[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5641302B2 - Antibacterial resin composition - Google Patents

Antibacterial resin composition Download PDF

Info

Publication number
JP5641302B2
JP5641302B2 JP2010170394A JP2010170394A JP5641302B2 JP 5641302 B2 JP5641302 B2 JP 5641302B2 JP 2010170394 A JP2010170394 A JP 2010170394A JP 2010170394 A JP2010170394 A JP 2010170394A JP 5641302 B2 JP5641302 B2 JP 5641302B2
Authority
JP
Japan
Prior art keywords
lignin
antibacterial
resin composition
reference example
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010170394A
Other languages
Japanese (ja)
Other versions
JP2011219716A (en
Inventor
郁子 菊地
郁子 菊地
小山 直之
直之 小山
美香 小舩
美香 小舩
昭人 後藤
昭人 後藤
智史 助川
智史 助川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2010170394A priority Critical patent/JP5641302B2/en
Publication of JP2011219716A publication Critical patent/JP2011219716A/en
Application granted granted Critical
Publication of JP5641302B2 publication Critical patent/JP5641302B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Chemical & Material Sciences (AREA)
  • Cosmetics (AREA)
  • Finished Plywoods (AREA)
  • Reinforced Plastic Materials (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Wood Science & Technology (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、抗菌性樹脂組成物に関するものである。   The present invention relates to an antibacterial resin composition.

従来より、樹脂は、便座・台所・風呂場まわりのサニタリー分野、医療用器具、雑貨、建築資材などに加え、電気/電子関係用部品、OA関連用部品または自動車部品など幅広い分野に導入されている。特に、サニタリー分野や医療用器具では使われている製品において細菌や黴が繁殖すると、人体に悪影響を及ぼすことが指摘されており、抗菌性を付与することが好ましい。また近年の建築レベルの高まりにより、室内の密閉度が高まって暖かくなった室内が結露しやすくなっており、抗菌性を付与した建築資材が増加している。さらに、電気/電子関係用部品、OA関連用部品、自動車部品用途でも、清潔志向の高まりにより抗菌性を求められることが多くなっている。   Conventionally, resin has been introduced in a wide range of fields such as sanitary fields around toilet seats, kitchens, and bathrooms, medical equipment, sundries, and building materials, as well as electrical / electronic related parts, OA related parts, and automotive parts. Yes. In particular, it has been pointed out that bacteria and sputum breeding in products used in the sanitary field and medical devices have adverse effects on the human body, and it is preferable to impart antibacterial properties. In addition, with the recent increase in the building level, indoors that have become warmer due to an increase in the degree of hermetic sealing are likely to condense, and the number of building materials imparted with antibacterial properties is increasing. Furthermore, anti-bacterial properties are often required due to the increasing cleanliness even in electrical / electronic related parts, OA related parts, and automotive parts.

抗菌性を付与する方法としては、抗菌剤を熱可塑性樹脂又は熱硬化性樹脂に練り込むか、あるいは表面に抗菌剤を塗布する方法がある。現状では、抗菌剤としては無機系抗菌剤が主に練り込みに使用され、有機系抗菌剤が主に液状で製品に塗布して使用されている。無機系抗菌剤の代表例は、銀などの金属で置換されたゼオライトや合成鉱物などが挙げられ(特許文献1参照)、有機抗菌剤としては、クロロヘキシジン、第4級アンモニウム塩等が挙げられる(特許文献2参照)。しかしながら、無機系抗菌剤は塩素、イオウ等が共存する環境下では不活性化したり、アレルギー症状の誘因作用、金属化合物の変色による成型品の経時着色を生ずる等の問題点がある。また、有機化学合成により得られる有機系抗菌剤類は極めて少量で強力な抗菌効果を発揮する反面、人体に対する安全性が低く、食品包装をはじめとする生活関連用途についての使用は困難である。   As a method for imparting antibacterial properties, there is a method in which an antibacterial agent is kneaded into a thermoplastic resin or a thermosetting resin, or the antibacterial agent is applied to the surface. At present, inorganic antibacterial agents are mainly used for kneading as antibacterial agents, and organic antibacterial agents are mainly applied in liquid form to products. Representative examples of inorganic antibacterial agents include zeolites substituted with metals such as silver and synthetic minerals (see Patent Document 1), and examples of organic antibacterial agents include chlorohexidine and quaternary ammonium salts ( Patent Document 2). However, inorganic antibacterial agents have problems such as inactivation in an environment where chlorine, sulfur, etc. coexist, inducing action of allergic symptoms, and coloration of molded products over time due to discoloration of metal compounds. In addition, organic antibacterial agents obtained by organic chemical synthesis exhibit a strong antibacterial effect in a very small amount, but have low safety for the human body and are difficult to use for life-related uses such as food packaging.

一方、有機系抗菌剤の中でも天然由来の抗菌成分は安全性が高いとされており、様々な天然由来抗菌成分が検討され始めている。天然物由来の有機系抗菌剤としては、ヒノキチオール、ワサオーロ(有効成分;アリルイソチオシアネート)、わさび、しょうが、等各種ある。しかし、天然物由来で安全であるという長所はあるものの、耐熱性が弱いため一般的に樹脂の加工温度に耐えないという欠点があった。また、供給が限られて入手困難、樹脂との相溶性を改善するために他の添加剤を加えなければならない等の問題点もあった。   On the other hand, among organic antibacterial agents, naturally-derived antibacterial components are considered to have high safety, and various naturally-derived antibacterial components are being studied. As organic antibacterial agents derived from natural products, there are various kinds such as hinokitiol, wasaolo (active ingredient: allyl isothiocyanate), wasabi, ginger, and the like. However, although there is an advantage that it is derived from a natural product and is safe, it has a drawback that it generally cannot withstand the processing temperature of the resin due to its low heat resistance. In addition, there are problems such as difficulty in obtaining due to limited supply, and addition of other additives in order to improve compatibility with the resin.

天然由来成分の一つであるリグニンも抗菌剤として用いられる(特許文献3参照)。市販されているリグニンとしては、リグニンスルホン酸ナトリウム、リグニンスルホン酸カルシウム、リグニンスルホン酸マグネシウムなどのリグニンスルホン酸塩のみであり、従来はこれらリグニンスルホン酸塩が抗菌剤として用いられてきた。しかし、これらリグニンスルホン酸塩は極性が高いため、極性の低いPPやPEなどの熱可塑性樹脂には溶解・分散しにくいという問題があった。また、リグニンスルホン酸塩は水溶性であるため、熱可塑性樹脂に混練した際の耐水性に問題があった。   Lignin, which is one of naturally derived components, is also used as an antibacterial agent (see Patent Document 3). The only commercially available lignins are lignin sulfonates such as sodium lignin sulfonate, calcium lignin sulfonate, magnesium lignin sulfonate, and the like. Conventionally, these lignin sulfonates have been used as antibacterial agents. However, since these lignin sulfonates have high polarity, there is a problem that they are difficult to dissolve and disperse in thermoplastic resins such as PP and PE having low polarity. Moreover, since lignin sulfonate is water-soluble, there was a problem in water resistance when kneaded with a thermoplastic resin.

特開2007−091501号公報JP 2007-091501 A 特許第3502140号公報Japanese Patent No. 3502140 特開平11−152410号公報Japanese Patent Laid-Open No. 11-152410

そこで本発明においては、植物由来成分であり人体への安全性が高く、抗菌性に優れるリグニンを用いた抗菌性樹脂組成物を提供することを目的とする。   Therefore, an object of the present invention is to provide an antibacterial resin composition using lignin that is a plant-derived component, has high safety to the human body, and is excellent in antibacterial properties.

本発明は以下の通りである。
(1)リグニンと、熱可塑性樹脂を含む抗菌性樹脂組成物であって、前記リグニンは、水を用いた分離技術であって、加水分解と物理的破砕により植物を破砕し、水により洗浄して水溶性成分を除去し、セルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得たリグニンであり、重量平均分子量が100〜7000であり、硫黄原子の含有率が0.5質量%以下であり、有機溶媒に可溶であって、その溶媒溶解性は、前記リグニン5gを、溶媒95mlに加えて溶解させた場合にアセトン、シクロヘキサノン、テトラヒドロフラン、エチレングリコール、及びN−メチル−2−ピロリドンには25℃で溶解し、メタノール、エタノール及びメチルエチルケトンには50〜70℃で溶解するものであり、前記熱可塑性樹脂は、ポリエチレン及びポリプロピレンから選択されるものであり、不揮発分としてリグニンを0.01〜50質量%含むことを特徴とする抗菌性樹脂組成物
(2上記(1)に記載の抗菌性樹脂組成物を用いて得られる成形体。
The present invention is as follows.
(1) An antibacterial resin composition containing lignin and a thermoplastic resin, the lignin being a separation technique using water, crushing plants by hydrolysis and physical crushing, and washing with water The lignin obtained by removing the water-soluble component, separating from the cellulose component and hemicellulose component, and dissolving in an organic solvent, having a weight average molecular weight of 100 to 7000 and a sulfur atom content of 0.5 mass. %, And soluble in an organic solvent. Solvent solubility of acetone, cyclohexanone, tetrahydrofuran, ethylene glycol, and N-methyl-2 is obtained when 5 g of lignin is added to 95 ml of solvent and dissolved. -It dissolves in pyrrolidone at 25 ° C, and dissolves in methanol, ethanol and methyl ethyl ketone at 50-70 ° C. RESIN is port Riechiren are those selected from and polypropylene, antibacterial resin composition which comprises 0.01 to 50% by weight of lignin as a non-volatile content.
(2 ) A molded product obtained using the antibacterial resin composition described in (1 ) above.

本発明によれば、植物由来成分であるリグニンを使用することで、安全性(抗菌性)に優れた抗菌性樹脂組成物を提供できた。   ADVANTAGE OF THE INVENTION According to this invention, the antimicrobial resin composition excellent in safety | security (antimicrobial property) was able to be provided by using the lignin which is a plant origin component.

以下、上記本発明をさらに詳細に説明する。
本発明は、リグニンと、熱可塑性樹脂または熱硬化性樹脂とを含む抗菌性樹脂組成物であって、当該リグニンが有機溶媒に可溶であり、不揮発分としてリグニンを0.01〜50質量%含む抗菌性樹脂組成物である。不揮発分としてリグニンを、好ましくは0.01〜20質量%、また、さらに0.1〜10質量%含む抗菌性樹脂組成物が好ましい。添加量が0.01質量%未満であると、抗菌性を示すフェノール性水酸基が、抗菌性樹脂組成物の硬化物(成形体)表面に出現しにくいため、得られた抗菌性樹脂組成物の抗菌性が劣り、添加量が50質量%を超すと、抗菌性樹脂組成物の硬化物(成形体)の外観および強度が劣るおそれがある。なお、本発明の抗菌性樹脂組成物は、熱可塑性樹脂、熱硬化性樹脂のいずれか一方、あるいは、両方、含んでいても良い。
Hereinafter, the present invention will be described in more detail.
The present invention is an antibacterial resin composition comprising lignin and a thermoplastic resin or a thermosetting resin, wherein the lignin is soluble in an organic solvent, and lignin is contained in an amount of 0.01 to 50% by mass as a nonvolatile content. An antibacterial resin composition. An antibacterial resin composition containing lignin as a nonvolatile content, preferably 0.01 to 20% by mass, and further 0.1 to 10% by mass is preferable. When the addition amount is less than 0.01% by mass, the phenolic hydroxyl group exhibiting antibacterial properties hardly appears on the surface of the cured product (molded product) of the antibacterial resin composition. If the antibacterial property is inferior and the addition amount exceeds 50% by mass, the appearance and strength of the cured product (molded product) of the antibacterial resin composition may be inferior. The antibacterial resin composition of the present invention may contain either one or both of a thermoplastic resin and a thermosetting resin.

