[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5520115B2 - Light oil composition - Google Patents

Light oil composition Download PDF

Info

Publication number
JP5520115B2
JP5520115B2 JP2010084051A JP2010084051A JP5520115B2 JP 5520115 B2 JP5520115 B2 JP 5520115B2 JP 2010084051 A JP2010084051 A JP 2010084051A JP 2010084051 A JP2010084051 A JP 2010084051A JP 5520115 B2 JP5520115 B2 JP 5520115B2
Authority
JP
Japan
Prior art keywords
content
volume
light oil
oil composition
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010084051A
Other languages
Japanese (ja)
Other versions
JP2011213891A (en
Inventor
幸太郎 松本
英治 田中
智春 加藤
泰博 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2010084051A priority Critical patent/JP5520115B2/en
Publication of JP2011213891A publication Critical patent/JP2011213891A/en
Application granted granted Critical
Publication of JP5520115B2 publication Critical patent/JP5520115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、軽油組成物、特には、排出ガス中の煤、窒素酸化物、未燃焼炭化水素及び一酸化炭素等の環境負荷物質の排出量を低減させることが可能な軽油組成物に関するものである。   The present invention relates to a light oil composition, and more particularly to a light oil composition capable of reducing emissions of environmentally hazardous substances such as soot, nitrogen oxides, unburned hydrocarbons and carbon monoxide in exhaust gas. is there.

乗用車に搭載される小型ディーゼルエンジンの排出ガスは、窒素酸化物及び煤を含むため、環境問題等の観点から、窒素酸化物吸蔵触媒により排出ガス中に含まれる窒素酸化物を一旦吸蔵し、その後、還元雰囲気下で脱離した窒素酸化物により排出ガス中の未燃焼炭化水素や一酸化炭素を酸化し、更に、下流にフィルターを設けて大気中に放出される煤を低減する方法が提案されている。   Since the exhaust gas of a small diesel engine mounted on a passenger car contains nitrogen oxides and soot, from the viewpoint of environmental problems etc., the nitrogen oxides are temporarily stored by the nitrogen oxide storage catalyst, and then A method has been proposed in which unburned hydrocarbons and carbon monoxide in exhaust gas are oxidized by nitrogen oxides desorbed in a reducing atmosphere, and further, a filter is provided downstream to reduce soot released into the atmosphere. ing.

一方で、環境負荷物質の排出量削減については、燃料の面からも検討されており、例えば、310℃以上の高沸点留分が粒子状物質の生成に大きく影響することから、90%留出温度を低下させることにより粒子状物質の生成を抑制した軽油組成物や、軽質化により特に粒子状物質を構成する溶剤可溶分を減少させた軽油組成物が提案されている(非特許文献1及び2)。また、粒子状物質の生成をエンジンの全負荷範囲で大幅に抑制する為にセタン価向上剤を含有し、90%留出温度を低くしたディーゼルエンジン用燃料油組成物(特許文献1)や、90%留出温度及び二環以上の芳香族含有量を低くしたディーゼルエンジン用燃料油組成物(特許文献2)が提案されている。また、排出ガス中の粒子状物質、窒素酸化物、未燃焼炭化水素といった環境汚染物質の排出量を大幅に低減する為に、硫黄分を低くし、蒸留性状と芳香族含有量が特定の条件を満たすディーゼルエンジン用燃料油組成物(特許文献3)が提案されている。   On the other hand, the reduction of emissions of environmentally hazardous substances has also been studied from the aspect of fuel. For example, a high boiling point fraction of 310 ° C or higher greatly affects the generation of particulate matter, so 90% distillate. There have been proposed a light oil composition in which the generation of particulate matter is suppressed by lowering the temperature, and a light oil composition in which the solvent-soluble component constituting the particulate matter is reduced by lightening (Non-Patent Document 1). And 2). In addition, a fuel oil composition for diesel engines (Patent Document 1) containing a cetane number improver in order to significantly suppress the generation of particulate matter in the entire load range of the engine and having a 90% lower distillation temperature, A fuel oil composition for a diesel engine with a 90% distillation temperature and a low aromatic content of two or more rings has been proposed (Patent Document 2). In addition, in order to significantly reduce the emission of environmental pollutants such as particulate matter, nitrogen oxides and unburned hydrocarbons in the exhaust gas, the sulfur content is lowered and the distillation properties and aromatic content are under certain conditions. A diesel engine fuel oil composition (Patent Document 3) that satisfies the above has been proposed.

特開2000−144155号公報JP 2000-144155 A 特開2001−303076号公報JP 2001-303076 A 特開2001−303080号公報JP 2001-303080 A

渡辺,秋本他,「軽質化軽油の排出ガス低減効果」,石油・石油化学討論会講演要旨集,p.172−173(2000)Watanabe, Akimoto et al., “Emission reduction effect of lighter diesel oil”, Petroleum and petrochemical debate abstract, p. 172-173 (2000) 武井,藤本他,「ディーゼル排出ガス低減に関する軽油性状の研究」,(社)自動車技術会 学術講演会前刷集,9540426(1995)Takei, Fujimoto et al., “Study on diesel oil properties for diesel exhaust reduction”, Automobile Engineering Society Academic Lecture Preprint, 9540426 (1995)

しかしながら、これらの提案によれば、軽油を軽質化することにより、煤排出量は低減されるものの、得られる軽油組成物は、低密度で非常に軽質であり、燃費の悪化や出力の低下を招く原因となる。更には軽油基材と灯油基材との混合により、組成物の動粘度も低下してしまうため、燃料噴射ポンプ等の潤滑面の問題が生じやすくなる。   However, according to these proposals, by reducing the light oil, the soot emission is reduced, but the resulting light oil composition is low in density and very light, resulting in a deterioration in fuel consumption and output. Cause incurring. Furthermore, the mixing of the light oil base and the kerosene base also reduces the kinematic viscosity of the composition, which tends to cause problems with the lubricating surface of the fuel injection pump and the like.

