[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3409092B2 - Thermosetting chemically modified wood material composition - Google Patents

Thermosetting chemically modified wood material composition

Info

Publication number
JP3409092B2
JP3409092B2 JP32582293A JP32582293A JP3409092B2 JP 3409092 B2 JP3409092 B2 JP 3409092B2 JP 32582293 A JP32582293 A JP 32582293A JP 32582293 A JP32582293 A JP 32582293A JP 3409092 B2 JP3409092 B2 JP 3409092B2
Authority
JP
Japan
Prior art keywords
wood material
chemically modified
modified wood
thermosetting
thf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32582293A
Other languages
Japanese (ja)
Other versions
JPH07148712A (en
Inventor
重利 武智
寛 松本
實 上田
▲ひで▼明 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okura Kogyo KK
Original Assignee
Okura Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okura Kogyo KK filed Critical Okura Kogyo KK
Priority to JP32582293A priority Critical patent/JP3409092B2/en
Publication of JPH07148712A publication Critical patent/JPH07148712A/en
Application granted granted Critical
Publication of JP3409092B2 publication Critical patent/JP3409092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加熱成形性に優れた熱
硬化性を有する化学修飾木質材組成物に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemically modified wood material composition having excellent thermoformability and excellent heat moldability.

【0002】[0002]

【従来の技術】木材を代表とする木質材は、自然界に最
も大量に存在する有機系天然資源であり、また優れた機
械的性質、加工性等の特徴を有していることから各種用
途に多量に使用されている。しかしながら、小径木や間
伐材、あるいは木材工場から排出される鋸屑、オガクズ
等は、一部パーティクルボード、木質繊維板の製造には
利用されているものの、大部分が焼却等の方法で廃棄さ
れてきた。
2. Description of the Related Art Wood materials represented by wood are organic natural resources that are most abundant in nature and have excellent mechanical properties and processability. Used in large quantities. However, although small-diameter trees, thinned wood, sawdust, sawdust, etc. discharged from wood factories are used in the production of particle boards and wood fiber boards, most of them have been discarded by methods such as incineration. It was

【0003】これらの木質材の有効利用の方法として、
木質材を薬剤中で溶液化して接着剤や発泡体として利用
する試みや、木質材中の成分を有効利用する方法につい
ての検討、あるいは木質材を化学修飾して熱可塑性を付
与し、これを各種成形材料として利用すること等が活発
に検討されている。
As a method of effectively utilizing these wood materials,
Attempt to use wood as a solution in a chemical and use it as an adhesive or foam, study how to effectively use the components in wood, or chemically modify wood to impart thermoplasticity to it. Utilization as various molding materials is being actively studied.

【0004】木質材に熱可塑性を付与する化学修飾の方
法としては、ハロゲン化アリル、塩化ベンジル等を反応
させて木質材をアリル化あるいはベンジル化する方法、
高級脂肪酸又はその無水物を反応させて木質材をアシル
化する方法、エポキシ化合物を反応させて木質材をエー
テル化する方法、あるいはモノエポキシ化合物と多塩基
酸無水物を用いて木質材をオリゴエステル化する方法等
の各種方法が提案されており、これらの方法で得られた
化学修飾木質材が熱圧成形法等によって容易に成形でき
ることが報告されている。しかしながら、単に熱可塑性
を付与した化学修飾木質材を成形しただけでは機械的、
物理的性質等の点で実用上、満足しうるものではない。
As a method of chemically modifying the wood material to impart thermoplasticity, a method of allylating or benzylating the wood material by reacting allyl halide, benzyl chloride or the like,
A method of reacting higher fatty acid or its anhydride to acylate wood, a method of reacting an epoxy compound to etherify wood, or an oligoester of wood using a monoepoxy compound and a polybasic acid anhydride Various methods such as a method for converting into a chemical have been proposed, and it has been reported that the chemically modified wood material obtained by these methods can be easily molded by a thermocompression molding method or the like. However, simply molding a chemically modified wood material with thermoplasticity is mechanical,
It is not practically satisfactory in terms of physical properties and the like.

【0005】これらを解決するものとして、上記方法に
おいて分子中の重合性二重結合を有する化学物質を用い
ることにより、木質材中に重合性二重結合を導入するこ
とができるので熱圧成形時に二重結合の重合と化学修飾
木質材の可塑化が同時に起こって機械的、物理的性質の
優れた成形物が得られることが知られている。しかしな
がら、この場合はジクミルパーオキサイドのようなラジ
カルを発生する過酸化物等を混合する必要があり、しか
も木質材中のリグニンに起因するフェノール誘導体の重
合阻害効果のためか過酸化物を通常の配合量用いたので
は硬化しにくいという問題があった。
In order to solve these problems, by using a chemical substance having a polymerizable double bond in the molecule in the above method, it is possible to introduce a polymerizable double bond into the wood material, so that it is possible to carry out thermocompression molding. It is known that polymerization of double bonds and plasticization of chemically modified wood material occur at the same time to obtain a molded article having excellent mechanical and physical properties. However, in this case, it is necessary to mix a peroxide generating a radical such as dicumyl peroxide, and moreover, because of the inhibitory effect on the polymerization of the phenol derivative due to lignin in the wood, peroxide is usually used. However, there is a problem that it is difficult to cure when the compounding amount is used.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記の問題
点を解決し、過酸化物を使用することなく、高い木質材
含量を有しながら、しかも加熱成形性と熱硬化性に優れ
た化学修飾木質材組成物を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems and has a high wood content without the use of peroxides and is excellent in heat moldability and thermosetting property. An object is to provide a chemically modified wood material composition.

