II”)であって、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる化合物(II”)。
有機半導体膜を形成するための本発明の溶液では、第1の付加化合物が、式(I)の縮合多環芳香族化合物に二重結合を有する化合物(II’)が付加した構造を有していることによって、式(I)の縮合多環芳香族化合物と比較して、極性が増加し且つ/又は結晶性が低下しており、それによって溶媒に対する比較的高い溶解性を有している。したがって本発明の溶液によれば、溶液法を用いて縮合多環芳香族化合物からなる有機半導体層を形成することができる。具体的には例えば、本発明の溶液を、基材に塗布して、膜を作製し、そしてこの膜を減圧及び/又は加熱して、第1の付加化合物から二重結合を有する第1の前記化合物(II’)を脱離及び除去することによって、式(I)の縮合多環芳香族化合物からなる有機半導体膜を得ることができる。
また、有機半導体膜を形成するための本発明の溶液は、結晶化抑制剤として含有していることによって、溶液法による有機半導体膜の形成の際に結晶化を抑制し、それによって優れた有機半導体膜を提供すること、且つ/又は効率的に有機半導体膜を提供することができる。
本発明の有機半導体膜形成用溶液は、任意の濃度で第1の付加化合物を含有することができ、例えば第1の付加化合物を、0.01〜20質量%、0.05〜10質量%、0.1〜5質量%の濃度で含有することができる。
本発明の有機半導体膜形成用溶液において使用可能な溶媒としては、第1の付加化合物を溶解できる任意の溶媒を用いることができる。例えば使用可能な溶媒としては、N−メチルピロリドン、ジメチルスルホキシド、アセトニトリル、酢酸エチル等の非プロトン性極性溶媒;ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、ジエチレングリコールジメチルエーテル、1、4−ジオキサン等のエーテル系溶媒;ベンゼン、トルエン、キシレン、メシチレン(すなわち1,3,5‐トリメチルベンゼン)等の芳香族炭化水素類;ヘキサン、ヘプタン等の脂肪族炭化水素類;及びジクロロメタン、クロロホルム、ジクロロエタン等の含ハロゲン溶媒を考慮することができる。
第1の付加化合物が、立体異性体を有する場合、本発明の溶液は例えば、第1の付加化合物及び少なくとも1つのその立体異性体が溶媒に溶解されてなり、且つ付加化合物及びその立体異性体の合計に対する熱脱離温度が最も低い立体異性体の割合{付加化合物及びその立体異性体のうちの熱脱離温度が最も低い立体異性体/付加化合物及びその立体異性}が、50mol%超、70mol%超、90mol%超、95mol%超であってよい。
また、第1の付加化合物が、立体異性体としてExo体及びEndo体を有する場合、本発明の溶液は例えば、第1の付加化合物のExo体及びEndo体が溶媒に含有されてなり、且つ第1の付加化合物のExo体とEndo体との合計に対する熱脱離温度が低い方の立体異性体の割合{Exo体及びEndo体のうちの熱脱離温度が低い方の立体異性体/(Exo体+Endo体)}が、50mol%超、70mol%超、90mol%超、95mol%超であってよい。したがって、本発明の溶液は例えば、式(III−6)の付加化合物のExo体とEndo体とが溶媒に溶解されてなり、且つこの付加化合物のExo体とEndo体との合計に対するExo体の割合{Exo体/(Exo体+Endo体)}が、50mol%超、70mol%超、90mol%超、95mol%超、又は99mol%超であってよい。
ここで、第1の付加化合物含有溶液が、比較的熱脱離温度が低い立体異性体を比較的大きい割合で含有している場合、この溶液から加熱によって二重結合を有する化合物(II)を脱離及び除去して式(I)の縮合多環芳香族化合物からなる有機半導体膜を得る際に、比較的低い温度からこの脱離を開始させることができる。したがって、この場合には、比較的低温での有機半導体膜の生成を促進できる。
なお、ディールス−アルダー反応においては、主橋の反対側に置換基が存在する反応生成物がEndo体として定義され、主橋と同じ側に置換基が存在する反応生成物がExo体として定義される。
《有機半導体膜形成用溶液−結晶化抑制剤−第2の付加化合物》
1つの態様では、本発明の溶液に含有されている結晶化抑制剤は、式(I)の縮合多環芳香族化合物に二重結合を有する第2の化合物(II”)が二重結合を介して脱離可能に付加されてなる構造を有する第2の付加化合物である。
ここで、第2の付加化合物は、第1の付加化合物と同じ式(I)の縮合多環芳香族化合物を有している。すなわち、第2の付加化合物は、二重結合を有する第1の化合物(II’)の代わりに、二重結合を有する第2の化合物(II”)が付加していることを除いて、第1の付加化合物と同じである。
したがって、第2の付加化合物のうちの式(I)の縮合多環芳香族化合物の部分は、第1の付加化合物、特に第1の付加化合物のうちの式(I)の縮合多環芳香族化合物の部分に対して比較的大きい親和性を有する。しかしながら、第1の付加化合物と第2の付加化合物とは、二重結合を有する第1及び第2の化合物(II’)及び(II”)に関して構造的に異なっており、したがって溶液法による有機半導体膜の形成の際に比較的結晶化しにくい。
また、第1及び第2の付加化合物はそれぞれ、二重結合を有する第1及び第2の化合物(I’)及び(II’)が式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加されてなる構造を有する。したがって、第1及び第2の付加化合物は、例えば加熱及び/又は減圧によって、二重結合を有する第1及び第2の化合物(II’)及び(II”)を脱離及び除去したときに、いずれも式(I)の縮合多環芳香族化合物をもたらす。
よって、例えば溶液が含有している第1の付加化合物の濃度が一定である場合、この溶液が第2の付加化合物を更に含有することによって、溶液中における実質的な式(I)の縮合多環芳香族化合物の含有率を大きくすることができる。
本発明の有機半導体膜形成用溶液は、結晶化抑制剤としての第2の付加化合物を、溶媒中に溶解することが可能な任意の量で含有することができ、例えば第2の付加化合物の第1の付加化合物に対するモル比(第2の付加化合物/第1の付加化合物)は、0.1mol%以上、1mol%以上、10mol%以上、30mol%以上、50mol%以上であってよい。ここで、このモル比が、100mol%であることは、有機半導体膜形成用溶液に含有されている第1の付加化合物のモル数と第2の付加化合物のモル数とが同じであることを意味する。
《有機半導体膜形成用溶液−結晶化抑制剤−第1及び第2の化合物(II’)及び(II”)》
他の1つの態様では、本発明の溶液に含有されている結晶化抑制剤は、二重結合を有する第1の化合物(II’)である。ここで、結晶化抑制剤として用いられている二重結合を有する第1の化合物(II’)は、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加して第1の付加化合物を構成している二重結合を有する第1の化合物(II’)と同じである。したがって、結晶化抑制剤として用いられている二重結合を有する第1の化合物(II’)は、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる。
また、他の1つの態様では、二重結合を有する第2の化合物(II”)であって、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる化合物(II”)である。すなわち、結晶化抑制剤として用いられている二重結合を有する第1の化合物(II”)は、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加して第1の付加化合物を構成している二重結合を有する第1の化合物(II’)とは異なる。しかしながら、結晶化抑制剤として用いられている二重結合を有する第1の化合物(II”)は、二重結合を有する第1の化合物(II’)と同様に、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる。
結晶化抑制剤として用いられている二重結合を有する第1及び第2の化合物(II’)及び(II”)はいずれも、式(I)の縮合多環芳香族化合物に二重結合を有する第1の化合物(II’)が二重結合を介して脱離可能に付加して第1の付加化合物を形成するのと同様な機構で、式(I)の縮合多環芳香族化合物に脱離可能に付加し、且つ/又は式(I)の縮合多環芳香族化合物に対して親和性を示し、それによって溶液法による有機半導体膜の形成の際に、第1の付加化合物の極性を更に増加させ、且つ/又は第1の付加化合物同士の結晶化を妨げることができる。
本発明の有機半導体膜形成用溶液は、結晶化抑制剤としての二重結合を有する第1及び第2の化合物(II’)及び(II”)を、溶媒中に溶解することが可能な任意の量で含有することができ、例えば第1及び第2の化合物(II’)及び(II”)の第1の付加化合物に対するモル比(第1及び/又は第2の化合物(II’)及び(II”)/第1の付加化合物)は、0.1mol%以上、1mol%以上、10mol%以上、30mol%以上、50mol%以上であってよい。ここで、このモル比が、100mol%であることは、有機半導体膜形成用溶液に含有されている第1の付加化合物のモル数と第1及び/又は第2の化合物(II’)及び(II”)のモル数とが同じであることを意味する。
《付加化合物》
本発明に関して付加化合物は、下記の式(I)の縮合多環芳香族化合物に、二重結合を有する化合物(II)が二重結合を介して脱離可能に付加されてなる構造を有する:
ArArAr (I)
(Ar及びArはそれぞれ独立に、2〜5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
Arは、1個の芳香族環からなる置換又は非置換の芳香族環部分、及び2〜5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成しており、且つ
ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成している)。
付加化合物において、式(I)の縮合多環芳香族化合物に二重結合を有する化合物(II)が「脱離可能」に付加されていることは、付加化合物が、例えば減圧及び/又は加熱によって、式(I)の縮合多環芳香族化合物を分解させずに、二重結合を有する化合物(II)を脱離させること、特に二重結合を有する化合物(II)を脱離及び除去することが可能であることを意味している。
例えば、付加化合物は、式(I)の縮合多環芳香族化合物の例である下記の式(I−4)の化合物に、二重結合を有する化合物(II)の例である下記の式(II−1)の化合物が付加されてなり、それによって下記の式(III−1)を有する化合物又はその立体異性体である:
(Yはそれぞれ独立に、カルコゲンから選択される元素あり、且つ
縮合ベンゼン環部分は、置換又は非置換である)
(Rはそれぞれ独立に、水素、ハロゲン、水酸基、アミド基、メルカプト基、シアノ基、炭素原子数1〜10のアルキル基、炭素原子数2〜10のアルケニル基、炭素原子数2〜10のアルキニル基、炭素原子数1〜10のアルコキシ基、炭素原子数4〜10の置換又は非置換の芳香族基、炭素原子数1〜10のエステル基、炭素原子数1〜10のエーテル基、炭素原子数1〜10のケトン基、炭素原子数1〜10のアミノ基、炭素原子数1〜10のアミド基、炭素原子数1〜10のイミド基、及び炭素原子数1〜10のスルフィド基からなる群より選択される);
(Y及びR、並びに縮合ベンゼン環部分は、上記のとおり)。
また例えば、付加化合物は、式(I)の縮合多環芳香族化合物の例である下記の式(I−4)の化合物に、二重結合を有する化合物(II)の例である下記の式(II−6)の化合物が付加されてなり、それによって下記の式(III−6)を有する化合物又はその立体異性体である:
(Yはそれぞれ独立に、カルコゲンから選択される元素であり、且つ
縮合ベンゼン環部分は、置換又は非置換である);