リグニンの重量平均分子量は、ポリスチレン換算値において、100〜7000が好ましく、さらに200〜5000が好ましく、500〜4000であることが特に好ましい。リグニンの重量平均分子量が7000を超えると有機溶媒への溶解性が低下する。重量平均分子量が100未満であるとリグニンの構造を活かした抗菌性樹脂組成物を得ることができないおそれがある。
なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定し、標準ポリスチレン換算した値を使用した。
The weight average molecular weight of lignin is preferably 100 to 7000, more preferably 200 to 5000, and particularly preferably 500 to 4000 in terms of polystyrene. When the weight average molecular weight of lignin exceeds 7000, the solubility to an organic solvent will fall. If the weight average molecular weight is less than 100, an antibacterial resin composition utilizing the structure of lignin may not be obtained.
The weight average molecular weight was measured by gel permeation chromatography (GPC), and a value converted to standard polystyrene was used.

リグニンの基本骨格は一般的にヒドロキシフェニルプロパン単位を基本単位とする架橋構造の高分子である。樹木は親水性の線状高分子の多糖類(セルロースとヘミセルロース)と疎水性の架橋構造リグニンの相互侵入網目(IPN)構造を形成している。リグニンは樹木の約25質量%を占め、不規則かつ極めて複雑なポリフェノールの化学構造をしている。フェノール類は燃焼の際、黒鉛を形成し易いため難燃性に優れる。また、フェノール性水酸基を多数有するという特徴的な構造により強力に細菌に吸着し、それらの増殖を抑制することで抗菌活性を示す。本発明は植物から得られたこの複雑な構造をそのまま活かし、熱可塑性樹脂又は熱硬化性樹脂への添加剤とすることで、難燃性、抗菌性を有する抗菌性樹脂組成物を提供するものである。   The basic skeleton of lignin is generally a crosslinked polymer having a hydroxyphenylpropane unit as a basic unit. Trees form an interpenetrating network (IPN) structure of hydrophilic linear polymer polysaccharides (cellulose and hemicellulose) and hydrophobic cross-linked lignin. Lignin accounts for about 25% by weight of trees and has an irregular and extremely complex chemical structure of polyphenols. Phenols are excellent in flame retardancy because they easily form graphite during combustion. In addition, it has a characteristic structure of having many phenolic hydroxyl groups and is strongly adsorbed to bacteria and exhibits antibacterial activity by suppressing their growth. The present invention provides an antibacterial resin composition having flame retardancy and antibacterial properties by making use of this complex structure obtained from plants as it is and using it as an additive to a thermoplastic resin or a thermosetting resin. It is.

リグニンの原料に特に制限は無い。スギ、マツ、ヒノキ等の針葉樹、ブナ等の広葉樹、タケ、イネワラ、バガス等が使用される。樹木からリグニンを分離し取り出す方法としては、クラフト法、硫酸法、爆砕法などが挙げられる。現在多量に製造されているリグニンの多くは、紙やバイオエタノールの原料であるセルロース製造時に残渣として得られる。入手可能なリグニンとしては、主に硫酸法により副生するリグニンスルホン酸塩があげられる。他にもアルカリリグニン、オルガノソルブリグニン、ソルボリシスリグニン、糸状菌処理木材、ジオキサンリグニン及びミルドウッドリグニン、爆砕リグニンなどがある。本発明に用いるリグニンは取り出す方法によらず、上記記載のリグニンを用いることができる。   There are no particular restrictions on the raw material of lignin. Conifers such as cedar, pine and cypress, broad-leaved trees such as beech, bamboo, rice straw, bagasse and the like are used. Examples of methods for separating and taking out lignin from trees include kraft method, sulfuric acid method, and explosion method. Many of the lignins currently produced in large quantities are obtained as residues during the production of cellulose, which is a raw material for paper and bioethanol. Examples of lignin that can be obtained include lignin sulfonate that is produced as a by-product mainly by the sulfuric acid method. Other examples include alkaline lignin, organosolv lignin, solvolysis lignin, filamentous fungus treated wood, dioxane lignin and milled wood lignin, and explosive lignin. The lignin described above can be used regardless of the method of taking out the lignin used in the present invention.

取りだした際、リグニン以外の例えばセルロースやヘミセルロースのような成分が、多少含まれていても良い。また、これらのリグニンをアセチル化、メチル化、ハロゲン化、ニトロ化、スルホン化、硫化ナトリウムや硫化水素との反応等によって作製されたリグニン誘導体も含む。   When taking out, components other than lignin, such as cellulose and hemicellulose, may be contained to some extent. Also included are lignin derivatives prepared by acetylation, methylation, halogenation, nitration, sulfonation, reaction with sodium sulfide or hydrogen sulfide, and the like.

主原料とするリグニンを取得する方法として、水を用いた分離技術を用いた方法が好ましい。使用するリグニンが、水のみを用いた処理方法により、セルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得たリグニンであることが好ましい。また、リグニンを取得する方法としては、水蒸気爆砕法が好ましい。水蒸気爆砕法は高温高圧の水蒸気による加水分解と、圧力を瞬時に開放することによる物理的破砕効果により、植物を短時間に破砕するものである。
水蒸気爆砕の条件は特に限定しないが、通常、原料を水蒸気爆砕装置用の耐圧容器に入れ、3〜4MPaの水蒸気を圧入し、1〜15分間放置した後、瞬時に圧力を開放することにより爆砕する。なお、前記有機溶媒可溶リグニンは、水蒸気爆砕リグニンとも表す。また、原料としては、リグニンが抽出できれば特に限定しないが、例えば、スギ、竹、稲わら、麦わら、ひのき、アカシア、ヤナギ、ポプラ、バガス、とうもろこし、サトウキビ、米穀、ユーカリ、エリアンサスなどが挙げられる。
この方法は硫酸法、クラフト法など他の分離方法と比較し、硫酸、亜硫酸塩等を用いることなく、水のみを使用するので、クリーンな分離方法である。この方法では、リグニン中に硫黄原子を含まないリグニン、又は、硫黄原子の含有率が少ないリグニンが得られる。通常、リグニン中の硫黄原子の含有率は、2質量%以下が好ましく、1質量%以下であることがさらに好ましく、0.5質量%以下であることがより好ましい。硫黄原子の含有量が2質量%を超すと親水性のスルホン酸基が増加するため、有機溶剤への溶解性が低下するおそれがある。本発明者らは、さらに、爆砕物から有機溶媒による抽出により、リグニンの分子量を制御し得ることを見出した。
As a method for obtaining lignin as a main raw material, a method using a separation technique using water is preferable. The lignin used is preferably a lignin obtained by separating it from a cellulose component and a hemicellulose component by a treatment method using only water and dissolving it in an organic solvent. Moreover, as a method for obtaining lignin, a steam explosion method is preferred. The steam explosion method crushes plants in a short time by hydrolysis with high-temperature and high-pressure steam and a physical crushing effect by instantaneously releasing the pressure.
The conditions for steam explosion are not particularly limited. Usually, the raw material is placed in a pressure vessel for a steam explosion apparatus, 3-4 MPa of steam is injected, left to stand for 1-15 minutes, and then the pressure is instantaneously released for explosion. To do. The organic solvent-soluble lignin is also referred to as steam explosion lignin. The raw material is not particularly limited as long as lignin can be extracted. .
This method is a clean separation method because only water is used without using sulfuric acid, sulfite or the like, compared with other separation methods such as sulfuric acid method and kraft method. In this method, lignin containing no sulfur atom in the lignin or lignin having a low content of sulfur atoms can be obtained. Usually, the content of sulfur atoms in lignin is preferably 2% by mass or less, more preferably 1% by mass or less, and more preferably 0.5% by mass or less. If the sulfur atom content exceeds 2% by mass, hydrophilic sulfonic acid groups increase, so that the solubility in organic solvents may be reduced. The present inventors have further found that the molecular weight of lignin can be controlled from the blasted product by extraction with an organic solvent.

前記水蒸気爆砕法で得られたリグニンは、従来用いられていたリグニンスルホン酸塩より極性が低いため、PEやPPなど極性の低い熱可塑性樹脂に溶解・分散しやすく均一な成形体をより容易に得ることができる。また、水に不溶であるため成形体(抗菌性樹脂組成物の硬化物)にしたときの耐水性が良好である。   Since the lignin obtained by the steam explosion method is less polar than the conventional lignin sulfonate, it is easier to dissolve and disperse in a low-polarity thermoplastic resin such as PE or PP, making a uniform molded body easier. Can be obtained. Moreover, since it is insoluble in water, the water resistance when formed into a molded body (cured product of the antibacterial resin composition) is good.

本発明で用いるリグニンの抽出に用いる有機溶媒は、1種又は2種以上複数の混合のアルコール溶媒、アルコールと水を混合した含水アルコール溶媒、そのほかの有機溶媒または、水と混合した含水有機溶媒を使用することができる。水にはイオン交換水を使用することが好ましい。水との混合溶媒の含水率は0質量%〜70質量%が好ましい。本発明で用いるリグニンは水への溶解度が低いため、水のみを溶媒とするとリグニンを抽出することが困難である。また、用いる溶媒を選択することにより、得られるリグニンの重量平均分子量を制御することが可能である。   The organic solvent used in the extraction of lignin used in the present invention is one or a mixture of two or more kinds of alcohol solvents, a hydrous alcohol solvent in which alcohol and water are mixed, another organic solvent, or a hydrous organic solvent in which water is mixed. Can be used. It is preferable to use ion exchange water as water. The water content of the mixed solvent with water is preferably 0% by mass to 70% by mass. Since lignin used in the present invention has low solubility in water, it is difficult to extract lignin using only water as a solvent. Moreover, it is possible to control the weight average molecular weight of the lignin obtained by selecting the solvent to be used.

本発明の抗菌性樹脂組成物において使用される熱可塑性樹脂とは、通常の成形材料として用いられる熱可塑性樹脂の中から任意に選ぶことができる。このようなものとしては、特に限定されるわけではないが、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリエチレンテレフタレート(PET)、ポリカプロラクトン(PCL)、アクリロニトリル・ブタジエン・スチレン樹脂(ABS)、ポリスチレン(PS)、メタクリル樹脂(PMMA)、ポリアミド(PAI)、ポリカーボネート(PC)、ポリブチレンテレフタレート(PBT)、ポリフェニレンサルファイド(PPS)、ポリアセタール(POM)、変性ポリフェニレンエ−テル(PPE)、ポリスルホン(PSF)、液晶ポリマー(LCP)、アクリロニトリル・スチレン樹脂(AS)および各種の熱可塑性エラストマーなどが挙げられる。また、さらに好ましくは、化石資源使用量削減の観点から、植物由来の熱可塑性樹脂であることが好ましい。具体的には、ポリ乳酸(PLA)、エステル化澱粉、ポリヒドロキシアルカン酸(PHA)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、コハク酸、イタコン酸や1,3−プロパンジオール、1,4−ブタンジオールなどをモノマーとして合成されるポリエステル樹脂等が使用でき、1種を単独で用いても2種以上を併用してもよい。   The thermoplastic resin used in the antibacterial resin composition of the present invention can be arbitrarily selected from thermoplastic resins used as ordinary molding materials. Examples of such materials include, but are not limited to, polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), polycaprolactone (PCL), acrylonitrile butadiene, and the like. -Styrene resin (ABS), polystyrene (PS), methacrylic resin (PMMA), polyamide (PAI), polycarbonate (PC), polybutylene terephthalate (PBT), polyphenylene sulfide (PPS), polyacetal (POM), modified polyphenylene ether Examples thereof include tellurium (PPE), polysulfone (PSF), liquid crystal polymer (LCP), acrylonitrile / styrene resin (AS), and various thermoplastic elastomers. More preferably, it is a plant-derived thermoplastic resin from the viewpoint of reducing fossil resource usage. Specifically, polylactic acid (PLA), esterified starch, polyhydroxyalkanoic acid (PHA), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), succinic acid, itaconic acid and 1,3-propanediol Polyester resin synthesized using 1,4-butanediol or the like as a monomer can be used, and one kind can be used alone or two or more kinds can be used in combination.