【0007】[0007]

【課題を解決するための手段】本発明によれば、化学修
飾木質材と硬化剤からなる組成物において、該化学修飾
木質材が紫外線領域の220nm〜300nmに極大吸
収を有する木質材由来のテトラヒドロフラン(THF)
可溶成分を含有したものであり、該硬化剤が加熱により
ホルマリンを発生するものであることを特徴とする熱硬
化性化学修飾木質材組成物が提供され、また、前記化学
修飾木質材が、爆砕した木質材を用いたものであること
を特徴とする前記熱硬化性化学修飾木質材組成物が提供
され、また、前記化学修飾木質材が、pKaが3以下の
無機酸又はpKaが1以下の有機酸存在下に、木質材に
モノエポキシ化合物又はモノエポキシ化合物と多塩基酸
無水物とを反応させたものであることを特徴とする前記
熱硬化性化学修飾木質材組成物が提供され、更に、前記
硬化剤が、ヘキサミン又はパラホルムアルデヒドである
ことを特徴とする前記熱硬化性化学修飾木質材組成物が
提供され、更にまた、前記熱硬化性化学修飾木質材に、
更に、フェノール、メラミン、尿素又はそれらの誘導体
であって、前記硬化剤と付加縮合反応しうる化合物を添
加したことを特徴とする熱硬化性化学修飾木質材組成物
が提供される。
According to the present invention, in a composition comprising a chemically modified wood material and a curing agent, the wood material-derived tetrahydrofuran having the maximum absorption in the ultraviolet region of 220 nm to 300 nm is used. (THF)
A thermosetting chemically modified wood material composition is provided, which contains a soluble component, wherein the curing agent generates formalin by heating, and the chemically modified wood material, There is provided the thermosetting chemically modified wood material composition, characterized in that an exploded wood material is used, and the chemically modified wood material has an inorganic acid having a pKa of 3 or less or a pKa of 1 or less. In the presence of the organic acid, the thermosetting chemically modified wood material composition, characterized in that the wood material is a monoepoxy compound or a monoepoxy compound and a polybasic acid anhydride are reacted, Further, the curing agent is provided with the thermosetting chemically modified wood material composition, wherein the composition is hexamine or paraformaldehyde, and further, to the thermosetting chemically modified wood material,
Further, there is provided a thermosetting chemically modified wood material composition, which comprises a compound which is phenol, melamine, urea or a derivative thereof and which can undergo an addition condensation reaction with the curing agent.

【0008】すなわち、本発明者等は、紫外線領域の2
20nm〜300nmに極大吸収を有する木質材由来の
THF可溶成分を含有する化学修飾木質材と加熱により
ホルマリンを発生する硬化剤からなる組成物は、加熱成
形時に過酸化物等を使用しなくても容易に熱硬化し、加
熱成形性に優れていることを見出し、本発明を完成する
に至ったものである。
[0008] That is, the inventors of the present invention
A composition comprising a chemically modified wood material containing a THF-soluble component derived from wood material having a maximum absorption in 20 nm to 300 nm and a curing agent that generates formalin by heating does not use a peroxide or the like during heat molding. It was found that the compound can be easily heat-cured and has excellent heat moldability, and has completed the present invention.

【0009】以下に、本発明を具体的に説明する。本発
明で云う木質材には、木粉、木材繊維、木材チップや、
パーティクルボード、ファイバーボード等の製造工程中
に排出されるサンダー粉等の木材小片だけでなく、麦わ
ら、稲わら、モミガラ、バガス等の植物繊維等のリグノ
セルロース材料も含まれる。このような木質材はそのま
ま化学修飾木質材の原料として使用することも可能であ
るが、化学修飾木質材中の紫外線領域の220nm〜3
00nmに極大吸収を有する木質材由来のTHF可溶成
分の量が多ければ多いほど加熱成形性と熱硬化性が向上
するので、該可溶成分含量を多くするために、爆砕処理
等の前処理を施してから使用するのが特に好ましい。こ
の爆砕処理によって木質材中のリグニンが分解するので
THF可溶成分は増大する。
The present invention will be described in detail below. The wood material referred to in the present invention includes wood powder, wood fiber, wood chips, and
Not only wood particles such as sander powder discharged during the manufacturing process of particleboard, fiberboard and the like, but also lignocellulosic materials such as plant fibers such as straw, rice straw, chaff, bagasse and the like are included. Such a wood material can be used as it is as a raw material for the chemically modified wood material, but 220 nm to 3 in the ultraviolet region of the chemically modified wood material is used.
The larger the amount of the wood-soluble THF-soluble component having the maximum absorption at 00 nm, the better the heat moldability and thermosetting property. Therefore, in order to increase the content of the soluble component, pretreatment such as blasting treatment is performed. It is particularly preferable to use after applying. By this blasting treatment, lignin in the wood material is decomposed and the THF-soluble component increases.

【0010】化学修飾木質材の製造方法については、例
えば、無水酢酸、あるいは無水トリフルオロ酢酸とラウ
リン酸によるエステル化処理、多塩基酸無水物とモノエ
ポキシ化合物とによるオリゴエステル化処理、アクリロ
ニトリルによるシアノエチル化処理、モノエポキシ化合
物によるエーテル化処理等の公知の方法が特に制限なく
適用できる。木質材由来のTHF可溶成分を増加させる
方法としては反応温度を高くすること、反応時間を長く
すること、木質材に付加させる化学物質の量を多くする
等の方法があるが、pKaが3以下の無機酸、又はpK
aが1以下の有機酸存在下に木質材を化学修飾した場
合、木質材中のリグニンの分解が起こりやすく得られた
化学修飾木質材の木質材由来のTHF可溶成分が増大す
る傾向があるので好ましい。特に、上記酸性物質の存在
下にモノエポキシ化合物、又はモノエポキシ化合物と多
塩基酸無水物とを反応させた化学修飾木質材は熱流動
性、加熱成形性に優れているので好ましい。
The method for producing the chemically modified wood material includes, for example, esterification treatment with acetic anhydride or trifluoroacetic anhydride and lauric acid, oligoesterification treatment with polybasic acid anhydride and monoepoxy compound, cyanoethyl with acrylonitrile. Known methods such as chemical treatment and etherification treatment with a monoepoxy compound can be applied without particular limitation. As a method for increasing the THF soluble component derived from wood, there are methods such as increasing the reaction temperature, lengthening the reaction time, and increasing the amount of chemical substances added to the wood, but the pKa is 3 The following inorganic acids, or pK
When a wood material is chemically modified in the presence of an organic acid having a of 1 or less, decomposition of lignin in the wood material is likely to occur, and thus the THF-soluble component derived from the wood material of the chemically modified wood material obtained tends to increase. Therefore, it is preferable. Particularly, a chemically modified wood material obtained by reacting a monoepoxy compound or a monoepoxy compound with a polybasic acid anhydride in the presence of the above-mentioned acidic substance is preferable because it has excellent heat fluidity and heat moldability.

【0011】ここで、化学修飾処理に使用するモノエポ
キシ化合物としては、アリルグリシジルエーテル、ブチ
ルグリシジルエーテル等が、多塩基酸無水物としては、
無水コハク酸、無水マレイン酸等が挙げられ、またPk
a3以下の無機酸としてリン酸等が、PKa1以下の有
機酸としては、トリクロロ酢酸等が使用できる。
Here, as the monoepoxy compound used for the chemical modification treatment, allyl glycidyl ether, butyl glycidyl ether, etc., and as the polybasic acid anhydride,
Examples thereof include succinic anhydride, maleic anhydride, and Pk.
Phosphoric acid or the like can be used as the inorganic acid having a3 or less, and trichloroacetic acid or the like can be used as the organic acid having PKa1 or less.