また、エンジン出口からの排出ガスは、通常、後処理触媒の酸化触媒で酸化され、更に、煤はディーゼル・パーティキュレート・フィルター(DPF)で除去されるが、この場合、NOxの量は、触媒前後で変化しないことから、エンジン出口では、NOxの排出量を低く維持することが必要である。また、煤の排出量が多いと、DPFへの煤の堆積量が増加して、再生頻度が増加することから、エンジン出口では、煤の排出量も低いことが望ましい。しかしながら、前述のNOx排出量と煤排出量は、一般にトレードオフの関係にあり、一方の排出量を低減すると、もう一方の排出量が増加してしまう。   The exhaust gas from the engine outlet is usually oxidized by the oxidation catalyst of the post-treatment catalyst, and the soot is removed by the diesel particulate filter (DPF). In this case, the amount of NOx is Since it does not change before and after, it is necessary to keep the NOx emission amount low at the engine outlet. In addition, if the amount of soot discharged is large, the amount of soot deposited on the DPF increases and the regeneration frequency increases. Therefore, it is desirable that the amount of soot discharged is low at the engine outlet. However, the aforementioned NOx emission amount and soot emission amount are generally in a trade-off relationship, and if one emission amount is reduced, the other emission amount is increased.

そこで、本発明の目的は、上記従来技術の問題を解決し、軽油の密度及び揮発性に代表される物理性状と、軽油の組成に代表される化学性状とを適切に組み合わせることで、NOx排出量を低く維持しつつ、該NOx排出量とトレードオフの関係にある煤排出量を低減することが可能な軽油組成物を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and appropriately combine the physical properties represented by the density and volatility of light oil with the chemical properties represented by the composition of light oil, thereby eliminating NOx emissions. An object of the present invention is to provide a light oil composition capable of reducing the amount of soot discharged in a trade-off relationship with the NOx emission amount while maintaining the amount low.

本発明者らは、軽油組成物が排出ガス性状に及ぼす影響について、鋭意研究を進めた結果、軽油の密度、揮発性指標の90%留出温度及び粘性指標の動粘度を特定範囲にした上、軽油の着火性指標のセタン価を特定範囲にし、燃焼性指標の燃料組成(2環以上の部分水素化芳香族化合物、全芳香族化合物及びナフテン系炭化水素(環状飽和炭化水素)の含有量)を規定することにより、排出ガス性状を最適化できることを見出し、本発明を完成させるに至った。   As a result of diligent research on the influence of the light oil composition on the exhaust gas properties, the present inventors set the density of the light oil, the 90% distillation temperature of the volatile index, and the kinematic viscosity of the viscosity index within a specific range. The fuel composition of the flammability index (partially hydrogenated aromatic compounds of two or more rings, wholly aromatic compounds and naphthenic hydrocarbons (cyclic saturated hydrocarbons)) ), The exhaust gas properties can be optimized, and the present invention has been completed.

即ち、本発明の軽油組成物は、15℃における密度が0.82090.8239g/cm、硫黄分が質量ppm未満、90%留出温度が335.0〜337.0℃、30℃における動粘度が4.1324.146mm/s、セタン価が63.266.6、全芳香族分が1.7〜7.7容量%、ナフテン分が57.866.0容量%、2環以上の芳香族化合物を部分的に水素化した芳香族化合物GC及び飛行時間型質量分析計からなるGCシステムによる測定で5.4容量%以下であることを特徴とする。 That is, the light oil composition of the present invention has a density at 15 ° C of 0.8209 to 0.8239 g / cm 3 , a sulfur content of less than 1 ppm by mass, and a 90% distillation temperature of 335.0 to 337.0 ° C. The kinematic viscosity at 30 ° C. is 4.132 to 4.146 mm 2 / s, the cetane number is 63.2 to 66.6 , the total aromatic content is 1.7 to 7.7 % by volume, and the naphthene content is 57.8. ~ 66.0 vol% Aromatic compounds obtained by partially hydrogenating two or more aromatic compounds are 5.4 vol% or less as measured by a GC system comprising a GC and a time-of-flight mass spectrometer. Features.

本発明の軽油組成物は、硫黄分が1質量ppm未満、2環芳香族分が0.1〜0.6容量%、3環以上の芳香族分が0.2容量%以下、ナフテン分(N)とパラフィン分(P)との容量比(N/P)が2.02.1であることが好ましい。 The gas oil composition of the present invention has a sulfur content of less than 1 ppm by weight, a bicyclic aromatic content of 0.1 to 0.6 % by volume, a tricyclic or higher aromatic content of 0.2 % by volume or less, a naphthene content ( The volume ratio (N / P) between N) and the paraffin content (P) is preferably 2.0 to 2.1 .

なお、ここでいうナフテン分とは、ナフテン系炭化水素、即ち環状飽和炭化水素の含有量(容量%)を意味し、パラフィン分とは、パラフィン系炭化水素、即ち鎖状飽和炭化水素の含有量(容量%)を意味する。   Here, the naphthene content means the content (volume%) of naphthenic hydrocarbons, that is, cyclic saturated hydrocarbons, and the paraffin content refers to the content of paraffinic hydrocarbons, that is, chain saturated hydrocarbons. (Capacity%).

本発明の軽油組成物によれば、ディーゼルエンジンからのNOx排出量を低く維持しつつ、煤排出量を低減することができる。また、煤の排出量を低減することにより、煤除去フィルターに堆積する煤の燃焼頻度が低下し、二酸化炭素排出量を少なくできるという格別の効果を奏する。   According to the light oil composition of the present invention, the amount of soot discharged can be reduced while keeping the amount of NOx emitted from the diesel engine low. Further, by reducing the amount of soot discharged, the combustion frequency of soot accumulated on the soot removal filter is reduced, and the carbon dioxide emission can be reduced.