本発明の抗菌性樹脂組成物において使用される熱硬化性樹脂とは、通常の成形材料として用いられる熱硬化性樹脂の中から任意に選ぶことができる。このようなものとしては、特に限定されるわけではないが、例えばエポキシ樹脂、フェノール樹脂、フラン樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、珪素樹脂などが挙げられる。   The thermosetting resin used in the antibacterial resin composition of the present invention can be arbitrarily selected from thermosetting resins used as ordinary molding materials. Examples of such materials include, but are not limited to, epoxy resins, phenol resins, furan resins, urea resins, melamine resins, unsaturated polyester resins, and silicon resins.

前記エポキシ樹脂としては、例えばビスフェノールAグリシジルエーテル型エポキシ、ビスフェノールFグリシジルエーテル型エポキシ、ビスフェノールSグリシジルエーテル型エポキシ、ビスフェノールADグリシジルエーテル型エポキシ、フェノールノボラック型エポキシ、ビフェニル型エポキシ、クレゾールノボラック型エポキシが挙げられる。また、さらに天然由来物質から得られたエポキシ樹脂であることが環境負荷低減化の観点で好ましい。具体的には、エポキシ化大豆油、エポキシ化脂肪酸エステル類、エポキシ化アマニ油、ダイマー酸変性エポキシ樹脂などが挙げられる。   Examples of the epoxy resin include bisphenol A glycidyl ether type epoxy, bisphenol F glycidyl ether type epoxy, bisphenol S glycidyl ether type epoxy, bisphenol AD glycidyl ether type epoxy, phenol novolac type epoxy, biphenyl type epoxy, and cresol novolak type epoxy. It is done. Further, an epoxy resin obtained from a naturally-derived substance is preferable from the viewpoint of reducing the environmental load. Specific examples include epoxidized soybean oil, epoxidized fatty acid esters, epoxidized linseed oil, and dimer acid-modified epoxy resin.

前記フェノール樹脂としては、例えばフェノール、クレゾール等のフェノール類とホルムアルデヒド等を反応させノボラック型フェノール樹脂等を合成し、これにヘキサメチレンテトラミン等を配合し、硬化させるもの等が挙げられる。例えば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂、フェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるフェノールアラルキル樹脂、ビフェニレン型フェノールアラルキル樹脂、ナフトールアラルキル樹脂等のアラルキル型フェノール樹脂、フェノール類及び/又はナフトール類とジシクロペンタジエンから共重合により合成される、ジシクロペンタジエン型フェノールノボラック樹脂、ジシクロペンタジエン型ナフトールノボラック樹脂等のジシクロペンタジエン型フェノール樹脂、トリフェニルメタン型フェノール樹脂、テルペン変性フェノール樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂、メラミン変性フェノール樹脂、シクロペンタジエン変性フェノール樹脂、これら2種以上を共重合して得たフェノール樹脂などが挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。   Examples of the phenol resin include those obtained by reacting phenols such as phenol and cresol with formaldehyde and the like to synthesize a novolac type phenol resin and the like, and by adding hexamethylenetetramine and the like to this. For example, phenol, cresol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol, aminophenol and other phenols and / or naphthols such as α-naphthol, β-naphthol, dihydroxynaphthalene and formaldehyde, benzaldehyde, salicylaldehyde, etc. Phenol aralkyl resins synthesized from novolak-type phenol resins, phenols and / or naphthols, and dimethoxyparaxylene or bis (methoxymethyl) biphenyl obtained by condensation or cocondensation with a compound having an aldehyde group , Aralkyl type phenol resins such as biphenylene type phenol aralkyl resins and naphthol aralkyl resins, phenols and / or naphthols and dicyclopentadiene Dicyclopentadiene-type phenol novolac resin, dicyclopentadiene-type naphthol novolak resin and other dicyclopentadiene-type phenol resins, triphenylmethane-type phenol resins, terpene-modified phenol resins, paraxylylene and / or metaxylylene-modified Examples thereof include phenol resins, melamine-modified phenol resins, cyclopentadiene-modified phenol resins, and phenol resins obtained by copolymerizing two or more of these. These may be used alone or in combination of two or more.

前記フラン樹脂としては、例えばフルフラール樹脂、フルフラールフェノール樹脂、フルフラールケトン樹脂、フルフリルアルコール樹脂、フルフリルアルコールフェノール樹脂が挙げられる。前記ユリア樹脂としては、例えば尿素等とホルムアルデヒド等の重合反応物(脱水縮合反応物)が挙げられる。前記メラミン樹脂としては、例えばメラミン等とホルムアルデヒド等の重合反応物が挙げられる。   Examples of the furan resin include furfural resin, furfural phenol resin, furfural ketone resin, furfuryl alcohol resin, and furfuryl alcohol phenol resin. Examples of the urea resin include polymerization reaction products (dehydration condensation reaction products) such as urea and formaldehyde. Examples of the melamine resin include polymerization reaction products such as melamine and formaldehyde.

前記不飽和ポリエステル樹脂としては、不飽和多塩基酸等と多価アルコール等より得られる不飽和ポリエステルを、これと重合する単量体に溶解し硬化する樹脂等が挙げられる。例えば、不飽和多塩基酸としては、フタル酸、イソフタル酸、テトラヒドロフタル酸、へキサヒドロフタル酸、マレイン酸、コハク酸、イタコン酸、シトラコン酸等が挙げられ、多価アルコールとしては、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレン・ポリプロピレングリコール、トリメチロールプロパン、ジエチレングリコール、1,4−ブタンジオール、1,6−ヘキサングリコール等が挙げられる。
前記珪素樹脂としては、オルガノポリシロキサン類を主骨格とするものが挙げられる。
Examples of the unsaturated polyester resin include resins that are obtained by dissolving an unsaturated polyester obtained from an unsaturated polybasic acid or the like and a polyhydric alcohol in a monomer that is polymerized therewith. Examples of unsaturated polybasic acids include phthalic acid, isophthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, maleic acid, succinic acid, itaconic acid, citraconic acid, and the like. Polyhydric alcohol includes polyethylene glycol. , Polypropylene glycol, polyethylene / polypropylene glycol, trimethylolpropane, diethylene glycol, 1,4-butanediol, 1,6-hexane glycol and the like.
Examples of the silicon resin include those having an organopolysiloxane as a main skeleton.

これら熱硬化性樹脂の硬化剤、硬化触媒としては特に限定はないが、例えば、アミン化合物、アミン化合物から合成されるポリアミノアミド化合物等の化合物、3級アミン化合物、イミダゾール化合物、ヒドラジド化合物、メラミン化合物、酸無水物、フェノール化合物、熱潜在性カチオン重合触媒、ジシアンアミド及びその誘導体等が挙げられる。これらは単独又は2種以上の混合物として使用することができる。   The thermosetting resin curing agent and curing catalyst are not particularly limited. For example, amine compounds, compounds such as polyaminoamide compounds synthesized from amine compounds, tertiary amine compounds, imidazole compounds, hydrazide compounds, melamine compounds. , Acid anhydrides, phenol compounds, thermal latent cationic polymerization catalysts, dicyanamide and derivatives thereof. These can be used alone or as a mixture of two or more.

本発明の抗菌性樹脂組成物においては、必要に応じて各種添加剤成分、可塑剤(鉱油、シリコンオイル等)、滑剤、安定剤、酸化防止剤、紫外線吸収剤、離型剤、防黴剤、無機充填材、有機充填材などをポリマー成分の重合時やポリマー成形体の成形加工時に配合することもできる。また、他の公知の難燃剤や抗菌剤と併用しても良い。   In the antibacterial resin composition of the present invention, various additive components, plasticizers (mineral oil, silicone oil, etc.), lubricants, stabilizers, antioxidants, ultraviolet absorbers, mold release agents, antifungal agents as necessary Inorganic fillers, organic fillers, and the like can also be blended when polymer components are polymerized or when polymer molded bodies are molded. Moreover, you may use together with another well-known flame retardant and antibacterial agent.

本発明の抗菌性樹脂組成物は、溶融混練装置を用いて前記リグニンを前記熱可塑性樹脂または前記熱硬化性樹脂に混練することによって得ることができる。ここで使用される混練装置としては、ロール、バンバリー、ニーダー、混練押出機等があり、混練押出機を用いる方法が好ましい。混練押出機としては、単軸、二軸押出機が好適に使用される。混練時の温度は特に限定しないが、140〜280℃の範囲が好ましく、160〜250℃がより好ましく、180〜230℃がさらに好ましい。温度が低すぎるとリグニンの溶解性または流動性が悪く、また温度が高すぎると抗菌性樹脂組成物が熱分解を起こし物性が劣化する恐れがある。また前記の各種添加成分を添加する際は、リグニン、熱可塑性樹脂、添加成分を一括して混合しても良く、成分の一部を先に混練した後、残りの成分を一括または多段に分割して添加混練しても良い。   The antibacterial resin composition of the present invention can be obtained by kneading the lignin into the thermoplastic resin or the thermosetting resin using a melt kneader. Examples of the kneading apparatus used here include a roll, a banbury, a kneader, a kneading extruder, and the like, and a method using a kneading extruder is preferable. A single-screw or twin-screw extruder is preferably used as the kneading extruder. Although the temperature at the time of kneading is not specifically limited, the range of 140-280 degreeC is preferable, 160-250 degreeC is more preferable, 180-230 degreeC is further more preferable. If the temperature is too low, the solubility or fluidity of lignin is poor, and if the temperature is too high, the antibacterial resin composition may be thermally decomposed and the physical properties may be deteriorated. In addition, when adding the various additive components described above, lignin, thermoplastic resin, and additive components may be mixed together. After kneading a part of the components first, the remaining components are divided all at once or in multiple stages. Then, it may be added and kneaded.

本発明の抗菌性樹脂組成物は、有機溶媒に溶解しワニス状にしても利用可能である。抗菌性樹脂組成物に含まれる有機溶媒、あるいはリグニンの抽出に用いられる有機溶媒としてはアルコール、トルエン、ベンゼン、N−メチルピロリドン、メチルエチルケトン、メチルイソブチルケトン、ジエチルエーテル、メチルセロソルブ(エチレングリコールモノメチルエーテル)、シクロヘキサノン、ジメチルホルムアミド、酢酸メチル、酢酸エチル、アセトン、テトラヒドロフランなどがあり、これらは二種類以上、混合して用いることができる。   The antibacterial resin composition of the present invention can be used in the form of a varnish after dissolving in an organic solvent. Organic solvents contained in the antibacterial resin composition or organic solvents used for extraction of lignin include alcohol, toluene, benzene, N-methylpyrrolidone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ether, methyl cellosolve (ethylene glycol monomethyl ether) , Cyclohexanone, dimethylformamide, methyl acetate, ethyl acetate, acetone, tetrahydrofuran and the like, and two or more of these can be used in combination.

アルコールにはメタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、tert−ブタノール、n−ヘキサノール、ベンジルアルコール、シクノヘキサノールなどのモノオール系とエチレングリコール、ジエチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、トリメチロールプロパン、グリセリン、トリエタノールアミンなどのポリオールが挙げられる。また、さらに好ましくは、天然物質から得られるアルコールであることが、環境負荷低減化の観点で好ましい。具体的には、天然物質から得たメタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、tert−ブタノール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、エチレングリコール、グリセリン、ヒドロキシメチルフルフラールなどが挙げられる。   Alcohols include monools such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, n-hexanol, benzyl alcohol, cynohexanol, ethylene glycol, diethylene glycol, 1,4-butanediol, , 6-hexanediol, trimethylolpropane, glycerin, triethanolamine and other polyols. Further, an alcohol obtained from a natural substance is more preferable from the viewpoint of reducing environmental load. Specifically, methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, ethylene obtained from natural substances Examples include glycol, glycerin, and hydroxymethylfurfural.