【0012】得られた化学修飾木質材中の紫外線領域の
220nm〜300nmに極大吸収を有する木質材由来
のTHF可溶成分とは、大部分が木質材中で三次元構造
をするリグニンが分解して低分子量化したフェノール誘
導体であると考えられ、通常有機溶媒に可溶性であり、
熱流動性を有しているものであるが、本発明においては
紫外線吸収スペクトル測定上の理由からTHF可溶成分
の量として評価したものである。従って、上記THF可
溶成分の量が多くなればなるほど化学修飾木質材の熱流
動性、熱硬化性は向上する。この木質材由来のTHF可
溶成分の含有量は、化学修飾木質材をTHFに浸漬し
て、得られたTHF溶液を紫外線吸収スペクトル測定装
置で測定して、化学修飾木質材1g中に含まれる可溶成
分をTHF1000mlに溶かした溶液の光学密度に換
算することによって評価できる。該光学密度log10
0/Iは下記式(数1)に示したLambert−Be
erの法則より求められる。本発明において、紫外線領
域の220nm〜300nmに極大吸収を有する木質材
由来のTHF可溶成分を含有した化学修飾木質材とは、
極大吸収を示す波長での光学密度が1.0以上の化学修
飾木質材を云う。
The THF-soluble component derived from wood having a maximum absorption in the UV region of 220 nm to 300 nm in the obtained chemically modified wood is mostly lignin which has a three-dimensional structure in the wood and is decomposed. It is considered to be a low molecular weight phenol derivative, which is usually soluble in organic solvents,
Although it has thermal fluidity, it is evaluated as the amount of the THF-soluble component in the present invention for the reason of measuring the ultraviolet absorption spectrum. Therefore, as the amount of the THF-soluble component increases, the heat fluidity and thermosetting property of the chemically modified wood material improve. The content of the THF soluble component derived from the wood material is contained in 1 g of the chemically modified wood material by immersing the chemically modified wood material in THF and measuring the resulting THF solution with an ultraviolet absorption spectrum measuring device. It can be evaluated by converting the soluble component into an optical density of a solution obtained by dissolving 1000 ml of THF. The optical density log 10 I
0 / I is the Lambert-Be expressed by the following formula (Equation 1).
It is obtained from er's law. In the present invention, a chemically modified wood material containing a THF-soluble component derived from wood material having a maximum absorption in the ultraviolet region of 220 nm to 300 nm is
It refers to a chemically modified wood material having an optical density of 1.0 or more at a wavelength exhibiting maximum absorption.

【0013】[0013]

【数1】log100/I=εcl ε:試料の吸光係数 c:試料の濃度 l:セルの厚さ(cm)## EQU1 ## log 10 I 0 / I = εcl ε: Absorption coefficient of sample c: Concentration of sample l: Cell thickness (cm)

【0014】なお、化学修飾木質材中の木質材率は化学
修飾処理に用いた試薬や方法によっても異なるが、概ね
30〜85重量%の範囲にするのが好ましく、特に30
〜70重量%の範囲にするのが好ましい。木質材率が8
5重量%を超えると化学修飾木質材の熱流動性が乏しく
(熱流動性の一つの指標であるメルトインデックス(M
I)の測定が不可能である。)加熱成形が困難となるの
で好ましくない。また、木質材率が30重量%未満の場
合は熱流動性に優れるものの、木質材率が低くなりすぎ
本発明の目的を達成しないばかりでなく経済的にも好ま
しくない。
The percentage of wood material in the chemically modified wood material varies depending on the reagent and method used for the chemical modification treatment, but it is preferably in the range of approximately 30 to 85% by weight, particularly 30.
It is preferably in the range of ˜70% by weight. Wood material ratio is 8
If it exceeds 5% by weight, the heat flowability of the chemically modified wood material is poor (the melt index (M
Measurement of I) is impossible. ) It is not preferable because heat molding becomes difficult. Further, when the woody material ratio is less than 30% by weight, the heat fluidity is excellent, but the woody material ratio is too low to achieve the object of the present invention and is economically unfavorable.

【0015】本発明の熱硬化性化学修飾木質材組成物中
のもう一方の成分である加熱によりホルマリンを発生す
る硬化剤としては、従来、フェノール樹脂、メラミン樹
脂、尿素樹脂等の硬化剤として知られているヘキサミ
ン、トリオキサン、パラホルムアルデヒド等が挙げら
れ、ヘキサミン、パラホルムアルデヒドが取扱いやす
く、硬化性能も良好であるので特に好ましい。これらの
配合量は、上記化学修飾木質材100重量部に対し、3
〜40重量部が好ましい。配合量がこれより少ない場合
は得られた組成物の熱硬化性が悪く、逆に多い場合は熱
硬化性に優れるものの、未反応の硬化剤が硬化物中に多
く残るので好ましくない。
The other component in the thermosetting chemically modified wood material composition of the present invention, which is a curing agent for generating formalin upon heating, is conventionally known as a curing agent for phenol resin, melamine resin, urea resin and the like. Known hexamine, trioxane, paraformaldehyde and the like are mentioned, and hexamine and paraformaldehyde are particularly preferable because they are easy to handle and have good curing performance. The blending amount of these is 3 with respect to 100 parts by weight of the above chemically modified wood material.
-40 parts by weight is preferred. If the blending amount is less than this, the thermosetting property of the obtained composition is poor, and conversely if the blending amount is large, the thermosetting property is excellent, but a large amount of unreacted curing agent remains in the cured product, which is not preferable.

【0016】更に、本発明の熱硬化性化学修飾木質材組
成物に、更にフェノール、メラミン、尿素又はそれらの
誘導体(例えば、レゾルシノールが挙げられる。)であ
って前記硬化剤と付加縮合反応しうる化合物を添加して
熱硬化性を向上させることができる。これらの添加量
は、前記化学修飾木質材100重量部に対し、3〜10
0重量部が好ましく、これより少ない場合は添加効果は
あまり期待できず、逆に多い場合は組成物中の木質材率
が低くなり、本発明の目的を達成しないので好ましくな
い。
Further, the thermosetting chemically modified wood material composition of the present invention may be further subjected to addition condensation reaction with phenol, melamine, urea or a derivative thereof (for example, resorcinol), with the curing agent. A compound can be added to improve the thermosetting property. The addition amount of these is 3 to 10 relative to 100 parts by weight of the chemically modified wood material.
0 parts by weight is preferable, and if it is less than this range, the effect of addition cannot be expected so much, and conversely if it is more than that, the rate of wood material in the composition becomes low, and the object of the present invention is not achieved.