(R及びRはそれぞれ独立に、水素、ハロゲン、水酸基、アミド基、メルカプト基、シアノ基、炭素原子数1〜10のアルキル基、炭素原子数2〜10のアルケニル基、炭素原子数2〜10のアルキニル基、炭素原子数1〜10のアルコキシ基、炭素原子数4〜10の置換又は非置換の芳香族基、炭素原子数1〜10のエステル基、炭素原子数1〜10のエーテル基、炭素原子数1〜10のケトン基、炭素原子数1〜10のアミノ基、炭素原子数1〜10のアミド基、炭素原子数1〜10のイミド基、及び炭素原子数1〜10のスルフィド基からなる群より選択される);
(Y、R及びR、並びに縮合ベンゼン環部分は、上記のとおり)。
《付加化合物の第1の合成方法》
付加化合物は、式(I)の縮合多環芳香族化合物を、二重結合を有する化合物(II)と混合するステップを含む方法によって製造できる。このとき、二重結合を有する化合物(II)は、溶媒中に溶解して用いることもできるが、単独で用いることもできる。ここで、この溶媒としては、二重結合を有する化合物(II)を溶解できる任意の溶媒を用いることができる。例えば使用可能な溶媒としては、N−メチルピロリドン、ジメチルスルホキシド、アセトニトリル、酢酸エチル等の非プロトン性極性溶媒;ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、ジエチレングリコールジメチルエーテル、1、4−ジオキサン等のエーテル系溶媒;ベンゼン、トルエン、キシレン、メシチレン(すなわち1,3,5‐トリメチルベンゼン)等の芳香族炭化水素類;ヘキサン、ヘプタン等の脂肪族炭化水素類;及びジクロロメタン、クロロホルム、ジクロロエタン等の含ハロゲン溶媒を考慮することができる。
付加化合物の合成においては、式(I)の縮合多環芳香族化合物と、二重結合を有する化合物(II)との混合の際に、加熱及び/又は光照射によって、反応を促進することもできる。付加化合物の合成の際の反応温度は、生成速度、成分の安定性、成分の沸点等を考慮して決定することができ例えば、20℃以上、50℃以上、100℃以上であって、180℃以下、200℃以下、又は220℃以下の温度にすることができる。また反応時間は例えば、1分以上、10分以上、30分以上、1時間以上であって、1日以下、3日以下、5日以下、又は10日以下にすることができる。
《中間体付加化合物、及び付加化合物の第2の合成方法》
中間体付加化合物は、下記の(I’)の化合物に二重結合を有する化合物(II)がこの二重結合を介して付加されてなる構造を有する:
ArQ (I’)
{Arは、2〜5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、且つ
Qは、下記の式を有し、且つArの縮合芳香環の一部を構成している:
(Yは、カルコゲンから選択される元素である)}。
具体的には例えば、式(I’)の化合物は、下記の式の化合物であってよい:
本発明のこの中間体付加化合物は、式(I’)の化合物に二重結合を有する化合物(II)を付加させて得ることができる。この付加反応の反応条件については、式(I)の化合物に二重結合を有する化合物(II)を付加させる反応に関する記載を参照できる。
上記の付加化合物を、上記の中間体付加化合物から合成する方法は、下記の工程(a)及び(b)を含む:
(a)中間体付加化合物2分子を反応させて、下記の式の化合物を得ること:
ArQ=QAr
(Q=Qは、下記の構造を示す:
)、そして
(b)上記式ArQ=QArの得られた化合物をヨウ素と反応させること。
この方法によれば、下記の式(I(a1))の縮合多環芳香族化合物に二重結合を有する化合物(II)がこの二重結合を介して脱離可能に付加されてなる構造を有する付加化合物を製造することができる:
ArAr2(a1)Ar (I(a1))
(Arは、2〜5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
Ar2(a1)は、下記の式(a1)の縮合芳香族環部分であり、且つ
ArとAr2(a1)は、少なくとも2つの炭素原子を共有して縮合芳香環を形成している)。
なお、上記の付加化合物を上記の中間体付加化合物から合成する方法の条件等に関しては、非特許文献1の記載を参照することができる。すなわち例えば、工程(a)における中間体付加化合物2分子の反応は、テトラヒドロフラン中において、テトラクロロチタン/亜鉛(TiCl/Zn)触媒を用いて行うことができる。また、工程(b)における式Ar(Q=Q)Arとヨウ素との反応は、トリクロロメタン(すなわちクロロホルム)(CHCl)中において行うことができる。
《式(I)の縮合多環芳香族化合物》
式(I)の縮合多環芳香族化合物に関し、Ar及びArはそれぞれ独立に、2〜5個の芳香族環、特に2〜4個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択される。Ar及びArは、ディールス−アルダー反応を行ったときに、ジエン部分又は求ジエン部分として、この部分に、二重結合を有する化合物(II)を脱離可能に付加させることができるようにして選択できる。ここでは、芳香族環は特に、置換又は非置換のベンゼン環である。また、ArとArは同じであっても異なっていてもよい。
したがってAr及びArはそれぞれ独立に、置換又は非置換の下記の(b1)〜(b4)からなる群より選択されるベンゼン環部分であってよい:
また、式(I)の縮合多環芳香族化合物に関し、Arは、1個の芳香族環からなる置換又は非置換の芳香族環部分、又は2〜5個、特に2〜3個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分である。
したがって、Arは、置換又は非置換の下記の(a1)〜(a4)からなる群より選択される芳香族環部分又は縮合芳香族環部分であってよい:
(Yはそれぞれ独立に、カルコゲン、特に酸素(O)、硫黄(S)、セレン(Se)及びテルル(Te)から選択される元素、より特に硫黄であり、Yは全て同じでも、一部が異なっていてもよい)。
好ましくは式(I)の縮合多環芳香族化合物は、有機半導体化合物、すなわち半導体としての性質を示す有機物化合物である。また、式(I)の縮合多環芳香族化合物は、置換又は非置換の下記の式(I−1)〜(I−5)の縮合多環芳香族化合物からなる群より選択できる。これらの縮合多環芳香族化合物は安定性が高く、したがって付加化合物からの二重結合を有する化合物(II)の脱離、特に熱による脱離、より特に比較的高温且つ/又は長時間の熱による脱離の際にも、安定に維持することができる。したがって、これらの化合物を用いる場合、付加化合物からの二重結合を有する化合物(II)の脱離を高い割合で行うことができる。
(Yはそれぞれ独立に、カルコゲンから選択される元素、特に酸素(O)、硫黄(S)、セレン(Se)及びテルル(Te)から選択される元素、より特に硫黄であり、Yは全て同じでも、一部が異なっていてもよい)。
式(I)の縮合多環芳香族化合物、及びその合成に関しては、特に限定されないが、特許文献1〜5及び非特許文献1を参照することができる。
なお、式(I)の縮合多環芳香族化合物の芳香族環部分及び/又は縮合芳香族環部分の置換は例えば、ハロゲン、炭素原子数1〜20のアルキル基、炭素原子数2〜20のアルケニル基、炭素原子数2〜20のアルキニル基、炭素原子数4〜20の置換又は非置換の芳香族基、炭素原子数2〜10のエステル基、炭素原子数1〜20のエーテル基、炭素原子数1〜20のケトン基、炭素原子数1〜20のアミノ基、炭素原子数1〜20のアミド基、炭素原子数1〜20のイミド基、及び炭素原子数1〜20のスルフィド基からなる群より選択される置換基によってなされている。
《二重結合を有する化合物(II)》
二重結合を有する化合物(II)は、式(I)の縮合多環芳香族化合物に脱離可能に付加できる任意の化合物であってよい。したがって例えば、二重結合を有する化合物(II)は、特にディールス−アルダー反応によって、式(I)の縮合多環芳香族化合物に求ジエン体(ジエノフィル)又は共役ジエン体として、脱離可能に付加する任意の化合物であってよい。また、二重結合を有する化合物(II)は、特に式(I)の縮合多環芳香族化合物のAr、Ar及びArのうちの少なくとも1つの芳香族環部分又は縮合芳香族環部分、より特に式(I)の縮合多環芳香族化合物のAr及びArのうちの少なくとも1つの縮合芳香族環部分に脱離可能に付加できる任意の化合物であってよい。
二重結合を有する化合物(II)が求ジエン体である場合、二重結合を有する化合物(II)は、下記の式(II−A1)及び(II−B1)のいずれかの化合物であってよい:
(R、R、R及びRはそれぞれ独立に、結合、水素、ハロゲン、水酸基、アミド基、メルカプト基、シアノ基、炭素原子数1〜10のアルキル基、炭素原子数2〜10のアルケニル基、炭素原子数2〜10のアルキニル基、炭素原子数1〜10のアルコキシ基、炭素原子数4〜10の置換又は非置換の芳香族基、炭素原子数1〜10のエステル基、炭素原子数1〜10のエーテル基、炭素原子数1〜10のケトン基、炭素原子数1〜10のアミノ基、炭素原子数1〜10のアミド基、炭素原子数1〜10のイミド基、及び炭素原子数1〜10のスルフィド基からなる群より選択され、
及びRは、互いに結合して環を形成していてもよく、且つ
及びRは、互いに結合して環を形成していてもよい)。
ここで、上記の式(II−A1)の化合物は、炭素−酸素二重結合部分の存在によって、その炭素原子に隣接する炭素−炭素二重結合部分が比較的求電子的であり、したがって求ジエン体としてディールス−アルダー反応を促進するために好ましいことがある。同様に上記の式(II−B1)の化合物は、酸素の存在によって、この酸素原子に隣接する炭素−炭素二重結合部分が比較的求電子的であり、したがって求ジエン体としてディールス−アルダー反応を促進するために好ましいことがある。
また、二重結合を有する化合物(II)が求ジエン体である場合、二重結合を有する化合物(II)は、下記の式(II−A2)及び(II−B2)のいずれかの化合物であってよい:
(R、R、R及びRはそれぞれ独立に、結合、水素、ハロゲン、水酸基、アミド基、メルカプト基、シアノ基、炭素原子数1〜10のアルキル基、炭素原子数2〜10のアルケニル基、炭素原子数2〜10のアルキニル基、炭素原子数1〜10のアルコキシ基、炭素原子数4〜10の置換又は非置換の芳香族基、炭素原子数1〜10のエステル基、炭素原子数1〜10のエーテル基、炭素原子数1〜10のケトン基、炭素原子数1〜10のアミノ基、炭素原子数1〜10のアミド基、炭素原子数1〜10のイミド基、及び炭素原子数1〜10のスルフィド基からなる群より選択され、
及びRは、互いに結合して環を形成していてもよく、且つ
及びRは、互いに結合して環を形成していてもよい)。
ここで、上記の式(II−A2)の化合物は、2つの炭素−酸素二重結合部分の存在によって、それらの炭素原子の間の炭素−炭素二重結合部分が比較的求電子的であり、したがって求ジエン体としてディールス−アルダー反応を促進するために好ましいことがある。同様に上記の式(II−B2)の化合物は、2つの酸素の存在によって、それらの酸素原子の間の炭素−炭素二重結合部分が比較的求電子的であり、したがって求ジエン体としてディールス−アルダー反応を促進するために好ましいことがある。
また更に、二重結合を有する化合物(II)が求ジエン体である場合、二重結合を有する化合物(II)は、下記の式(II−A3)及び(II−B3)のいずれかの化合物であってよい:
(R及びRはそれぞれ独立に、結合、水素、ハロゲン、水酸基、アミド基、メルカプト基、シアノ基、炭素原子数1〜10のアルキル基、炭素原子数2〜10のアルケニル基、炭素原子数2〜10のアルキニル基、炭素原子数1〜10のアルコキシ基、炭素原子数4〜10の置換又は非置換の芳香族基、炭素原子数1〜10のエステル基、炭素原子数1〜10のエーテル基、炭素原子数1〜10のケトン基、炭素原子数1〜10のアミノ基、炭素原子数1〜10のアミド基、炭素原子数1〜10のイミド基、及び炭素原子数1〜10のスルフィド基からなる群より選択され、
及びRは、互いに結合して環を形成していてもよく、
nは、1〜5の整数であり、且つ
