[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5518460B2 - Light oil composition - Google Patents

Light oil composition Download PDF

Info

Publication number
JP5518460B2
JP5518460B2 JP2009295729A JP2009295729A JP5518460B2 JP 5518460 B2 JP5518460 B2 JP 5518460B2 JP 2009295729 A JP2009295729 A JP 2009295729A JP 2009295729 A JP2009295729 A JP 2009295729A JP 5518460 B2 JP5518460 B2 JP 5518460B2
Authority
JP
Japan
Prior art keywords
volume
content
oil composition
light oil
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009295729A
Other languages
Japanese (ja)
Other versions
JP2011132482A (en
Inventor
真人 村瀬
昭雄 鈴木
善克 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2009295729A priority Critical patent/JP5518460B2/en
Publication of JP2011132482A publication Critical patent/JP2011132482A/en
Application granted granted Critical
Publication of JP5518460B2 publication Critical patent/JP5518460B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、軽油組成物、特には、排気ガス中の粒子状物質の排出量を低減させることが可能で且つ燃費が良好な軽油組成物に関するものである。   The present invention relates to a light oil composition, and more particularly to a light oil composition that can reduce the emission of particulate matter in exhaust gas and has good fuel efficiency.

ディーゼルエンジンの排気ガスには、粒子状物質(Particulate Matter、以下PM)が含まれており、近年、環境問題等の観点から、ディーゼルエンジンを搭載した自動車の排気系にディーゼル・パーティキュレート・フィルタ(Diesel Particulate Filter、以下DPF)を設けることによって、大気に放出されるPMを構成する粒子の総粒子数や重量を低減する方法が提案されている。   Diesel engine exhaust gas contains particulate matter (hereinafter referred to as PM), and recently, from the viewpoint of environmental problems, etc., diesel particulate filters ( There has been proposed a method of reducing the total number of particles and the weight of particles constituting PM released to the atmosphere by providing a diesel particulate filter (hereinafter referred to as DPF).

一方で、PM排出量の削減については、燃料の面からも検討されており、排ガス中に含まれるPM全体の量、PMを構成する粒子の総粒子数及び当該粒子のうち直径の分布中心が50nm付近である粒子の粒子数、並びにアルデヒド類の量を同時に且つ十分に低減することが可能な軽油組成物(特許文献1)や、粒子直径が50nm以下の粒子の排出を抑制することが可能なディーゼルエンジン用燃料油組成物が提案されている(特許文献2及び3)。また、過渡運転時におけるエンジンから排出される窒素酸化物、炭化水素、一酸化炭素、二酸化炭素、PM、微小粒子、直径100nm以下の粒子、アルデヒド類の排出量の低減、排ガス後処理装置への負荷の低減、燃費の向上、運転性及び加速性の向上、燃料噴射ポンプの駆動力の低減、エンジン運転時の騒音の低減の他、エンジン始動性に優れ、酸化安定性に優れ、部材への影響を少なくすることができる軽油組成物が提案されている(特許文献4〜6)。   On the other hand, the reduction of PM emissions has been studied from the aspect of fuel, and the total amount of PM contained in the exhaust gas, the total number of particles constituting the PM, and the distribution center of the diameter of the particles are determined. It is possible to suppress the emission of light oil compositions (Patent Document 1) capable of simultaneously and sufficiently reducing the number of particles in the vicinity of 50 nm and the amount of aldehydes, and particles having a particle diameter of 50 nm or less. Fuel oil compositions for diesel engines have been proposed (Patent Documents 2 and 3). In addition, nitrogen oxides, hydrocarbons, carbon monoxide, carbon dioxide, PM, fine particles, particles with a diameter of 100 nm or less, emission of aldehydes discharged from the engine during transient operation, reduction to exhaust gas aftertreatment equipment In addition to reducing load, improving fuel efficiency, improving drivability and acceleration, reducing fuel injection pump driving force, and reducing noise during engine operation, engine startability is excellent, oxidation stability is excellent, Light oil compositions that can reduce the influence have been proposed (Patent Documents 4 to 6).

PMは、主として炭素質の固体粒子と有機溶剤に溶ける可溶性有機成分(Soluble Organic Fraction、以下SOF)とによって構成されているが、SOFは、燃料や潤滑油由来の高沸点炭化水素が発生源であると推察されている。また、粒径が数nm〜20nmの微小な粒子(以下、ナノ粒子)は、揮発したSOFの凝縮によって生成すると考えられており、少量ではあるが、粒子数が多く表面積も大きい為、呼吸器系細胞への影響を考慮すれば、ナノ粒子の排出量は少ない方が好ましいと考えられている。ナノ粒子の排出は、特に減速時において観察されるが、これは、燃料カット時にシリンダ壁面に付着した未燃焼の燃料が気化し、排気管内で凝縮して生成したものと考えられている。   PM is mainly composed of carbonaceous solid particles and a soluble organic fraction (hereinafter referred to as SOF) that is soluble in an organic solvent. SOF is a source of high-boiling hydrocarbons derived from fuel and lubricating oil. It is assumed that there is. In addition, fine particles (hereinafter referred to as “nanoparticles”) having a particle size of several nanometers to 20 nm are considered to be generated by condensation of volatilized SOF, and although the amount is small, the number of particles is large and the surface area is large. Considering the influence on system cells, it is considered that a smaller discharge amount of nanoparticles is preferable. Nanoparticle emission is observed particularly during deceleration, which is thought to be caused by the unburned fuel adhering to the cylinder wall surface during fuel cut and vaporizing and condensing in the exhaust pipe.

また、上述のように、PMを低減するための有力な手段としては、DPFの使用が知られているが、このDPFにより捕捉されたPMを構成するSOFの中には、負荷の増大により高温となって蒸発し、大気中で再凝縮して微小粒子化するものが存在している可能性もある(非特許文献1)。   Further, as described above, the use of DPF is known as an effective means for reducing PM. However, SOF constituting PM captured by DPF has a high temperature due to an increase in load. There is also a possibility that there is a material that evaporates and re-condenses in the atmosphere to form fine particles (Non-patent Document 1).