【0017】また、必要に応じてそのほかにステアリン
酸亜鉛等の内部離型剤や各種熱硬化性樹脂、およびガラ
ス繊維、アクリル繊維、アラミド繊維、炭素繊維等の繊
維類、難燃剤、着色剤等を添加することができる。
In addition, internal release agents such as zinc stearate and various thermosetting resins, and fibers such as glass fibers, acrylic fibers, aramid fibers and carbon fibers, flame retardants, colorants and the like, if necessary. Can be added.

【0018】このような、化学修飾木質材組成物が加熱
することにより硬化するのは、化学修飾木質材中の紫外
線領域の220nm〜300nmに極大吸収を有する木
質材由来のTHF可溶成分(大部分がフェノール誘導体
であると推測される。)が、これらの硬化剤と反応して
架橋するためであると考えられる。
Such a chemically modified wood material composition is hardened by heating, because the THF soluble component derived from wood material (maximum absorption in the UV region of 220 nm to 300 nm in the chemically modified wood material (large It is assumed that the portion is a phenol derivative.) And reacts with these curing agents to crosslink.

【0019】本発明の熱硬化性化学修飾木質材組成物は
上述した、化学修飾木質材と硬化剤、あるいは更にフェ
ノール、メラミン、尿素又はそれらの誘導体であって前
記硬化剤と付加縮合反応しうる化合物をブレンダー、ニ
ーダー、ミキシングロール、バンバリーミキサー等の混
練機を用いて均一に混練することにより調製することが
できる。そして、得られた本発明の熱硬化性化学修飾木
質材組成物は、熱流動性、および熱硬化性が良好である
ため、一般のプレス成形は勿論、押出し成形、射出成形
等により通常の熱硬化性樹脂を成形加工する加工条件で
成形加工することができ、多くの分野において、工業用
部品材料、建築材料等として好適なものである。
The thermosetting chemically modified wood material composition of the present invention is the above-mentioned chemically modified wood material and a curing agent, or further phenol, melamine, urea or a derivative thereof, which can undergo an addition condensation reaction with the curing agent. It can be prepared by uniformly kneading the compound using a kneader such as a blender, a kneader, a mixing roll and a Banbury mixer. The obtained thermosetting chemically modified wood material composition of the present invention has good heat fluidity and thermosetting property, and therefore, as well as general press molding, extrusion molding, ordinary molding by injection molding, etc. It can be molded under the processing conditions for molding a curable resin, and is suitable as an industrial part material, building material, etc. in many fields.

【0020】[0020]

【実施例】以下、本発明を実施例によって更に具体的に
説明するが、本発明はこれら実施例に制限されるもので
はない。なお、木質材としては、木粉(商品名:LIG
NOCEL S150TR;J.Rettenmari
er & Soehne 社製;繊維長:30〜60
μ)、および爆砕木粉(ラワン材を30kg/cm2
飽和水蒸気中で2分間蒸煮後、急激に解圧)を用いた。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples. In addition, wood powder (trade name: LIG
NOCEL S150TR; Rettenmari
er &Soehne; fiber length: 30-60
μ) and exploded wood powder (lauan wood was steamed in saturated steam of 30 kg / cm 2 for 2 minutes and then rapidly depressurized).

【0021】評価は以下の方法によって行なった。 〈光学密度〉光学密度は化学修飾木質材中の木質材由来
のTHF可溶成分の量を示している。測定は1gの化学
修飾木質材をTHF5mlに浸漬後、得られたTHF溶
液を1000倍に希釈し、紫外線吸収スペクトル測定装
置で測定した後、前記式(数1)に基づいて計算して求
めた。 〈THF可溶部〉化学修飾木質材のうちのTHFに可溶
な成分の割合を表わし、化学修飾によってTHFに可溶
となった木質材成分、および木質材成分に結合していな
い副反応生成物を含有している。 〈加熱成形性〉化学修飾木質材の加熱成形性は熱流動性
を表わすMIで評価した。MIは、JIS K7210
に従い、150℃、又は190℃、試料荷重10kgで
測定し、10分間に流出した値で表わした。 〈ショアー硬度〉熱硬化性化学修飾木質材組成物を、1
50℃で30分間熱圧成形して得られた成形物のショア
ー硬度を測定することにより熱硬化性を評価した。 〈曲げ強度〉130℃で30分間加熱硬化した成形品を
金型から取り出し、更に150℃で24時間後硬化して
得られた成形物の曲げ強度をASTM K790−81
に従って測定した。
The evaluation was performed by the following method. <Optical Density> The optical density indicates the amount of the THF-soluble component derived from the wood material in the chemically modified wood material. The measurement was performed by immersing 1 g of the chemically modified wood material in 5 ml of THF, diluting the obtained THF solution 1000 times, measuring with an ultraviolet absorption spectrum measuring device, and then calculating based on the above formula (Equation 1). . <THF-soluble part> Represents the proportion of the THF-soluble component in the chemically modified wood material. The wood material component became soluble in THF by chemical modification, and side reaction products not bound to the wood material component. Contains things. <Heat Formability> The heat formability of the chemically modified wood material was evaluated by MI, which represents thermal fluidity. MI is JIS K7210
The sample was measured at 150 ° C. or 190 ° C. under a sample load of 10 kg, and was expressed as a value flowing out in 10 minutes. <Shore hardness> Thermosetting chemically modified wood material composition
The thermosetting property was evaluated by measuring the Shore hardness of the molded product obtained by thermocompression molding at 50 ° C. for 30 minutes. <Bending Strength> The molded product obtained by heat-curing at 130 ° C. for 30 minutes is taken out from the mold, and is further cured at 150 ° C. for 24 hours. The bending strength of the molded product is determined according to ASTM K790-81.
Was measured according to.