Zは、結合(−)、酸素(−O−)、メチレン性炭素(−C(R−)、エチレン性炭素(−C(R)=)、カルボニル基(−C(=O)−)、窒素(−N(R)−)、及び硫黄(−S−)からなる群より選択され、且つnが2又はそれよりも大きいときにはそれぞれ異なっていてもよい(Rはそれぞれ独立に、水素、ハロゲン、炭素原子数1〜10のアルキル基、炭素原子数2〜10のアルケニル基、炭素原子数2〜10のアルキニル基、炭素原子数1〜10のアルコキシ基、炭素原子数4〜10の置換又は非置換の芳香族基、炭素原子数1〜10のエステル基、炭素原子数1〜10のエーテル基、炭素原子数1〜10のケトン基、炭素原子数1〜10のアミノ基、炭素原子数1〜10のアミド基、炭素原子数1〜10のイミド基、及び炭素原子数1〜10のスルフィド基からなる群より選択される))。
ここで、上記の式(II−A3)の化合物は、2つの炭素−酸素二重結合部分の存在によって、それらの炭素原子の間の炭素−炭素二重結合部分が比較的求電子的であり、したがって求ジエン体としてディールス−アルダー反応を促進するために好ましいことがある。同様に上記の式(II−B3)の化合物は、2つの酸素の存在によって、それらの酸素原子の間の炭素−炭素二重結合部分が比較的求電子的であり、したがって求ジエン体としてディールス−アルダー反応を促進するために好ましいことがある。また上記の式(II−A3)又は(II−B3)の化合物は、二重結合が環状構造の一部となっていることによって、構造的に安定しており、したがってこれらの化合物を脱離可能に式(I)の縮合多環芳香族化合物に付加させるために好ましいことがある。
なお、共役ジエン型の二重結合を有する化合物(II)は、ディールス−アルダー反応において、式(I)の縮合多環芳香族化合物との組み合わせに応じて、式(I)の縮合多環芳香族化合物に求ジエン体及び/又は共役ジエン体として付加する。
二重結合を有する化合物(II)は、環状部分を有する化合物であってよい。二重結合が環状構造の一部となっていることは、二重結合を有する化合物(II)を構造的に安定させ、それによって二重結合を有する化合物(II)を脱離可能に式(I)の縮合多環芳香族化合物に付加させるために好ましいことがある。
したがって例えば、二重結合を有する化合物(II)は、下記の式(II−1)〜(II−12)のいずれかの化合物であってよい:
(R及びRはそれぞれ独立に、水素、ハロゲン、水酸基、アミド基、メルカプト基、シアノ基、炭素原子数1〜10のアルキル基、炭素原子数2〜10のアルケニル基、炭素原子数2〜10のアルキニル基、炭素原子数1〜10のアルコキシ基、炭素原子数4〜10の置換又は非置換の芳香族基、炭素原子数1〜10のエステル基、炭素原子数1〜10のエーテル基、炭素原子数1〜10のケトン基、炭素原子数1〜10のアミノ基、炭素原子数1〜10のアミド基、炭素原子数1〜10のイミド基、及び炭素原子数1〜10のスルフィド基からなる群より選択される)。
二重結合を有する化合物(II)は、共役ジエン型の化合物、例えば式(II−1)〜式(II−3)及び式(II−8)のいずれかの化合物であってよい。また、二重結合を有する化合物(II)は、求ジエン型の化合物、例えば式(II−4)〜式(II−6)、式(II−9)、及び式(II−10)〜式(II−12)のいずれかの化合物であってよい。また更に、二重結合を有する化合物(II)は、環状部分を有する化合物、例えば式(II−1)〜式(II−6)、式(II−8)、及び式(II−10)〜式(II−12)のいずれかの化合物であってよい。
なお、式(II−1)〜(II−12)のいずれかの化合物のR及びRに関して、炭素原子数4〜10の芳香族基の置換基に関しては、式(I)の縮合多環芳香族化合物の芳香族環部分又は縮合芳香族環部分を置換していてもよい置換基を参照できる。
以下では、下記の式(II−1)〜(II−12)のいずれかの化合物について、より詳細に説明する。
《式(II−1)の化合物》
(Rは上記のとおり)
特に、式(II−1)の化合物に関し、Rはそれぞれ独立に、水素及びハロゲンからなる群より選択される。Rがハロゲンである場合、Rはそれぞれ独立に、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)及びそれらの組み合わせからなる群より選択される元素、特にフッ素(F)、塩素(Cl)及びそれらの組み合わせからなる群より選択される元素、より特に塩素であってよい。したがって、式(II−1)の化合物は例えば、ヘキサフルオロシクロペンタジエン、ヘキサクロロシクロペンタジエン、ヘキサブロモシクロペンタジエン、5,5−ジフルオロテトラクロロシクロペンタジエン、又は5,5−ジブロモテトラクロロシクロペンタジエン、特にヘキサクロロシクロペンタジエンであってよい。また、Rが全て水素である場合には、式(II−1)の化合物は、シクロペンタジエンである。
《式(II−2)の化合物》
(Rは上記のとおり)
特に、式(II−2)の化合物に関し、Rはそれぞれ独立に、水素及びハロゲンからなる群より選択される。また、Rが全て水素である場合には、式(II−2)の化合物は、フランである。
《式(II−3)の化合物》
(R及びRは上記のとおり)
特に、式(II−3)の化合物に関し、Rはそれぞれ独立に、水素及びハロゲンからなる群より選択される。また特に、Rは炭素原子数1〜10のエステル基、例えばメチルエステルである。したがって特に上記の式(II−3)の化合物は、Rが水素であり且つRが炭素原子数1〜10のアルキルエステル基である化合物、すなわちカルボン酸アルキルピロール、例えばRが水素であり且つRがメチルエステル基であるカルボン酸メチルピロールであってよい。
《式(II−4)の化合物》
(R及びRは上記のとおり)
特に、式(II−4)の化合物に関し、Rが水素以外の基、すなわち比較的かさばる基であることは、式(I)の縮合多環芳香族化合物と式(II−4)の化合物との付加生成物から、加熱等によって式(II−4)の化合物の脱離を促進するために好ましいことがある。
《式(II−5)の化合物》
(Rは上記のとおり)
特に、式(II−5)の化合物に関し、Rがいずれも水素である化合物は、無水マレイン酸である。したがって式(II−5)の化合物は、無水マレイン酸又はその水素基が置換された化合物として考えることができる。
《式(II−6)の化合物》
(R及びRは上記のとおり)
特に、式(II−6)の化合物に関し、Rはそれぞれ独立に、水素及びハロゲンからなる群より選択される。また特に、Rは、炭素原子数1〜10のアルキル基、又は炭素原子数4〜10の置換又は非置換の芳香族基、例えばヒドロキシフェニル基である。
したがって例えば、上記の式(II−6)の化合物は、Rが水素であり且つRがメチル基であるN−メチルマレイミド、Rが水素であり且つRがエチル基であるN−エチルマレイミドであってよい。また例えば、上記の式(II−6)の化合物は、Rが水素であり且つRが炭素原子数4〜10の置換又は非置換の芳香族基である化合物、すなわち芳香族マレイミド、特にRが水素であり且つRがフェニル基であるN-フェニルマレイミド、又はRが水素であり且つRがヒドロキシフェニル基であるヒドロキシフェニルマレイミドであってよい。
《式(II−7)の化合物》
(Rは上記のとおり)
特に、式(II−7)の化合物に関し、Rは、炭素原子数1〜10のアルキル基からなる群より選択される。したがって特に上記の式(II−7)の化合物は、Rがアルキル基である化合物、すなわちN−スルホニルアシルアミド、例えばRがメチル基であるN−スルホニルアセトアミドであってよい。
《式(II−8)の化合物》
(Rは上記のとおり)
特に、式(II−8)の化合物に関し、Rはそれぞれ独立に、水素及びハロゲンからなる群より選択される。Rがハロゲンである場合、Rはそれぞれ独立に、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)及びそれらの組み合わせからなる群より選択される元素である。また、Rが全て水素である場合には、式(II−8)の化合物は、アントラセンとなる。
《式(II−9)の化合物》
(Rは上記のとおり)
特に、式(II−9)の化合物に関し、Rは、炭素原子数1〜10のアルキル基からなる群より選択される。したがって特に上記の式(II−9)の化合物は、Rがアルキル基である化合物、すなわちトリシアノカルボン酸アルキル−エチレン、例えばRがメチル基であるトリシアノカルボン酸メチル−エチレンであってよい。
《式(II−10)の化合物》
(R及びRは上記のとおり)
《式(II−11)の化合物》
(Rは上記のとおり)
特に、式(II−11)の化合物に関し、Rはそれぞれ独立に、水素及びハロゲンからなる群より選択される。また、Rが全て水素である場合には、式(II−2)の化合物は、炭酸ビニレンである。
《式(II−12)の化合物》
(R及びRは上記のとおり)
《有機半導体膜の生成方法》
有機半導体膜を生成する本発明の方法は、本発明の有機半導体膜形成用溶液を、基材に塗布して、膜を作製するステップ、そしてこの膜に減圧及び/又は加熱を行って、第1の付加化合物、及び随意に第2の付加化合物から二重結合を有する化合物(II)を脱離及び除去して、式(I)の縮合多環芳香族化合物からなる有機半導体膜を得るステップを含む。
この溶液の基材への塗布は、任意の様式で行うことができ、例えばキャスト法、スピンコート法、プリント法等によって行うこと等ができる。この溶液の基材への塗布は、単に溶液を基材に滴下して行うこともできる。
加熱及び/又は減圧によって化合物(II)を脱離及び除去させる場合には、式(I)の縮合多環芳香族化合物を実質的に分解させない任意の条件を用いることができる。したがって化合物(II)の脱離及び除去は例えば、80℃以上、100℃以上、120℃以上、又は140℃以上であって、200℃以下、220℃以下、240℃以下、260℃以下の温度で加熱を行うことができる。また、化合物(II)の脱離及び除去は例えば、真空下又は大気圧下において行うことができる。また更に、化合物(II)の脱離及び除去は例えば、窒素雰囲気下又は大気雰囲気下において行うことができる。特に、大気圧の大気雰囲気下において化合物(II)の脱離及び除去を行うことは、式(I)の縮合多環芳香族化合物の製造を容易にするために好ましい。
《有機半導体デバイスの製造方法》
有機半導体デバイスを製造する本発明の方法は、有機半導体膜を生成する本発明の方法によって有機半導体膜を生成するステップを含む。またこの方法は随意に、有機半導体膜の上側又は下側に、電極層及び/又は誘電体層を形成するステップを更に含むことができる。
《有機半導体デバイス》
本発明の有機半導体デバイスは、有機半導体膜を有する有機半導体デバイスであって、有機半導体膜が、有機半導体膜が、下記の式(I)を有する有機半導体化合物で作られており、且つ有機半導体膜が、下記の式(I)の縮合多環芳香族化合物に二重結合を有する第1の化合物(II’)が二重結合を介して脱離可能に付加されてなる第1の付加化合物、及び下記の(a)〜(c)からなる群より選択される少なくとも1種の化合物を含有している:
ArArAr (I)
(Ar及びArはそれぞれ独立に、2〜5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
Arは、1個の芳香族環からなる置換又は非置換の芳香族環部分、及び2〜5個の芳香族環が縮合している置換又は非置換の縮合芳香族環部分から選択され、
ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成しており、且つ
ArとArは、少なくとも2つの炭素原子を共有して縮合芳香環を形成している);
(a)式(I)の縮合多環芳香族化合物に二重結合を有する第2の化合物(II”)が二重結合を介して脱離可能に付加されてなる構造を有する第2の付加化合物、
(b)二重結合を有する第1の化合物(II’)であって、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる化合物(II’)、及び
(c)二重結合を有する第2の化合物(II”)であって、式(I)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる化合物(II”)。
ここで、有機半導体膜が第1の付加化合物及び上記の(a)〜(c)からなる群より選択される少なくとも1種の化合物を含有していることは、有機半導体膜が検知可能な量でこれらの化合物を含有していることを意味する。したがって例えば式(I)を有する有機半導体化合物に対するこれらの化合物のモル比は、1ppm超、10ppm超、100ppm超、1,000ppm超、又は10,000ppm(1%)超であってよい。また、式(I)を有する有機半導体化合物これらの化合物の割合は、10mol%以下、5mol%以下、3mol%以下、1mol%以下、0.1mol%以下、又は0.01mol%以下であってよい。