本発明の抗菌性樹脂組成物を硬化して得られる成形体は、任意の形に成形加工が可能である。例えば、電気/電子関係用部品、OA関連用部品または自動車部品、便座・台所・風呂場まわり等のサニタリー部品、雑貨、建築資材などの幅広い分野の各種部品に使用できる。また、本発明の抗菌性樹脂組成物からなる成形体は、抗菌性樹脂組成物中のリグニンの含有量が50質量%以下であるため、外観にも優れている。   The molded product obtained by curing the antibacterial resin composition of the present invention can be molded into an arbitrary shape. For example, it can be used for various parts in a wide range of fields such as electrical / electronic related parts, OA related parts or automobile parts, sanitary parts such as toilet seats / kitchen / bathrooms, miscellaneous goods, and building materials. Moreover, since the molded object which consists of an antibacterial resin composition of this invention has content of lignin in an antibacterial resin composition being 50 mass% or less, it is excellent also in the external appearance.

以下、実施例により本発明を具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the scope of the present invention is not limited to these Examples.

参考例1
(リグニンの抽出)
リグニン抽出原料としては、竹を使用した。適当な大きさにカットした竹材を水蒸気爆砕装置の3Lの耐圧容器に入れ、3.5MPaの水蒸気を圧入し、4分間保持した。その後バルブを急速に開放することで爆砕処理物を得た。洗浄液のpHが6以上になるまで得られた爆砕処理物を水により洗浄して水溶性成分を除去した。その後、真空乾燥機で残存水分を除去した。得られた乾燥体100gに抽出溶媒としてアセトン300mlを加え、10分間攪拌した後、ろ過により繊維物質を取り除いた。得られたろ液から抽出溶媒を除去し、リグニンを得た。得られたリグニンは常温(25℃)で茶褐色の粉末であった。
( Reference Example 1 )
(Extraction of lignin)
Bamboo was used as a lignin extraction raw material. Bamboo material cut to an appropriate size was placed in a 3 L pressure-resistant container of a steam explosion apparatus, 3.5 MPa of steam was injected, and held for 4 minutes. Thereafter, the valve was rapidly opened to obtain an explosion-treated product. The explosion-treated product obtained until the pH of the cleaning solution reached 6 or more was washed with water to remove water-soluble components. Thereafter, residual moisture was removed with a vacuum dryer. After adding 300 ml of acetone as an extraction solvent to 100 g of the obtained dried product, the mixture was stirred for 10 minutes, and then the fiber material was removed by filtration. The extraction solvent was removed from the obtained filtrate to obtain lignin. The obtained lignin was a brown powder at room temperature (25 ° C.).

(リグニンの分析)
溶媒溶解性としては、前記リグニン5gを、有機溶媒95mlに加えて評価した。常温(25℃)で容易に溶解した場合は○、50〜70℃で溶解した場合は△、加熱しても溶解しなかった場合を×として、評価した。溶媒群1としてアセトン、シクロヘキサノン、テトラヒドロフラン、エチレングリコール、N−メチル−2−ピロリドン、溶媒群2としてメタノール、エタノール、メチルエチルケトンとして溶解性を評価した結果、溶媒群1ではいずれも○、溶媒群2ではいずれも△の判定であった。
(Lignin analysis)
The solvent solubility was evaluated by adding 5 g of the lignin to 95 ml of an organic solvent. When it melt | dissolved easily at normal temperature (25 degreeC), it evaluated as (circle), when it melt | dissolved at 50-70 degreeC, (triangle | delta), and when it did not melt | dissolve even if heated, it evaluated as x. As a result of evaluating the solubility as acetone, cyclohexanone, tetrahydrofuran, ethylene glycol, N-methyl-2-pyrrolidone as the solvent group 1 and methanol, ethanol, and methyl ethyl ketone as the solvent group 2, all of the solvents in the solvent group 1 are ○, In all cases, the evaluation was Δ.

リグニン中の硫黄原子の含有率は燃焼分解−イオンクロマトグラフ法により定量した。装置は株式会社三菱化学アナリテック製自動試料燃焼装置(AQF−100)及び日本ダイオネクス株式会社製イオンクロマトグラフ(ICS−1600)を用いた。上記リグニン中の硫黄原子の含有率は0.1質量%であった。さらに示差屈折計を備えたゲルパーミエイションクロマトグラフィー(GPC)にてリグニンの分子量を測定した。多分散度の小さいポリスチレンを標準試料として用い、移動相をテトラヒドロフランとして使用し、カラムとして株式会社日立ハイテクノロジーズ社製ゲルパックGL−A120SとGL−A170Sとを直列に接続して分子量測定を行った。その重量平均分子量は2400であった。   The content of sulfur atoms in lignin was quantified by combustion decomposition-ion chromatography. As the apparatus, an automatic sample combustion apparatus (AQF-100) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and an ion chromatograph (ICS-1600) manufactured by Nippon Dionex Co., Ltd. were used. The content rate of the sulfur atom in the said lignin was 0.1 mass%. Furthermore, the molecular weight of lignin was measured by gel permeation chromatography (GPC) equipped with a differential refractometer. Polystyrene having a low polydispersity was used as a standard sample, the mobile phase was used as tetrahydrofuran, and gel packs GL-A120S and GL-A170S manufactured by Hitachi High-Technologies Corporation were connected in series as columns to measure the molecular weight. Its weight average molecular weight was 2400.

上記で得られたリグニン(有機溶媒可溶リグニン)の水酸基当量は無水酢酸−ピリジン法により水酸基価、電位差滴定法により酸価を測定し求めた(下記の水酸基当量及びエポキシ当量の単位は、グラム/当量であって以下g/eq.で表わす。)。アセトン抽出竹由来リグニンの水酸基当量は140g/eq.であった。リグニンのフェノール性水酸基とアルコール性水酸基のモル比(以下P/A比)を以下の方法で決定した。リグニン2gのアセチル化処理を行い、未反応のアセチル化剤を留去し、乾燥させたものを、重クロロホルムに溶解させ、1H−NMR(BRUKER社製、V400M、プロトン基本周波数400.13MHz)により測定した。アセチル基由来のプロトンの積分比(フェノール性水酸基に結合したアセチル基由来:2.2〜3.0ppm、アルコール性水酸基に結合したアセチル基由来:1.5〜2.2ppm)からモル比を決定したところ、P/A比は2.2/1.0であった。   The hydroxyl equivalent of the lignin (organic solvent soluble lignin) obtained above was determined by measuring the hydroxyl value by acetic anhydride-pyridine method and the acid value by potentiometric titration (the units of hydroxyl equivalent and epoxy equivalent below are gram). / Equivalent and hereinafter expressed as g / eq.). The hydroxyl equivalent of acetone-extracted bamboo-derived lignin is 140 g / eq. Met. The molar ratio (hereinafter P / A ratio) of the phenolic hydroxyl group and alcoholic hydroxyl group of lignin was determined by the following method. An acetylation treatment of 2 g of lignin was performed, the unreacted acetylating agent was distilled off, and the dried product was dissolved in deuterated chloroform and analyzed by 1H-NMR (manufactured by BRUKER, V400M, proton fundamental frequency 400.13 MHz). It was measured. Determine the molar ratio from the integral ratio of protons derived from acetyl groups (derived from acetyl groups bonded to phenolic hydroxyl groups: 2.2 to 3.0 ppm, derived from acetyl groups bonded to alcoholic hydroxyl groups: 1.5 to 2.2 ppm). As a result, the P / A ratio was 2.2 / 1.0.

(抗菌性樹脂組成物の成形)
植物由来の熱可塑性樹脂であるポリ乳酸(浙江海正生物材料股粉有限公司製REVODE)99.99gを混練機(東洋精機株式会社製ラボプラストミル、型式4C150)に投入して溶融した後、上記リグニン(有機溶媒可溶リグニン)を0.01g添加した。よって、リグニンを0.01質量%含み、植物由来成分比100質量%の抗菌性樹脂組成物が得られた。
なお、以下、リグニンの含有量は、抗菌性樹脂組成物の不揮発分中におけるものである。
さらに、前記抗菌性樹脂組成物を、180℃で5分間混練し、その後1MPa、180℃、5分間の条件でプレス成形し成形体を得た。
(Molding of antibacterial resin composition)
After putting 99.99 g of polylactic acid (REVODE manufactured by Zhejiang Kaisei Biological Materials Co., Ltd.), which is a plant-derived thermoplastic resin, into a kneader (Toyo Seiki Co., Ltd., Labo Plast Mill, Model 4C150), 0.01 g of the above lignin (organic solvent soluble lignin) was added. Therefore, an antibacterial resin composition containing 0.01% by mass of lignin and having a plant-derived component ratio of 100% by mass was obtained.
Hereinafter, the content of lignin is in the nonvolatile content of the antibacterial resin composition.
Further, the antibacterial resin composition was kneaded at 180 ° C. for 5 minutes, and then press molded under the conditions of 1 MPa, 180 ° C. and 5 minutes to obtain a molded body.

(外観の評価)
得られた成形体の外観を目視で評価した。
リグニン添加による着色が無い又は淡く表面形状が滑らかで成形体として適しているものを◎、リグニン添加による着色があるが表面形状が滑らかで成形体として適しているものを○、リグニンによる着色があり、かつリグニンの混練度合いが不均一または表面形状が不良で成形体として適さないものを×とした。
上記で得られた実施例1の抗菌性樹脂組成物は、◎の判定であった。
(Appearance evaluation)
The appearance of the obtained molded body was visually evaluated.
No coloration due to lignin addition or pale, smooth surface shape and suitable as a molded product ◎, coloration due to lignin addition but smooth surface shape and suitable as a molded product ○, coloration due to lignin In addition, the lignin kneading degree was not uniform or the surface shape was poor, and it was not suitable as a molded article.
The antibacterial resin composition of Example 1 obtained above was evaluated as ◎.

(抗菌性試験)
JIS Z2801に準じて、黄色ぶどう球菌、大腸菌に対する抗菌性を評価した。試験片(成形体)上に菌液(生菌数2.5〜10×10の5乗個/mL)0.4mLを播き、フィルムをかぶせ35℃±1℃、24時間培養した。試験片(成形体)上の生菌数を測定するため、サンプリングし、サンプルを適宜希釈し、寒天平板培養にて35℃±1℃、48時間培養して生菌数を得た。
R=[Log(B/A)−log(C/A)]=[Log(B/C)]
R:抗菌活性値
A:無加工試験片における接種直後の生菌数の平均値(個)
B:無加工試験片における24時間後の生菌数の平均値(個)
C:抗菌加工試験片における24時間後の生菌数の平均値(個)
抗菌活性値2以上を抗菌性ありとした。成形した抗菌性樹脂組成物の抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ3.2、2.2であり、抗菌性ありの判定であった。
(Antimicrobial test)
According to JIS Z2801, antibacterial activity against Staphylococcus aureus and Escherichia coli was evaluated. On a test piece (molded body), 0.4 mL of a bacterial solution (viable cells of 2.5 to 10 × 10 5 cells / mL) was seeded, covered with a film, and cultured at 35 ° C. ± 1 ° C. for 24 hours. In order to measure the number of viable bacteria on the test piece (molded body), sampling was performed, the sample was appropriately diluted, and cultured in an agar plate culture at 35 ° C. ± 1 ° C. for 48 hours to obtain the viable cell count.
R = [Log (B / A) -log (C / A)] = [Log (B / C)]
R: antibacterial activity value A: average number of viable bacteria immediately after inoculation in unprocessed test pieces (pieces)
B: Average number of viable cells after 24 hours in unprocessed test piece
C: Average number of viable bacteria after 24 hours in antibacterial processed test piece
An antibacterial activity value of 2 or more was considered to be antibacterial. The antibacterial activity value of the molded antibacterial resin composition was 3.2 and 2.2 for Escherichia coli and Staphylococcus aureus, respectively.