特開2004−2550号公報JP 2004-2550 A 特開2006−232978号公報JP 2006-232978 A 特開2006−232979号公報Japanese Patent Laid-Open No. 2006-232979 特開2004−67899号公報JP 2004-67899 A 特開2004−269682号公報JP 2004-269682 A 特開2004−269683号公報JP 2004-269683 A

「自動車排出ナノ粒子およびDEPの測定と生体影響評価」,株式会社エヌ・ティー・エス,p.6−7,2005年“Measurement of car exhausted nanoparticles and DEP and assessment of biological effects”, NTS, p. 6-7, 2005

従って、自動車排気ガス中のPMの排出量を低減させると共に、SOFを主成分とするナノ粒子の排出量を低減させることも重要であると考えられる。   Therefore, it is considered important to reduce the emission amount of PM in automobile exhaust gas and to reduce the emission amount of nanoparticles mainly composed of SOF.

そこで、本発明の目的は、上記従来技術の課題を解決し、ディーゼルエンジンの排気ガス中のPM全体の重量及びナノ粒子の個数を低減させることが可能である上、燃費が良好である軽油組成物を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to reduce the weight of the entire PM and the number of nanoparticles in the exhaust gas of a diesel engine, and further, a light oil composition with good fuel efficiency. To provide things.

本発明者らは、軽油中の特定の成分及び性状を最適化することで、上記従来技術の課題を解決できることを想到し、軽油中の特定の成分及び性状とPM全体の重量、ナノ粒子の個数及び燃費との相関を鋭意研究した。その結果、全芳香族分及び多環芳香族分に加えて、分子量300以上の炭化水素、炭素数10以上の芳香族化合物、炭素数10以上のナフテン及びパラフィンといった4つの成分が、PM全体の重量、ナノ粒子の個数及び燃費との相関を持つことが分かり、これらの成分の含有量を最適化することで、ディーゼルエンジン排気ガス中のPM全体の重量及びナノ粒子の個数を同時に低減させるとともに、燃費を良好に維持できることを見出し、本発明を完成させるに至った。   The inventors of the present invention have conceived that the above-mentioned problems of the prior art can be solved by optimizing specific components and properties in light oil, and the specific components and properties in light oil and the weight of the entire PM, We have intensively studied the correlation between the number and fuel consumption. As a result, in addition to the total aromatic content and polycyclic aromatic content, four components such as hydrocarbons having a molecular weight of 300 or more, aromatic compounds having 10 or more carbon atoms, naphthenes having 10 or more carbon atoms, and paraffins are contained in the entire PM. It turns out that there is a correlation with the weight, the number of nanoparticles and fuel consumption, and by optimizing the content of these components, the weight of the entire PM and the number of nanoparticles in the diesel engine exhaust gas are simultaneously reduced. The present inventors have found that fuel consumption can be maintained well and have completed the present invention.

即ち、本発明の軽油組成物は、全芳香族分が5〜16容量%、多環芳香族分が0.5〜13容量%、90%留出温度が270〜330℃で、分子量300以上の炭化水素の含有量が15容量%以下、パラフィン分が50容量%以下、次式:
NPI=0.037×A+0.21×B+0.054×C+0.097×D
[式中、Aは分子量300以上の炭化水素の含有量(容量%)で、Bは炭素数10以上の芳香族分(容量%)で、Cは炭素数10以上のナフテン分(容量%)で、Dはパラフィン分(容量%)であり、Aは11.6〜12.2であり、Bは11.3〜19.5であり、Cは25.6〜33.3であり、Dは37.8〜46.5である]で算出されるナノ粒子排出指数(NPI)が9.1〜9.6であることを特徴とする。
That is, the light oil composition of the present invention has a total aromatic content of 5 to 16% by volume, a polycyclic aromatic content of 0.5 to 13% by volume, a 90% distillation temperature of 270 to 330 ° C., and a molecular weight of 300 or more. The hydrocarbon content of 15% by volume or less, the paraffin content is 50% by volume or less, and the following formula:
NPI = 0.037 × A + 0.21 × B + 0.054 × C + 0.097 × D
[In the formula, A is the content (volume%) of hydrocarbons having a molecular weight of 300 or more, B is an aromatic content (volume%) having 10 or more carbon atoms, and C is a naphthene content (volume%) having 10 or more carbon atoms. in, D is Ri paraffins (% by volume) der, a is 11.6 to 12.2, B is from 11.3 to 19.5, C is 25.6 to 33.3, D nanoparticles discharge index calculated by 37.8 to 46.5 der Ru] (NPI) is characterized in that it is a 9.1 to 9.6.

本発明の軽油組成物は、炭素数10以上の芳香族分が20容量%以下、炭素数10以上のナフテン分が35容量%以下であることが好ましい。 The gas oil composition of the present invention, carbon number 10 or more aromatic content of 20% by volume or less, it is preferable that the number 10 or more naphthene carbon is under 35% by volume or less.

本発明の軽油組成物は、1環芳香族分が2.5〜15容量%、曇り点が−10℃以下、50%留出温度が180〜272℃、真発熱量が42900kJ/kg以上であることが好ましい。   The light oil composition of the present invention has a 1-ring aromatic content of 2.5 to 15 vol%, a cloud point of -10 ° C or less, a 50% distillation temperature of 180 to 272 ° C, and a true calorific value of 42900 kJ / kg or more. Preferably there is.

本発明の軽油組成物によれば、ディーゼルエンジンの排気ガス中に含まれるPM全体の重量及びナノ粒子の個数を同時に低減させると共に、燃費を良好に維持することができる。   According to the light oil composition of the present invention, the weight of the entire PM and the number of nanoparticles contained in the exhaust gas of the diesel engine can be simultaneously reduced, and the fuel efficiency can be maintained well.