このような本発明の有機半導体デバイスは、式(I)の縮合多環芳香族化合物と並んで第1の付加化合物及び上記の(a)〜(c)からなる群より選択される少なくとも1種の化合物を含有しているにもかかわらず、有機半導体デバイスとしての特性を有することができる。すなわち、本発明の有機半導体デバイスの有機半導体膜を本発明の有機半導体膜形成用溶液から製造する場合、付加化合物の熱脱離反応及び結晶化抑制剤の除去が完全には進行しなくても、本発明の有機半導体デバイスは半導体デバイスとしての特性を有することができる。これは、本発明の有機半導体デバイス又はその有機半導体膜の製造を容易にするために好ましい。
特に本発明の有機半導体デバイスは、ソース電極、ドレイン電極、ゲート電極、ゲート絶縁膜、及び有機半導体膜を有する薄膜トランジスタであって、ゲート絶縁膜によってソース電極及びドレイン電極とゲート電極とを絶縁し、且つゲート電極に印加される電圧によってソース電極からドレイン電極へと有機半導体を通って流れる電流を制御する薄膜トランジスタである。また特に本発明の有機半導体デバイスは、有機半導体膜を活性層として有する太陽電池である。
《実施例1》
この実施例では、2種類の付加化合物を含有する有機半導体膜形成用溶液を調製し、その固形物としての析出状態について確認した。
下記の参考例10Aでのようにして、ジナフトチエノチオフェン(DNTT)にN−フェニルマレイミド(PMI)1分子が付加した付加化合物(DNTT−1PMI(立体異性体A))を得た。ここで、このDNTT−1PMI(立体異性体A)は、NMRの結果から、endo体であると推定される。また、下記の参考例13でのようにして、ジナフトチエノチオフェン(DNTT)にN−シクロヘキシルマレイミド(CHMI)1分子が付加した付加化合物(DNTT−1CHMI)を得た。
合計で1.0質量%の量のDNTT−1PMI及びDNTT−1CHMIをクロロロホルムに加えて、有機半導体膜形成用溶液を得た。ここで、DNTT−1PMIとDNTT−1CHMIとのモル比は、1:1になるようにした。
〈結晶化の評価〉
この有機半導体膜形成用溶液をシリコンウエハに滴下し、溶媒であるクロロホルムを常温の大気中において揮発させて固形物を析出させた。この固形物の析出状態を顕微鏡にて観察した。結果を図1に示す。ここで、図1(a)は、この固形物の全体を示す写真であり、且つ図1(a)は、この固形物の拡大写真(500倍)である。
図1から理解されるように、固形物が膜状に析出しており、実質的に結晶化が進行していないことが確認された。これは、有機半導体膜形成用溶液が2種類の付加化合物を含有していることにより、溶媒が揮発して固形物が析出する際に、結晶化が抑制されていることによると考えられる。
〈FETの作製〉
この有機半導体膜形成用溶液を用いて、下記のようにして、ボトムコンタクトボトムゲート型FET(Field effect Transistor)素子を作製した。
基材は、300nmのSiO酸化膜付nドープシリコンウェハー(面抵抗0.005Ω・cm)のSiO酸化膜上に、チャネル長50μm及びチャネル幅1.5mmのソース/ドレイン金電極を作製して得た(ボトムコンタクト)。
有機半導体膜形成用溶液を、室温において基材のチャネル部に滴下し、速やかに揮発させて膜を得、そしてこの膜を加熱して有機半導体膜を得た。その後、窒素下において、210℃で2時間にわたってこの膜を加熱して、有機半導体膜を得た。
窒素下における加熱の前後において、この膜を観察した。結果を図2に示す。ここで、図2(a)は、加熱(アニール)の前の観察結果を示しており、また図2(b)は、加熱の後の観察結果を示している。この図2からは、加熱によって、有機半導体膜全体にわたって微小な結晶粒子が析出することが理解される。
得られたFETの有機半導体膜の特性を評価すると、p型半導体特性を示した。また、キャリア移動度は最大で0.01cm/Vsであり、且つオン/オフ比は最大で10であった。
《実施例2》
この実施例では、付加化合物とこの付加化合物を構成する化合物とを含有する有機半導体膜形成用溶液を調製し、その固形物としての析出状態について確認した。
下記の参考例10Aでのようにして、ジナフトチエノチオフェン(DNTT)にN−フェニルマレイミド(PMI)1分子が付加した付加化合物(DNTT−1PMI(立体異性体A))を得た。ここで、このDNTT−1PMI(立体異性体A)は、NMRの結果から、endo体であると推定される。
1.0質量%の量のDNTT−1PMI、及びDNTT−1PMIに対して1mol%のPMIをクロロロホルムに加えて、有機半導体膜形成用溶液を得た。
〈結晶化の評価〉
この有機半導体膜形成用溶液をシリコンウエハに滴下し、溶媒であるクロロホルムを常温の大気中において揮発させて固形物を析出させた。この固形物の析出状態を顕微鏡にて観察すると、固形物が膜状に析出しており、実質的に結晶化が進行していないことが確認された。これは、有機半導体膜形成用溶液が付加化合物とこの付加化合物を構成する化合物を含有していることにより、溶媒が揮発して固形物が析出する際に、結晶化が抑制されていることによると考えられる。
〈FETの作製〉
この有機半導体膜形成用溶液を用いて、実施例1でのようにして、ボトムコンタクトボトムゲート型FET素子を作製した。得られたFETの有機半導体膜の特性を評価すると、p型半導体特性を示した。また、キャリア移動度は最大で0.01cm/Vsであり、且つオン/オフ比は最大で10であった。
《実施例3》
この実施例では、付加化合物とこの付加化合物を構成する化合物とを含有する有機半導体膜形成用溶液を調製し、その固形物としての析出状態について確認した。
下記の参考例13でのようにして、ジナフトチエノチオフェン(DNTT)にN−シクロヘキシルマレイミド(CHMI)1分子が付加した付加化合物(DNTT−1CHMI)を得た。
1.0質量%の量のDNTT−1CHMI、及びDNTT−1CHMIに対して1mol%のPMIをクロロロホルムに加えて、有機半導体膜形成用溶液を得た。
〈結晶化の評価〉
この有機半導体膜形成用溶液をシリコンウエハに滴下し、溶媒であるクロロホルムを常温の大気中において揮発させて固形物を析出させた。この固形物の析出状態を顕微鏡にて観察すると、固形物が膜状に析出しており、実質的に結晶化が進行していないことが確認された。これは、有機半導体膜形成用溶液が付加化合物とこの付加化合物を構成する化合物を含有していることにより、溶媒が揮発して固形物が析出する際に、結晶化が抑制されていることによると考えられる。
〈FETの作製〉
この有機半導体膜形成用溶液を用いて、実施例1でのようにして、ボトムコンタクトボトムゲート型FET素子を作製した。得られたFETの有機半導体膜の特性を評価すると、p型半導体特性を示した。また、キャリア移動度は最大で0.01cm/Vsであり、且つオン/オフ比は最大で10であった。
《比較例1》
この比較例では、付加化合物のみを含有する有機半導体膜形成用溶液を調製し、その固形物としての析出状態について確認した。
下記の参考例10Aでのようにして、ジナフトチエノチオフェン(DNTT)にN−フェニルマレイミド(PMI)1分子が付加した付加化合物(DNTT−1PMI(立体異性体A))を得た。ここで、このDNTT−1PMI(立体異性体A)は、NMRの結果から、endo体であると推定される。
1.0質量%の量のDNTT−1PMIをクロロロホルムに加えて、有機半導体膜形成用溶液を得た。
〈結晶化の評価〉
この有機半導体膜形成用溶液をシリコンウエハに滴下し、溶媒であるクロロホルムを常温の大気中において揮発させて固形物を析出させた。結果を図3に示す。ここで、図3は、この固形物の拡大写真(500倍)である。
図3から理解されるように、固形物は粒子状に析出しており、固形物の膜状は得られなかった。これは、有機半導体膜形成用溶液から溶媒が揮発する間にDNTT−1PMIの結晶化が進行したことによると考えられる。
〈FETの作製〉
この有機半導体膜形成用溶液を用いて、実施例1でのようにして、ボトムコンタクトボトムゲート型FET素子を作製した。得られたFETの有機半導体膜の特性を評価が、半導体としての特性は得られなかった。また、得られたFETの有機半導体膜を偏光顕微鏡によって観察した。結果を図4に示す。図4から理解されるように、有機半導体が粒子を形成しており、電極間のチャネルにおいて有機半導体膜の経路が形成されていなかった。
《参考例》
以下の参考例では、式(I)の縮合多環芳香族化合物と二重結合を有する第1の化合物(II’)とが付加した構造を有する付加生成物について示す。
目的化合物の構造は、必要に応じて1H−NMR(1H−核磁気共鳴スペクトル)、MS(質量分析スペクトル)、及び元素分析により決定した。使用した機器は以下のとおりである。
H−NMR :JEOL ECA−500 (500MHz)
MS :Shimazu QP−5050A
元素分析 :Parkin Elmer2400 CHN型元素分析計
また、付加反応について行ったコンピュータシュミレーションでの条件は、下記の通りである。
〈半経験手法〉
プログラム: MOPAC3.0
ハミルトニアン: AM1
構造最適化: EF法で構造最適化
〈非経験手法〉
プログラム: Gaussian03
相関交換関数: B3LYP
基底関数系: 6−31G(d)
構造最適化: Bernyアルゴリズム
このコンピュータシュミレーションでは、原料化合物の生成熱、及びこれらの化合物の付加生成物の生成熱を求め、それによってこの付加生成物を生成する反応の実現可能性を評価した。ここでは、原料化合物の生成熱の合計と、これらの化合物の付加生成物の生成熱との差(相対生成熱)の値が、−20kcal/mol(吸熱)よりも大きい場合、すなわち付加反応が発熱反応であるか又はわずかに吸熱反応である場合には、この付加生成物を生成する反応が実現可能であると考えられる。また、この相対生成熱の値が比較的小さく、例えば相対生成熱の値が−20kcal/molよりも大きい吸熱反応又は20kcal/mol以下の発熱反応である場合には、この付加反応が可逆的であると考えられる。なお、MOPACは炭素及び水素のみを考慮した場合には非常に信頼性が高いものの、それ以外の元素が含まれる場合には、Gaussianの信頼性が高い。
《参考例1A》
特許文献2に示される手法により合成したジナフトチエノチオフェン(DNTT、MW=340.46、構造式を下記に示す)100mg(0.293mmol)に、ヘキサクロロシクロペンタジエン(HCCPD、MW=272.77、構造式を下記に示す)20g(47.66mmol)を加え、反応温度を24時間にわたって160℃に保った。
その後、反応生成物を放冷して、ヘキサクロロシクロペンタジエン2付加ジナフトチエノチオフェン(DNTT−2HCCPD(TTs)、Mw.886.00、20mg、0.0225mmol、収率=7.7%、構造式を下記に示す)を得た。
尚、上記のようにして得たDNTT−2HCCPD(TTs)は、高速液体クロマトグラフィ(Agilent 1100 Series HPLC:High Performance Liquid Chromatography, SHISEIDO CAPCELL PAK C18 TYPE UG120、溶媒:アセトニトリル/水)により精製した。
DNTT−2HCCPD(TTs)についての分析結果を下記に示す:
H−NMR(500MHz,CDCl): δ8.43(s,1H),8.39(s,1H),8.33(s,1H),8.24(s,1H),8.05(m,1H),7.96(m,1H),7.55(m,2H),4.20(d,J=9.5Hz,1H),4.16(d,J=9.5Hz,1H),3.64(d,J=8.9Hz,2H)
Anal.Calcd for C3212Cl12: C,43.37;H,1.37
Found: C,41.9;H,1.3
MS(70eV、DI): 340m/z
質量分析(MS)の検出値(340m/z)は、DNTT(分子量340.46)と一致しており、DNTT−2HCCPD(TTs)が質量分析(70eV、DI)の条件に曝されることで、HCCPDが脱離してDNTTを再生していることが示されている。