参考例2
(リグニンの抽出及び分析)
抽出溶媒としてメタノールを用いた以外は参考例1と同様にリグニンを得た。参考例1と同様に元素分析及び分子量測定をした結果、それぞれリグニン中の硫黄原子の含有率0.1質量%、重量平均分子量は1900であった。参考例1と同様に溶媒溶解性を評価した結果、溶媒群1ではいずれも○、溶媒群2ではいずれも○の判定であった。リグニンのフェノール性水酸基とアルコール性水酸基のモル比(以下P/A比)を参考例1と同様の方法で測定した。参考例2で得られたリグニンのP/A比は1.6/1.0であった。参考例1と同様に上記で得られたリグニン(有機溶媒可溶リグニン)の水酸基当量を測定した結果、水酸基当量は120g/eq.であった。
( Reference Example 2 )
(Extraction and analysis of lignin)
Lignin was obtained in the same manner as in Reference Example 1 except that methanol was used as the extraction solvent. Elemental analysis and molecular weight measurement were performed in the same manner as in Reference Example 1. As a result, the sulfur atom content in lignin was 0.1% by mass, and the weight average molecular weight was 1,900. As a result of evaluating the solvent solubility in the same manner as in Reference Example 1 , the solvent group 1 was evaluated as “good” and the solvent group 2 was evaluated as “good”. The molar ratio of the phenolic hydroxyl group to the alcoholic hydroxyl group (hereinafter referred to as P / A ratio) of lignin was measured in the same manner as in Reference Example 1 . The P / A ratio of the lignin obtained in Reference Example 2 was 1.6 / 1.0. As a result of measuring the hydroxyl equivalent of the lignin (organic solvent-soluble lignin) obtained in the same manner as in Reference Example 1 , the hydroxyl equivalent was 120 g / eq. Met.

(抗菌性樹脂組成物の成形および外観の評価、抗菌性試験)
上記メタノール抽出のリグニンを用い、リグニン添加量を0.1g、ポリ乳酸添加量を99.9gとした以外は、参考例1と同様に抗菌性樹脂組成物を得た。得られた樹脂組成物はリグニンを0.1質量%含み、植物由来成分比は100質量%であった。参考例1と同様に成形体の外観を評価した結果、◎の判定であった。また、参考例1と同様に抗菌性試験を行った結果、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ6.0、4.5であり、抗菌性ありの判定であった。
(Molding and appearance evaluation of antibacterial resin composition, antibacterial test)
An antibacterial resin composition was obtained in the same manner as in Reference Example 1 except that the lignin extracted from methanol was used and the lignin addition amount was 0.1 g and the polylactic acid addition amount was 99.9 g. The obtained resin composition contained 0.1% by mass of lignin, and the plant-derived component ratio was 100% by mass. As a result of evaluating the appearance of the molded body in the same manner as in Reference Example 1 , it was judged as ◎. Moreover, as a result of performing an antibacterial test similarly to Reference Example 1 , the antibacterial activity values were 6.0 and 4.5 for Escherichia coli and Staphylococcus aureus, respectively, and were judged to have antibacterial properties.

(実施例
参考例1記載のリグニンを0.1g添加とし、ポリ乳酸の代わりに石油由来の熱可塑性樹脂であるポリエチレン(PE)99.9gを用いた以外は、参考例1と同様に抗菌性樹脂組成物を得た。得られた抗菌性樹脂組成物はリグニンを0.1質量%含み、植物由来成分比は0.1質量%であった。参考例1と同様に成形体の外観を評価した結果、◎の判定であった。また、参考例1と同様に抗菌性試験を行った結果、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ5.9、4.6であり、抗菌性ありの判定であった。
(Example 1 )
The antibacterial resin composition was the same as in Reference Example 1 except that 0.1 g of lignin described in Reference Example 1 was added and 99.9 g of polyethylene (PE), which is a petroleum-derived thermoplastic resin, was used instead of polylactic acid. Got. The obtained antibacterial resin composition contained 0.1% by mass of lignin, and the plant-derived component ratio was 0.1% by mass. As a result of evaluating the appearance of the molded body in the same manner as in Reference Example 1 , it was judged as ◎. Moreover, as a result of conducting the antibacterial test in the same manner as in Reference Example 1 , the antibacterial activity values were 5.9 and 4.6 for Escherichia coli and Staphylococcus aureus, respectively.

(実施例
参考例1記載のリグニンを1g添加とし、ポリ乳酸の代わりに石油由来の熱可塑性樹脂であるポリエチレン(PE)99gを用いた以外は、参考例1と同様に抗菌性樹脂組成物を得た。得られた樹脂組成物はリグニンを1質量%含み、植物由来成分比は1質量%であった。参考例1と同様に成形体の外観を評価した結果、◎の判定であった。また、参考例1と同様に抗菌性試験を行った結果、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ6.2、4.6であり、抗菌性ありの判定であった。
(Example 2 )
An antibacterial resin composition was obtained in the same manner as in Reference Example 1 except that 1 g of lignin described in Reference Example 1 was added and 99 g of polyethylene (PE), which is a petroleum-derived thermoplastic resin, was used instead of polylactic acid. The obtained resin composition contained 1% by mass of lignin, and the plant-derived component ratio was 1% by mass. As a result of evaluating the appearance of the molded body in the same manner as in Reference Example 1 , it was judged as ◎. In addition, as a result of conducting the antibacterial test in the same manner as in Reference Example 1 , the antibacterial activity values were 6.2 and 4.6 for Escherichia coli and Staphylococcus aureus, respectively, and were judged to have antibacterial properties.

(実施例
参考例1記載のリグニンを1g添加とし、ポリ乳酸の代わりに石油由来の熱可塑性樹脂であるポリプロピレン(PP)99gを用いた以外は、参考例1と同様に抗菌性樹脂組成物を得た。得られた樹脂組成物はリグニンを1質量%含み、植物由来成分比1質量%であった。参考例1と同様に成形体の外観を評価した結果、◎の判定であった。また、参考例1と同様に抗菌性試験を行った結果、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ6.3、4.8であり、抗菌性ありの判定であった。
(Example 3 )
An antibacterial resin composition was obtained in the same manner as in Reference Example 1 except that 1 g of lignin described in Reference Example 1 was added and 99 g of polypropylene (PP), which is a petroleum-derived thermoplastic resin, was used instead of polylactic acid. The obtained resin composition contained 1% by mass of lignin, and the plant-derived component ratio was 1% by mass. As a result of evaluating the appearance of the molded body in the same manner as in Reference Example 1 , it was judged as ◎. Moreover, as a result of performing the antibacterial test similarly to Reference Example 1 , the antibacterial activity values were 6.3 and 4.8 for E. coli and Staphylococcus aureus, respectively.

(実施例
参考例1記載のリグニンを50g添加とし、ポリ乳酸の代わりに石油由来の熱可塑性樹脂であるポリプロピレン(PP)50gを用いた以外は、参考例1と同様に抗菌性樹脂組成物を得た。得られた樹脂組成物はリグニンを50質量%含み、植物由来成分比50質量%であった。参考例1と同様に成形体の外観を評価した結果、○の判定であった。また、参考例1と同様に抗菌性試験を行った結果、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ6.5、5.1であり、抗菌性ありの判定であった。
(Example 4 )
An antibacterial resin composition was obtained in the same manner as in Reference Example 1 except that 50 g of lignin described in Reference Example 1 was added and 50 g of polypropylene (PP), which is a petroleum-derived thermoplastic resin, was used instead of polylactic acid. The obtained resin composition contained 50% by mass of lignin, and the plant-derived component ratio was 50% by mass. As a result of evaluating the appearance of the molded body in the same manner as in Reference Example 1 , it was judged as ◯. Moreover, as a result of conducting an antibacterial test in the same manner as in Reference Example 1 , the antibacterial activity values were 6.5 and 5.1 for Escherichia coli and Staphylococcus aureus, respectively.

(比較例1)
参考例1記載のリグニンを0.009g添加とし、ポリ乳酸添加量を99.991gとした以外は、参考例1と同様に樹脂組成物を得た。得られた樹脂組成物はリグニンを0.009質量%含み、植物由来成分比は100質量%であった。参考例1と同様に成形体の外観を評価した結果、◎の判定であった。また、参考例1と同様に抗菌性試験を行った結果、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ1.8、1.7であり、抗菌性なしの判定であった。
(Comparative Example 1)
A resin composition was obtained in the same manner as in Reference Example 1 except that 0.009 g of lignin described in Reference Example 1 was added and the amount of polylactic acid added was 99.991 g. The obtained resin composition contained 0.009% by mass of lignin and the plant-derived component ratio was 100% by mass. As a result of evaluating the appearance of the molded body in the same manner as in Reference Example 1 , it was judged as ◎. Moreover, as a result of conducting an antibacterial test in the same manner as in Reference Example 1 , the antibacterial activity values were 1.8 and 1.7 for Escherichia coli and Staphylococcus aureus, respectively.

(比較例2)
参考例1記載のリグニンを0.009g添加とし、ポリ乳酸の代わりにポリエチレン(PE)99.991gを用いた以外は、参考例1と同様に樹脂組成物を得た。得られた樹脂組成物はリグニンを0.009質量%含み、植物由来成分比は0.009質量%であった。実施例1と同様に成形体の外観を評価した結果、◎の判定であった。また、参考例1と同様に抗菌性試験を行った結果、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ1.7、1.7であり、抗菌性なしの判定であった。
(Comparative Example 2)
A resin composition was obtained in the same manner as in Reference Example 1 except that 0.009 g of lignin described in Reference Example 1 was added and 99.991 g of polyethylene (PE) was used instead of polylactic acid. The obtained resin composition contained 0.009% by mass of lignin, and the plant-derived component ratio was 0.009% by mass. As a result of evaluating the appearance of the molded body in the same manner as in Example 1, it was judged as ◎. Moreover, as a result of conducting an antibacterial test in the same manner as in Reference Example 1 , the antibacterial activity values were 1.7 and 1.7 for Escherichia coli and S. aureus, respectively.

(比較例3)
参考例1記載のリグニンを52g添加とし、ポリ乳酸の代わりにポリプロピレン(PP)48gを用いた以外は、参考例1と同様に樹脂組成物を得た。得られた樹脂組成物はリグニンを52質量%含み、植物由来成分比52質量%であった。参考例1と同様に成形体の外観を評価した結果、×の判定であった。また、参考例1と同様に抗菌性試験を行った結果、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ6.5、5.3であり、抗菌性ありの判定であった。
(Comparative Example 3)
A resin composition was obtained in the same manner as in Reference Example 1 except that 52 g of lignin described in Reference Example 1 was added and 48 g of polypropylene (PP) was used instead of polylactic acid. The obtained resin composition contained 52% by mass of lignin and had a plant-derived component ratio of 52% by mass. As a result of evaluating the appearance of the molded body in the same manner as in Reference Example 1 , the result was x. Moreover, as a result of conducting the antibacterial test similarly to Reference Example 1 , the antibacterial activity values were 6.5 and 5.3 for Escherichia coli and Staphylococcus aureus, respectively, and were judged to have antibacterial properties.

(比較例4)
(リグニンスルホン酸塩の分析)
参考例1記載のリグニンの代わりにリグニンスルホン酸塩(バニレックスN、日本製紙株式会社製)を用いて樹脂組成物を得た。参考例1と同様に硫黄原子の含有量を測定した結果、リグニンスルホン酸塩中の硫黄原子の含有率は3質量%であった。さらに、重量平均分子量を株式会社島津製作所製高速液体クロマトグラフィー(C−R4A)により測定し、標準ポリスチレンを用いた検量線により換算して求めた。移動相をDMF+LiBr(0.06mol/L)+リン酸(0.06mol/L)として使用し、カラムとして株式会社日立ハイテクノロジーズ製ゲルパックGL−S300MDT−5を2つ直列に接続して分子量測定を行った。その重量平均分子量は11000であった。また、実施例1と同様に有機溶剤への溶解性を評価した。溶媒としてアセトン、シクロヘキサノン、テトラヒドロフラン、メタノール、エタノール、メチルエチルケトンを用いて溶解性を評価した結果、すべての溶媒に不溶であった。
(Comparative Example 4)
(Analysis of lignin sulfonate)
A resin composition was obtained using lignin sulfonate (Vanilex N, manufactured by Nippon Paper Industries Co., Ltd.) instead of lignin described in Reference Example 1 . As a result of measuring the content of sulfur atoms in the same manner as in Reference Example 1 , the content of sulfur atoms in the lignin sulfonate was 3% by mass. Further, the weight average molecular weight was measured by high performance liquid chromatography (C-R4A) manufactured by Shimadzu Corporation and calculated by a calibration curve using standard polystyrene. The mobile phase was used as DMF + LiBr (0.06 mol / L) + phosphoric acid (0.06 mol / L), and two gel packs GL-S300MDT-5 manufactured by Hitachi High-Technologies Corporation were connected in series as a column for molecular weight measurement. went. Its weight average molecular weight was 11,000. Further, the solubility in organic solvents was evaluated in the same manner as in Example 1. As a result of evaluating the solubility using acetone, cyclohexanone, tetrahydrofuran, methanol, ethanol, and methyl ethyl ketone as the solvent, it was insoluble in all the solvents.

(樹脂組成物の成形)
参考例1記載のリグニンの代わりに、有機溶剤に不溶な前記リグニンスルホン酸塩を0.1g添加とし、ポリ乳酸添加量を99.9gとした以外は、実施例1と同様に樹脂組成物を得た。得られた樹脂組成物はリグニンスルホン酸塩を0.1質量%含み、植物由来成分比は100質量%であった。参考例1と同様に成形体の外観を評価した結果、×の判定であった。また、参考例1と同様に抗菌性試験を行った結果、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ3.9、4.0であり、抗菌性ありの判定であった。
(Molding of resin composition)
Instead of the lignin described in Reference Example 1 , 0.1 g of the lignin sulfonate insoluble in the organic solvent was added, and the amount of polylactic acid was changed to 99.9 g. Obtained. The obtained resin composition contained 0.1% by mass of lignin sulfonate, and the plant-derived component ratio was 100% by mass. As a result of evaluating the appearance of the molded body in the same manner as in Reference Example 1 , the result was x. Moreover, as a result of conducting the antibacterial test in the same manner as in Reference Example 1 , the antibacterial activity values were 3.9 and 4.0 for Escherichia coli and Staphylococcus aureus, respectively.

(比較例5)
参考例1記載のリグニンの変わりに、有機溶剤に不溶なリグニンスルホン酸塩(バニレックスN、日本製紙株式会社製)を50g添加とし、ポリ乳酸の代わりにポリプロピレン(PP)50gを用いた以外は、参考例1と同様に樹脂組成物を得た。得られた樹脂組成物はリグニンスルホン酸塩を50質量%含み、植物由来成分比は50質量%であった。参考例1と同様に成形体の外観を評価した結果、×の判定であった。また、参考例1と同様に抗菌性試験を行った結果、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ4.2、4.1であり、抗菌性ありの判定であった。
(Comparative Example 5)
Instead of the lignin described in Reference Example 1 , 50 g of lignin sulfonate (Vanilex N, manufactured by Nippon Paper Industries Co., Ltd.) insoluble in organic solvents was added, and 50 g of polypropylene (PP) was used instead of polylactic acid. A resin composition was obtained in the same manner as in Reference Example 1 . The obtained resin composition contained 50% by mass of lignin sulfonate, and the plant-derived component ratio was 50% by mass. As a result of evaluating the appearance of the molded body in the same manner as in Reference Example 1 , the result was x. Moreover, as a result of conducting an antibacterial test in the same manner as in Reference Example 1 , the antibacterial activity values were 4.2 and 4.1 for Escherichia coli and Staphylococcus aureus, respectively.

(参考例
(抗菌性樹脂組成物の成形)
植物由来の熱硬化性樹脂であるエポキシ化大豆油(エポサイザーW−100−EL、DIC株式会社製)230gと、フェノール樹脂(XLC−LL、三井化学株式会社製)174gを混練機(東洋精機株式会社製ラボプラストミル、型式4C150)に投入して180℃で混練した後、参考例1記載のリグニンを0.041g添加して十分に混練した。さらに硬化促進剤としてキュアゾール2PZ−CN(四国化成工業株式会社製、1−シアノエチル−2−フェニルイミダゾール)1gを加えて混練した。リグニンを0.01質量%含み、植物由来成分57質量%の抗菌性樹脂組成物が得られた。
得られた抗菌性樹脂組成物(混練物)を均一に粉砕して金型に詰め、プレス成形機を用い、1MPa、180℃、10分間で成形した。その後、180℃のオーブンで2時間加熱し、成形体(硬化物)を得た。
(Reference Example 3 )
(Molding of antibacterial resin composition)
Kneading machine (Toyo Seiki Co., Ltd.) 230 g of epoxidized soybean oil (Eposizer W-100-EL, manufactured by DIC Corporation), which is a plant-derived thermosetting resin, and 174 g of phenol resin (XLC-LL, manufactured by Mitsui Chemicals, Inc.) The product was put into a company-made Laboplast mill, model 4C150) and kneaded at 180 ° C., and then 0.041 g of lignin described in Reference Example 1 was added and sufficiently kneaded. Further, 1 g of Curazole 2PZ-CN (manufactured by Shikoku Chemicals Co., Ltd., 1-cyanoethyl-2-phenylimidazole) was added as a curing accelerator and kneaded. An antibacterial resin composition containing 0.01% by mass of lignin and 57% by mass of plant-derived components was obtained.
The obtained antibacterial resin composition (kneaded material) was uniformly pulverized and packed in a mold, and molded using a press molding machine at 1 MPa, 180 ° C. for 10 minutes. Then, it heated for 2 hours in 180 degreeC oven, and obtained the molded object (hardened | cured material).

(外観の評価および抗菌性試験)
参考例1と同様に成形体(抗菌性樹脂組成物の硬化物)の外観を評価した結果、◎の判定であった。また、参考例1と同様に抗菌試験を行った結果、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ3.8、2.6であり、抗菌性ありの判定であった。
(Appearance evaluation and antibacterial test)
As a result of evaluating the appearance of the molded article (cured product of the antibacterial resin composition) in the same manner as in Reference Example 1 , it was judged as ◎. Moreover, as a result of conducting an antibacterial test in the same manner as in Reference Example 1 , the antibacterial activity values were 3.8 and 2.6 for Escherichia coli and Staphylococcus aureus, respectively.

(参考例
(抗菌性樹脂組成物の成形)
参考例2記載のリグニンを用い、リグニン添加量を0.41gとした以外は、参考例と同様に抗菌性樹脂組成物を得た。リグニンを0.1質量%含み、植物由来成分57質量%の抗菌性樹脂組成物が得られた。
(Reference Example 4 )
(Molding of antibacterial resin composition)
An antibacterial resin composition was obtained in the same manner as in Reference Example 3 except that the lignin described in Reference Example 2 was used and the amount of lignin added was 0.41 g. An antibacterial resin composition containing 0.1% by mass of lignin and 57% by mass of plant-derived components was obtained.

(抗菌性樹脂組成物の成形および外観の評価、抗菌性試験)
参考例1と同様に成形体(抗菌性樹脂組成物の硬化物)の外観を評価した結果、◎の判定であった。また、参考例1と同様に抗菌試験を行った結果、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ6.1、4.7であり、抗菌性ありの判定であった。
(Molding and appearance evaluation of antibacterial resin composition, antibacterial test)
As a result of evaluating the appearance of the molded article (cured product of the antibacterial resin composition) in the same manner as in Reference Example 1 , it was judged as ◎. Moreover, as a result of conducting an antibacterial test in the same manner as in Reference Example 1 , the antibacterial activity values were 6.1 and 4.7 for Escherichia coli and Staphylococcus aureus, respectively.

(参考例
参考例1記載のリグニンを0.34g添加し、エポキシ化大豆油の代わりに石油由来の熱硬化性樹脂であるエポキシ樹脂(YDF−8170C、新日鐵化学株式会社製)156gを用いた以外は、参考例と同様に抗菌性樹脂組成物を得た。得られた抗菌性樹脂組成物はリグニンを0.1質量%含み、植物由来成分比は0.1質量%であった。参考例1と同様に成形体(抗菌性樹脂組成物の硬化物)の外観を評価した結果、◎の判定であった。また、参考例1と同様に抗菌性試験を行った結果、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ6.0、4.8であり、抗菌性ありの判定であった。
(Reference Example 5 )
Except for adding 0.34 g of lignin described in Reference Example 1 and using 156 g of epoxy resin (YDF-8170C, manufactured by Nippon Steel Chemical Co., Ltd.), which is a thermosetting resin derived from petroleum, instead of epoxidized soybean oil. In the same manner as in Reference Example 3 , an antibacterial resin composition was obtained. The obtained antibacterial resin composition contained 0.1% by mass of lignin, and the plant-derived component ratio was 0.1% by mass. As a result of evaluating the appearance of the molded article (cured product of the antibacterial resin composition) in the same manner as in Reference Example 1 , it was judged as ◎. Moreover, as a result of conducting an antibacterial test in the same manner as in Reference Example 1 , the antibacterial activity values were 6.0 and 4.8 for Escherichia coli and Staphylococcus aureus, respectively.

(参考例
参考例1記載のリグニンを3.4g添加し、エポキシ化大豆油の代わりに石油由来の熱硬化性樹脂であるエポキシ樹脂(YDF−8170C、新日鐵化学株式会社製)156gを用いた以外は、参考例と同様に抗菌性樹脂組成物を得た。得られた抗菌性樹脂組成物はリグニンを1質量%含み、植物由来成分比は1質量%であった。参考例1と同様に成形体(抗菌性樹脂組成物の硬化物)の外観を評価した結果、◎の判定であった。また、参考例1と同様に抗菌性試験を行った結果、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ6.2、4.8であり、抗菌性ありの判定であった。
(Reference Example 6 )
Other than adding 3.4 g of lignin described in Reference Example 1 and using 156 g of an epoxy resin (YDF-8170C, manufactured by Nippon Steel Chemical Co., Ltd.) which is a thermosetting resin derived from petroleum instead of epoxidized soybean oil. In the same manner as in Reference Example 3 , an antibacterial resin composition was obtained. The obtained antibacterial resin composition contained 1% by mass of lignin, and the plant-derived component ratio was 1% by mass. As a result of evaluating the appearance of the molded article (cured product of the antibacterial resin composition) in the same manner as in Reference Example 1 , it was judged as ◎. In addition, as a result of performing the antibacterial test in the same manner as in Reference Example 1 , the antibacterial activity values were 6.2 and 4.8 for E. coli and S. aureus, respectively, and were judged to have antibacterial properties.

(参考例
参考例1記載のリグニンを375g添加し、エポキシ化大豆油の代わりに石油由来の熱硬化性樹脂であるエポキシ樹脂(YDCN−701、新日鐵化学株式会社製)200gを用いた以外は、参考例と同様に抗菌性樹脂組成物を得た。得られた抗菌性樹脂組成物はリグニンを50質量%含み、植物由来成分比は50質量%であった。参考例1と同様に成形体(抗菌性樹脂組成物の硬化物)の外観を評価した結果、○の判定であった。また、参考例1と同様に抗菌性試験を行った結果、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ6.7、5.4であり、抗菌性ありの判定であった。
(Reference Example 7 )
Except for adding 375 g of lignin described in Reference Example 1 and using 200 g of an epoxy resin (YDCN-701, manufactured by Nippon Steel Chemical Co., Ltd.), which is a thermosetting resin derived from petroleum, instead of epoxidized soybean oil. An antibacterial resin composition was obtained in the same manner as in Example 3 . The obtained antibacterial resin composition contained 50% by mass of lignin, and the plant-derived component ratio was 50% by mass. As a result of evaluating the appearance of the molded body (cured product of the antibacterial resin composition) in the same manner as in Reference Example 1 , it was judged as ◯. Moreover, as a result of performing an antibacterial test similarly to Reference Example 1 , the antibacterial activity values were 6.7 and 5.4 for Escherichia coli and Staphylococcus aureus, respectively.

(比較例6)
参考例1記載のリグニンを0.038g添加とした以外は、参考例と同様に樹脂組成物を得た。得られた樹脂組成物はリグニンを0.009質量%含み、植物由来成分比は57質量%であった。参考例1と同様に成形体(樹脂組成物の硬化物)の外観を評価した結果、◎の判定であった。また、参考例1と同様に抗菌性試験を行った結果、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ1.9、1.7であり、抗菌性なしの判定であった。
(Comparative Example 6)
A resin composition was obtained in the same manner as in Reference Example 3 except that 0.038 g of lignin described in Reference Example 1 was added. The obtained resin composition contained 0.009% by mass of lignin, and the plant-derived component ratio was 57% by mass. As a result of evaluating the appearance of the molded body (cured product of the resin composition) in the same manner as in Reference Example 1 , it was judged as ◎. Moreover, as a result of performing the antibacterial test similarly to the reference example 1 , the antibacterial activity value was 1.9 and 1.7 with respect to Escherichia coli and Staphylococcus aureus, respectively, and it was determined that there was no antibacterial property.

(比較例7)
参考例1記載のリグニンを0.021g添加とし、エポキシ化大豆油の代わりにポリエチレン(PE)230gを用いた以外は、参考例と同様に樹脂組成物を得た。得られた樹脂組成物はリグニンを0.009質量%含み、植物由来成分比は0.009質量%であった。参考例1と同様に成形体の外観を評価した結果、◎の判定であった。また、参考例1と同様に抗菌性試験を行った結果、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ1.8、1.7であり、抗菌性なしの判定であった。
(Comparative Example 7)
A resin composition was obtained in the same manner as in Reference Example 3 except that 0.021 g of lignin described in Reference Example 1 was added and 230 g of polyethylene (PE) was used instead of epoxidized soybean oil. The obtained resin composition contained 0.009% by mass of lignin, and the plant-derived component ratio was 0.009% by mass. As a result of evaluating the appearance of the molded body in the same manner as in Reference Example 1 , it was judged as ◎. Moreover, as a result of conducting an antibacterial test in the same manner as in Reference Example 1 , the antibacterial activity values were 1.8 and 1.7 for Escherichia coli and Staphylococcus aureus, respectively.

(比較例8)
参考例1記載のリグニンを250g添加とし、エポキシ化大豆油の代わりにポリプロピレン(PP)230gを用いた以外は、参考例と同様に樹脂組成物を得た。得られた樹脂組成物はリグニンを52質量%含み、植物由来成分比52質量%であった。参考例1と同様に成形体(樹脂組成物の硬化物)の外観を評価した結果、×の判定であった。また、参考例1と同様に抗菌性試験を行った結果、抗菌活性値は大腸菌、黄色ブドウ球菌に対して、それぞれ6.6、6.5であり、抗菌性ありの判定であった。


(Comparative Example 8)
A resin composition was obtained in the same manner as in Reference Example 3 , except that 250 g of lignin described in Reference Example 1 was added and 230 g of polypropylene (PP) was used instead of epoxidized soybean oil. The obtained resin composition contained 52% by mass of lignin and had a plant-derived component ratio of 52% by mass. As a result of evaluating the appearance of the molded body (cured product of the resin composition) in the same manner as in Reference Example 1 , the result was x. Moreover, as a result of conducting an antibacterial test in the same manner as in Reference Example 1 , the antibacterial activity values were 6.6 and 6.5 for Escherichia coli and Staphylococcus aureus, respectively.


Claims (2)

リグニンと、熱可塑性樹脂を含む抗菌性樹脂組成物であって、前記リグニンは、水を用いた分離技術であって、加水分解と物理的破砕により植物を破砕し、水により洗浄して水溶性成分を除去し、セルロース成分、ヘミセルロース成分から分離し、有機溶媒に溶解させることにより得たリグニンであり、重量平均分子量が100〜7000であり、硫黄原子の含有率が0.5質量%以下であり、リグニンが有機溶媒に可溶であって、その溶媒溶解性は、前記リグニン5gを、溶媒95mlに加えて溶解させた場合にアセトン、シクロヘキサノン、テトラヒドロフラン、エチレングリコール、及びN−メチル−2−ピロリドンには25℃で溶解し、メタノール、エタノール及びメチルエチルケトンには50〜70℃で溶解するものであり、前記熱可塑性樹脂は、ポリエチレン及びポリプロピレンから選択されるものであり、不揮発分としてリグニンを0.01〜50質量%含むことを特徴とする抗菌性樹脂組成物。 An antibacterial resin composition containing lignin and a thermoplastic resin, wherein the lignin is a separation technique using water, crushing plants by hydrolysis and physical crushing, washing with water, and water-soluble It is a lignin obtained by removing components, separating from cellulose components and hemicellulose components, and dissolving them in an organic solvent, having a weight average molecular weight of 100 to 7000 and a sulfur atom content of 0.5% by mass or less. Yes, lignin is soluble in an organic solvent, and the solvent solubility of acetone, cyclohexanone, tetrahydrofuran, ethylene glycol, and N-methyl-2-2, when 5 g of lignin is dissolved in 95 ml of solvent. It dissolves at 25 ° C. in pyrrolidone, and dissolves at 50-70 ° C. in methanol, ethanol and methyl ethyl ketone, Thermoplastic resins, port Riechiren are those selected from and polypropylene, antibacterial resin composition which comprises 0.01 to 50% by weight of lignin as a non-volatile content. 請求項1に記載の抗菌性樹脂組成物を用いて得られる成形体。The molded object obtained using the antibacterial resin composition of Claim 1.
JP2010170394A 2010-02-10 2010-07-29 Antibacterial resin composition Expired - Fee Related JP5641302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010170394A JP5641302B2 (en) 2010-02-10 2010-07-29 Antibacterial resin composition

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010027547 2010-02-10
JP2010027547 2010-02-10
JP2010065953 2010-03-23
JP2010065953 2010-03-23
JP2010170394A JP5641302B2 (en) 2010-02-10 2010-07-29 Antibacterial resin composition

Publications (2)

Publication Number Publication Date
JP2011219716A JP2011219716A (en) 2011-11-04
JP5641302B2 true JP5641302B2 (en) 2014-12-17

Family

ID=45036344

Family Applications (11)

Application Number Title Priority Date Filing Date
JP2010168053A Pending JP2011219715A (en) 2010-02-10 2010-07-27 Resin compound material for molding
JP2010170394A Expired - Fee Related JP5641302B2 (en) 2010-02-10 2010-07-29 Antibacterial resin composition
JP2010173536A Expired - Fee Related JP5861856B2 (en) 2010-02-10 2010-08-02 Manufacturing method of adhesive
JP2010173535A Pending JP2011219717A (en) 2010-02-10 2010-08-02 Woody coating
JP2010175306A Pending JP2011218775A (en) 2010-02-10 2010-08-04 Woody building material
JP2010192127A Expired - Fee Related JP5618136B2 (en) 2010-02-10 2010-08-30 Resin composition and molded body
JP2010199770A Expired - Fee Related JP5720924B2 (en) 2010-02-10 2010-09-07 Wood-based decorative board
JP2010199771A Expired - Fee Related JP5582346B2 (en) 2010-02-10 2010-09-07 Prepreg and method for producing molded body
JP2010205501A Expired - Fee Related JP5652646B2 (en) 2010-02-10 2010-09-14 Wood-based film
JP2010223725A Pending JP2011219728A (en) 2010-02-10 2010-10-01 Tacky adhesive
JP2011020614A Expired - Fee Related JP5741904B2 (en) 2010-02-10 2011-02-02 Wooden foam

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010168053A Pending JP2011219715A (en) 2010-02-10 2010-07-27 Resin compound material for molding

Family Applications After (9)

Application Number Title Priority Date Filing Date
JP2010173536A Expired - Fee Related JP5861856B2 (en) 2010-02-10 2010-08-02 Manufacturing method of adhesive
JP2010173535A Pending JP2011219717A (en) 2010-02-10 2010-08-02 Woody coating
JP2010175306A Pending JP2011218775A (en) 2010-02-10 2010-08-04 Woody building material
JP2010192127A Expired - Fee Related JP5618136B2 (en) 2010-02-10 2010-08-30 Resin composition and molded body
JP2010199770A Expired - Fee Related JP5720924B2 (en) 2010-02-10 2010-09-07 Wood-based decorative board
JP2010199771A Expired - Fee Related JP5582346B2 (en) 2010-02-10 2010-09-07 Prepreg and method for producing molded body
JP2010205501A Expired - Fee Related JP5652646B2 (en) 2010-02-10 2010-09-14 Wood-based film
JP2010223725A Pending JP2011219728A (en) 2010-02-10 2010-10-01 Tacky adhesive
JP2011020614A Expired - Fee Related JP5741904B2 (en) 2010-02-10 2011-02-02 Wooden foam

Country Status (1)

Country Link
JP (11) JP2011219715A (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5158008B2 (en) 2009-04-28 2013-03-06 トヨタ自動車株式会社 All solid battery
RU2556496C2 (en) 2010-01-19 2015-07-10 Ренмэтикс, Инк. Production of fermentation sugars and lignin from biomass with application of supercritical fluids
JP5618153B2 (en) * 2011-02-02 2014-11-05 日立化成株式会社 Resin composition and molded body
JP2013035885A (en) * 2011-08-03 2013-02-21 Asahi Organic Chemicals Industry Co Ltd Lignin, composition containing lignin and method for producing the lignin
US8759498B2 (en) * 2011-12-30 2014-06-24 Renmatix, Inc. Compositions comprising lignin
WO2013110729A1 (en) * 2012-01-24 2013-08-01 Lenzing Ag Foams composed of lignin-furan derivative polymers and production method therefor
JP2013170245A (en) * 2012-02-22 2013-09-02 Hitachi Chemical Co Ltd Novel polyurethane
JP2013221113A (en) * 2012-04-18 2013-10-28 Hitachi Ltd Lignin-derived epoxy resin composition and application thereof
RU2637027C2 (en) * 2012-06-01 2017-11-29 Стора Энсо Ойй Composition as content of lignin dispersion, method of its manufacture and use
JP2014024933A (en) * 2012-07-26 2014-02-06 Hitachi Chemical Co Ltd Self-curable resin using lignin
JP2014077107A (en) 2012-09-19 2014-05-01 Fuji Xerox Co Ltd Resin composition and resin molded article
JP2014065825A (en) * 2012-09-26 2014-04-17 Hitachi Chemical Co Ltd Resin material for injection molding and molded body
JP6163761B2 (en) * 2013-01-16 2017-07-19 住友ベークライト株式会社 Resin composition and resin molded body
DE102013002574A1 (en) 2013-02-11 2014-08-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Microstructured composite material, process for its production, moldings thereof and uses
DE102013002573A1 (en) * 2013-02-11 2014-08-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Thermoplastic polymer compounds with low molecular weight lignins, process for their preparation, moldings and uses
JP2014160710A (en) * 2013-02-19 2014-09-04 Hitachi Chemical Co Ltd Printed circuit board
JPWO2014136762A1 (en) * 2013-03-06 2017-02-09 日立化成株式会社 Coated sand
CN103112072B (en) * 2013-03-20 2014-08-13 南京林业大学 Method for improving product surface properties by pennisetum man-made board processing residues
FI125416B (en) * 2013-06-28 2015-10-15 Upm Kymmene Corp Nonwoven reinforced composite resin
AU2014336965A1 (en) * 2013-10-18 2016-06-02 Queensland University Of Technology Lignin-based waterproof coating
EP3066272B1 (en) * 2013-11-06 2018-04-04 Wood Innovations Ltd. Core layer having wood elements, in particular wood elements having a corrugated structure
KR101514899B1 (en) * 2013-12-30 2015-04-23 최미희 Composition and Manufacturing Method of self-exitinguishing fire-retardant wood by free carbon, metallic salts and micro-fibril by Modifide of Wood
JP6296284B2 (en) * 2014-02-21 2018-03-20 清水建設株式会社 Concrete member and manufacturing method thereof
JP6296285B2 (en) * 2014-02-21 2018-03-20 清水建設株式会社 How to protect concrete
JP6384717B2 (en) * 2014-02-21 2018-09-05 清水建設株式会社 Concrete coloring agent, concrete coloring method, concrete and concrete structure
CN103910850B (en) * 2014-04-02 2019-11-01 合肥杰事杰新材料股份有限公司 A kind of fire-retardant enhancing hard polyurethane foam of phosphatization lignin-base and preparation method thereof
JP6296293B2 (en) * 2014-05-19 2018-03-20 清水建設株式会社 Concrete coloring agent and method for producing the same, concrete coloring method, and concrete
KR101716142B1 (en) * 2014-09-05 2017-03-15 연세대학교 산학협력단 Insoluble lignin nanofiber and method for menufactruing the insoluble lignin nanofiber
JP6406948B2 (en) * 2014-09-12 2018-10-17 日本製紙株式会社 Lignin derivative for rubber reinforcement, method for producing lignin derivative for rubber reinforcement, lignin resin composition and rubber composition
JP6422708B2 (en) * 2014-09-12 2018-11-14 日本製紙株式会社 Method for producing lignin derivative for rubber reinforcement, method for producing lignin resin composition, and method for producing rubber composition
CN104449501A (en) * 2014-12-26 2015-03-25 宁波中加低碳新技术研究院有限公司 Furfural/lignin/isocyanate adhesive
KR101713438B1 (en) * 2015-09-15 2017-03-07 권혁이 Producing method of eco-friendly lightweight tiles using waste coal tailings
JP2017066259A (en) * 2015-09-30 2017-04-06 株式会社ファインテック Bamboo fiber composite plant-derived resin composition and method for producing the same
JP6730043B2 (en) * 2016-02-22 2020-07-29 積水化学工業株式会社 Fiber reinforced resin prepreg sheet
JP6846887B2 (en) 2016-08-04 2021-03-24 曙ブレーキ工業株式会社 Method for producing thermosetting resin composition, friction material and thermosetting resin composition
ES2977587T3 (en) * 2017-04-10 2024-08-27 Univ Maryland Strong and tough structural wood materials and methods of manufacturing and using them
US11873384B2 (en) 2017-09-07 2024-01-16 Renmatix, Inc. Antioxidant stabilizer in polymers
JP6964251B2 (en) * 2017-11-14 2021-11-10 パナソニックIpマネジメント株式会社 Biomass composition and biomass molding
JP6964881B2 (en) * 2018-02-28 2021-11-10 国立研究開発法人産業技術総合研究所 Lignin clay composite membrane and its manufacturing method
JP7001317B2 (en) * 2018-04-10 2022-01-19 トヨタ車体株式会社 Manufacturing method of molded products
CA3100830A1 (en) * 2018-07-02 2020-01-09 Stora Enso Oyj Process for preparing a bonding resin
EP3632949A1 (en) * 2018-10-02 2020-04-08 Vito NV Process for the production of epoxy resins
KR20220044484A (en) * 2019-08-08 2022-04-08 가부시끼가이샤 쓰리본드 Adhesive composition, cured product and bonding body
CN110900778B (en) * 2019-12-16 2021-05-14 清华大学 Plant fiber artificial board and preparation method and application thereof
CN111073325A (en) * 2019-12-31 2020-04-28 华南理工大学 Lignin/fiber thermoplastic composite material and preparation method thereof
WO2022092343A1 (en) * 2020-10-28 2022-05-05 주식회사 리그넘 Method for preparing antibacterial bio-filler to be added to plastics, and antibacterial bio-filler to be added to plastics, prepared thereby
WO2022200974A1 (en) * 2021-03-24 2022-09-29 Stora Enso Oyj Biobased adhesive mixture and the use of said adhesive mixture
CN113637245B (en) * 2021-08-16 2023-02-17 深圳市峰源化工新材料股份有限公司 Lignin modified styrene butadiene rubber thermoplastic elastomer and preparation method thereof
WO2023219158A1 (en) * 2022-05-12 2023-11-16 スーパーレジン工業株式会社 Foamed body and layered structure
WO2024106457A1 (en) * 2022-11-18 2024-05-23 出光興産株式会社 Resin composition, fiber-reinforced resin composition and molded body

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171744A (en) * 1985-01-24 1986-08-02 Daiken Trade & Ind Co Ltd Wood-based foamed material and production thereof
JPS61215678A (en) * 1985-03-22 1986-09-25 Oji Paper Co Ltd Manufacture of lignin-epoxy resin adhesive
JP2595308B2 (en) * 1987-09-04 1997-04-02 王子製紙株式会社 Lignin-phenol resin composition
US5614564A (en) * 1993-07-28 1997-03-25 Samsung General Chemicals Co., Ltd. Degradable foam and the method for its production
JP3409092B2 (en) * 1993-11-29 2003-05-19 大倉工業株式会社 Thermosetting chemically modified wood material composition
JPH08104833A (en) * 1994-10-03 1996-04-23 Oobusu Kk Marine paint
DE4443431A1 (en) * 1994-12-06 1996-06-13 Elastogran Gmbh Pressurized, blowing agent-containing isocyanate semi-prepolymer mixtures based on lignin-polyether-polyols, their use for the production of polyurethane foams and a process therefor
AU4314896A (en) * 1994-12-22 1996-07-10 Tsuyoshi Kono Board produced from malvaceous bast plant and process for producing the same
SG47174A1 (en) * 1995-09-18 1998-03-20 Ibm Cross-linked biobased materials and fabricating methods thereof
CN1176643A (en) * 1995-12-29 1998-03-18 K·R·库泼 Lignin-based polyols
JPH09241615A (en) * 1996-03-11 1997-09-16 Rinyacho Shinrin Sogo Kenkyusho Composition having infrared light-absorbing property and its production
JP3103839B2 (en) * 1997-03-14 2000-10-30 トスコ株式会社 Water-absorbing polyurethane foam and method for producing the same
JPH10305409A (en) * 1997-04-30 1998-11-17 Takeshi Kono Board made of grass lignin and manufacture thereof
JPH11152410A (en) * 1997-11-21 1999-06-08 Asahi Chem Ind Co Ltd Resin composition including lignin
JPH11320516A (en) * 1998-03-17 1999-11-24 Bridgestone Corp Woody board
KR20010088785A (en) * 1998-07-27 2001-09-28 추후제출 Low Diisocyanate Content Polymeric MDI-containing Binders for Fiberboard Manufacture
JP2000102910A (en) * 1998-09-29 2000-04-11 Matsushita Electric Works Ltd Manufacture of fiber plate
JP2002114896A (en) * 2000-08-01 2002-04-16 Nippon Paper Industries Co Ltd Lignin-based resin composition
JP3960811B2 (en) * 2002-02-04 2007-08-15 機能性木質新素材技術研究組合 Wood paint
JP3936214B2 (en) * 2002-03-25 2007-06-27 株式会社東芝 Resin composition
JP2004107386A (en) * 2002-09-13 2004-04-08 Japan Science & Technology Corp Polyphenolic composition
JP2005041969A (en) * 2003-07-28 2005-02-17 Toyota Motor Corp Antioxidant for resin
JP2005111866A (en) * 2003-10-09 2005-04-28 Hiroshi Nakamura Method for producing decorative plate or decorative material having protrusion/recess pattern and decorative plate or decorative material
JP4339135B2 (en) * 2004-01-15 2009-10-07 Ykk株式会社 Injection casting equipment for forming amorphous alloys
JP2005279959A (en) * 2004-03-26 2005-10-13 Matsushita Electric Works Ltd Surface reinforced woody building material
JP4457195B2 (en) * 2004-06-24 2010-04-28 名古屋市 Method for producing cellulosic fiberboard
JP4561242B2 (en) * 2004-08-27 2010-10-13 株式会社明電舎 Insulating polymer material composition
JP2006150819A (en) * 2004-11-30 2006-06-15 Nichimen Kagaku Kogyo Kk Bamboo fiber reinforced plastic and its manufacturing process
JP3960996B2 (en) * 2005-01-17 2007-08-15 機能性木質新素材技術研究組合 Crude lignophenol derivative paint
JP2007169491A (en) * 2005-12-22 2007-07-05 Mitsubishi Chemicals Corp Method for producing phenol-based resin adhesive
JP2008006373A (en) * 2006-06-29 2008-01-17 Kinousei Mokushitsu Shinsozai Gijutsu Kenkyu Kumiai Coating method of japanese lacquer, and resin composition
JP5045030B2 (en) * 2006-08-23 2012-10-10 富士ゼロックス株式会社 RESIN COMPOSITION, RESIN MOLDED BODY AND CASE, AND METHOD FOR MANUFACTURING AND RECYCLING METHOD OF RESIN MOLDED BODY
JP5315606B2 (en) * 2006-12-01 2013-10-16 株式会社明電舎 Insulating polymer material composition
JP4998018B2 (en) * 2007-03-06 2012-08-15 トヨタ車体株式会社 Manufacturing method of fiber molded body
JP2008247963A (en) * 2007-03-29 2008-10-16 Mitsubishi Motors Corp Lignocellulose material molding and its molding method
JP2009057433A (en) * 2007-08-30 2009-03-19 Toshiba Corp Resin composition and method for producing the same
JP2009263549A (en) * 2008-04-28 2009-11-12 Hitachi Ltd Epoxy resin composition of vegetable origin, and various instruments using the same
JP5396747B2 (en) * 2008-06-02 2014-01-22 住友ベークライト株式会社 Prepreg and substrate using the same
JP2009292884A (en) * 2008-06-03 2009-12-17 Hitachi Ltd Lignophenol-based epoxy resin composition
JP2010254952A (en) * 2009-03-31 2010-11-11 Hishie Kagaku Kk Resin composition for foaming and lignin-containing polymer foam

Also Published As

Publication number Publication date
JP5652646B2 (en) 2015-01-14
JP2011218775A (en) 2011-11-04
JP2011218777A (en) 2011-11-04
JP2011219723A (en) 2011-11-04
JP5741904B2 (en) 2015-07-01
JP2011219718A (en) 2011-11-04
JP2011219728A (en) 2011-11-04
JP2011219725A (en) 2011-11-04
JP5582346B2 (en) 2014-09-03
JP2011219715A (en) 2011-11-04
JP2011219722A (en) 2011-11-04
JP2011219734A (en) 2011-11-04
JP5618136B2 (en) 2014-11-05
JP5861856B2 (en) 2016-02-16
JP2011219717A (en) 2011-11-04
JP5720924B2 (en) 2015-05-20
JP2011219716A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP5641302B2 (en) Antibacterial resin composition
Mariana et al. A current advancement on the role of lignin as sustainable reinforcement material in biopolymeric blends
Huang et al. Characterization of kraft lignin fractions obtained by sequential ultrafiltration and their potential application as a biobased component in blends with polyethylene
Yang et al. Enhancing the radical scavenging activity and UV resistance of lignin nanoparticles via surface mannich amination toward a biobased antioxidant
Doherty et al. Value-adding to cellulosic ethanol: Lignin polymers
US20120302699A1 (en) Resin composition, molded body and composite molded body
Zhou et al. Technical lignin valorization in biodegradable polyester-based plastics (BPPs)
Sadeghifar et al. Macroscopic behavior of kraft lignin fractions: melt stability considerations for lignin–polyethylene blends
Borrega et al. Morphological and wettability properties of thin coating films produced from technical lignins
Ruwoldt et al. Functional surfaces, films, and coatings with lignin–a critical review
WO2015046588A1 (en) Resin composition, molded body, and production method
Fazeli et al. Lignin beyond the status quo: recent and emerging composite applications
Sogut et al. Utilization of chestnut shell lignin in alginate films
Lora Lignin: A platform for renewable aromatic polymeric materials
JP5618153B2 (en) Resin composition and molded body
WO2016027537A1 (en) Resin composition and molded object
Missio et al. Exploring tannin extracts: Introduction to new bio-based materials
JP2016069513A (en) Rubber composition and molded body
JP2014024933A (en) Self-curable resin using lignin
JP2014125595A (en) Resin composition, and molded product thereof
JP2014065779A (en) Thermosetting resin composition using lignin
Li Synthesis and characterization of copolymers from lignin
Han et al. Lignin Reinforced Eco-Friendly and Functional Materials with Tailored Interfacial Barrier Performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141015

LAPS Cancellation because of no payment of annual fees