(芳香族分)
本発明の軽油組成物においては、全芳香族分を5〜16容量%の範囲にすることが必要である。全芳香族分が上記の範囲内であれば、PM全体の重量を低減することができ、低温流動特性及び燃費を維持することもできる。なお、本発明の軽油組成物の全芳香族分は、好ましくは6〜15容量%であり、さらに好ましくは8〜15容量%である。また、同様にPM全体の重量を低減しながら低温流動特性及び燃費を維持するためには、本発明の軽油組成物において、多環芳香族分を0.5〜13容量%の範囲にすることが必要であり、好ましくは0.5〜10容量%、さらに好ましくは0.5〜5容量%である。なお、多環芳香族分とは2環以上の芳香族分を意味する。一方、本発明の軽油組成物において、1環芳香族分は、2.5〜15容量%の範囲が好ましく、3〜10容量%の範囲が更に好ましく、3〜7容量%の範囲が一層好ましい。1環芳香族分が2.5容量%以上であれば、発熱量を維持することができ、また、15容量%以下であれば、ディーゼルエンジン排気ガス中のPM全体の重量を更に低減することができる。なお、これらの芳香族分は、JPI−5S−49−97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」に規定された方法で求められる。
(Aromatic content)
In the light oil composition of the present invention, the total aromatic content needs to be in the range of 5 to 16% by volume. If the total aromatic content is within the above range, the weight of the entire PM can be reduced, and low-temperature flow characteristics and fuel consumption can be maintained. In addition, the total aromatic content of the light oil composition of this invention becomes like this. Preferably it is 6-15 volume%, More preferably, it is 8-15 volume%. Similarly, in order to maintain the low-temperature fluidity and fuel consumption while reducing the weight of the entire PM, the polycyclic aromatic content in the light oil composition of the present invention is in the range of 0.5 to 13% by volume. Is preferably 0.5 to 10% by volume, more preferably 0.5 to 5% by volume. The polycyclic aromatic component means an aromatic component having two or more rings. On the other hand, in the light oil composition of the present invention, the monocyclic aromatic component is preferably in the range of 2.5 to 15% by volume, more preferably in the range of 3 to 10% by volume, and still more preferably in the range of 3 to 7% by volume. . If the 1-ring aromatic content is 2.5% by volume or more, the calorific value can be maintained, and if it is 15% by volume or less, the weight of the entire PM in the exhaust gas of the diesel engine is further reduced. Can do. In addition, these aromatic components are calculated | required by the method prescribed | regulated to JPI-5S-49-97 "Petroleum product-hydrocarbon type test method-high performance liquid chromatograph method".

(蒸留性状)
本発明の軽油組成物においては、燃費を良好に維持する観点から、90%留出温度を270〜330℃の範囲にすることが必要である。なお、該90%留出温度は、更なる燃費の向上の観点から、280〜330℃の範囲が好ましく、290〜320℃の範囲が特に好ましい。また、本発明の軽油組成物においては、燃焼及び排気ガスの性状を良好に維持する観点から、50%留出温度を好ましくは180〜272℃、更に好ましくは215〜265℃、特に好ましくは220〜260℃の範囲とする。なお、これらの蒸留性状は、JIS K2254「蒸留試験方法」に規定された方法により求められる。
(Distillation properties)
In the light oil composition of this invention, it is necessary to make 90% distillation temperature into the range of 270-330 degreeC from a viewpoint of maintaining a fuel consumption favorable. The 90% distillation temperature is preferably in the range of 280 to 330 ° C, particularly preferably in the range of 290 to 320 ° C, from the viewpoint of further improving fuel consumption. In the light oil composition of the present invention, the 50% distillation temperature is preferably 180 to 272 ° C, more preferably 215 to 265 ° C, particularly preferably 220, from the viewpoint of maintaining good combustion and exhaust gas properties. The range is ˜260 ° C. These distillation properties are determined by a method defined in JIS K2254 “Distillation test method”.

(ナノ粒子排出指数NPI)
上述のように、本発明者らが、分子量300以上の炭化水素、炭素数10以上の芳香族化合物、炭素数10以上のナフテン及びパラフィンといった4つの成分の含有量について最適化を試みたところ、ディーゼルエンジン排気ガス中に含まれるナノ粒子の個数を低減させるためには、次式:
NPI=0.037×A+0.21×B+0.054×C+0.097×D
[式中、Aは分子量300以上の炭化水素の含有量(容量%)で、Bは炭素数10以上の芳香族分(容量%)で、Cは炭素数10以上のナフテン分(容量%)で、Dはパラフィン分(容量%)である]で算出されるナノ粒子排出指数(NPI)を9.1〜9.6とする必要があることを見出した。なお、該ナノ粒子排出指数(NPI)は、ナノ粒子排出量を更に低減する観点から、9.5以下が好ましく、9.2以下が更に好ましい。加えて、分子量300以上の炭化水素の含有量(A)は、ナノ粒子排出量を低減しつつ、ディーゼルエンジン排気ガス中のPM全体の重量を低減するため、15容量%以下にすることが必要である。また、同様の観点から、炭素数10以上の芳香族分(B)は、20容量%以下が好ましく、18容量%以下が更に好ましく、15容量%以下が特に好ましく、炭素数10以上のナフテン分(C)は、35容量%以下が好ましく、30容量%以下が更に好ましく、28容量%以下が特に好ましい。パラフィン分(D)は、ナノ粒子排出量を低減しつつ、ディーゼルエンジン排気ガス中のPM全体の重量を低減するため、50容量%以下にすることが必要である。なお、上記成分含有量(A、B、C、D)の分析には、Agilent Technologies社製HP−6890N型FID検出器付きGC及び日本電子社製AccuTOF JMS−T100GC飛行時間型質量分析計からなるGCシステムを用いた。詳細な分析条件は次の通りである。
(Nanoparticle emission index NPI)
As described above, the present inventors tried to optimize the content of four components such as a hydrocarbon having a molecular weight of 300 or more, an aromatic compound having 10 or more carbon atoms, a naphthene having 10 or more carbon atoms, and paraffin. To reduce the number of nanoparticles contained in diesel engine exhaust gas, the following formula:
NPI = 0.037 × A + 0.21 × B + 0.054 × C + 0.097 × D
[In the formula, A is the content (volume%) of hydrocarbons having a molecular weight of 300 or more, B is an aromatic content (volume%) having 10 or more carbon atoms, and C is a naphthene content (volume%) having 10 or more carbon atoms. And D is the paraffin content (volume%)], and found that the nanoparticle emission index (NPI) calculated by 9.1 to 9.6 is required. The nanoparticle emission index (NPI) is preferably 9.5 or less, and more preferably 9.2 or less, from the viewpoint of further reducing the nanoparticle emission. In addition, the content of molecular weight 300 or more hydrocarbon (A), while reducing the nanoparticle emissions, to reduce the weight of the entire PM in diesel engine exhaust gases, be a 1 5% by volume or less Is necessary . From the same viewpoint, the aromatic content (B) having 10 or more carbon atoms is preferably 20% by volume or less, more preferably 18% by volume or less, particularly preferably 15% by volume or less, and the naphthene content having 10 or more carbon atoms. (C) is preferably 35% by volume or less, more preferably 30 volume% or less, 28% by volume or less is not particularly preferred. The paraffin content (D) needs to be 50% by volume or less in order to reduce the weight of the entire PM in the diesel engine exhaust gas while reducing the nanoparticle emission amount . The analysis of the component contents (A, B, C, D) consists of an Agilent Technologies HP-6890N type FID detector GC and an JEOL AccuTOF JMS-T100GC time-of-flight mass spectrometer. A GC system was used. Detailed analysis conditions are as follows.