(セタン価)
本発明の軽油組成物においては、セタン価を56〜70の範囲にすることが必要である。セタン価が低すぎると低温時の始動性が悪化し、未燃焼の炭化水素排出量が増加する為、セタン価は56以上であり、好ましくは58以上、更に好ましくは60以上である。一方、セタン価が高すぎると高負荷時に着火し易くなり、予混合期間が十分に取れなくなって、煤の排出量が増加する為、セタン価は70以下であり、好ましくは68以下、更に好ましくは66以下である。ここで、セタン価は、JIS K2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」に規定された方法で測定されるものである。
(Cetane number)
In the light oil composition of this invention, it is necessary to make a cetane number into the range of 56-70. If the cetane number is too low, startability at low temperatures deteriorates and the amount of unburned hydrocarbons increases, so the cetane number is 56 or more, preferably 58 or more, more preferably 60 or more. On the other hand, if the cetane number is too high, ignition is likely to occur at high loads, and the premixing period becomes insufficient, and the amount of soot discharged increases, so the cetane number is 70 or less, preferably 68 or less, more preferably Is 66 or less. Here, the cetane number is measured by a method defined in JIS K2280 “Petroleum products-fuel oil-octane number and cetane number test method and cetane index calculation method”.

(芳香族分)
本発明の軽油組成物においては、全芳香族分を10容量%以下にすることが必要である。全芳香族分が高すぎると、煤の排出量が増加し、また発熱量が増加することで窒素酸化物排出量も増加する為、全芳香族分は10容量%以下であり、好ましくは8容量%以下である。一方、芳香族分が低すぎても発熱量が低下することで燃料消費量が増加する為、全芳香族分は好ましくは1容量%以上、更に好ましくは3容量%以上である。また、2環芳香族分は、煤の排出量を減少させるためには、2容量%以下にすることが好ましく、更に好ましくは0.8容量%以下である。同様に、煤の排出量を減少させる観点から、3環以上の芳香族分は、1容量%以下にすることが好ましく、更に好ましくは0.3容量%以下である。なお、これら芳香族分は、JPI−5S−49−97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」に規定された方法で測定されるものである。
(Aromatic content)
In the light oil composition of the present invention, the total aromatic content needs to be 10% by volume or less. If the total aromatic content is too high, the amount of soot emission increases, and the amount of calorific value increases, so that the nitrogen oxide emission amount also increases. Therefore, the total aromatic content is 10% by volume or less, preferably 8 The capacity is less than%. On the other hand, even if the aromatic content is too low, the fuel consumption increases as the calorific value decreases, so the total aromatic content is preferably 1% by volume or more, more preferably 3% by volume or more. The bicyclic aromatic content is preferably 2% by volume or less, and more preferably 0.8% by volume or less, in order to reduce the amount of soot discharged. Similarly, from the viewpoint of reducing soot discharge, the aromatic content of three or more rings is preferably 1% by volume or less, more preferably 0.3% by volume or less. These aromatic components are measured by the method defined in JPI-5S-49-97 “Petroleum products—Hydrocarbon type test method—High performance liquid chromatograph method”.

(密度)
本発明の軽油組成物においては、15℃における密度を0.815g/cm3〜0.825g/cm3にすることが必要である。密度をこの範囲にすることにより、燃費を良好に維持でき、排出ガス性状を最適化することが出来る。該密度は、良好な燃費を維持する観点から、0.820g/cm3を超え0.825g/cm3以下が好ましい。該密度は、JIS K2249「原油及び石油製品密度試験方法」に規定された方法で測定されるものである。
(density)
In the light oil composition of the present invention, the density at 15 ° C. needs to be 0.815 g / cm 3 to 0.825 g / cm 3 . By setting the density within this range, it is possible to maintain good fuel efficiency and optimize exhaust gas properties. The density is preferably more than 0.820 g / cm 3 and 0.825 g / cm 3 or less from the viewpoint of maintaining good fuel efficiency. The density is measured by a method defined in JIS K2249 “Crude oil and petroleum product density test method”.

(動粘度)
また、本発明の軽油組成物においては、30℃における動粘度を4.1〜5.0mm2/sの範囲にする必要がある。動粘度をこの範囲にすることにより、燃料噴射ポンプでの潤滑性を保持することができ、また、燃料噴射時の燃料の微粒化を促進して排出ガス性状を良好にすることができる。該動粘度は、潤滑性及び排出ガス性状を更に向上させる観点から、好ましくは4.10〜4.50mm2/sの範囲である。ここで、該動粘度は、JIS K2283「動粘度試験方法」に規定された方法により、30℃で測定されるものである。
(Kinematic viscosity)
Moreover, in the light oil composition of this invention, it is necessary to make kinematic viscosity in 30 degreeC into the range of 4.1-5.0 mm < 2 > / s. By setting the kinematic viscosity within this range, the lubricity in the fuel injection pump can be maintained, and the atomization of the fuel during fuel injection can be promoted to improve the exhaust gas properties. The kinematic viscosity is preferably in the range of 4.10 to 4.50 mm 2 / s from the viewpoint of further improving lubricity and exhaust gas properties. Here, the kinematic viscosity is measured at 30 ° C. by the method defined in JIS K2283 “Kinematic Viscosity Test Method”.

(蒸留性状)
本発明の軽油組成物においては、揮発性を良好にすることにより煤の排出量を低減し、また、燃費を良好に維持する観点から、90%留出温度を325〜340℃の範囲にする必要がある。なお、該90%留出温度は、揮発性及び燃費の更なる向上の観点から、330℃〜338℃の範囲内が好ましい。なお、この蒸留性状は、JIS K2254「蒸留試験方法」に規定された方法により求められるものである。
(Distillation properties)
In the light oil composition of the present invention, the 90% distillation temperature is set in the range of 325 to 340 ° C. from the viewpoint of reducing soot discharge by improving volatility and maintaining good fuel economy. There is a need. The 90% distillation temperature is preferably in the range of 330 ° C to 338 ° C from the viewpoint of further improving volatility and fuel consumption. In addition, this distillation property is calculated | required by the method prescribed | regulated to JISK2254 "distillation test method".

(硫黄分)
本発明の軽油組成物においては、排出ガス中の硫黄酸化物の低減、及び排出ガスの後処理装置の耐久性向上の観点から、硫黄分は10質量ppm以下である。更に、NOx吸蔵還元触媒を装着した車両においては、該触媒の硫黄被毒の再生に燃料を使用するため、硫黄分の低減は、燃費の向上にも寄与する。そして、これらの効果は、硫黄分が低い程顕著であるため、本発明の軽油組成物中の硫黄分は、1質量ppm以下であることが好ましい。なお、該硫黄分は、JIS K2541−6「硫黄分試験方法(紫外蛍光法)」に規定された方法で測定されるものである。
(Sulfur content)
In the light oil composition of this invention, a sulfur content is 10 mass ppm or less from a viewpoint of the reduction | decrease of the sulfur oxide in exhaust gas, and the durable improvement of the aftertreatment apparatus of exhaust gas. Further, in a vehicle equipped with a NOx occlusion reduction catalyst, fuel is used for regeneration of sulfur poisoning of the catalyst. Therefore, reduction of the sulfur content contributes to improvement of fuel consumption. And since these effects are so remarkable that a sulfur content is low, it is preferable that the sulfur content in the light oil composition of this invention is 1 mass ppm or less. The sulfur content is measured by the method defined in JIS K2541-6 “Sulfur content test method (ultraviolet fluorescence method)”.

(真発熱量)
本発明の軽油組成物においては、燃費を良好にするために、真発熱量を好ましくは42800〜43350kJ/kg、更に好ましくは43100〜43300kJ/kgの範囲とする。ここで、該真発熱量は、JIS K2279「原油及び石油製品−発熱量試験方法及び計算による推定方法」に規定された方法により求められるものである。
(True calorific value)
In the light oil composition of the present invention, in order to improve fuel efficiency, the true calorific value is preferably in the range of 42800 to 43350 kJ / kg, more preferably 43100 to 43300 kJ / kg. Here, the true calorific value is obtained by a method defined in JIS K2279 “Crude oil and petroleum products—a calorific value test method and a calculation estimation method”.

(2環以上の部分水素化芳香族分)
本発明の軽油組成物においては、煤の排出量を低減し、また、燃費を良好に維持する観点から、2環以上の部分水素化芳香族分は9容量%未満であり、好ましくは5容量%以下である。ここで、2環以上の部分水素化芳香族分とは、ビフェニルを含む2環以上の芳香族化合物を部分的に水素化した芳香族化合物であって、水素化されていない少なくとも1つのベンゼン環と、少なくとも2つの水素原子がベンゼン環に付加した(水素化された)少なくとも1つの環とを有する芳香族化合物の含有量(容量%)を意味する。例えば2環以上の部分水素化芳香族化合物としてテトラリン、9,10−ジヒドロアントラセンがある。なお、2環以上の部分水素化芳香族分は、水素化脱硫の条件を適宜選択することで調整することができる。2環以上の部分水素化芳香族分が多すぎると、2環以上の芳香族分は低下し易くなるが、後記するナフテン分やパラフィン分が少なくなり、煤の排出量が増加し易くなる。
(Partially hydrogenated aromatic content of 2 or more rings)
In the light oil composition of the present invention, from the viewpoint of reducing soot emissions and maintaining good fuel economy, the content of partially hydrogenated aromatics of two or more rings is less than 9% by volume, preferably 5% by volume. % Or less. Here, the partially hydrogenated aromatic component having two or more rings is an aromatic compound obtained by partially hydrogenating two or more aromatic compounds containing biphenyl, and is at least one benzene ring that is not hydrogenated. And the content (volume%) of an aromatic compound having at least two rings in which at least two hydrogen atoms are added to the benzene ring (hydrogenated). For example, tetralin and 9,10-dihydroanthracene are examples of partially hydrogenated aromatic compounds having two or more rings. In addition, the partially hydrogenated aromatic content of two or more rings can be adjusted by appropriately selecting the hydrodesulfurization conditions. If the amount of partially hydrogenated aromatics in two or more rings is too large, the aromatic content in two or more rings is likely to decrease, but the naphthene content and paraffin content described later are reduced, and the amount of soot discharged is likely to increase.

(ナフテン分)
本発明の軽油組成物においては、煤の排出量を低減し、また、燃費を良好に維持する観点から、ナフテン分を52〜75容量%にすることが必要である。該ナフテン分は、煤排出量の更なる低減及び燃費の更なる向上の観点から、好ましくは55〜70容量%であり、更に好ましくは60〜70容量%である。
(For naphthenic)
In the light oil composition of the present invention, it is necessary to reduce the naphthene content to 52 to 75% by volume from the viewpoint of reducing soot discharge and maintaining good fuel economy. The naphthene content is preferably 55 to 70% by volume, more preferably 60 to 70% by volume, from the viewpoint of further reducing soot emission and further improving fuel consumption.

(ナフテン分とパラフィン分の容量比)
また、本発明者らは、煤の排出量を低減しつつ、潤滑性を確保するためには、ナフテン分を調整することに加えて、ナフテン分とパラフィン分との関係を考慮する必要があることを見出した。そこで、本発明者らが検討したところ、本発明の軽油組成物においては、煤の排出量を低減し、また、燃料噴射ポンプでの潤滑性を保持する観点から、ナフテン分(N)とパラフィン分(P)の容量比(N/P)を1.8〜2.2にすることが好ましく、より好ましくは1.9〜2.2である。
(Capacity ratio of naphthene and paraffin)
In addition to adjusting the naphthene content, the present inventors need to consider the relationship between the naphthene content and the paraffin content in order to ensure lubricity while reducing the amount of soot discharged. I found out. Therefore, the present inventors have examined that, in the light oil composition of the present invention, from the viewpoint of reducing the amount of soot discharged and maintaining the lubricity in the fuel injection pump, naphthene (N) and paraffin The volume ratio (N / P) of the minute (P) is preferably 1.8 to 2.2, more preferably 1.9 to 2.2.

なお、上述の2環以上の部分水素化芳香族分、ナフテン分及びパラフィン分の分析には、Agilent Technologies社製HP−6890N型FID検出器付きGC及び日本電子社製AccuTOF JMS−T100GC飛行時間型質量分析計からなるGCシステムを用いた。詳細な分析条件は次の通りである。   For analysis of the above-mentioned two or more partially hydrogenated aromatics, naphthenes and paraffins, GC with Agilent Technologies HP-6890N type FID detector and AccuTOF JMS-T100GC time-of-flight type manufactured by JEOL Ltd. A GC system consisting of a mass spectrometer was used. Detailed analysis conditions are as follows.

1次カラム:微極性カラム(Supelco社製PTE−5、長さ30m、内径0.25mm、フィルム厚0.25μm)
モジュレータ中空カラム:長さ2m、内径0.25mm
2次カラム:高極性カラム(Supelco社製SpelcoWAX10、長さ2m、内径0.25mm、フィルム厚0.25μm)
昇温条件:10℃/分(50℃(5分保持)から280℃(27分保持))
注入口温度:280℃
注入量:1.0μl
スプリット比:100:1
キャリアガス:ヘリウム(He)、1.0ml/分
モジュレータ温度:下記のコールド温度、ホット温度を繰り返す。
ホットジェットガス温度:150℃(5分保持)から320℃(33分保持)に10℃/分で昇温。
コールドジェットガス温度:約−140℃
モジュレータ頻度:6秒間で0.3秒間ホット温度、その後5.7秒間コールド温度。
インターフェイス中空カラム:長さ0.5m、内径0.25mm
FIDガス条件:水素(45mL/分)、空気(450mL/分)、メークアップヘリウム(25mL/分)
Primary column: Slight polar column (PTE-5 manufactured by Supelco, length 30 m, inner diameter 0.25 mm, film thickness 0.25 μm)
Modulator hollow column: length 2m, inner diameter 0.25mm
Secondary column: High-polarity column (SpelcoWAX10 from Supelco, length 2 m, inner diameter 0.25 mm, film thickness 0.25 μm)
Temperature rising condition: 10 ° C./min (from 50 ° C. (5 min hold) to 280 ° C. (27 min hold))
Inlet temperature: 280 ° C
Injection volume: 1.0 μl
Split ratio: 100: 1
Carrier gas: helium (He), 1.0 ml / min Modulator temperature: The following cold temperature and hot temperature are repeated.
Hot jet gas temperature: The temperature was raised from 150 ° C. (5 minutes hold) to 320 ° C. (33 minutes hold) at 10 ° C./min.
Cold jet gas temperature: about -140 ° C
Modulator frequency: 6 seconds for 0.3 seconds hot temperature, then 5.7 seconds for cold temperature.
Interface hollow column: 0.5m length, 0.25mm inner diameter
FID gas conditions: hydrogen (45 mL / min), air (450 mL / min), make-up helium (25 mL / min)

ここで、上記GCシステムは、炭素数7〜44の化合物を測定することが可能であり、測定したピーク(山形)の溶出時間とマススペクトルから、それぞれのピーク(山形)に対応する化合物を同定する。同定された全ピーク(山形)の合計を含有量合計(100ピーク体積%)とし、それぞれのピーク(山形)から対応するそれぞれの化合物の含有量をピーク体積%として算出し、これを容量%とする。   Here, the GC system can measure a compound having 7 to 44 carbon atoms, and the compound corresponding to each peak (yamagata) is identified from the elution time and mass spectrum of the measured peak (yamagata). To do. The sum of all identified peaks (yamagata) is defined as the total content (100 peak volume%), and the content of each corresponding compound is calculated as the peak volume% from each peak (yamagata). To do.

(H/C比)
本発明の軽油組成物においては、微小粒子の個数をさらに低減する観点から、水素/炭素比(H/C比)を1.8〜2.0の範囲にすることが好ましく、特には1.95〜2.0の範囲にすることが好ましい。該H/C比は、有機元素分析により水素(H)分と炭素(C)分を測定して、H/C比(モル比)を求めるものである。
(H / C ratio)
In the light oil composition of the present invention, from the viewpoint of further reducing the number of fine particles, the hydrogen / carbon ratio (H / C ratio) is preferably in the range of 1.8 to 2.0. It is preferable to be in the range of 95 to 2.0. The H / C ratio is obtained by measuring the hydrogen (H) content and carbon (C) content by organic elemental analysis to obtain the H / C ratio (molar ratio).

(軽油組成物の調製)
本発明の軽油組成物は、原料油として、例えば、常圧蒸留装置、接触分解装置、熱分解装置等から得られる各種の軽油留分、すなわち沸点が140〜400℃の範囲で留出する留分を用いて、適宜混合して水素化脱硫するか、水素化脱硫後に適宜混合することにより得られるが、芳香族を多く含む原料油を処理する場合は、製品の硫黄分や芳香族分を所定範囲にするために、反応温度や水素分圧を高くし、また水素/油比を高くすることが有効である。なお、芳香族を多く含む原料油は難脱硫成分も多く含むことから、水素化脱硫にあたっては硫黄分を選択的に除去する触媒を用いることが好ましい。水素化脱硫は、Co、Mo及びNiの1種以上を含有し、Znを担持した水素化触媒を用い、反応温度が200〜400℃、反応圧力が水素分圧で1.5〜10MPa、LHSVが2.0〜50h-1、水素/油比が1〜1000NL/Lの条件の範囲で適宜選択して、上述した本発明の軽油組成物が得られる様にするとよい。
(Preparation of light oil composition)
The gas oil composition of the present invention is a distillate distilled as a raw material oil, for example, various gas oil fractions obtained from an atmospheric distillation apparatus, a catalytic cracking apparatus, a thermal cracking apparatus, or the like, that is, a boiling point of 140 to 400 ° C. It can be obtained by mixing and hydrodesulfurizing and mixing appropriately after hydrodesulfurization, or when processing raw material oils rich in aromatics, the sulfur content and aromatic content of the product should be reduced. It is effective to increase the reaction temperature and the hydrogen partial pressure and to increase the hydrogen / oil ratio in order to obtain a predetermined range. In addition, since the raw material oil containing a lot of aromatics contains a lot of difficult desulfurization components, it is preferable to use a catalyst that selectively removes sulfur in hydrodesulfurization. The hydrodesulfurization uses one or more of Co, Mo and Ni, and uses a hydrogenation catalyst supporting Zn, the reaction temperature is 200 to 400 ° C., the reaction pressure is 1.5 to 10 MPa in terms of hydrogen partial pressure, LHSV Is appropriately selected within the range of the conditions of 2.0 to 50 h −1 and the hydrogen / oil ratio of 1 to 1000 NL / L, so that the light oil composition of the present invention described above can be obtained.

本発明では、上記水素化脱硫した軽油留分に、灯油留分、GTL、BTXを製造する際の副生成留分、潤滑油を製造する際の副生成留分、ノルマルパラフィン化合物、ノルマルパラフィン系溶剤、イソパラフィン化合物、イソパラフィン系溶剤、芳香族化合物、芳香族系溶剤、バイオマス由来の燃料基材、ナフテン化合物、ナフテン系溶剤、等を適宜配合して、上述の性状、品質に合った軽油組成物を調製することができる。   In the present invention, the hydrodesulfurized gas oil fraction is a kerosene fraction, a by-product fraction when producing GTL, BTX, a by-product fraction when producing a lubricating oil, a normal paraffin compound, a normal paraffin series. Light oil composition suitable for the above-mentioned properties and quality by appropriately blending solvent, isoparaffin compound, isoparaffin solvent, aromatic compound, aromatic solvent, biomass-derived fuel base material, naphthene compound, naphthenic solvent, etc. Can be prepared.

なお、上記方法で得られた軽油組成物には、低温流動性向上剤、耐摩耗性向上剤、セタン価向上剤、酸化防止剤、金属不活性化剤、腐食防止剤等の公知の燃料添加剤を添加してもよい。低温流動性向上剤としては、エチレン共重合体などを用いることができるが、特には、酢酸ビニル、プロピオン酸ビニル、酪酸ビニルなどの飽和脂肪酸のビニルエステルが好ましく用いられる。耐摩耗性向上剤としては、例えば長鎖脂肪酸(炭素数12〜24)又はその脂肪酸エステルが好ましく用いられ、10〜500質量ppm、好ましくは50〜100質量ppmの添加量で十分に耐摩耗性が向上する。   In addition, to the light oil composition obtained by the above method, known fuel additions such as a low temperature fluidity improver, an abrasion resistance improver, a cetane number improver, an antioxidant, a metal deactivator, and a corrosion inhibitor are added. An agent may be added. As the low temperature fluidity improver, an ethylene copolymer or the like can be used. In particular, a vinyl ester of a saturated fatty acid such as vinyl acetate, vinyl propionate or vinyl butyrate is preferably used. As the wear resistance improver, for example, a long-chain fatty acid (carbon number 12 to 24) or a fatty acid ester thereof is preferably used, and the wear resistance is sufficient with an addition amount of 10 to 500 ppm by mass, preferably 50 to 100 ppm by mass. Will improve.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

<軽油組成物の調製>
まず以下のようにして、評価試験のために用いる軽油組成物(供試軽油1〜4)を調製した。これら供試軽油1〜4の組成等の分析値を表1に示す。分析は、上述した方法によるが、H/C比については、有機元素分析装置(LECO社製CHN−1000型)を用いて、H分とC分を測定して、両者のモル比を求めた。また、セタン指数はJIS K2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」に規定された方法で測定し、芳香族分はJPI−5S−49−97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」に規定された方法で測定した。
<Preparation of light oil composition>
First, light oil compositions (test light oils 1 to 4) used for the evaluation test were prepared as follows. Table 1 shows analytical values such as the composition of these test diesel oils 1 to 4. Although analysis is based on the method described above, the H / C ratio was measured for H and C using an organic element analyzer (CHN-1000 model manufactured by LECO) to determine the molar ratio of both. . The cetane index is measured by the method specified in JIS K2280 “Petroleum products—fuel oil—octane number and cetane number test method and cetane index calculation method”. It was measured by the method prescribed in “Hydrocarbon Type Test Method—High Performance Liquid Chromatograph Method”.

供試軽油1:中東系の原油を蒸留して得られた直留軽油を70容量%、中東系の原油を蒸留して得られた減圧軽油留分を水素化脱硫した後に接触分解して得られた軽質接触分解油を10容量%及び減圧残油を主成分とする重質油を熱分解処理して得られた熱分解油を20容量%混合し軽油留分Aを得た。
次に、担持法にて調製したCoMo/アルミナ(コバルト含有量3質量%、モリブデン含有量13質量%)とNiMo/アルミナ(ニッケル含有量3質量%、モリブデン含有量12質量%)とを容積比で1:3となるように反応管に充填した。そして、この反応管に、前処理としてジメチルジスルフィド1質量%を含む軽油を300℃、5MPaの水素共存下で通油し、硫化処理を行った。その後、この反応管に軽油留分Aを通油し、反応温度345℃、水素分圧7.0MPa、LHSVが1.2hr−1、水素/油供給比が440NL/Lの条件下で反応させ、原料となる軽油留分である、軽油留分Bを得た。
一方、共沈法により調製したNiO−ZnO複合酸化物(ニッケル含有量17質量%、亜鉛含有量が59質量%)を新たな反応管に充填し、これに水素ガス(純度100容量%)を温度300℃、3.0MPaにて40hr流通させ、還元処理を行った。その後、この反応管に軽油留分Bと水素を通油し、反応温度が300℃、水素分圧が3.0MPa、LHSVが3.0hr−1、水素/油供給比が400NL/Lの条件で800時間水素化反応させ、供試燃料1を得た。
Test gas oil 1: 70% by volume of straight-run gas oil obtained by distillation of Middle Eastern crude oil, and hydrocracked and obtained by catalytic cracking of a vacuum gas oil fraction obtained by distillation of Middle Eastern crude oil A light oil fraction A was obtained by mixing 20% by volume of the pyrolytic oil obtained by pyrolyzing 10% by volume of the obtained light catalytic cracked oil and heavy oil mainly composed of vacuum residue.
Next, the volume ratio of CoMo / alumina (cobalt content 3 mass%, molybdenum content 13 mass%) and NiMo / alumina (nickel content 3 mass%, molybdenum content 12 mass%) prepared by the loading method. The reaction tube was filled to 1: 3. Then, as a pretreatment, light oil containing 1% by mass of dimethyl disulfide was passed through the reaction tube in the presence of hydrogen at 300 ° C. and 5 MPa to perform sulfurization treatment. Thereafter, the light oil fraction A was passed through the reaction tube and reacted under the conditions of a reaction temperature of 345 ° C., a hydrogen partial pressure of 7.0 MPa, an LHSV of 1.2 hr −1 , and a hydrogen / oil supply ratio of 440 NL / L. A light oil fraction B, which is a light oil fraction as a raw material, was obtained.
On the other hand, NiO—ZnO composite oxide (nickel content 17% by mass, zinc content 59% by mass) prepared by the coprecipitation method is charged into a new reaction tube, and hydrogen gas (purity 100% by volume) is charged into this. The reduction treatment was performed by circulating for 40 hours at a temperature of 300 ° C. and 3.0 MPa. Thereafter, the gas oil fraction B and hydrogen are passed through the reaction tube, the reaction temperature is 300 ° C., the hydrogen partial pressure is 3.0 MPa, the LHSV is 3.0 hr −1 , and the hydrogen / oil supply ratio is 400 NL / L. The test fuel 1 was obtained by hydrogenation reaction for 800 hours.

供試軽油2:供試軽油1の調製方法に記載のNiO−ZnO複合酸化物による水素化反応において、水素分圧を6.0MPaとした以外は、供試軽油1と全く同様に実験を行い、供試燃料2を得た。   Test gas oil 2: An experiment was performed in exactly the same way as test gas oil 1 except that the hydrogen partial pressure was 6.0 MPa in the hydrogenation reaction using the NiO-ZnO composite oxide described in Preparation method of test gas oil 1. Test fuel 2 was obtained.

供試軽油3:供試軽油1の調製方法に記載のNiO−ZnO複合酸化物による水素化反応において、水素分圧を8.0MPaとした以外は、供試軽油1と全く同様に実験を行い、供試燃料3を得た。   Test gas oil 3: Exactly the same experiment as test gas oil 1 except that the hydrogen partial pressure was 8.0 MPa in the hydrogenation reaction using the NiO-ZnO composite oxide described in the preparation method of test gas oil 1 Sample fuel 3 was obtained.

供試軽油4:上記の軽油留分Bを供試燃料4とした。   Test diesel oil 4: The diesel fuel fraction B was used as the test fuel 4.

Figure 0005520115
Figure 0005520115

次に上記供試軽油について、以下に示す市販ディーゼルエンジンを用い、定常条件におけるエンジン出口直後の排出ガス性状としてスモーク(煤)値(%)を司測研社製透過型スモークメータで測定し、また、窒素酸化物(NOx)、一酸化炭素(CO)、未燃焼炭化水素(THC)、二酸化炭素(CO2)それぞれの排出量(g/kWh)をベスト測器社製排ガス分析計で測定した。得られた数値を比較例1の供試軽油4を基準にして相対評価した。これらの結果を表2に示す。なお、○は基準に対して良好で、△は基準と同等で、×は基準に対して劣っていることを示す。 Next, for the above test diesel oil, using a commercially available diesel engine shown below, the smoke (煤) value (%) as an exhaust gas property immediately after the engine outlet in a steady condition was measured with a transmission smoke meter manufactured by SHIKENKEN, In addition, emissions (g / kWh) of nitrogen oxides (NOx), carbon monoxide (CO), unburned hydrocarbons (THC), and carbon dioxide (CO 2 ) are measured with an exhaust gas analyzer manufactured by Best Sokki Co., Ltd. did. The obtained numerical values were evaluated relative to the test diesel oil 4 of Comparative Example 1. These results are shown in Table 2. In addition, (circle) is favorable with respect to a reference | standard, (triangle | delta) is equivalent to a reference | standard, and x shows that it is inferior to a reference | standard.

<供試エンジン諸元と運転条件>
気筒数: 4気筒
総排気量: 約2L
圧縮比: 約17
最高出力: 103kW/4000rpm
規制適合: 欧州EUROIV規制
定常条件: 1500rpm、1/4負荷
<Test engine specifications and operating conditions>
Number of cylinders: 4 cylinders Total displacement: Approximately 2L
Compression ratio: about 17
Maximum output: 103kW / 4000rpm
Regulatory compliance: European EUROIV regulations Steady conditions: 1500 rpm, 1/4 load

Figure 0005520115
Figure 0005520115

これらの結果から、本発明の軽油組成物である実施例1〜3の供試軽油1〜3は、比較例1の供試軽油4に比較してNOx排出量及びCO2排出量が同等に抑えられており、また、スモーク排出量が少なく、更にCO排出量及びTHC排出量も少ないことが分かる。 From these results, the test light oils 1 to 3 of Examples 1 to 3 which are light oil compositions of the present invention have the same NOx emissions and CO 2 emissions as compared to the test light oil 4 of Comparative Example 1. It can be seen that the smoke emission amount is small, and the CO emission amount and the THC emission amount are also small.

本発明の軽油組成物は、ディーゼルエンジン用燃料又はその混合基材として好適に利用できる。   The light oil composition of the present invention can be suitably used as a diesel engine fuel or a mixed base material thereof.

Claims (2)

15℃における密度が0.82090.8239g/cm以下、硫黄分が質量ppm未満、90%留出温度が335.0〜337.0℃、30℃における動粘度が4.1324.146mm/s、セタン価が63.266.6、全芳香族分が1.7〜7.7容量%、ナフテン分が57.866.0容量%、2環以上の芳香族化合物を部分的に水素化した芳香族化合物GC及び飛行時間型質量分析計からなるGCシステムによる測定で5.4容量%以下であることを特徴とする軽油組成物。 The density at 15 ° C. is 0.8209 to 0.8239 g / cm 3 or less, the sulfur content is less than 1 ppm by mass, the 90% distillation temperature is 335.0 to 337.0 ° C. , and the kinematic viscosity at 30 ° C. is 4.132. To 4.146 mm 2 / s, cetane number of 63.2 to 66.6 , total aromatic content of 1.7 to 7.7 % by volume, naphthene content of 57.8 to 66.0 % by volume, two rings A gas oil composition , wherein the aromatic compound obtained by partially hydrogenating the above aromatic compound is 5.4 % by volume or less as measured by a GC system comprising a GC and a time-of-flight mass spectrometer . 硫黄分が1質量ppm未満、2環芳香族分が0.1〜0.6容量%、3環以上の芳香族分が0.2容量%以下、ナフテン分(N)とパラフィン分(P)との容量比(N/P)が2.02.1であることを特徴とする請求項1に記載の軽油組成物。 The sulfur content is less than 1 ppm by mass, the bicyclic aromatic content is 0.1 to 0.6 % by volume, the aromatic content of 3 or more rings is 0.2 % by volume or less, the naphthene content (N) and the paraffin content (P). The gas oil composition according to claim 1, wherein the volume ratio (N / P) to the gas is 2.0 to 2.1 .
JP2010084051A 2010-03-31 2010-03-31 Light oil composition Active JP5520115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010084051A JP5520115B2 (en) 2010-03-31 2010-03-31 Light oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010084051A JP5520115B2 (en) 2010-03-31 2010-03-31 Light oil composition

Publications (2)

Publication Number Publication Date
JP2011213891A JP2011213891A (en) 2011-10-27
JP5520115B2 true JP5520115B2 (en) 2014-06-11

Family

ID=44943969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010084051A Active JP5520115B2 (en) 2010-03-31 2010-03-31 Light oil composition

Country Status (1)

Country Link
JP (1) JP5520115B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10316263B2 (en) 2017-06-27 2019-06-11 Exxonmobil Research And Engineering Company Fuel components from hydroprocessed deasphalted oils
US10494579B2 (en) 2016-04-26 2019-12-03 Exxonmobil Research And Engineering Company Naphthene-containing distillate stream compositions and uses thereof
US10550335B2 (en) 2015-12-28 2020-02-04 Exxonmobil Research And Engineering Company Fluxed deasphalter rock fuel oil blend component oils
US10550341B2 (en) 2015-12-28 2020-02-04 Exxonmobil Research And Engineering Company Sequential deasphalting for base stock production
US10590360B2 (en) 2015-12-28 2020-03-17 Exxonmobil Research And Engineering Company Bright stock production from deasphalted oil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090308A (en) * 2015-11-12 2017-05-25 株式会社デンソー Smoke amount estimation device and combustion system control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004067906A (en) * 2002-08-07 2004-03-04 Nippon Oil Corp Gas oil composition and its manufacturing method
JP4567948B2 (en) * 2003-03-07 2010-10-27 Jx日鉱日石エネルギー株式会社 Light oil composition and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10550335B2 (en) 2015-12-28 2020-02-04 Exxonmobil Research And Engineering Company Fluxed deasphalter rock fuel oil blend component oils
US10550341B2 (en) 2015-12-28 2020-02-04 Exxonmobil Research And Engineering Company Sequential deasphalting for base stock production
US10590360B2 (en) 2015-12-28 2020-03-17 Exxonmobil Research And Engineering Company Bright stock production from deasphalted oil
US10647925B2 (en) 2015-12-28 2020-05-12 Exxonmobil Research And Engineering Company Fuel components from hydroprocessed deasphalted oils
US10808185B2 (en) 2015-12-28 2020-10-20 Exxonmobil Research And Engineering Company Bright stock production from low severity resid deasphalting
US10947464B2 (en) 2015-12-28 2021-03-16 Exxonmobil Research And Engineering Company Integrated resid deasphalting and gasification
US10494579B2 (en) 2016-04-26 2019-12-03 Exxonmobil Research And Engineering Company Naphthene-containing distillate stream compositions and uses thereof
US10316263B2 (en) 2017-06-27 2019-06-11 Exxonmobil Research And Engineering Company Fuel components from hydroprocessed deasphalted oils

Also Published As

Publication number Publication date
JP2011213891A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5520115B2 (en) Light oil composition
JP4563234B2 (en) Fuel oil composition for diesel engines
JP4460200B2 (en) Fuel oil base and light oil composition containing the same
JP5520114B2 (en) Light oil composition
JP5128631B2 (en) Fuel oil composition for diesel engines
JP5730006B2 (en) Light oil composition
JP5317605B2 (en) Light oil composition
JP5518454B2 (en) Fuel composition for diesel hybrid
JP2013124290A (en) Gas oil fuel composition
JP5317604B2 (en) Light oil composition
JP5436041B2 (en) Light oil composition
JP5317603B2 (en) Light oil composition
JP5317606B2 (en) Light oil composition
JP5436078B2 (en) Light oil composition
JP5379062B2 (en) Process for producing light oil base or light oil composition
JP5436079B2 (en) Light oil composition
JP4119190B2 (en) Light oil composition and method for producing the same
JP5317652B2 (en) Light oil composition
JP5437193B2 (en) Light oil composition
JP6128839B2 (en) Light oil fuel composition
JP5518460B2 (en) Light oil composition
JP5352057B2 (en) Method for producing fuel oil base material
JP5317653B2 (en) Light oil composition
JP5530702B2 (en) Light oil composition and method for producing the same
JP5357088B2 (en) Light oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140404

R150 Certificate of patent or registration of utility model

Ref document number: 5520115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250