【0022】製造例1 木粉1000gと、予め反応させたアリルグリシジルエ
ーテル(538g)と85%リン酸水溶液(138g)
との混合物を5lの反応容器に仕込み、150℃で3時
間撹拌下に反応することにより化学修飾木質材Aを得
た。この化学修飾木質材AのTHF可溶部の含量、紫外
線吸収スペクトルの測定結果、及びMIを表1に示し
た。図1に、化学修飾木質材A中のTHF可溶成分のU
Vスペクトルを示す。
Production Example 1 Wood flour 1000 g, pre-reacted allyl glycidyl ether (538 g) and 85% phosphoric acid aqueous solution (138 g)
A chemically modified wood material A was obtained by charging the mixture with and into a 5 l reaction vessel and reacting at 150 ° C. for 3 hours with stirring. Table 1 shows the content of the THF-soluble portion, the measurement result of the ultraviolet absorption spectrum, and MI of this chemically modified wood material A. FIG. 1 shows U of the THF-soluble component in the chemically modified wood material A.
The V spectrum is shown.

【0023】製造例2 木粉18.8gと、予め反応させたアリルグリシジルエ
ーテル(13.07g)と85%リン酸水溶液(3.4
5g)の混合物を500mlの反応容器に仕込み、15
0℃で2時間撹拌下に反応後、無水コハク酸(5.73
g)を加え、150℃で5時間反応することにより化学
修飾木質材Bを得た。この化学修飾木質材BのTHF可
溶部の含量、紫外線吸収スペクトルの測定結果、及びM
Iを表1に示した。図1に、化学修飾木質材B中のTH
F可溶成分のUVスペクトルを示す。
Production Example 2 18.8 g of wood flour, pre-reacted allyl glycidyl ether (13.07 g) and 85% phosphoric acid aqueous solution (3.4
5 g) of the mixture was charged into a 500 ml reaction vessel,
After reacting at 0 ° C for 2 hours with stirring, succinic anhydride (5.73
g) was added and reacted at 150 ° C. for 5 hours to obtain a chemically modified wood material B. The content of the THF soluble portion of this chemically modified wood material B, the measurement result of the ultraviolet absorption spectrum, and M
I is shown in Table 1. Figure 1 shows TH in chemically modified wood material B.
The UV spectrum of F soluble component is shown.

【0024】製造例3 木粉1000gと、予め反応させたアリルグリシジルエ
ーテル(428g)と85%リン酸水溶液(92g)と
の混合物を5lの反応容器に仕込み、150℃で3時間
撹拌下に反応することにより化学修飾木質材Cを得た。
この化学修飾木質材CのTHF可溶部の含量、紫外線吸
収スペクトルの測定結果、及びMIを表1に示した。
Production Example 3 A mixture of 1000 g of wood flour, pre-reacted allyl glycidyl ether (428 g) and 85% phosphoric acid aqueous solution (92 g) was placed in a 5 liter reaction vessel and reacted under stirring at 150 ° C. for 3 hours. By doing so, a chemically modified wood material C was obtained.
Table 1 shows the content of the THF-soluble part, the measurement result of the ultraviolet absorption spectrum, and MI of this chemically modified wood material C.

【0025】製造例4 木粉18.8gと、予め反応させたブチルグリシジルエ
ーテル(12.53g)と85%リン酸水溶液(3.2
5g)の混合物を500mlの反応容器に仕込み、15
0℃で7時間撹拌下に反応することにより化学修飾木質
材Dを得た。この化学修飾木質材DのTHF可溶部の含
量、紫外線吸収スペクトルの測定結果、及びMIを表1
に示した。
Production Example 4 18.8 g of wood flour, pre-reacted butyl glycidyl ether (12.53 g) and 85% phosphoric acid aqueous solution (3.2
5 g) of the mixture was charged into a 500 ml reaction vessel,
A chemically modified wood material D was obtained by reacting at 0 ° C. for 7 hours with stirring. Table 1 shows the content of the THF-soluble part, the measurement result of the ultraviolet absorption spectrum, and MI of this chemically modified wood material D.
It was shown to.

【0026】[0026]

【表1】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 化 学 修 飾 木 質 材 A B C D ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 木質材率(重量%) 60 46 66 55 極大吸収を示す波長(nm) 240 240 240 240 光学密度 3.7 3.3 2.9 2.8 THF可溶部の含量(重量%) 53 83 49 57 MI(10kg、10分間) 72a 170a 0.56a 2000b ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ a)150℃で測定 b)190℃で測定[Table 1]   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━                                   Chemical study Decorative wood materials                                A B C D   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━   Wood material ratio (% by weight) 60 46 66 55   Wavelength showing maximum absorption (nm) 240 240 240 240   Optical density 3.7 3.3 2.9 2.8   Content of THF-soluble part (wt%) 53 83 49 57   MI (10kg, 10 minutes) 72a 170a 0.56a 2000b   ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ a) Measured at 150 ° C b) Measured at 190 ° C

【0027】製造例5 爆砕木粉20g、無水酢酸40g、および酢酸カリウム
5gを500mlセパラブルフラスコに仕込み、150
℃で3時間撹拌後、副生した酢酸を減圧下に除去するこ
とにより化学修飾木質材Eを得た。この化学修飾木質材
Eの木質材率は55重量%、THF可溶部の光学密度は
2.1、THF可溶部の含量は49重量%であった。
Production Example 5 20 g of exploded wood powder, 40 g of acetic anhydride, and 5 g of potassium acetate were placed in a 500 ml separable flask and charged to 150
After stirring at ℃ for 3 hours, by-product acetic acid was removed under reduced pressure to obtain a chemically modified wood material E. The chemically modified wood material E had a wood material ratio of 55% by weight, an optical density of the THF-soluble portion was 2.1, and a content of the THF-soluble portion was 49% by weight.

【0028】製造例6 飽和チオシアン酸ナトリウム水溶液に溶解した4%水酸
化ナトリウム水溶液30mlに爆砕木粉20gを30分
間浸漬後、アクリロニトリル30gを加え、40℃で3
時間反応させた。生成物を酢酸水溶液で中和後、濾過す
ることにより、シアノエチル化木粉を得た。これを2.
1mmol/lの塩素水50mlに一夜浸漬して塩素処
理を行ない、濾過、乾燥することにより木質材率50重
量%の化学修飾木質材Fを得た。この化学修飾木質材F
のTHF可溶部の光学密度は1.3、THF可溶部の含
量は13重量%であった。
Production Example 6 20 g of exploded wood powder was immersed in 30 ml of a 4% sodium hydroxide aqueous solution dissolved in a saturated sodium thiocyanate aqueous solution for 30 minutes, 30 g of acrylonitrile was added, and the mixture was mixed at 40 ° C. for 3 days.
Reacted for hours. The product was neutralized with an aqueous acetic acid solution and then filtered to obtain cyanoethylated wood flour. This is 2.
It was immersed in 50 ml of 1 mmol / l chlorine water overnight for chlorine treatment, filtered and dried to obtain a chemically modified wood material F having a wood material ratio of 50% by weight. This chemically modified wood material F
The THF-soluble part had an optical density of 1.3, and the THF-soluble part content was 13% by weight.