1次カラム:微極性カラム(Supelco社製PTE−5、長さ30m、内径0.25mm、フィルム厚0.25μm)
モジュレータ中空カラム:長さ2m、内径0.25mm
2次カラム:高極性カラム(Supelco社製SpelcoWAX10、長さ2m、内径0.25mm、フィルム厚0.25μm)
昇温条件:10℃/分(50℃(5分保持)から280℃(27分保持))
注入口温度:280℃
注入量:1.0μl
スプリット比:100:1
キャリアガス:ヘリウム(He)、1.0ml/分
モジュレータ温度:下記のコールド温度、ホット温度を繰り返す。
ホットジェットガス温度:150℃(5分保持)から320℃(33分保持)に10℃/分で昇温。
コールドジェットガス温度:約−140℃
モジュレータ頻度:6秒間で0.3秒間ホット温度、その後5.7秒間コールド温度。
インターフェイス中空カラム:長さ0.5m、内径0.25mm
FIDガス条件:水素(45mL/分)、空気(450mL/分)、メークアップヘリウム(25mL/分)
Primary column: Slight polar column (PTE-5 manufactured by Supelco, length 30 m, inner diameter 0.25 mm, film thickness 0.25 μm)
Modulator hollow column: length 2m, inner diameter 0.25mm
Secondary column: High-polarity column (SpelcoWAX10 from Supelco, length 2 m, inner diameter 0.25 mm, film thickness 0.25 μm)
Temperature rising condition: 10 ° C./min (from 50 ° C. (5 min hold) to 280 ° C. (27 min hold))
Inlet temperature: 280 ° C
Injection volume: 1.0 μl
Split ratio: 100: 1
Carrier gas: helium (He), 1.0 ml / min Modulator temperature: The following cold temperature and hot temperature are repeated.
Hot jet gas temperature: The temperature was raised from 150 ° C. (5 minutes hold) to 320 ° C. (33 minutes hold) at 10 ° C./min.
Cold jet gas temperature: about -140 ° C
Modulator frequency: 6 seconds for 0.3 seconds hot temperature, then 5.7 seconds for cold temperature.
Interface hollow column: 0.5m length, 0.25mm inner diameter
FID gas conditions: hydrogen (45 mL / min), air (450 mL / min), make-up helium (25 mL / min)

ここで、上記GCシステムは、炭素数7〜44の化合物を測定することが可能であり、測定したピーク(山形)の溶出時間とマススペクトルから、それぞれのピーク(山形)に対応する化合物を同定する。同定された全ピーク(山形)の合計を含有量合計(100ピーク体積%)とし、それぞれのピーク(山形)から対応するそれぞれの化合物の含有量をピーク体積%として算出し、これを容量%とする。   Here, the GC system can measure a compound having 7 to 44 carbon atoms, and the compound corresponding to each peak (yamagata) is identified from the elution time and mass spectrum of the measured peak (yamagata). To do. The sum of all identified peaks (yamagata) is defined as the total content (100 peak volume%), and the content of each corresponding compound is calculated as the peak volume% from each peak (yamagata). To do.

(密度)
本発明の軽油組成物においては、15℃における密度を0.797〜0.831g/cmにすることが好ましい。15℃における密度を上記の範囲にすることで、燃費を良好に維持することができる。15℃における密度は、燃費及び排出ガス性状を更に向上させる観点から、0.797〜0.820g/cmが更に好ましく、0.797〜0.810g/cmが特に好ましい。なお、該密度は、JIS K2249「原油及び石油製品密度試験方法」に規定された方法で求められる。
(density)
In the light oil composition of the present invention, the density at 15 ° C. is preferably 0.797 to 0.831 g / cm 3 . By setting the density at 15 ° C. within the above range, fuel economy can be maintained satisfactorily. The density at 15 ° C. is more preferably 0.797 to 0.820 g / cm 3 and particularly preferably 0.797 to 0.810 g / cm 3 from the viewpoint of further improving fuel consumption and exhaust gas properties. The density is obtained by a method defined in JIS K2249 “Crude oil and petroleum product density test method”.

(動粘度)
本発明の軽油組成物においては、30℃における動粘度を1.8〜6.5mm/sの範囲にすることが好ましい。30℃における動粘度を上記の範囲にすることにより、燃料噴射ポンプでの潤滑性を保持することができ、また、燃料噴射時の燃料の微粒化を促進して排出ガス性状を良好にすることができる。該動粘度は、潤滑性及び排出ガス性状を更に向上させる観点から、更に好ましくは2〜6mm/s、特に好ましくは2〜3.5mm/sの範囲である。ここで、30℃における動粘度は、JIS K2283「動粘度試験方法」に規定された方法で求められる。
(Kinematic viscosity)
In the light oil composition of this invention, it is preferable to make kinematic viscosity in 30 degreeC into the range of 1.8-6.5 mm < 2 > / s. By setting the kinematic viscosity at 30 ° C. within the above range, the lubricity of the fuel injection pump can be maintained, and the atomization of the fuel during fuel injection is promoted to improve the exhaust gas properties. Can do. The kinematic viscosity is more preferably in the range of 2 to 6 mm 2 / s, particularly preferably in the range of 2 to 3.5 mm 2 / s, from the viewpoint of further improving the lubricity and exhaust gas properties. Here, the kinematic viscosity at 30 ° C. is determined by a method defined in JIS K2283 “Kinematic Viscosity Test Method”.

(硫黄分)
本発明の軽油組成物においては、排ガス中の硫黄酸化物の低減、排ガスの後処理装置の耐久性向上、及び燃料噴射ポンプでの潤滑性維持、更には燃料の酸化安定性維持の観点から、硫黄分を1〜7質量ppmの範囲にすることが好ましく、1〜6質量ppmの範囲が更に好ましく、2〜5質量ppmの範囲が特に好ましい。なお、硫黄分は、JIS K2541−6「硫黄分試験方法(紫外蛍光法)」に規定された方法で求められる。
(Sulfur content)
In the light oil composition of the present invention, from the viewpoint of reducing sulfur oxides in the exhaust gas, improving the durability of the exhaust gas aftertreatment device, maintaining the lubricity in the fuel injection pump, and maintaining the oxidation stability of the fuel, The sulfur content is preferably in the range of 1 to 7 ppm by mass, more preferably in the range of 1 to 6 ppm by mass, and particularly preferably in the range of 2 to 5 ppm by mass. In addition, a sulfur content is calculated | required by the method prescribed | regulated to JISK2541-6 "Sulfur content test method (ultraviolet fluorescence method)".

(流動点及び曇り点)
本発明の軽油組成物においては、低温時の運転性を向上させつつ燃費を良好に維持する観点から、流動点を−10℃以下にすることが好ましく、更に好ましくは−15℃以下、特に好ましくは−23℃以下である。なお、特に制限されるものではないが、本発明の軽油組成物においては、流動点が−55℃以上であることが好ましい。また、同様に低温時の運転性を向上させつつ燃費を良好に維持する観点から、本発明の軽油組成物においては、曇り点を−10℃以下にすることが好ましく、更に好ましくは−12℃以下、特に好ましくは−15℃以下である。なお、特に制限されるものではないが、本発明の軽油組成物においては、曇り点が−25℃以上であることが好ましい。ここで、流動点及び曇り点は、JIS K2269「原油及び石油製品の流動点並びに石油製品曇り点試験方法」に規定された方法で求められる。
(Pour point and cloud point)
In the light oil composition of the present invention, the pour point is preferably set to −10 ° C. or lower, more preferably −15 ° C. or lower, particularly preferably from the viewpoint of maintaining good fuel efficiency while improving drivability at low temperatures. Is −23 ° C. or lower. In addition, although it does not restrict | limit in particular, In the light oil composition of this invention, it is preferable that a pour point is -55 degreeC or more. Similarly, from the viewpoint of maintaining good fuel efficiency while improving drivability at low temperatures, in the light oil composition of the present invention, the cloud point is preferably −10 ° C. or lower, more preferably −12 ° C. Hereinafter, it is particularly preferably −15 ° C. or lower. In addition, although it does not restrict | limit in particular, In the light oil composition of this invention, it is preferable that a cloud point is -25 degreeC or more. Here, the pour point and cloud point are determined by the method specified in JIS K2269 “Pour point of crude oil and petroleum products and cloud point test method of petroleum products”.

(目詰まり点)
本発明の軽油組成物においては、低温時の運転性向上、燃費の良好な維持、及び低温流動性向上剤の添加によるコスト抑制等の観点から、目詰まり点を−12℃以下にすることが好ましく、更に好ましくは−15℃以下、特に好ましくは−20℃以下である。また、特に制限されるものではないが、本発明の軽油組成物においては、目詰まり点が−25℃以上であることが好ましい。なお、目詰まり点は、JIS K2288「石油製品−軽油−目詰まり点試験方法」に規定された方法で求められる。
(Clogging point)
In the light oil composition of the present invention, the clogging point may be set to −12 ° C. or less from the viewpoints of improving drivability at low temperatures, maintaining good fuel economy, and controlling costs by adding a low-temperature fluidity improver. Preferably, it is −15 ° C. or less, particularly preferably −20 ° C. or less. Moreover, although it does not restrict | limit in particular, In the light oil composition of this invention, it is preferable that a clogging point is -25 degreeC or more. The clogging point is determined by a method defined in JIS K2288 “Petroleum products—light oil—clogging point test method”.

(真発熱量)
本発明の軽油組成物においては、燃費を良好にするために、真発熱量を好ましくは42900kJ/kg以上、更に好ましくは42950kJ/kg以上、特に好ましくは43000kJ/kg以上である。また、特に制限されるものではないが、本発明の軽油組成物においては、真発熱量を43400kJ/kg以下にすることが好ましい。なお、真発熱量は、JIS K2279「原油及び石油製品−発熱量試験方法及び計算による推定方法」に規定された方法で求められる。
(True calorific value)
In the light oil composition of the present invention, the true calorific value is preferably 42900 kJ / kg or more, more preferably 42950 kJ / kg or more, particularly preferably 43000 kJ / kg or more in order to improve fuel efficiency. Further, although not particularly limited, in the light oil composition of the present invention, the true calorific value is preferably 43400 kJ / kg or less. The true calorific value is obtained by the method defined in JIS K2279 “Crude oil and petroleum products—The calorific value test method and the estimation method by calculation”.

(軽油組成物の調製)
本発明の軽油組成物は、原料油として、例えば、常圧蒸留装置、接触分解装置、熱分解装置等から得られる各種の軽油留分、すなわち初留点から終点までの沸点範囲(以下、沸点範囲という)が140〜400℃の範囲で留出する留分を用いて、適宜混合して水素化脱硫するか、水素化脱硫後に適宜混合することにより得られるが、芳香族を多く含む原料油を処理する場合は、製品の硫黄分や芳香族分を所定範囲にするために、反応温度や水素分圧を高くし、また水素/オイル比を高くすることが有効である。なお、芳香族を多く含む原料油は難脱硫成分も多く含むことから、水素化脱硫にあたっては硫黄分を選択的に除去する触媒を用いる必要がある。
(Preparation of light oil composition)
The gas oil composition of the present invention is used as a raw material oil, for example, various gas oil fractions obtained from an atmospheric distillation apparatus, a catalytic cracking apparatus, a thermal cracking apparatus, etc., that is, a boiling point range from an initial boiling point to an end point (hereinafter referred to as boiling point). Can be obtained by appropriately mixing and hydrodesulfurizing using a distillate distilling in the range of 140 to 400 ° C., or by appropriately mixing after hydrodesulfurization. In order to treat the sulfur content and aromatic content of the product within a predetermined range, it is effective to increase the reaction temperature and the hydrogen partial pressure and to increase the hydrogen / oil ratio. In addition, since the raw material oil containing a lot of aromatics contains a lot of difficult desulfurization components, it is necessary to use a catalyst that selectively removes sulfur in hydrodesulfurization.

水素化脱硫は、Co、Mo及びNiの1種以上を含有し、又所望によりPを担持した水素化触媒を用い、反応温度270〜380℃、好ましくは295〜360℃、反応圧力2.5〜8.5MPa、好ましくは2.7〜7.0MPa、LHSV0.9〜6.0h-1、好ましくは0.9〜5.4h-1、水素/オイル比130〜300Nm/kLの条件の範囲から適宜選択して、上述の軽油組成物が得られる様にするとよい。 Hydrodesulfurization uses a hydrogenation catalyst containing one or more of Co, Mo and Ni, and optionally carrying P, with a reaction temperature of 270 to 380 ° C., preferably 295 to 360 ° C., a reaction pressure of 2.5. To 8.5 MPa, preferably 2.7 to 7.0 MPa, LHSV 0.9 to 6.0 h −1 , preferably 0.9 to 5.4 h −1 , and a hydrogen / oil ratio of 130 to 300 Nm 3 / kL. It is good to select suitably from the range so that the above-mentioned light oil composition may be obtained.

本発明では、上記水素化脱硫した軽油留分に、灯油留分、GTL、BTXを製造する際の副生成留分、潤滑油を製造する際の副生成留分、ノルマルパラフィン化合物、ノルマルパラフィン系溶剤、イソパラフィン化合物、イソパラフィン系溶剤、芳香族化合物、芳香族系溶剤、バイオマス由来の燃料基材、ナフテン化合物、ナフテン系溶剤等を適宜配合して、上述の性状、品質に合った軽油組成物を調製することができる。   In the present invention, the hydrodesulfurized gas oil fraction is a kerosene fraction, a by-product fraction in producing GTL, BTX, a by-product fraction in producing a lubricating oil, a normal paraffin compound, a normal paraffin series. A light oil composition suitable for the above-mentioned properties and quality is appropriately blended with a solvent, isoparaffin compound, isoparaffin solvent, aromatic compound, aromatic solvent, biomass-derived fuel base material, naphthene compound, naphthenic solvent, etc. Can be prepared.

なお、上記方法で得られた軽油組成物には、低温流動性向上剤、耐摩耗性向上剤、セタン価向上剤、酸化防止剤、金属不活性化剤、腐食防止剤等の公知の燃料添加剤を添加してもよい。低温流動性向上剤としては、エチレン共重合体などを用いることができるが、特には、酢酸ビニル、プロピオン酸ビニル、酪酸ビニルなどの飽和脂肪酸のビニルエステルが好ましく用いられる。耐摩耗性向上剤としては、例えば長鎖脂肪酸(炭素数12〜24)又はその脂肪酸エステルが好ましく用いられ、10〜500質量ppm、好ましくは50〜100質量ppmの添加量で十分に耐摩耗性が向上する。   In addition, to the light oil composition obtained by the above method, known fuel additions such as a low temperature fluidity improver, an abrasion resistance improver, a cetane number improver, an antioxidant, a metal deactivator, and a corrosion inhibitor are added. An agent may be added. As the low temperature fluidity improver, an ethylene copolymer or the like can be used. In particular, a vinyl ester of a saturated fatty acid such as vinyl acetate, vinyl propionate or vinyl butyrate is preferably used. As the wear resistance improver, for example, a long-chain fatty acid (carbon number 12 to 24) or a fatty acid ester thereof is preferably used, and the wear resistance is sufficient with an addition amount of 10 to 500 ppm by mass, preferably 50 to 100 ppm by mass. Will improve.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

<軽油組成物の調製>
まず以下のようにして、評価試験のために用いる軽油組成物(供試軽油1〜6)を調製した。これらの供試軽油1〜6の組成等の分析値を表1〜2に示す。分析は、上述した方法によるが、引火点については、JIS K2265−3「引火点の求め方−第3部:ペンスキーマルテンス密閉法」に規定された方法で測定した。
<Preparation of light oil composition>
First, light oil compositions (test light oils 1 to 6) used for the evaluation test were prepared as follows. Analytical values such as the composition of these test diesel oils 1-6 are shown in Tables 1-2. The analysis was performed according to the method described above, but the flash point was measured by the method defined in JIS K2265-3 “How to determine the flash point—Part 3: Penschem Lutens Sealing Method”.

(実施例1)
供試燃料1:市販1号軽油30容量%、沸点範囲が209〜231℃のナフテン/パラフィン系溶剤であるエクゾールD80(東燃ゼネラル石油株式会社製)40容量%、炭素数14〜16のノルマルパラフィンSHNP(株式会社ジャパンエナジー製)30容量%をそれぞれ配合して調製した。
Example 1
Test fuel 1: 30% by volume of commercial No. 1 diesel oil, 40% by volume of Exol D80 (manufactured by TonenGeneral Sekiyu KK), a naphthene / paraffin solvent having a boiling range of 209 to 231 ° C., normal paraffin having 14 to 16 carbon atoms 30% by volume of SHNP (manufactured by Japan Energy Co., Ltd.) was blended and prepared.

比較例4
供試燃料2:市販1号軽油10容量%、沸点範囲が213〜262℃のイソパラフィン系溶剤であるIPソルベント2028(出光興産株式会社製)40容量%、沸点範囲が290〜305℃の高沸点芳香族系溶剤である日石ハイゾールSASグレード296(新日本石油化学株式会社製)11容量%、GTL軽油(モスガス社製)37容量%、沸点範囲が350〜400℃の高沸点芳香族系溶剤である日石ハイゾールSASグレードLH(新日本石油化学株式会社製)2容量%をそれぞれ配合して調製した。
( Comparative Example 4 )
Test fuel 2: 10 vol% of commercially available No. 1 diesel oil, 40% by volume of IP solvent 2028 (made by Idemitsu Kosan Co., Ltd.), an isoparaffin solvent having a boiling range of 213 to 262 ° C, and a high boiling point of 290 to 305 ° C Nisseki Hyzol SAS Grade 296 (manufactured by Nippon Petrochemical Co., Ltd.) 11% by volume, GTL gas oil (manufactured by Moss Gas) 37% by volume, and a boiling point range of 350-400 ° C. Nisseki Hyzol SAS Grade LH (manufactured by Nippon Petrochemical Co., Ltd.) 2% by volume was prepared.

(実施例3)
供試燃料3:市販1号軽油35容量%、市販灯油53容量%、沸点範囲が160〜195℃のNAソルベントNAS−3(日油株式会社製)12容量%をそれぞれ配合して調製した。
(Example 3)
Test fuel 3: Prepared by blending 35% by volume of commercially available No. 1 diesel oil, 53% by volume of commercially available kerosene, and 12% by volume of NA solvent NAS-3 (manufactured by NOF Corporation) having a boiling range of 160 to 195 ° C.

(比較例1)
供試燃料4:市販の2号軽油。
(Comparative Example 1)
Test fuel 4: Commercially available No. 2 diesel oil.

(比較例2)
供試燃料5:市販の3号軽油。
(Comparative Example 2)
Test fuel 5: Commercially available No. 3 diesel oil.

(比較例3)
供試燃料6:GTL軽油(モスガス社製)40容量%、沸点範囲が213〜262℃のイソパラフィン系溶剤であるIPソルベント2028(出光興産株式会社製)30容量%、沸点範囲が255〜340℃のイソパラフィン系溶剤であるNAソルベントNAS−5H(日油株式会社製)30容量%をそれぞれ配合して調製した。
(Comparative Example 3)
Test fuel 6: 40% by volume of GTL gas oil (manufactured by Moss Gas), 30% by volume of IP solvent 2028 (manufactured by Idemitsu Kosan Co., Ltd.), an isoparaffin solvent having a boiling range of 213 to 262 ° C., and a boiling range of 255 to 340 ° C. 30% by volume of NA Solvent NAS-5H (manufactured by NOF Corporation), each of which is an isoparaffinic solvent.

Figure 0005518460
Figure 0005518460

Figure 0005518460
Figure 0005518460

次に上記供試軽油について、以下に示す車両を用いて、PM全体の重量、ナノ粒子の個数及び燃費を以下に示す方法で測定した。なお、排出ガス試験は、国内認証試験モードである10・15モードで行った。結果を表3に示す。   Next, the test diesel oil was measured for the weight of the entire PM, the number of nanoparticles, and the fuel consumption by the following vehicle using the vehicle shown below. The exhaust gas test was conducted in the 10.15 mode, which is the domestic certification test mode. The results are shown in Table 3.

<車両諸元>
車両名:トヨタ自動車(株)製エスティマ
エンジン型式:3C−TE
総排気量:2184cc
圧縮比:22.6
最高出力:69kW/4000rpm
最大トルク:206Nm/2200rpm
規制適合:短期規制適合(平成5−6年)
<Vehicle specifications>
Vehicle name: Toyota Motor Corporation Estima Engine Model: 3C-TE
Total displacement: 2184cc
Compression ratio: 22.6
Maximum output: 69kW / 4000rpm
Maximum torque: 206Nm / 2200rpm
Regulatory compliance: Short-term regulatory compliance (1993-5)

(PM全体の重量の測定)
TRIAS 24−4−1999「ディーゼル自動車10・15モード排出ガス試験方法」に規定された方法により測定した。
(Measurement of total PM weight)
Measured by the method specified in TRIAS 24-4-1999 “Diesel vehicle 10/15 mode exhaust gas test method”.

(ナノ粒子個数の測定)
1次希釈器(MD19−2E,Matter Engineering社製)及び2次希釈器(ASET15−1,Matter Engineering社製)を用いて、車両からの排出ガスを空気で希釈及び加熱した。該希釈された排出ガスの総粒子数を凝縮粒子カウンター(Condensation Particle Counter,TSI社製)で測定した。更に、測定結果からナノ粒子排出量を求め、比較例1を基準にして相対値で示した。なお、希釈条件は以下の通りである。
希釈率:105倍(1次希釈)、7倍(2次希釈)
加熱温度:80℃(1次希釈)、100℃(2次希釈)
(Measurement of the number of nanoparticles)
The exhaust gas from the vehicle was diluted and heated with air using a primary diluter (MD19-2E, manufactured by Matter Engineering) and a secondary diluter (ASET15-1, manufactured by Matter Engineering). The total number of particles of the diluted exhaust gas was measured with a condensation particle counter (made by Condensation Particle Counter, TSI). Furthermore, the nanoparticle discharge | emission amount was calculated | required from the measurement result, and it showed with the relative value on the basis of the comparative example 1. FIG. The dilution conditions are as follows.
Dilution rate: 105 times (primary dilution), 7 times (secondary dilution)
Heating temperature: 80 ° C. (primary dilution), 100 ° C. (secondary dilution)

(燃費の測定)
TRIAS 5−4−1999「ディーゼル自動車10・15モード燃料消費試験方法」に規定された方法(カーボンバランス法)により、燃費を測定した。
(Measurement of fuel consumption)
The fuel consumption was measured by the method (carbon balance method) defined in TRIAS 5-4-1999 “Diesel Vehicle 10/15 Mode Fuel Consumption Test Method”.

Figure 0005518460
Figure 0005518460


表3の結果から、本発明の軽油組成物である実施例1〜3の供試軽油は、比較例1及び2の供試軽油と比較して、燃費が同程度に良好でありながら、PM全体の重量及びナノ粒子個数を大幅に低減できることが分かる。また、比較例3の供試軽油は、全芳香族分が5容量%未満、多環芳香族分が0.5容量%未満、NPIが10を超えているため、実施例1〜3の供試軽油と比較して、PM全体の重量は良好であるものの、ナノ粒子個数が多く、燃費も悪いことが分かる。従って、本発明の軽油組成物である実施例1〜3の供試軽油は、比較例1〜3の供試軽油と比較して、ディーゼルエンジン排気ガス中に含まれるPM全体の重量及びナノ粒子の個数の双方を低減させると共に、燃費を良好に維持できることが分かる。   From the results shown in Table 3, the sample gas oils of Examples 1 to 3 which are the gas oil composition of the present invention have the same fuel efficiency as that of the sample gas oils of Comparative Examples 1 and 2, but PM It can be seen that the overall weight and the number of nanoparticles can be greatly reduced. The sample gas oil of Comparative Example 3 has a total aromatic content of less than 5% by volume, a polycyclic aromatic content of less than 0.5% by volume, and an NPI of more than 10. Although the weight of PM as a whole is good as compared with the trial light oil, it can be seen that the number of nanoparticles is large and the fuel consumption is also bad. Therefore, the test light oil of Examples 1 to 3 which is the light oil composition of the present invention has a weight and nanoparticles of the total PM contained in the diesel engine exhaust gas as compared with the test light oil of Comparative Examples 1 to 3. It can be seen that both the number of the fuel can be reduced and the fuel efficiency can be maintained well.

本発明の軽油組成物は、ディーゼルエンジン用燃料又はその混合基材として好適に利用できる。   The light oil composition of the present invention can be suitably used as a diesel engine fuel or a mixed base material thereof.

Claims (3)

全芳香族分が5〜16容量%、多環芳香族分が0.5〜13容量%、90%留出温度が270〜330℃で、分子量300以上の炭化水素の含有量が15容量%以下、パラフィン分が50容量%以下、次式:
NPI=0.037×A+0.21×B+0.054×C+0.097×D
[式中、Aは分子量300以上の炭化水素の含有量(容量%)で、Bは炭素数10以上の芳香族分(容量%)で、Cは炭素数10以上のナフテン分(容量%)で、Dはパラフィン分(容量%)であり、Aは11.6〜12.2であり、Bは11.3〜19.5であり、Cは25.6〜33.3であり、Dは37.8〜46.5である]で算出されるナノ粒子排出指数(NPI)が9.1〜9.6であることを特徴とする軽油組成物。
The total aromatic content is 5 to 16% by volume, the polycyclic aromatic content is 0.5 to 13% by volume, the 90% distillation temperature is 270 to 330 ° C., and the content of hydrocarbons having a molecular weight of 300 or more is 15% by volume. The paraffin content is 50% by volume or less, and the following formula:
NPI = 0.037 × A + 0.21 × B + 0.054 × C + 0.097 × D
[In the formula, A is the content (volume%) of hydrocarbons having a molecular weight of 300 or more, B is an aromatic content (volume%) having 10 or more carbon atoms, and C is a naphthene content (volume%) having 10 or more carbon atoms. in, D is Ri paraffins (% by volume) der, a is 11.6 to 12.2, B is from 11.3 to 19.5, C is 25.6 to 33.3, gas oil composition nanoparticle emission index D is calculated by 37.8 to 46.5 der Ru] (NPI) is characterized in that it is a 9.1 to 9.6.
炭素数10以上の芳香族分が20容量%以下、炭素数10以上のナフテン分が35容量%以下であることを特徴とする請求項1に記載の軽油組成物。   The gas oil composition according to claim 1, wherein an aromatic content having 10 or more carbon atoms is 20% by volume or less, and a naphthene content having 10 or more carbon atoms is 35% by volume or less. 1環芳香族分が2.5〜15容量%、曇り点が−10℃以下、50%留出温度が180〜272℃、真発熱量が42900kJ/kg以上であることを特徴とする請求項1又は2に記載の軽油組成物。   The single ring aromatic content is 2.5 to 15% by volume, the cloud point is -10 ° C or lower, the 50% distillation temperature is 180 to 272 ° C, and the true heating value is 42900 kJ / kg or higher. The light oil composition according to 1 or 2.
JP2009295729A 2009-12-25 2009-12-25 Light oil composition Active JP5518460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009295729A JP5518460B2 (en) 2009-12-25 2009-12-25 Light oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009295729A JP5518460B2 (en) 2009-12-25 2009-12-25 Light oil composition

Publications (2)

Publication Number Publication Date
JP2011132482A JP2011132482A (en) 2011-07-07
JP5518460B2 true JP5518460B2 (en) 2014-06-11

Family

ID=44345562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009295729A Active JP5518460B2 (en) 2009-12-25 2009-12-25 Light oil composition

Country Status (1)

Country Link
JP (1) JP5518460B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4152127B2 (en) * 2002-05-31 2008-09-17 新日本石油株式会社 Light oil composition (1)
JP4286502B2 (en) * 2002-08-07 2009-07-01 新日本石油株式会社 Light oil composition
JP4658491B2 (en) * 2004-02-26 2011-03-23 Jx日鉱日石エネルギー株式会社 Production method of environment-friendly diesel oil

Also Published As

Publication number Publication date
JP2011132482A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
JP4460200B2 (en) Fuel oil base and light oil composition containing the same
JP5520115B2 (en) Light oil composition
JP5520114B2 (en) Light oil composition
JP5317605B2 (en) Light oil composition
JP5518454B2 (en) Fuel composition for diesel hybrid
JP5317604B2 (en) Light oil composition
JP5317603B2 (en) Light oil composition
JP5518460B2 (en) Light oil composition
JP5317606B2 (en) Light oil composition
JP2013124290A (en) Light oil fuel composition
JP5317652B2 (en) Light oil composition
JP5357088B2 (en) Light oil composition
CN101790579B (en) Use of a lubricant in an internal combustion engine
JP5357086B2 (en) Light oil composition
JP5357087B2 (en) Light oil composition
JP5436041B2 (en) Light oil composition
JP5436079B2 (en) Light oil composition
JP5317653B2 (en) Light oil composition
JP2013107964A (en) Light oil fuel composition
JP4119190B2 (en) Light oil composition and method for producing the same
JP5436078B2 (en) Light oil composition
JP5311976B2 (en) Method for producing light oil composition
JP2011063780A (en) Gas oil composition and method for producing the same
JP2006348186A (en) kerosene
JP5530702B2 (en) Light oil composition and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140402

R150 Certificate of patent or registration of utility model

Ref document number: 5518460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250