上記合成で得られたDNTT−2HCCPD(TTs)を、0.2質量%の濃度になるようにトルエンに溶解させて、半導体素子作成用溶液を調整した。
次に、300nmのSiO酸化膜付nドープシリコンウェハー(面抵抗0.005Ω・cm)に対して、UVオゾン処理を20分にわたって行った(アイUV−オゾン洗浄装置OC−250615−D+A、アイグラフィックス株式会社)。また、オクタデシルトリクロロシラン(ODTS、信越化学LS−6495)10mmol/トルエン溶液を調製し、この溶液中に、UVオゾン処理を行ったシリコン基板を24時間浸漬させた。その後、真空蒸着法(サンユー電子、抵抗加熱方式蒸着装置:SVC−700TM/700−2)により、チャネル長50μm及びチャネル幅1.5mmのソース/ドレイン金電極を、シリコン基板上に作製した。
このシリコン基板を40℃に加熱しながら、チャネル部分に、半導体素子作成用溶液を滴下して溶媒を揮発させ、DNTT−2HCCPD(TTs)からなる薄層を形成した。このようにして作製した素子を、真空下において180℃で1時間にわたって加熱処理し、有機半導体素子を作製した。得られた有機半導体素子の概略を図5に示す。この図5で示す有機半導体素子では、シリコンウェハーである基材(ゲート電極)7上に、酸化ケイ素である誘電体層5が形成されており、この誘電体層5上に、ソース及びドレイン電極2及び3、そして有機半導体1が積層されている。
有機半導体特性の測定を行ったところ、p型半導体を示した。キャリア移動度は、2×10−5cm/Vsであり、オン/オフ比は113、閾値電圧14.4Vであった。電界効果トタンジスタ(FET)としての出力特性及び伝達特性をそれぞれ、図6及び6に示す。ここで、図6は、縦軸がドレイン電流(I(A))を示しており、横軸がドレイン電圧(V(V))を示している。また図7は、縦軸がドレイン電流(I(A))を示しており、横軸がゲート電圧(V(V))を示している。
《参考比較例1A》
HCCPDを付加させていない単独のDNTTを0.2質量%の濃度でトルエンに加えたが、ほとんど溶解しなかった。したがって、単独のDNTTは、溶液法で用いることができなかった。
《参考例1B》
ジナフトチエノチオフェン(DNTT)とヘキサクロロシクロペンタジエン(HCCPD)との付加反応を、上記の半経験手法(MOPAC)を用いるコンピュータシュミレーションによって確認した。
結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.29kcal/molとし、HCCPDの生成熱は5.86kcal/molであるとした。
表1の付加位置については、下記の化学式で示すように、「c」は中央の位置、「z」は近い硫黄(S)原子に対して同じ側(zusammen)の末端の位置、「e」は近い硫黄(S)原子に対して反対側(entgegen)の末端の位置で、DNTTにHCCPDが付加していることを示している。
また、表1において、「anti」は、DNTTの共役面に対して逆側からHCCPDが付加していることを示しており、「iso」は、DNTTの同じ側の末端に2つのHCCPDが付加していることを示している。また更に、3つ以上のHCCPDが付加している場合の「anti」は、隣接する反対末端間でのHCCPD間の結合配座が「anti」であることを示している。
表1の結果からは、DNTTにHCCPDが1つのみ付加する場合には、近い硫黄(S)原子に対して同じ側の末端の位置(付加位置「z」、記号「DNTT−1HCCPD(T)」)、及び近い硫黄(S)原子に対して反対側の末端の位置(付加位置「e」、記号「DNTT−1HCCPD(Tb)」)で、DNTTにHCCPDが付加することが理解される。また、この付加生成物に対して更にもう1つのHCCPDが付加する場合には、既にHCCPDが付加している末端と同じ末端(付加位置「iso」)に更に、HCCPDが付加することが理解される(記号「DNTT−2HCCPD(TTs)」)。
DNTTにHCCPDが2つ付加する場合にはHCCPDが既に付加している末端と同じ末端(付加位置「iso」)に更にHCCPDが付加するというこの結果は、参考例1Aで得られた結果に対応している。したがって、ディールス−アルダー反応におけるコンピュータシュミレーションの適用の妥当性が理解される。
《参考例2A》
ジナフトチエノチオフェン(DNTT、MW=340.46)1750mg(5.14mmol)、N―スルホニルアセトアミド(NSAA、MW105.12、構造式を下記に示す)17.83g(169.62mmol、3300mol%)、及び金属触媒試薬CHReO(ACROS A0245387、MW249.23)12.81mg(0.05mmol)を、クロロホルム溶媒中において混合し、窒素下において63℃で15.5時間にわたって還流した。これにより、DNTTとNSAAとのディールス−アルダー付加反応を行った。
その後、ろ過により固形物を取得し、これをクロロホルムで洗浄した。得られた緑色の固体1.82gは、原料を含む不純物であることが確認された。
ろ過液にヘキサンを添加して再結晶させ、ろ過により0.2636gの黄色の固形物(31.5mg)を得た。この固形物をHPLCにより分取し、DNTTにNSAA1分子が付加した付加化合物31.5mg(DNTT−1NSAA、Mw=445.58、収率1.4mol%)を得た。この付加化合物の構造式を下記に示す。
得られたDNTT−1NSAAについての分析結果を下記に示す。
H−NMR(600MHz,CDCl): δ8.42(s,2H),8.38(s,2H),8.05(m,2H),7.95(m,2H),7.54(m,4H),2.03(s,3H)
MS(70eV、DI): 339.85m/z
質量分析(MS)の検出値(339.85m/z)は、DNTT(分子量340.46)と一致しており、DNTT−1NSAAが質量分析(70eV、DI)の条件に曝されることで、NSAAが脱離してDNTTが再生していることが示されている。
《参考例2》
ジナフトチエノチオフェン(DNTT)とN−スルホニルアセトアミド(NSAA)との付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.56kcal/molとし、NSAAの生成熱は−49.27kcal/molであるとした。
表2の付加位置については、下記の化学式で示すようにDNTTの炭素を番号付けし、NSAAの窒素(N)原子及び硫黄(S)原子が配位する炭素を特定した。
表2の結果からは、DNTTにNSAAが付加する反応が実現可能であり、この場合には、DNTTの中央の位置にNSAAが付加することが理解される。
《参考例3》
ジナフトチエノチオフェン(DNTT)とシクロペンタジエン(CPD、構造式を下記に示す)との付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.56kcal/molとし、CPDの生成熱は37.97kcal/molであるとした。
表3の付加位置については下記に例示する。なお、表3の記号「CPD−CPD」は、2つのCPDが付加した付加生成物を示している。
表3の結果からは、DNTTにCPDを付加する付加反応が、実現可能であることが理解される。
《参考例4》
ジナフトチエノチオフェン(DNTT)とフラン(FRN、構造式を下記に示す)との付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.56kcal/molとし、FRNの生成熱は2.96kcal/molであるとした。
表4の付加位置については下記に例示する。なお、表4の記号「FRN−FRN」は、2つのFRNが付加した付加生成物を示している。
表4の結果からは、DNTTにFRNを付加する付加反応が、実現可能であることが理解される。
《参考例5》
ジナフトチエノチオフェン(DNTT)とアントラセン(ANTH、構造式を下記に示す)との付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.56kcal/molとし、ANTHの生成熱は62.92kcal/molであるとした。
表5の付加位置については下記に示す。
表5の結果からは、DNTTにANTHを付加する付加反応が、実現可能であることが理解される。
《参考例6》
ジナフトチエノチオフェン(DNTT)とトリシアノ−カルボン酸メチル−エチレン(TCPM、構造式を下記に示す)との付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.56kcal/molとし、TCPMの生成熱は40.24kcal/molであるとした。
表6の付加反応の反応条件における「光」及び「熱」はそれぞれ、光及び熱によって付加反応を進行させられることを意味している。表6の付加位置については下記に例示する。
表6の結果からは、DNTTにTCPMを付加する付加反応が、実現可能であることが理解される。
《参考例7》
ジナフトチエノチオフェン(DNTT)とカルボン酸メチルピロール(NMPC、構造式を下記に示す)との付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.56kcal/molとし、NMPCの生成熱は−30.46kcal/molであるとした。
表7の付加反応の反応条件における「光」及び「熱」はそれぞれ、光及び熱によって付加反応を進行させられることを意味している。表7の付加位置については下記に例示する。
表7の結果からは、DNTTにNMPCを付加する付加反応が、実現可能であることが理解される。
《参考例8》
ジナフトチエノチオフェン(DNTT)とヒドロキシフェニル−マレイミド(HOPMI、構造式を下記に示す)との付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.56kcal/molとし、HOPMIの生成熱は−38.13kcal/molであるとした。
表8の付加反応の反応条件における「光」及び「熱」はそれぞれ、光及び熱によって付加反応を進行させられることを意味している。表8の付加位置については下記に例示する。
表8の結果からは、DNTTにHOPMIを付加する付加反応が、実現可能であることが理解される。
《参考例9》
ジナフトチエノチオフェン(DNTT)と炭酸ビニレン(VC(ビニレンカーボネート)、構造式を下記に示す)との付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.56kcal/molとし、VCの生成熱は−59.30kcal/molであるとした。
表9の付加反応の反応条件における「光」及び「熱」はそれぞれ、光及び熱によって付加反応を進行させられることを意味している。
表9の付加位置については、下記の化学式で示すとおりである。
M位:2−7
L位:4−5
Z位:3−6
T位:3−4、又は5−6
C位:7b−14b
表9の結果からは、DNTTにVCを付加する付加反応が、実現可能であることが理解される。
《参考例10A》
特許文献2に示される手法により合成したジナフトチエノチオフェン(DNTT、MW=340.46)500mg(1.47mmol)、N−フェニルマレイミド(PMI、MW=173.16、構造式を下記に示す)2.54g(14.7mmol、1000mol%DNTT基準)、ラジカル補足剤としてのヒドロキノン(MW110.1)16.2mg(N−フェニルマレイミド基準で1mol%)を、メシチレン溶媒中で混合し、窒素下において160℃で2時間にわたって撹拌した。これにより、DNTTとPMIとのディールス−アルダー付加反応を行った。
反応後、ろ過により固形物を取得し、これをクロロホルムで洗浄した。この固形物は、NMRによりDNTT(原料)であることが確認された(収量422.3mg、収率84.5mol%)。
ろ過液を、HPLC(高速液体クロマトグラフィ、Agilent 1100 Series HPLC:High Performance Liquid Chromatography, SHISEIDO CAPCELL PAK C18 TYPE UG120、溶媒:アセトニトリル/水)により分取し、DNTTにPMI1分子が付加した付加化合物113.2mg(DNTT−1PMI、Mw=513.63、収率15.0mol%)を得た。
得られたDNTT−1PMIは、2種の立体異性体(それぞれ「立体異性体A」及び「立体異性体B」とする)の混合物であった。これらの立体異性体についての分析結果を下記に示す。なお、NMRの結果から、立体異性体Aがendo体であり、且つ立体異性体Bがexo体であると推定される。
DNTT−1PMI(立体異性体A)
H−NMR(600MHz,CDCl): δ8.30 (S、1H )、8.23(S、1H)、7.95(m、1H)、7.89(m、1H)、7.50(m、2H)、7.47(m、2H)、7.25(m、2H)、7.12(t、J=7.3Hz,1H)、7.07(dd、J=7.3Hz、7.7Hz,2H)、6.50(d、J=7.7Hz、2H)、5.30(d、J=3.3Hz,1H)、5.22(d、J=3.3Hz,1H)、3.54(dd、J=3.3Hz,8.1Hz,1H)、3.51(dd、J=3.3Hz、8.1Hz、1H)
MS(70eV、DI): 514.10m/z
DNTT−1PMI(立体異性体B)
H−NMR(600MHz,CDCl): δ8.33(s、1H)、8.25(s、1H)、7.97(m、1H)、7.90(m、1H)、7.49(m、2H)、7.42(m、1H)、7.40(m、1H)、7.31(m、1H)、7.30(m、2H)、7.26(m、2H)、6.53(m、2H)、5.22(d、J=3.3Hz、1H)、5.18 (d、J=3.3Hz、1H)、3.59(dd、J=3.3Hz,8.4Hz,1H)、3.56(dd、J=3.3Hz、8.4Hz、1H)
MS(70eV、DI): 513.05m/z
質量分析(MS)の検出値はいずれも、DNTT−1PMI(Mw=513.63)と実質的に一致している。
示差熱天秤分析(Rigaku TG−DTA TG8120)を用いて、窒素下において1℃/minの昇温分析を行って、DNTT−1PMI(立体異性体A及びB)の熱脱離特性を評価した。これによれば、DNTT−1PMI(立体異性体A)では、195℃から260℃の温度範囲において、重量減少が31.9wt%であった。また、DNTT−1PMI(立体異性体B)では、155℃から260℃の温度範囲において、重量減少が32.7wt%であった。結果を図8に示す。DNTT−1PMI(MW=513.63)から、PMIが逆ディールス−アルダー反応により熱脱離した場合、重量減少は−33.7wt%(計算値)であるので、DNTT−1PMI(立体異性体A及びB)での分析結果は、加熱によってPMIが脱離したことを示している。また、NMRによれば、熱脱離後の試料がDNTTと一致することが確認された。
DNTT−1PMI(立体異性体A及びB)をそれぞれ用いて、下記のようにして、ボトムコンタクトボトムゲート型FET(Field effect Transistor)素子を作製した。
基材は、300nmのSiO酸化膜付nドープシリコンウェハー(面抵抗0.005Ω・cm)のSiO酸化膜上に、チャネル長50μm及びチャネル幅1.5mmのソース/ドレイン金電極を作製して得た(ボトムコンタクト)。
この基材を50℃に加熱しながら、DNTT−1PMI(立体異性体A及びB)のクロロホルム3wt%溶液を、基材のチャネル部に滴下し、速やかに揮発させて膜を得、そしてこの膜を加熱して有機半導体膜を得た。ここで、DNTT−1PMI(立体異性体A)ついては、窒素下において、200℃で2時間の加熱を行った。また、DNTT−1PMI(立体異性体B)については、窒素下又は大気下において、160℃で2時間の加熱を行った。
得られた有機半導体膜の特性を評価すると、p型半導体特性を示した。また、キャリア移動度は0.01〜0.0001cm/Vsであり、且つオン/オフ比は10〜10であった。すなわち、DNTT−1PMI(立体異性体B)については、窒素下において加熱を行った場合だけでなく、大気下において加熱を行った場合にも、半導体特性が得られた。電界効果トタンジスタ(FET)としての出力特性及び伝達特性をそれぞれ、図9及び10に示す。ここで、図9は、縦軸がドレイン電流(I(A))を示しており、横軸がドレイン電圧(V(V))を示している。また図10は、縦軸がドレイン電流(I(A))を示しており、横軸がゲート電圧(V(V))を示している。
また、偏光顕微鏡によるチャネル部の観察によれば、加熱して有機半導体膜を得た後では、有機半導体膜の全面に微小な結晶が形成されていることが確認された。したがって、加熱によってDNTT−1PMIからPMIが脱離して、DNTTの結晶が生成していることが確認された。
DNTT−1PMI(立体異性体B)から得られた有機半導体膜を有する上記のFET素子に関して、有機半導体膜中における残留DNTT−1PMI(立体異性体A及びB)の有無について、NMRにより確認した。結果を図11に示す。なお、この図11において、「DNTT」、「DNTT−1PMI(A)」、「DNTT−1PMI(B)」、及び「FET DNTT−1PMI(B)」はそれぞれ、DNTT、DNTT−1PMI(立体異性体A)、DNTT−1PMI(立体異性体B)、及びDNTT−1PMI(立体異性体B)から得られた有機半導体膜についての分析結果を示している。
図11によれば、DNTT−1PMI(立体異性体B)から得られた有機半導体膜では、DNTTに相当するNMRピークのみでなく、DNTT−1PMI(立体異性体A及びB)両方に相当するNMRピークが観測される。すなわち、有機半導体膜中にDNTT−1PMI(立体異性体A及びB)が残留している場合であっても、十分な半導体特性を提供できることが確認された。ここで、DNTTは溶解性が低く、したがってNMRによってピークが観察されにくい。一方で、DNTT−1PMI(立体異性体A及びB)は溶解性が高いため、溶解分に相当したNMRピークが観測されている。このため、このNMR結果からは、有機半導体膜におけるDNTT−1PMIとDNTTとの比は判断できない。なお、図11の「DNTT」のピークは、ノイズが大きくなっていることから理解されるように、他のピークと比較して倍率を大きくしている。また、有機半導体膜での検出されているDNTT−1PMI(立体異性体A及びB)のNMRピークの大きさが、DNTTのピークと相対してほぼ同程度であることより、残留成分のDNTT−1PMI(立体異性体A及びB)は、微少量であることが分かる。
《参考例10B》
ジナフトチエノチオフェン(DNTT)とN−フェニルマレイミドとの付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、DNTTの生成熱は117.56kcal/molとし、PMIの生成熱は5.83kcal/molであるとした。
表10の付加位置については、下記の化学式で示すとおりである。
M位:2−7
C位:7b−14b
Z位:3−6
MM位:2−7及び9−14
ZZ位:3−6及び10−13
MZ位及びZM位:2−7及び10−13
表10の結果からは、1分子のDNTTに1分子のPMIを付加する付加反応、及び1分子のDNTTに2分子のPMIを付加する付加反応が、実現可能であることが理解される。
《参考例11》
ナフトアルデヒド(NAL、構造式を下記に示す)とN−フェニルマレイミド(PMI、構造式を下記に示す)との付加反応を、上記の半経験手法(MOPAC)及び非経験手法(Gaussian)を用いるコンピュータシュミレーションによって確認した。
同様にして、3−メチルチオ−2−ナフトアルデヒド(MTNAL、構造式を下記に示す)とN−フェニルマレイミド(PMI、構造式を下記に示す)との付加反応を、コンピュータシュミレーションによって確認した。
結果を下記の表に示す。なお、上記の半経験手法(MOPAC)において、NALの生成熱は9.58kcal/molとし、MTNALの生成熱は12.28kcal/molとし、PMIの生成熱は5.83kcal/molであるとした。
表9の付加反応の反応条件における「熱」は、熱によって付加反応を進行させられることを意味している。
表11の付加位置は、下記のとおりである:
M位:1−4
Z位:8−5
表11の結果からは、NALにPMIを付加する付加反応、及びMTNALにPMIを付加する付加反応が、実現可能であることが理解される。また、表11の結果からは、下記のEndo体及びExo体が、いずれも形成されることが理解される。
《参考例12》
ジナフトチエノチオフェン(DNTT、MW=340.46)500mg(1.47mmol)、N−メチルマレイミド(MMI、MW=111.1)1.63g(14.7mmol、DNTT基準で1000mol%)、ラジカル補足剤としてのヒドロキノン(MW110.1)16.2mg(N−メチルマレイミド基準で1mol%)を、メシチレン溶媒中において混合し、窒素下において160℃で2時間にわたって撹拌した。これにより、DNTTとMMIとのディールス−アルダー付加反応を行った。
その後、ろ過により固形物を取得し、クロロホルムで洗浄した。この固形物は、NMRによりDNTT(原料)であることが確認された(収量343.5mg、収率.68.7mol%)。
ろ過液を、HPLCにより分取し、DNTTにMMI1分子が付加した付加物化合物113.2mg(DNTT−1MMI、Mw=451.56、収率28.5mol%)を得た。この付加化合物の構造式を下記に示す。
得られたDNTT−1MMPは、2種の立体異性体(それぞれ「立体異性体A」及び「立体異性体B」とする)の混合物であった。これらの立体異性体についての分析結果を下記に示す。なお、NMRの結果から、立体異性体Aがendo体であり、且つ立体異性体Bがexo体であると推定される。
DNTT−1MMI(立体異性体A)
H−NMR(600MHz,CDCl): δ8.28(s,1H),8.19(s,1H),7.94(m,1H),7.88(m,1H),7.47(m,2H),7.46(m,1H),7.42(m,1H),7.21(m,2H),5.18(d,J=2.9Hz,1H),5.11(d,J=2.9Hz,1H),3.37(dd,J=2.9Hz,7.7Hz,1H),3.35(dd,J=2.9Hz,7.7Hz,1H),2.53(s,3H)
MS(70eV、DI): 451.00m/z
DNTT−1MMI(立体異性体B)
H−NMR(600MHz,CDCl): δ8.32(s,1H),8.23(s,1H),7.95(m,1H),7.89(m,1H),7.49(m,2H),7.33(m,1H),7.31(m,1H),7.17(m,2H),5.11(d,J=3.3Hz,1H),5.07(d,J=3.3Hz,1H),3.43(dd,J=3.3Hz,8.4Hz,1H),3.40(dd,J=3.3Hz,8.4Hz,1H),2.52(s,3H)
MS(70eV、DI): 451.30m/z
質量分析(MS)の検出値はいずれも、DNTT−1MMI(Mw=451.56)と実質的に一致している。
参考例10Aでのようにして示差熱天秤分析を用いて、DNTT−1MMIの熱脱離特性を評価した。これによれば、DNTT−1MMI(立体異性体A)では、220℃から260℃の温度範囲において熱脱離が起こった。なお、DNTT−1MMI(立体異性体B)のサンプル微量であったため、熱脱離特性の評価が行えなかった。
DNTT−1MMI(立体異性体A)に関しては、参考例10Aでのようにして有機半導体膜を得て、半導体特性を評価した。ここで、有機半導体膜を得るための加熱は、窒素下において、225℃で2時間にわたって行った。得られた有機半導体膜の特性を評価すると、p型半導体特性を示した。また、キャリア移動度は、0.01〜0.0001cm/Vsであり、且つオン/オフ比は10〜10であった。
《参考例13》
ジナフトチエノチオフェン(DNTT、MW=340.46)500mg(1.47mmol)、N−シクロヘキシルマレイミド(CHMI、MW=179.22)2.63g(14.7mmol、DNTT基準で1000mol%)、ラジカル補足剤としてのヒドロキノン(MW110.1)16.2mg(N−フェニルマレイミド基準で1mol%)を、メシチレン溶媒中において混合し、窒素下において160℃で2時間にわたって撹拌した。これにより、DNTTとCHMIとのディールス−アルダー付加反応を行った。
その後、ろ過により固形物を取得し、クロロホルムで洗浄した。この固形物は、NMRによりDNTT(原料)であることが確認された(収量478.5mg、収率.95.7mol%)。
ろ過液を、HPLCにより分取し、DNTTにCHMI1分子が付加した付加化合物28.9mg(DNTT−1CHMI、Mw=519.13、収率2.1mol%)を得た。この付加化合物の構造式を下記に示す。
得られたDNTT−1CHMIについての分析結果を下記に示す。なお、DNTT−1CHMIに関しては、立体異性体は得られなかった。
H−NMR(600MHz,CDCl): δ8.31(s,1H),8.23(s,1H),7.95(m,1H),7.89(m,1H),7.48(m,2H),7.33(m,1H),7.32(m,1H),7.17(m,2H),5.08(d,J=3.4Hz,1H),5.05(d,J=3.4Hz,1H),3.51(m,1H),3.33(dd,J=3.4Hz,8.3Hz,1H),3.30(dd,J=3.4Hz,8.3Hz,1H),1.68(m,4H),1.58(m,1H),1.09(m,3H),0.84(m,2H)
MS(70eV、DI): 519.20m/z
質量分析(MS)の検出値は、DNTT−1CHMI(Mw=519.13)と実質的に一致している。
参考例10Aでのようにして示差熱天秤分析を用いて、DNTT−1CHMIの熱脱離特性を評価した。これによれば、DNTT−1CHMIでは、200℃から280℃の温度範囲において熱脱離が起こった。
DNTT−1CHMIに関して、参考例10Aでのようにして有機半導体膜を得て、半導体特性を評価した。ここで、有機半導体膜を得るための加熱は、窒素下において、210℃で2時間にわたって行った。得られた有機半導体膜の特性を評価すると、p型半導体特性を示した。キャリア移動度は、0.01〜0.0001cm/Vsであり、且つオン/オフ比は10〜10であった。
《参考例14》
ジナフトチエノチオフェン(DNTT、MW=340.46)2000mg(5.87mmol)、N−ベンジルマレイミド(BZMI、MW=187.19)10.99g(58.7mmol、DNTT基準で1000mol%)、ラジカル補足剤としてヒドロキノン(MW110.1)64.8mg(N−ベンジルマレイミド基準で1mol%)をメシチレン溶媒中において混合し、窒素下において160℃で4時間にわたって撹拌した。これにより、DNTTとBZMIとのディールス−アルダー付加反応を行った。
その後、ろ過により固形物を取得し、クロロホルムで洗浄した。この固形物は、NMRによりDNTT(原料)であることが確認された(収量980mg、収率.49.0mol%)。
ろ過液を、HPLCにより分取し、DNTTにBZMI1分子が付加した付加化合物659.2mg(DNTT−1BZMI、Mw=527.10、収率21.3mol%)を得た。この付加化合物の構造式を下記に示す。
得られたDNTT−1BZMIについての分析結果を下記に示す。なお、DNTT−1BZMIに関しては、立体異性体は得られなかった。
H−NMR(600MHz,CDCl): δ8.31(s,1H),8.22(s,1H),7.95(m,1H),7.89(m,1H),7.48(m,2H),7.23(m,2H),7.18(t,J=7.3Hz,1H),7.14(dd,J=7.3Hz,7.3Hz,2H),6.99(m,2H),6.75(d,J=7.3Hz,2H),5.08(d,J=3.3Hz,1H),5.05(d,J=3.3Hz,1H),4.28(s,2H),3.44(dd,J=3.3Hz,8.4Hz,1H),3.41(dd,J=3.3Hz,8.4Hz,1H)
MS(70eV、DI): 527.95m/z
質量分析(MS)の検出値は、DNTT−1BZMI(Mw=527.10)と実質的に一致している。
参考例10Aでのようにして示差熱天秤分析を用いて、DNTT−1BZMIの熱脱離特性を評価した。これによれば、DNTT−1BZMIでは、190℃から260℃の温度範囲において熱脱離が起こった。
DNTT−1BZMIに関して、参考例10Aでのようにして有機半導体膜を得て、半導体特性を評価した。ここで、有機半導体膜を得るための加熱は、窒素下において、200℃で2時間にわたって行った。得られた有機半導体膜の特性を評価すると、p型半導体特性を示した。それぞれのキャリア移動度は、0.01〜0.0001cm/Vsであり、オン/オフ比は10〜10であった。
《参考例15》
ジナフトチエノチオフェン(DNTT、MW=340.46)500mg(1.47mmol)、N−t−ブチルマレイミド(TBMI、MW=153.18)2.25g(14.7mmol、DNTT基準で1000mol%)、ラジカル補足剤としてのヒドロキノン(MW110.1)16.2mg(N−t−ブチルマレイミド基準で1mol%)をメシチレン溶媒中において混合し、窒素下において160℃で4時間にわたって撹拌した。これにより、DNTTにTBMIとのディールス−アルダー付加反応を行った。
その後、ろ過により固形物を取得し、クロロホルムで洗浄した。この固形物は、NMRによりDNTT(原料)であることが確認された(収量486mg、収率.97.2mol%)。
ろ過液を、HPLCにより分取し、DNTTへのTBMI1分子が付加した付加化合物2.1mg(DNTT−1TBMI、Mw=493.64、収率0.29mol%)を得た。この付加化合物の構造式を下記に示す。
DNTT−1TBMIについての分析結果を下記に示す。なお、DNTT−1TBMIに関しては、立体異性体は得られなかった。
H−NMR(600MHz,CDCl): δ8.31(s,1H),8.22(s,1H),7.95(m,1H),7.89(m,1H),7.48(m,2H),7.35(m,1H),7.33(m,1H),7.18(m,2H),5.06(d,J=3.3Hz,1H),5.02(d,J=3.3Hz,1H),3.23(dd,J=3.3Hz,8.8Hz,1H),3.16(dd,J=3.3Hz,8.8Hz,1H),2.59(s,9H)
《参考例15》
ジナフトチエノチオフェン(DNTT、MW=340.46)500mg(1.47mmol)、無水マレイン酸(MA、MW=98.06)1.44g(14.7mmol、DNTT基準で1000mol%)、ラジカル補足剤としてのヒドロキノン(MW110.1)16.2mg(無水マレイン酸基準で1mol%)をメシチレン溶媒中において混合し、窒素下において160℃で4時間にわたって撹拌した。これにより、DNTTとMAとのディールス−アルダー付加反応を行った。
その後、ろ過により固形物を取得し、クロロホルムで洗浄した。この固形物は、NMRによりDNTT(原料)であることが確認された(収量472.2mg、収率.94.4mol%)。
ろ過液を、HPLCにより分取し、DNTTにMA1分子が付加した付加化合物32.2mg(DNTT−1MA、Mw=438.52、収率5.0mol%)を得た。この付加化合物の構造式を下記に示す。
得られたDNTT−1MAについての分析結果を下記に示す。
H−NMR(600MHz,CDCl): δ8.31(s,1H),8.22(s,1H),7.95(m,1H),7.89(m,1H),7.48(m,2H),7.23(m,2H),7.00(m,2H),5.09(d,J=3.3Hz,1H),5.05(d,J=3.3Hz,1H),3.44(dd,J=3.3Hz,8.4Hz,1H),3.41(dd,J=3.3Hz,8.4Hz,1H)
MS(70eV、DI): 341.31m/z
質量分析(MS)の検出値は、DNTT(分子量340.46)と一致しており、DNTT−1MAが質量分析(70eV、DI)の条件に曝されることで、MAが脱離してDNTTが再生していることが示されている。
1 有機半導体
2 ソース電極
3 ドレイン電極
5 誘電体層(酸化ケイ素)
7 シリコンウェハー基材(ゲート電極)
10 有機半導体素子

Claims (20)

  1. 有機溶媒、前記有機溶媒に溶解している第1の付加化合物、及び前記有機溶媒に溶解しており且つ前記第1の付加化合物の結晶化を抑制する結晶化抑制剤を含有しており;
    前記第1の付加化合物が、置換又は非置換の下記の式(I−4)の縮合多環芳香族化合物に、二重結合を有する第1の化合物(II’)が前記二重結合を介して脱離可能に付加されてなる構造を有し:
    (Yはそれぞれ独立に、カルコゲンから選択される元素)
    前記結晶化抑制剤が、下記の(a)〜(c)からなる群より選択される少なくとも1種の化合物であり
    (a)式(I−4)の縮合多環芳香族化合物に二重結合を有する第2の化合物(II”)が二重結合を介して脱離可能に付加されてなる構造を有する第2の付加化合物、
    (b)二重結合を有する第1の化合物(II’)であって、式(I−4)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる化合物(II’)、及び
    (c)二重結合を有する第2の化合物(II”)であって、式(I−4)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる化合物(II”)
    二重結合を有する前記化合物(II’)及び(II”)がそれぞれ独立に、下記の式(II−1)〜(II−12)のいずれかを有し:
    (R及びR はそれぞれ独立に、水素、ハロゲン、水酸基、アミド基、メルカプト基、シアノ基、炭素原子数1〜10のアルキル基、炭素原子数2〜10のアルケニル基、炭素原子数2〜10のアルキニル基、炭素原子数1〜10のアルコキシ基、炭素原子数4〜10の置換又は非置換の芳香族基、炭素原子数1〜10のエステル基、炭素原子数1〜10のエーテル基、炭素原子数1〜10のケトン基、炭素原子数1〜10のアミノ基、炭素原子数1〜10のアミド基、炭素原子数1〜10のイミド基、及び炭素原子数1〜10のスルフィド基からなる群より選択される);かつ
    前記式(I−4)の縮合多環芳香族化合物の置換が、ハロゲン、炭素原子数1〜20のアルキル基、炭素原子数2〜20のアルケニル基、炭素原子数2〜20のアルキニル基、炭素原子数4〜20の置換又は非置換の芳香族基、炭素原子数2〜10のエステル基、炭素原子数1〜20のエーテル基、炭素原子数1〜20のケトン基、炭素原子数1〜20のアミノ基、炭素原子数1〜20のアミド基、炭素原子数1〜20のイミド基、及び炭素原子数1〜20のスルフィド基からなる群よりそれぞれ独立に選択される置換基によってなされている、
    有機半導体膜形成用溶液
  2. 前記結晶化抑制剤を、前記第1の付加化合物に対して0.1mol%〜100mol%の割合で含有している、請求項1に記載の溶液。
  3. 減圧及び/又は加熱によって、前記式(I−4)の縮合多環芳香族化合物から、二重結合を有する前記第1の化合物(II’)及び/又は第2の化合物(II’)を脱離させることができる、請求項1又は2に記載の溶液。
  4. 二重結合を有する前記化合物(II’)及び(II”)が、下記の式(II−6)を有する、請求項1〜3のいずれか一項に記載の溶液:
  5. 二重結合を有する前記化合物(II’)及び(II”)が、下記の式(II−1)を有する、請求項1〜3のいずれか一項に記載の溶液:
  6. 二重結合を有する前記化合物(II’)及び(II”)が、下記の式(II−2)を有する、請求項1〜3のいずれか一項に記載の溶液:
  7. 二重結合を有する前記化合物(II’)及び(II”)が、下記の式(II−3)を有する、請求項1又は2に記載の溶液:
  8. 二重結合を有する前記化合物(II’)及び(II”)が、下記の式(II−4)を有する、請求項1〜3のいずれか一項に記載の溶液:
  9. 二重結合を有する前記化合物(II’)及び(II”)が、下記の式(II−5)を有する、請求項1〜3のいずれか一項に記載の溶液:
  10. 二重結合を有する前記化合物(II’)及び(II”)が、下記の式(II−7)を有する、請求項1〜3のいずれか一項に記載の溶液:
  11. 二重結合を有する前記化合物(II’)及び(II”)が、下記の式(II−8)を有する、請求項1〜3のいずれか一項に記載の溶液:
  12. 二重結合を有する前記化合物(II’)及び(II”)が、下記の式(II−9)を有する、請求項1〜3のいずれか一項に記載の溶液:
  13. 二重結合を有する前記化合物(II’)及び(II”)が、下記の式(II−10)を有する、請求項1〜3のいずれか一項に記載の溶液:
  14. 二重結合を有する前記化合物(II’)及び(II”)が、下記の式(II−11)を有する、請求項1〜3のいずれか一項に記載の溶液:
  15. 二重結合を有する前記化合物(II’)及び(II”)が、下記の式(II−12)を有する、請求項1〜3のいずれか一項に記載の溶液:
  16. 請求項1〜15のいずれか一項に記載の溶液を、基材に塗布して、膜を作製するステップ、そして
    前記膜を減圧及び/又は加熱して、前記第1の付加化合物から二重結合を有する第1の前記化合物(II’)を脱離及び除去して、前記式(I−4)の縮合多環芳香族化合物からなる有機半導体膜を得るステップ、
    を含む、有機半導体膜の生成方法。
  17. 前記脱離及び除去を大気下で行う、請求項16に記載の方法。
  18. 請求項15又は16に記載の方法によって有機半導体膜を生成するステップを含む、有機半導体デバイスの製造方法。
  19. 有機半導体膜を有する有機半導体デバイスであって、
    前記有機半導体膜が、置換又は非置換の下記の式(I−4)を有する有機半導体化合物で作られており
    (Yはそれぞれ独立に、カルコゲンから選択される元素)
    前記有機半導体膜が、下記の式(I−4)の縮合多環芳香族化合物に二重結合を有する第1の化合物(II’)が前記二重結合を介して脱離可能に付加されてなる第1の付加化合物、及び下記の(a)〜(c)からなる群より選択される少なくとも1種の化合物を含有しており
    (a)式(I−4)の縮合多環芳香族化合物に二重結合を有する第2の化合物(II”)が二重結合を介して脱離可能に付加されてなる構造を有する第2の付加化合物、
    (b)二重結合を有する第1の化合物(II’)であって、式(I−4)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる化合物(II’)、及び
    (c)二重結合を有する第2の化合物(II”)であって、式(I−4)の縮合多環芳香族化合物に二重結合を介して脱離可能に付加できる化合物(II”)
    二重結合を有する前記化合物(II’)及び(II”)がそれぞれ独立に、下記の式(II−1)〜(II−12)のいずれかを有し:
    (R及びR はそれぞれ独立に、水素、ハロゲン、水酸基、アミド基、メルカプト基、シアノ基、炭素原子数1〜10のアルキル基、炭素原子数2〜10のアルケニル基、炭素原子数2〜10のアルキニル基、炭素原子数1〜10のアルコキシ基、炭素原子数4〜10の置換又は非置換の芳香族基、炭素原子数1〜10のエステル基、炭素原子数1〜10のエーテル基、炭素原子数1〜10のケトン基、炭素原子数1〜10のアミノ基、炭素原子数1〜10のアミド基、炭素原子数1〜10のイミド基、及び炭素原子数1〜10のスルフィド基からなる群より選択される);かつ
    前記式(I−4)の縮合多環芳香族化合物の置換が、ハロゲン、炭素原子数1〜20のアルキル基、炭素原子数2〜20のアルケニル基、炭素原子数2〜20のアルキニル基、炭素原子数4〜20の置換又は非置換の芳香族基、炭素原子数2〜10のエステル基、炭素原子数1〜20のエーテル基、炭素原子数1〜20のケトン基、炭素原子数1〜20のアミノ基、炭素原子数1〜20のアミド基、炭素原子数1〜20のイミド基、及び炭素原子数1〜20のスルフィド基からなる群よりそれぞれ独立に選択される置換基によってなされている、
    有機半導体デバイス
  20. ソース電極、ドレイン電極、ゲート電極、ゲート絶縁膜、及び前記有機半導体膜を有する薄膜トランジスタであって、前記ゲート絶縁膜によって前記ソース電極及び前記ドレイン電極と前記ゲート電極とを絶縁し、且つ前記ゲート電極に印加される電圧によって前記ソース電極から前記ドレイン電極へと前記有機半導体を通って流れる電流を制御する薄膜トランジスタである、請求項19に記載の有機半導体デバイス。
JP2010012242A 2009-08-28 2010-01-22 有機半導体膜形成用溶液、及び有機半導体デバイス Active JP5641739B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2010012242A JP5641739B2 (ja) 2010-01-22 2010-01-22 有機半導体膜形成用溶液、及び有機半導体デバイス
CN201410083086.9A CN103880860B (zh) 2009-08-28 2010-08-24 新型加成化合物及其制造方法
EP10811854.8A EP2471796B1 (en) 2009-08-28 2010-08-24 Novel adduct compound, solution for formation of organic semiconductor film, method for producing said semiconductor film and method for synthesizing said adduct compound
PCT/JP2010/064272 WO2011024804A1 (ja) 2009-08-28 2010-08-24 新規な付加化合物、縮合多環芳香族化合物の精製及び製造方法、有機半導体膜形成用溶液、及び新規なα-ジケトン化合物
KR1020127004942A KR101604513B1 (ko) 2009-08-28 2010-08-24 신규한 부가 화합물, 축합 다고리 방향족 화합물의 정제 및 제조 방법, 유기 반도체막 형성용 용액, 및 신규한 α-디케톤 화합물
CN2010800383494A CN102548998A (zh) 2009-08-28 2010-08-24 新型加成化合物、稠合多环芳香族化合物的精制以及制造方法、有机半导体膜形成用溶液、以及新型α-二酮化合物
US13/392,996 US9056871B2 (en) 2009-08-28 2010-08-24 Adduct compound, methods for purification and preparation of fused polycyclic aromatic compound, solution for formation of organic semiconductor film, and novel alpha-diketone compound
TW099128877A TWI492948B (zh) 2009-08-28 2010-08-27 Novel addition compounds, refining and production processes of condensed polycyclic aromatic compounds, solutions for forming organic semiconductors, and novel α-diketone compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012242A JP5641739B2 (ja) 2010-01-22 2010-01-22 有機半導体膜形成用溶液、及び有機半導体デバイス

Publications (2)

Publication Number Publication Date
JP2011151257A JP2011151257A (ja) 2011-08-04
JP5641739B2 true JP5641739B2 (ja) 2014-12-17

Family

ID=44537972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012242A Active JP5641739B2 (ja) 2009-08-28 2010-01-22 有機半導体膜形成用溶液、及び有機半導体デバイス

Country Status (1)

Country Link
JP (1) JP5641739B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201116251D0 (en) * 2011-09-20 2011-11-02 Cambridge Display Tech Ltd Organic semiconductor composition and organic transistor
JP6231448B2 (ja) * 2014-07-29 2017-11-15 富士フイルム株式会社 有機半導体膜形成用の組成物、非発光性有機半導体デバイス用有機半導体膜の製造方法、非発光性有機半導体デバイス用有機半導体膜、有機膜トランジスタの製造方法および有機膜トランジスタ。

Also Published As

Publication number Publication date
JP2011151257A (ja) 2011-08-04

Similar Documents

Publication Publication Date Title
KR101604513B1 (ko) 신규한 부가 화합물, 축합 다고리 방향족 화합물의 정제 및 제조 방법, 유기 반도체막 형성용 용액, 및 신규한 α-디케톤 화합물
WO2017028460A1 (zh) 一类九元稠环衍生物及其合成方法与应用
WO2013021953A1 (ja) 縮合多環芳香族化合物、芳香族重合体、及び芳香族化合物の合成方法
JP2006089413A (ja) 新規な有機半導体化合物、その製造方法およびそれを用いた有機半導体デバイス
Wasikiewicz et al. Towards solution processable air stable p-type organic semiconductors: synthesis and evaluation of mono and di-fluorinated pentacene derivatives
JP5641739B2 (ja) 有機半導体膜形成用溶液、及び有機半導体デバイス
JP2013534213A (ja) 置換された[1]ベンゾチエノ[3,2−b][1]−ベンゾチオフェンに基づく半導体
JP5655301B2 (ja) 有機半導体材料
JP5044226B2 (ja) ビシクロポルフィリン化合物、ビシクロピロール化合物、化合物の製造方法、有機半導体及びその製造方法
JP5269825B2 (ja) 新規な付加化合物、及び有機半導体デバイス
WO2014027685A1 (ja) 有機半導体溶液及び有機半導体膜
JP2014133713A (ja) ジナフトフラン化合物とこれを用いた有機半導体デバイス
JP2010118415A (ja) クリセン骨格を有する有機化合物を用いた半導体材料
JP2011148743A (ja) 縮合多環芳香族化合物の精製及び製造方法
JP2010045186A (ja) フタロシアニン前駆体及びその製造方法、フタロシアニンの製造方法、並びにフタロシアニン膜の製造方法
JP2013191821A (ja) 有機半導体デバイスとその製造方法、および化合物
JP6069971B2 (ja) 有機膜の製造方法
JP2011162510A (ja) 新規なα−ジケトン化合物、及び有機半導体デバイス
JP2011168569A5 (ja)
WO2011071017A1 (ja) ジアザボロール化合物、およびそれを含有した電界効果トランジスタ
JP5404865B2 (ja) 新規な縮合多環芳香族化合物
JP5881363B2 (ja) 新規な芳香族重合体
TWI811309B (zh) 基於3,7-雙(2-側氧吲哚啉-3-亞基)苯并[1,2-b:4,5-b']二呋喃-2,6-二酮二氰化物之材料及其在有機電子裝置中的用途
WO2020241582A1 (ja) 有機トランジスタ材料及び有機トランジスタ
JP2013053140A (ja) 新規な縮合多環芳香族化合物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141028

R150 Certificate of patent or registration of utility model

Ref document number: 5641739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150