【0029】製造例7 乾燥した爆砕木粉40gに無水マレイン酸15.92g
を加え、120℃で2時間反応させた後、アリルグリシ
ジルエーテル24.08gを加え、さらに5時間反応さ
せることにより化学修飾木質材Gを得た。この化学修飾
木質材Gの木質材率は50重量%、THF可溶部の光学
密度は2.9、THF可溶部の含量は36重量%であっ
た。
Production Example 7 15.92 g of maleic anhydride was added to 40 g of dried exploded wood powder.
Was added and reacted at 120 ° C. for 2 hours, then 24.08 g of allyl glycidyl ether was added and further reacted for 5 hours to obtain a chemically modified wood material G. The woody material ratio of this chemically modified woody material G was 50% by weight, the optical density of the THF-soluble part was 2.9, and the content of the THF-soluble part was 36% by weight.

【0030】製造例8 500mlのセパラブルフラスコに、木粉18.8gと
アリルグリシジルエーテル13.07gを入れ150℃
で2時間反応後、無水コハク酸5.73gを加え、さら
に5時間反応することにより化学修飾木質材Hを得た。
この化学修飾木質材Hの木質材率は50重量%、THF
可溶部の光学密度は0.29、THF可溶部の含量は3
4重量%であった。この化学修飾木質材Hの光学密度が
低いのは、木質材と結合していないアリルグリシジルエ
ーテルと無水コハク酸が反応した副生物がTHF可溶部
の大部分を占めるためであると考えられる。図1に、化
学修飾木質材H中のTHF可溶成分のUVスペクトルを
示す。
Production Example 8 In a 500 ml separable flask were placed 18.8 g of wood flour and 13.07 g of allyl glycidyl ether at 150 ° C.
After the reaction for 2 hours at 5.70 g, succinic anhydride (5.73 g) was added, and the reaction was continued for 5 hours to obtain a chemically modified wood material H.
This chemically modified wood material H has a wood material ratio of 50% by weight, THF
The optical density of the soluble portion is 0.29, and the content of the THF soluble portion is 3
It was 4% by weight. It is considered that the reason why the chemically modified wood material H has a low optical density is that the by-product obtained by reacting allyl glycidyl ether not bound to wood material and succinic anhydride occupies most of the THF-soluble portion. FIG. 1 shows a UV spectrum of a THF-soluble component in the chemically modified wood material H.

【0031】製造例9 木粉20g、無水酢酸40g、および酢酸カリウム5g
を500mlのセパラブルフラスコに仕込み、150℃
で3時間反応後、副生した酢酸を減圧下に除去すること
により化学修飾木質材Iを得た。この化学修飾木質材I
の木質材率は55重量%、THF可溶部の光学密度は
0.36、THF可溶部の含量は25重量%であった。
Production Example 9 20 g of wood flour, 40 g of acetic anhydride, and 5 g of potassium acetate
In a 500 ml separable flask at 150 ° C
After the reaction was carried out for 3 hours, the by-product acetic acid was removed under reduced pressure to obtain a chemically modified wood material I. This chemically modified wood material I
The woody material ratio was 55% by weight, the optical density of the THF-soluble portion was 0.36, and the content of the THF-soluble portion was 25% by weight.

【0032】[0032]

【表2】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 化 学 修 飾 木 質 材 E F G H* ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 木質材率(重量%) 55 50 50 50 極大吸収を示す波長(nm) 240 240 239 239 光学密度 2.1 1.3 2.9 0.29 THF可溶部の含量(重量%) 49 13 36 34 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ (* 化学修飾木質材Hは、紫外線領域220nm〜3
00nmに極大吸収を有する木質材由来のTHF可溶成
分を実質的に含有しないものである。)
[Table 2] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Chemical science Decorative wood Wood material E F G H * ━━━━━━ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Wood material ratio (% by weight) 55 50 50 50 Wavelength at which maximum absorption (nm) 240 240 239 239 Optical density 2.1 1.3 2.9 0.29 Content of THF soluble part (wt%) 49 13 36 34 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ (* Chemical modification The wood material H has an ultraviolet range of 220 nm to 3
It does not substantially contain a wood-derived THF-soluble component having a maximum absorption at 00 nm. )

【0033】実施例1〜3 化学修飾木質材Aに、テストロールを用いて所定量の硬
化剤(ヘキサミン、パラホルムアルデヒド)を混入する
ことにより、熱硬化性化学修飾木質材組成物を調製し
た。この組成物を金型に入れ、150℃で30分間熱圧
プレスして成形物を得た。この成形物は熱圧時に硬化し
ており硬いものであった。ショアー硬度及び曲げ強度を
表3に示す。
Examples 1 to 3 A thermosetting chemically modified wood material composition was prepared by mixing a predetermined amount of a curing agent (hexamine, paraformaldehyde) into the chemically modified wood material A using a test roll. This composition was placed in a mold and hot pressed at 150 ° C. for 30 minutes to obtain a molded product. This molded product was hard when it was hot pressed. Table 3 shows the Shore hardness and the bending strength.

【0034】比較例1 化学修飾木質材Aをそのまま金型に入れ、150℃で3
0分間熱圧プレスして成形物を得たが、硬化剤を使用し
ていないため柔らかいものであって実用的なものではな
かった。ショアー硬度及び曲げ強度を表3に示す。
Comparative Example 1 The chemically modified wood material A was put into a mold as it was, and the mixture was heated at 150 ° C. for 3 hours.
A molded product was obtained by hot pressing for 0 minutes, but it was soft and not practical because no curing agent was used. Table 3 shows the Shore hardness and the bending strength.

【0035】比較例2 化学修飾木質材A100重量部に、テストロールを用い
てジクミルパーオキサイド3重量部を混合した。この組
成物を金型に入れ、150℃で30分間熱圧プレスして
成形物を得たが、化学修飾木質材中に重合性二重結合が
導入されているにもかかわらず硬化がほとんど進行して
いなかった。ショアー硬度及び曲げ強度を表3に示す。
Comparative Example 2 100 parts by weight of chemically modified wood material A was mixed with 3 parts by weight of dicumyl peroxide using a test roll. This composition was placed in a mold and hot pressed at 150 ° C. for 30 minutes to obtain a molded product. Hardening proceeded in spite of the introduction of the polymerizable double bond in the chemically modified wood material. I didn't. Table 3 shows the Shore hardness and the bending strength.

【0036】[0036]

【表3】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 実施例1 実施例2 実施例3 比較例1 比較例2 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 化学修飾木質材A(重量部) 100 100 100 100 100 ヘキサミン (重量部) 10 20ハ゜ラホルムアルテ゛ヒト゛ (重量部) 5 DCPO a) (重量部) 3 木質材率 (重量%) 55 50 58 60 59 ショアー硬度 D30 D30 D25 A10 A10 曲げ強度 (kg/cm2) 89 95 114 − b) − b) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ a)DCPO:ジクミルパーオキサイド b)成形品が極めて軟らかくて金型から取り出せなかっ
た。
[Table 3] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Example 1 Example 2 Example 3 Comparative example 1 Comparative example 2 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Chemically modified wood material A (weight part) 100 100 100 100 100 Hexamine (parts by weight) 10 20 Paraformal aldehyde (parts by weight) 5 DCPO a) (parts by weight) 3 Percentage of wood material (% by weight) 55 50 58 58 60 59 Shore hardness D30 D30 D25 A10 A10 Bending strength (kg / cm) 2 ) 89 95 114-b) -b) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ a) DCPO: The dicumyl peroxide b) molded product was so soft that it could not be taken out of the mold.

【0037】実施例4〜7 化学修飾木質材A、B及びCに、テストロールを用いて
所定量の硬化剤に加えて尿素又はメラミンを混入して熱
硬化性化学修飾木質材組成物を調製した。この組成物を
金型に入れ、150℃で30分間熱圧プレスして成形物
を得た。この成形物は熱圧時に硬化して硬いものであっ
た。ショアー硬度を表4に示す。
Examples 4 to 7 Chemically modified wood materials A, B and C were mixed with urea or melamine in addition to a predetermined amount of a curing agent using a test roll to prepare a thermosetting chemically modified wood material composition. did. This composition was placed in a mold and hot pressed at 150 ° C. for 30 minutes to obtain a molded product. This molded product was hard when it was hot pressed. The Shore hardness is shown in Table 4.

【0038】比較例3 化学修飾木質材H100重量部に、テストロールを用い
てヘキサミン10重量部を混入した。この組成物を金型
に入れ150℃で30分間熱圧プレスしたが、用いた化
学修飾木質材中の紫外線領域における220〜300n
mに極大吸収を有する木質材由来の可溶成分が極めて少
ないため、表4に示すように、硬化せず柔らかいもので
あった。
Comparative Example 3 Hexamine (10 parts by weight) was mixed with 100 parts by weight of the chemically modified wood material H using a test roll. This composition was placed in a mold and hot-pressed at 150 ° C. for 30 minutes, but 220 to 300 n in the ultraviolet region in the chemically modified wood material used.
Since the soluble component derived from the wood material having the maximum absorption in m was extremely small, as shown in Table 4, it was not cured and was soft.

【0039】[0039]

【表4】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 実施例4 実施例5 実施例6 実施例7 比較例3 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 化学修飾木質材A(重量部) 100 100 化学修飾木質材B(重量部) 100 化学修飾木質材C(重量部) 100 化学修飾木質材H(重量部) 100 ヘキサミン (重量部) 20 20 10 10 10 尿素 (重量部) 10 メラミン (重量部) 10 木質材率 (重量%) 47 47 42 60 45 ショアー硬度 D20 D45 A60 D40 未硬化 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 4] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━                           Example 4 Example 5 Example 6 Example 7 Comparative Example 3 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Chemically modified wood material A (weight part) 100 100 Chemically modified wood material B (weight part) 100 Chemically modified wood material C (weight part) 100 Chemically modified wood material H (weight part) 100 Hexamine (parts by weight) 20 20 10 10 10 Urea (parts by weight) 10 Melamine (parts by weight) 10 Wood material ratio (% by weight) 47 47 42 60 45 Shore hardness D20 D45 A60 D40 uncured ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

【0040】実施例8〜11 化学修飾木質材D〜Gに、テストロールを用いて硬化剤
であるヘキサミン10重量部を混入することにより、熱
硬化性化学修飾木質材組成物を調製した。この組成物を
金型に入れ、150℃で30分間熱圧プレスして成形物
を得た。この成形物は熱圧時に硬化して硬いものであっ
た。ショアー硬度を表5に示す。
Examples 8 to 11 Thermosetting chemically modified wood material compositions were prepared by mixing 10 parts by weight of hexamine, which is a curing agent, into the chemically modified wood materials D to G using a test roll. This composition was placed in a mold and hot pressed at 150 ° C. for 30 minutes to obtain a molded product. This molded product was hard when it was hot pressed. The Shore hardness is shown in Table 5.

【0041】[0041]

【表5】 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 実施例8 実施例9 実施例10 実施例11 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 化学修飾木質材D(重量部) 100 化学修飾木質材E(重量部) 100 化学修飾木質材F(重量部) 100 化学修飾木質材G(重量部) 100 ヘキサミン (重量部) 10 10 10 10 木質材率 (重量%) 50 50 45 46 ショアー硬度 D15 D45 A80 D40 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━[Table 5]     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━                                 Example 8 Example 9 Example 10 Example 11     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━       Chemically modified wood material D (weight part) 100       Chemically modified wood material E (weight part) 100       Chemically modified wood material F (part by weight) 100       Chemically modified wood material G (weight part) 100       Hexamine (parts by weight) 10 10 10 10       Wood material ratio (% by weight) 50 50 45 46       Shore hardness D15 D45 A80 D40     ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

【0042】[0042]

【発明の効果】本発明の熱硬化性化学修飾木質材組成物
は、高い木質材含量を有しながらも、加熱成形性および
熱硬化性に優れているため、一般のプレス成形は勿論、
押出し成形、射出成形等により通常の熱硬化性樹脂を成
形加工する加工条件で成形加工することができ、多くの
分野において、工業用部品材料、建築材料等として好適
なものである。
EFFECTS OF THE INVENTION The thermosetting chemically modified wood material composition of the present invention has a high wood material content and is excellent in heat moldability and thermosetting property.
It can be molded by extrusion molding, injection molding or the like under the processing conditions for molding a usual thermosetting resin, and is suitable as an industrial part material, a building material and the like in many fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】化学修飾木質材のTHF溶液の紫外線吸収スペ
クトルである。
FIG. 1 is an ultraviolet absorption spectrum of a THF solution of a chemically modified wood material.

【符号の説明】[Explanation of symbols]

a) 化学修飾木質材AのTHF溶液 b) 化学修飾木質材BのTHF溶液 c) 化学修飾木質材HのTHF溶液 a) THF solution of chemically modified wood material A b) THF solution of chemically modified wood material B c) THF solution of chemically modified wood material H

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松田 ▲ひで▼明 香川県丸亀市中津町1515番地 大倉工業 株式会社内 (56)参考文献 特開 昭60−83806(JP,A) 特開 平4−156302(JP,A) 特開 平5−185405(JP,A) (58)調査した分野(Int.Cl.7,DB名) B27K 5/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Matsuda ▲ Hide ▼ 1515 Nakatsu-cho, Marugame-shi, Kagawa Okura Industry Co., Ltd. (56) Reference JP-A-60-83806 (JP, A) JP-A-4 -156302 (JP, A) JP-A-5-185405 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B27K 5/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 化学修飾木質材と硬化剤からなる組成物
において、該化学修飾木質材が紫外線領域の220nm
〜300nmに極大吸収を有する木質材由来のテトラヒ
ドロフラン可溶成分を含有したものであり、該硬化剤が
加熱によりホルマリンを発生するものであることを特徴
とする熱硬化性化学修飾木質材組成物。
1. A composition comprising a chemically modified wood material and a curing agent, wherein the chemically modified wood material is 220 nm in the ultraviolet region.
A thermosetting chemically modified wood material composition containing a tetrahydrofuran-soluble component derived from wood material having a maximum absorption at ˜300 nm, wherein the curing agent generates formalin by heating.
【請求項2】 前記化学修飾木質材が、爆砕した木質材
を用いたものであることを特徴とする請求項1記載の熱
硬化性化学修飾木質材組成物。
2. The thermosetting chemically modified wood material composition according to claim 1, wherein the chemically modified wood material is an exploded wood material.
【請求項3】 前記化学修飾木質材が、pKaが3以下
の無機酸又はpKaが1以下の有機酸存在下に、木質材
にモノエポキシ化合物又はモノエポキシ化合物と多塩基
酸無水物とを反応させたものであることを特徴とする請
求項1記載の熱硬化性化学修飾木質材組成物。
3. The chemically modified wood material reacts the wood material with a monoepoxy compound or a monoepoxy compound and a polybasic acid anhydride in the presence of an inorganic acid having a pKa of 3 or less or an organic acid having a pKa of 1 or less. The thermosetting chemically modified wood material composition according to claim 1, which is a cured product.
【請求項4】 前記硬化剤が、ヘキサミン又はパラホル
ムアルデヒドであることを特徴とする請求項1記載の熱
硬化性化学修飾木質材組成物。
4. The thermosetting chemically modified wood material composition according to claim 1, wherein the curing agent is hexamine or paraformaldehyde.
【請求項5】 請求項1〜4記載の熱硬化性化学修飾木
質材に、更に、フェノール、メラミン、尿素又はそれら
の誘導体であって、前記硬化剤と付加縮合反応しうる化
合物を添加したことを特徴とする熱硬化性化学修飾木質
材組成物。
5. The thermosetting chemically modified wood material according to any one of claims 1 to 4, further comprising a compound which is phenol, melamine, urea or a derivative thereof and which can undergo an addition condensation reaction with the curing agent. A thermosetting chemically modified wood material composition characterized by:
JP32582293A 1993-11-29 1993-11-29 Thermosetting chemically modified wood material composition Expired - Fee Related JP3409092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32582293A JP3409092B2 (en) 1993-11-29 1993-11-29 Thermosetting chemically modified wood material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32582293A JP3409092B2 (en) 1993-11-29 1993-11-29 Thermosetting chemically modified wood material composition

Publications (2)

Publication Number Publication Date
JPH07148712A JPH07148712A (en) 1995-06-13
JP3409092B2 true JP3409092B2 (en) 2003-05-19

Family

ID=18180991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32582293A Expired - Fee Related JP3409092B2 (en) 1993-11-29 1993-11-29 Thermosetting chemically modified wood material composition

Country Status (1)

Country Link
JP (1) JP3409092B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2404872A1 (en) * 2000-03-31 2002-09-30 Masamitsu Hunaoka Lignocellulosic composition comprising lignophenol derivative and cellulose ingredient
JP2011219715A (en) * 2010-02-10 2011-11-04 Hitachi Chem Co Ltd Resin compound material for molding
KR20120128622A (en) * 2010-02-10 2012-11-27 히다찌 가세이 고오교 가부시끼가이샤 Resin composition, molded body and composite molded body

Also Published As

Publication number Publication date
JPH07148712A (en) 1995-06-13

Similar Documents

Publication Publication Date Title
NL192377C (en) Process for the manufacture of chipboard or fiber boards, as well as liquid concentrate to be used in the manufacture thereof.
US5153241A (en) Polymer composites based cellulose-VI
CN101191042B (en) Method for preparing urea-formaldehyde resin adhesive
CN101191043B (en) Method for preparing urea-formaldehyde resin adhesive
HUE031618T2 (en) Special aminoalkylsilane compounds as binders for composite materials
JP3911614B2 (en) Biomass resin composition, method for producing the same, and molding material comprising the biomass resin composition
EP1660587B1 (en) Structural composites with enhanced moduli of elasticity
US6291558B1 (en) Composition board binding material
CN105330801B (en) In-situ reinforced and toughened urea-formaldehyde resin molding compound and preparation method thereof
JP3409092B2 (en) Thermosetting chemically modified wood material composition
US2501665A (en) Lignin resins and process of making same
JPH0343442A (en) Production of lignocelulose-phenol resin molded product
JPH0158208B2 (en)
US2495282A (en) Thermosetting and thermoset compositions comprising monoolefin/carbon monoxide polymers and process for obtaining same
CA1241900A (en) Composite material based on particles of a plant origin and the method of manufacturing thereof
US2501666A (en) Lignin resins and process of making same
FI113274B (en) Binders for the preparation of lignocellulosic molding pairs
CN107671961B (en) A kind of preparation method of Wood modifier
KR100383251B1 (en) Removal method of free formaldehyde from formaldehyde resin
RU2739985C1 (en) Modifier-curing agent and its use for production of wood boards based on amino-formaldehyde resins of reduced toxicity
RU2696859C1 (en) Aminoplastic resin
Chen Bonding flakeboards of southern species with copolymer resins of forest and agricultural residue extracts
RU2068856C1 (en) Method of wood-shaving plate making
JPH01318031A (en) Production of urea-formaldehyde resin
JP2022133876A (en) Adhesive, wood board using the same, and method for producing adhesive

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees