JP5515442B2 - Hot tool steel and steel products using the same - Google Patents
Hot tool steel and steel products using the same Download PDFInfo
- Publication number
- JP5515442B2 JP5515442B2 JP2009143377A JP2009143377A JP5515442B2 JP 5515442 B2 JP5515442 B2 JP 5515442B2 JP 2009143377 A JP2009143377 A JP 2009143377A JP 2009143377 A JP2009143377 A JP 2009143377A JP 5515442 B2 JP5515442 B2 JP 5515442B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- steel
- amount
- thermal conductivity
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/006—Making ferrous alloys compositions used for making ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、熱間工具鋼及びこれを用いた鋼製品に関し、更に詳しくは、被削性を汎用金型鋼(JIS SKD61)と同等以上に維持しながら、汎用金型鋼より熱伝導率を向上させ、かつ、汎用金型鋼よりも衝撃値を高めた熱間工具鋼及びこれを用いた鋼製品に関する。 The present invention relates to a hot work tool steel and a steel product using the hot work tool steel. More specifically, while maintaining machinability equal to or higher than that of a general-purpose mold steel (JIS SKD61), the thermal conductivity is improved from that of a general-purpose mold steel. The present invention also relates to a hot work tool steel having an impact value higher than that of general-purpose mold steel and a steel product using the hot tool steel.
ダイカスト、熱間鍛造、温熱間鍛造に用いられる金型素材として、被削性に優れたJIS SKD61が汎用的に用いられている。しかしながら、JIS SKD61は、熱伝導率が低いため、金型温度が高くなりやすく、焼付きやヒートチェックが頻発し、型寿命が低下するという問題がある。また、JIS SKD61は、焼入性が高くないため金型の大型化に伴い、焼きが入りにくくなり靱性の低下が顕著である。従って、JIS SKD61は、ヒートチェックが助長され、型寿命が更に短くなるという問題がある。そのため、JIS SKD61よりも熱伝導率や衝撃値が優れた熱間工具鋼が産業界から要望されている。 As a die material used for die casting, hot forging, and hot forging, JIS SKD61 having excellent machinability is used for general purposes. However, since JIS SKD61 has low thermal conductivity, there is a problem that the mold temperature tends to be high, seizure and heat check occur frequently, and the mold life is shortened. Moreover, since JIS SKD61 is not high in hardenability, with the increase in size of the mold, it becomes difficult to harden and the toughness is significantly reduced. Therefore, JIS SKD61 has a problem that the heat check is promoted and the mold life is further shortened. For this reason, there is a demand from the industry for hot work tool steel that has better thermal conductivity and impact value than JIS SKD61.
そこで、この種の用途に用いて好適な各種鋼が提案されている。
例えば、特許文献1には、JIS SKD61に代わり得る焼入性やクリープ特性に優れた熱間工具鋼として、C:0.30〜0.38重量%、Si:0.10〜0.40重量%、Mn:0.60〜0.80重量%、Cr:5.40〜5.70重量%、Mo:1.50〜1.70重量%、V:0.70〜0.85重量%を必須成分として含み、残部がFeと不可避的不純物から成る鋼が開示されている。
Therefore, various steels suitable for this type of application have been proposed.
For example, in
特許文献2には、熱衝撃係数Kを導入して耐摩耗性と耐ヒートクラック性を改善した熱間スラブの幅サイジング用金型として、重量%で、C:0.1〜0.5%、Si:0.1〜1.5%、Mn:0.2〜1.5%、Ni:5.0%以下、Cr:0.5〜5.0%、Mo:1.5%以下、V:1.0%以下、Cu:0.2%以下、残部がFe及び不可避的不純物からなる鋼が開示されている。
In
特許文献3には、エレクトロスラグ再溶解してなる低サイクル疲労特性に優れた熱間工具鋼として、重量%で、C:0.32〜0.42%、Si:0.10〜1.20%、Mn:0.10〜0.50%、Cr:4.50〜5.50%、Mo:1.00〜1.50%、V:0.30〜0.80%、P:0.010%以下、S:0.003%以下、Ni:1.00%以下、Co:1.00%以下、W:1.00%以下、残部Fe及び不純物よりなる鋼が開示されている。
In
特許文献4には、実用金型の耐摩耗性と耐割れ性、耐チッピング性とを同時に向上させた熱間工具鋼として、重量%で、C:0.15%以上0.80%以下、Si:0.10%未満、Mn:3.0%以下、及び、Ni:4.0%以下、Cr:10.0%以下、Cu:3.0%以下のうちの1種又は2種以上、更に、Mo:5.0%以下、W:5.0%以下、V:3.0%以下、Ti:1.0%以下、Nb:1.0%以下、Zr:1.0%以下、Co:5.0%以下のうちの1種又は2種以上、更に、S:0.005%以下、P:0.015%以下、O:0.0030%以下、残部Fe及び不純物よりなる鋼が開示されている。
In
特許文献5には、熱間加工性及び疲労特性に優れた合金工具鋼として、重量%で、C:0.35〜1.50%、Si:0.1〜2.0%、Mn:0.1〜1.5%、Cr:2.0〜10.0%、及び、2Mo+W:1.5〜30.0%、V:0.5〜5.0%のうちの1種または2種以上、REM:0.001〜0.60%、更に、Co:1.0〜20.0%、Ni:0.01〜2.0%、Cu:0.25〜1.0%、B:0.001〜0.050%のうちの1種または2種以上を含み、S:0.0020%以下、O:0.0030%以下、N:0.020%以下、Al:0.020%以下、P:0.020%以下に規制し、残部実質的にFeよりなる鋼が開示されている。
In
特許文献6には、熱疲労特性及び軟化抵抗を高めることによってヒートチェック、水冷孔割れを抑制し、金型寿命を高寿命化できる金型用鋼として、質量%で、C:0.1〜0.6、Si:0.01〜0.8、Mn:0.1〜2.5、Cu:0.01〜2.0、Ni:0.01〜2.0、Cr:0.1〜2.0、Mo:0.01〜2.0、V、W、Nb及びTaのうち1種類若しくは2種以上を合計で:0.01〜2.0、Al:0.002〜0.04、N:0.002〜0.04、O:0.005以下含有し、残部Fe及び不可避的不純物からなる鋼が開示されている。
In
特許文献7には、被削性と熱伝導率とを両立させた安価なプラスチック成形金型用鋼として、C:0.25〜0.45%、Si:0.3%未満、Mn:0.5〜2%、S:0.01〜0.05%、sol.Al:0.02%以下を含有し、残部がFe及び不純物からなり、0.5%までのCr及び0.2%未満のVの1種以上を含んでもよい鋼が開示されている。
In
特許文献8には、ダイカスト金型の長寿命化を可能にするダイカスト金型用プリハードン鋼として、質量含有率で、0.15%以上0.35%以下のCと、0.05%以上0.20%未満のSiと、0.05%以上1.50%以下のMnと、0.020%以下のPと、0.013%以下のSと、0.10%以下のCuと、0.20%以下のNiと、0.20%以上2.50%以下のCrと、0.50%以上3.00%以下のMoと、合わせて0.05%以上0.30%以下のV及びNbと、0.020%以上0.040%以下のAlと、0.003%以下のOと、0.010%以上0.020%以下のNとを含有して残部が実質的にFeからなる鋼が開示されている。
In
特許文献9には、熱疲労特性の高いプレス金型用鋼として、C:0.10〜0.45wt%、Si:0.10〜2.0wt%、Mn:0.10〜2.0wt%、Mo:0.50〜3.0wt%、及び、V:0.50〜0.80wt%を含み、更に、Cr:3.0〜8.0wt%と、Ni:0.05〜1.2wt%とを含有し、残部Fe及び不可避的不純物よりなる鋼が開示されている。
In
特許文献10には、焼入れ性が良好で所要の衝撃値が得られ、金型寿命を高寿命化し得るとともに、球状化焼鈍性も良好で切削加工が容易な金型用鋼として、質量%で、C:0.2〜0.6%、Si:0.01〜1.5%、Mn:0.1〜2.0%、Cu:0.01〜2.0%、Ni:0.01〜2.0%、Cr:0.1〜8.0%、Mo:0.01〜5.0%、VとWとNbとTaのうち1種類あるいは2種以上の合計:0.01〜2.0%、Al:0.002〜0.04%、N:0.002〜0.04%、残部Fe及び不可避的不純物の組成を有する鋼が開示されている。
In
しかしながら、一般的に、熱伝導率を高めてヒートチェック性を高めると、被削性が悪くなり、加工の能率低下とコストアップを招くおそれがある。従って、全体としてみると、効果が相殺される場合が多い。
また、特許文献1〜10に開示された鋼は、本発明が達成しようとする被削性、熱伝導率及び衝撃値を全て兼ね備えたものではない。
例えば、特許文献1では、熱伝導率については示唆も開示もない上、過剰Vによる衝撃値劣化が懸念される。また、特許文献1では、過少Siによる被削性劣化が著しく、金型形状への加工が難しいことが懸念される。
特許文献2では、過剰Siによる熱伝導率の低下や、過少Siによる被削性劣化が懸念される。また、特許文献2では、過少Mn、過少Crによる衝撃値の低下が懸念される。
特許文献3〜5もまた、熱伝導率については示唆も開示もない。特許文献3では、過少Mnによる焼入性の不足、衝撃値の低下が懸念される。特許文献4では、過少Siによる被削性劣化が懸念される。また、特許文献4では、過少Cr、過少・過剰Vによる衝撃値の低下が懸念される。特許文献5では、過少Mnによる焼入性の不足、衝撃値の低下、過少Moによる高温強度の低下、過少・過剰Vによる衝撃値の低下が懸念される。
特許文献6〜8では、過少Crによる焼入性の低下、硬さや衝撃値の低下が懸念される。
特許文献9、10では、過少Siによる被削性劣化、過剰Siによる熱伝導率の低下、又は、過少Crによる衝撃値の低下が懸念される。
However, generally, when the heat conductivity is increased by increasing the heat conductivity, the machinability is deteriorated, and there is a possibility that the processing efficiency is lowered and the cost is increased. Therefore, the effect is often offset when viewed as a whole.
Further, the steels disclosed in
For example, in
In
In
In
本発明は、上記事情に鑑みてなされたものであり、被削性を汎用金型鋼(JIS SKD61)と同等以上に維持しながら、汎用金型鋼より熱伝導率に優れ、かつ、汎用金型鋼よりも衝撃値が高い熱間工具鋼及びこれを用いた鋼製品を提供することを目的とする。 The present invention has been made in view of the above circumstances, and has better thermal conductivity than general-purpose mold steel while maintaining machinability equivalent to or higher than general-purpose mold steel (JIS SKD61), and moreover than general-purpose mold steel. Another object of the present invention is to provide a hot tool steel having a high impact value and a steel product using the hot tool steel.
汎用金型鋼(JIS SKD61)は、被削性に優れるが、熱伝導率及び衝撃値が低い。従って、被削性、熱伝導率及び衝撃値を全て高めた鋼が産業界において要求されているが、一般的に被削性を良くすると熱伝導率が低くなり、熱伝導率を高めると被削性が悪くなるという関係にある。そのため、被削性、熱伝導率及び衝撃値全てにおいて、本発明が要求する特性を満たす鋼は従来提案されていない。
そこで、本発明者は、被削性を汎用金型鋼と同等以上に維持しながら、熱伝導率を汎用金型鋼より向上させ、更に、汎用金型鋼よりも衝撃値を高めるべく、鋭意研究を行った。その結果、本発明者は、
(a)Si量を調整することにより、被削性の劣化を防止しつつ熱伝導率を高めながら、
(b)Mn量、Cr量、Mo量、及び、V量を調整することにより、汎用金型鋼よりも高い熱伝導率を維持しつつ、汎用金型鋼よりも衝撃値を高めることができることを知見するに至った。
本発明は、このような知見に基づいてなされたものである。
General-purpose mold steel (JIS SKD61) is excellent in machinability but has low thermal conductivity and impact value. Therefore, steels with increased machinability, thermal conductivity, and impact value are required in the industry. Generally, improving machinability lowers thermal conductivity, and increasing thermal conductivity increases steel coverage. There is a relationship that the machinability deteriorates. Therefore, no steel has been proposed that satisfies the characteristics required by the present invention in all of machinability, thermal conductivity, and impact value.
Therefore, the present inventor conducted earnest research to improve the thermal conductivity of the general-purpose mold steel while maintaining the machinability at the same level as or higher than that of the general-purpose mold steel, and to further increase the impact value of the general-purpose mold steel. It was. As a result, the present inventor
(A) By adjusting the amount of Si, while improving the thermal conductivity while preventing deterioration of machinability,
(B) By adjusting the amount of Mn, the amount of Cr, the amount of Mo, and the amount of V, it is found that the impact value can be increased more than that of general-purpose mold steel while maintaining higher thermal conductivity than that of general-purpose mold steel. It came to do.
The present invention has been made based on such knowledge.
上記課題を解決するために、本発明に係る熱間工具鋼は、
0.20≦C≦0.42質量%、
0.40<Si<0.75質量%、
0.65≦Mn≦1.50質量%、
5.24≦Cr≦9.00質量%、
1.08<Mo≦2.50質量%、及び、
0.30<V<0.70質量%を含み、
残部がFe及び不可避的不純物からなることを要旨とする。
ここで、不可避的不純物としては、例えば、W<0.30質量%、Co<0.30質量%、Nb<0.004質量%、Ta<0.004質量%、Ti<0.004質量%、Zr<0.004質量%、Al<0.004質量%、N<0.004質量%、Cu<0.15質量%、Ni<0.15質量%、B<0.0010質量%、S<0.010質量%、Ca<0.0005質量%、Se<0.03質量%、Te<0.005質量%、Bi<0.01質量%、Pb<0.03質量%、Mg<0.005質量%、O<0.0080質量%等がある。
In order to solve the above problems, the hot work tool steel according to the present invention is:
0.20 ≦ C ≦ 0.42 % by mass,
0.40 <Si <0.75% by mass,
0.65 ≦ Mn ≦ 1.50 mass%,
5.24 ≦ Cr ≦ 9.00 mass%,
1.08 <Mo ≦ 2.50 % by mass, and
Including 0.30 <V <0.70 mass%,
The gist is that the balance consists of Fe and inevitable impurities.
Here, as inevitable impurities, for example, W <0.30 mass%, Co <0.30 mass%, Nb <0.004 mass%, Ta <0.004 mass%, Ti <0.004 mass%. Zr <0.004 mass%, Al <0.004 mass%, N <0.004 mass%, Cu <0.15 mass%, Ni <0.15 mass%, B <0.0010 mass%, S <0.010% by mass, Ca <0.0005% by mass, Se <0.03% by mass, Te <0.005% by mass, Bi <0.01% by mass, Pb <0.03% by mass, Mg <0 0.005% by mass, O <0.0080% by mass, and the like.
本発明に係る熱間工具鋼は、更に、
0.30≦W≦4.00質量%を含むものでもよい。
The hot work tool steel according to the present invention further comprises:
It may contain 0.30 ≦ W ≦ 4.00 mass%.
本発明に係る熱間工具鋼は、更に、
0.30≦Co≦3.00質量%を含むものでもよい。
The hot work tool steel according to the present invention further comprises:
It may contain 0.30 ≦ Co ≦ 3.00 mass%.
本発明に係る熱間工具鋼は、更に、
0.004≦Nb≦0.100質量%、
0.004≦Ta≦0.100質量%、
0.004≦Ti≦0.100質量%、
0.004≦Zr≦0.100質量%、
0.004≦Al≦0.050質量%、及び、
0.004≦N≦0.024質量%からなる群から選ばれる少なくとも1種以上を含むものでもよい。
The hot work tool steel according to the present invention further comprises:
0.004 ≦ Nb ≦ 0.100 mass%,
0.004 ≦ Ta ≦ 0.100 mass%,
0.004 ≦ Ti ≦ 0.100 mass%,
0.004 ≦ Zr ≦ 0.100 mass%,
0.004 ≦ Al ≦ 0.050 mass%, and
It may contain at least one selected from the group consisting of 0.004 ≦ N ≦ 0.024 mass%.
本発明に係る熱間工具鋼は、更に、
0.15≦Cu≦1.50質量%、
0.15≦Ni≦0.96質量%、及び、
0.0010≦B≦0.0100質量%からなる群から選ばれる少なくとも1種以上を含むものでもよい。
The hot work tool steel according to the present invention further comprises:
0.15 ≦ Cu ≦ 1.50 mass%,
0.15 ≦ Ni ≦ 0.96 % by mass, and
It may contain at least one selected from the group consisting of 0.0010 ≦ B ≦ 0.0100 mass%.
本発明に係る熱間工具鋼は、更に、
0.010≦S≦0.500質量%、
0.0005≦Ca≦0.2000質量%、
0.03≦Se≦0.50質量%、
0.005≦Te≦0.100質量%、
0.01≦Bi≦0.30質量%、及び、
0.03≦Pb≦0.50質量%からなる群から選ばれる少なくとも1種以上を含むものでもよい。
The hot work tool steel according to the present invention further comprises:
0.010 ≦ S ≦ 0.500 mass%,
0.0005 ≦ Ca ≦ 0.2000 mass%,
0.03 ≦ Se ≦ 0.50 mass%,
0.005 ≦ Te ≦ 0.100 mass%,
0.01 ≦ Bi ≦ 0.30 mass%, and
It may contain at least one selected from the group consisting of 0.03 ≦ Pb ≦ 0.50 mass%.
本発明に係る鋼製品は、本発明に係る熱間工具鋼を用いたことを要旨とする。
ここで、「鋼製品」とは、例えば、ダイカスト用金型、熱間鍛造用金型、温熱間鍛造用金型をいうがこれらに限定されるものではない。
The gist of the steel product according to the present invention is the use of the hot tool steel according to the present invention.
Here, the “steel product” refers to, for example, a die casting mold, a hot forging mold, and a hot forging mold, but is not limited thereto.
本発明に係る熱間工具鋼及びこれを用いた鋼製品は、上記成分組成を有するため、汎用金型鋼(JIS SKD61)と同等以上の被削性を維持しながら、汎用金型鋼よりも熱導率に優れ、かつ、衝撃値が高いという効果がある。すなわち、被削性、熱伝導率、衝撃値の各特性のバランスに優れるという従来にはない効果を有する。
詳細には、本発明に係る熱間工具鋼は、汎用金型鋼よりも優れた熱伝導率が得られ、かつ、汎用金型鋼と同等以上の被削性を確保できるようにSi量が最適化され、更に、Mn量、Cr量、Mo量、V量が最適化されている。従って、本発明に係る熱間工具鋼は、優れた被削性、高い熱伝導率を備えるだけでなく、高い焼入れ性と、高い衝撃値を備えるという効果がある。そのため、本発明に係る熱間工具鋼は、金型加工にかかるコストが汎用金型鋼よりも高くなることは無い。また、本発明に係る熱間工具鋼は、焼付きやヒートチェックが生じにくい。その結果、長い金型寿命が得られ、ダイカストや温熱間鍛造の製造コスト低減や生産性向上が達成される。
Since the hot tool steel and the steel product using the same according to the present invention have the above-described composition, they are more thermally conductive than general-purpose mold steel while maintaining machinability equivalent to or higher than that of general-purpose mold steel (JIS SKD61). It has the effect of being excellent in rate and having a high impact value. That is, it has an unprecedented effect of being excellent in the balance of machinability, thermal conductivity, and impact value.
Specifically, the hot work tool steel according to the present invention has an optimized amount of Si so that a thermal conductivity superior to that of general-purpose mold steel can be obtained and machinability equivalent to or higher than that of general-purpose mold steel can be secured. Furthermore, the amount of Mn, the amount of Cr, the amount of Mo, and the amount of V are optimized. Therefore, the hot work tool steel according to the present invention has not only excellent machinability and high thermal conductivity, but also has an effect of providing high hardenability and a high impact value. Therefore, the hot tool steel according to the present invention does not have a higher cost for die machining than general-purpose die steel. Moreover, the hot work tool steel according to the present invention hardly causes seizure or heat check. As a result, a long die life can be obtained, and the manufacturing cost reduction and productivity improvement of die casting and hot forging can be achieved.
以下に、本発明の一実施形態に係る熱間工具鋼及びこれを用いた鋼製品について説明する。
(熱間工具鋼の成分組成及びその限定理由)
本実施形態に係る熱間工具鋼は、必須元素として、C、Si、Mn、Cr、Mo、及び、Vを含み、残部がFe及び不可避的不純物からなる。本実施形態に係る熱間工具鋼は、不可避的不純物として、例えば、W、Co、Nb、Ta、Ti、Zr、Al、N、Cu、Ni、B、S、Ca、Se、Te、Bi、Pb、Mg、及び、O等を含む。
Below, the hot tool steel which concerns on one Embodiment of this invention, and the steel products using this are demonstrated.
(Component composition of hot tool steel and reasons for limitation)
The hot tool steel according to the present embodiment contains C, Si, Mn, Cr, Mo, and V as essential elements, and the balance is made of Fe and inevitable impurities. The hot tool steel according to the present embodiment includes, for example, W, Co, Nb, Ta, Ti, Zr, Al, N, Cu, Ni, B, S, Ca, Se, Te, Bi, as unavoidable impurities. Pb, Mg, O and the like are included.
(1)0.20≦C≦0.50質量%
Cは、鋼の強度調整に必要な必須元素である。C量が0.20質量%未満では、必要な硬さ36HRC以上を得にくい。C量が0.50質量%を超えると、硬さが飽和傾向であると同時に炭化物量が過度となり、疲労強度や衝撃値を劣化させる。そこで、C量は、0.20≦C≦0.50質量%とする。C量は、硬さと疲労強度と衝撃値のバランスに優れた0.24≦C≦0.46質量%がより好ましく、0.28<C≦0.42質量%が更に好ましい。
(1) 0.20 ≦ C ≦ 0.50 mass%
C is an essential element necessary for adjusting the strength of steel. If the amount of C is less than 0.20% by mass, it is difficult to obtain the required hardness of 36 HRC or more. When the amount of C exceeds 0.50% by mass, the hardness tends to be saturated and the amount of carbide becomes excessive, and the fatigue strength and impact value are deteriorated. Therefore, the C amount is set to 0.20 ≦ C ≦ 0.50 mass%. The amount of C is more preferably 0.24 ≦ C ≦ 0.46% by mass, and more preferably 0.28 <C ≦ 0.42% by mass, which is excellent in the balance of hardness, fatigue strength, and impact value.
(2)0.40<Si<0.75質量%
Siは、鋼の被削性調整に必要な必須元素である。Si量が0.40質量%以下では汎用金型鋼と同等以上の被削性の確保が困難になる。Si量が0.75質量%以上になると、熱伝導率の低下が大きい。そこで、Si量は、0.40<Si<0.75質量%とする。Si量は、被削性と熱伝導率のバランスが良い0.44≦Si≦0.70質量%がより好ましく、0.48≦Si≦0.65質量%が更に好ましい。
(2) 0.40 <Si <0.75 mass%
Si is an essential element necessary for adjusting the machinability of steel. When the Si amount is 0.40 mass% or less, it becomes difficult to ensure machinability equivalent to or higher than that of general-purpose mold steel. When the Si amount is 0.75% by mass or more, the thermal conductivity is greatly reduced. Therefore, the Si amount is set to 0.40 <Si <0.75 mass%. The amount of Si is more preferably 0.44 ≦ Si ≦ 0.70% by mass with a good balance between machinability and thermal conductivity, and further preferably 0.48 ≦ Si ≦ 0.65% by mass.
(3)0.50<Mn≦1.50質量%
Mnは、焼入性を向上させるための必須元素である。Mn量が0.50質量%以下では焼き入れ性が不足し、硬さや衝撃値の確保が困難である。Mn量が1.50質量%を超えると、かえって衝撃値が低下するだけでなく、高い熱伝導率の維持が困難となる。そこで、Mn量は、0.50<Mn≦1.50質量%とする。また、Mn量は、硬さと衝撃値を確保でき、かつ高い熱伝導率が得られる0.55≦Mn≦1.35質量%がより好ましく、0.65≦Mn≦1.20質量%が更に好ましい。
(3) 0.50 <Mn ≦ 1.50 mass%
Mn is an essential element for improving hardenability. When the amount of Mn is 0.50% by mass or less, hardenability is insufficient, and it is difficult to ensure hardness and impact value. When the amount of Mn exceeds 1.50 mass%, not only the impact value is lowered, but it is difficult to maintain high thermal conductivity. Therefore, the amount of Mn is set to 0.50 <Mn ≦ 1.50 mass%. Further, the amount of Mn is more preferably 0.55 ≦ Mn ≦ 1.35% by mass, which can ensure hardness and impact value and high thermal conductivity, and further 0.65 ≦ Mn ≦ 1.20% by mass. preferable.
(4)5.24≦Cr≦9.00質量%
Crは、焼入性を向上させるだけでなく、炭化物を形成して鋼を高強度化するための必須元素である。Cr量は、5.24質量%未満では焼き入れ性が不足し、硬さと衝撃値が充分に得られない。また、腐食環境に晒されるダイカスト金型に求められる耐食性は、Cr量の多い方が高くなる。一方で、Cr量が9.00質量%を超えると、高い熱伝導率の維持が困難となる。そこで、Cr量は、5.24≦Cr≦9.00質量%とする。また、Cr量は、硬さと衝撃値と耐食性を確保でき、かつ高い熱伝導率が得られる5.40<Cr≦8.40質量%がより好ましく、5.55≦Cr≦7.80質量%が更に好ましい。
(4) 5.24 ≦ Cr ≦ 9.00 mass%
Cr is an essential element not only for improving hardenability but also for forming a carbide to increase the strength of the steel. If the amount of Cr is less than 5.24% by mass, the hardenability is insufficient and the hardness and impact value cannot be sufficiently obtained. Further, the corrosion resistance required for the die casting mold exposed to the corrosive environment is higher when the amount of Cr is larger. On the other hand, if the Cr content exceeds 9.00 mass%, it is difficult to maintain high thermal conductivity. Therefore, the Cr amount is set to 5.24 ≦ Cr ≦ 9.00 mass%. The amount of Cr is more preferably 5.40 <Cr ≦ 8.40% by mass, which can ensure hardness, impact value and corrosion resistance and obtain high thermal conductivity, and 5.55 ≦ Cr ≦ 7.80% by mass. Is more preferable.
(5)1.08<Mo<2.99質量%
Moは、焼入性を向上させるだけでなく、炭化物を形成して鋼を高強度化するため、特に高温強度を高めるための必須元素である。Mo量は、1.08質量%以下では、充分な高温強度が得られない。一方で、Mo量が2.99質量%以上では、高温強度が飽和傾向であると同時に、著しいコスト増となって経済性を阻害する。そこで、Mo量は、1.08<Mo<2.99質量%とする。また、Mo量は、1.15<Mo≦2.80質量%がより好ましく、1.20≦Mo≦2.50質量%が更に好ましい。
(5) 1.08 <Mo <2.99% by mass
Mo is an essential element not only for improving hardenability, but also for increasing the strength of the steel by forming carbides, and in particular for increasing the high-temperature strength. If the Mo amount is 1.08% by mass or less, sufficient high-temperature strength cannot be obtained. On the other hand, when the amount of Mo is 2.99% by mass or more, the high temperature strength tends to be saturated, and at the same time, the cost is significantly increased and the economy is hindered. Therefore, the Mo amount is set to 1.08 <Mo <2.99% by mass. The amount of Mo is more preferably 1.15 <Mo ≦ 2.80 mass%, and further preferably 1.20 ≦ Mo ≦ 2.50 mass%.
(6)0.30<V<0.70質量%
Vは、焼入性を向上させるだけでなく、炭化物を形成して鋼を高強度化するため、特に高温強度を高めるための必須元素である。V量が0.30質量%以下では、焼入れ時の結晶粒が粗大化しやすく、衝撃値を低下させる。一方で、V量が0.70質量%以上では、粗大炭化物の量が過度となり、衝撃値を劣化させる。そこで、V量は、0.30<V<0.70質量%とする。また、V量は、軟化抵抗を確保でき、かつ疲労強度と衝撃値が充分に得られる0.40≦V≦0.67質量%がより好ましく、0.50≦V≦0.64質量%が更に好ましい。
(6) 0.30 <V <0.70 mass%
V is an essential element not only for improving hardenability but also for increasing the strength of the steel by forming carbides, and in particular for increasing the high-temperature strength. When the amount of V is 0.30% by mass or less, crystal grains at the time of quenching tend to be coarsened, and the impact value is lowered. On the other hand, if the amount of V is 0.70% by mass or more, the amount of coarse carbide becomes excessive and the impact value is deteriorated. Therefore, the V amount is set to 0.30 <V <0.70 mass%. Further, the amount of V is more preferably 0.40 ≦ V ≦ 0.67% by mass, which can ensure softening resistance and sufficient fatigue strength and impact value, and 0.50 ≦ V ≦ 0.64% by mass. Further preferred.
(7)不可避的不純物:W<0.30質量%、Co<0.30質量%、Nb<0.004質量%、Ta<0.004質量%、Ti<0.004質量%、Zr<0.004質量%、Al<0.004質量%、N<0.004質量%、Cu<0.15質量%、Ni<0.15質量%、B<0.0010質量%、S<0.010質量%、Ca<0.0005質量%、Se<0.03質量%、Te<0.005質量%、Bi<0.01質量%、Pb<0.03質量%、Mg<0.005質量%、O<0.0080質量%等。
W、Co、Nb、Ta、Ti、Zr、Al、N、Cu、Ni、B、S、Ca、Se、Te、Bi、Pb、Mg、及び、O等が上記量の範囲である場合には、これらの元素は、不可避的不純物として含まれる。
(7) Inevitable impurities: W <0.30 mass%, Co <0.30 mass%, Nb <0.004 mass%, Ta <0.004 mass%, Ti <0.004 mass%, Zr <0. .004 mass%, Al <0.004 mass%, N <0.004 mass%, Cu <0.15 mass%, Ni <0.15 mass%, B <0.0010 mass%, S <0.010. Mass%, Ca <0.0005 mass%, Se <0.03 mass%, Te <0.005 mass%, Bi <0.01 mass%, Pb <0.03 mass%, Mg <0.005 mass%. , O <0.0080 mass%, etc.
When W, Co, Nb, Ta, Ti, Zr, Al, N, Cu, Ni, B, S, Ca, Se, Te, Bi, Pb, Mg, O, etc. are within the above ranges. These elements are included as inevitable impurities.
本実施形態に係る熱間工具鋼は、選択元素として、更に、
(a)W、
(b)Co、
(c)Nb、Ta、Ti、Zr、Al、及び、Nからなる群から選ばれる少なくとも1種以上、
(d)Cu、Ni、及び、Bからなる群から選ばれる少なくとも1種以上、及び/又は、
(e)S、Ca、Se、Te、Bi、及び、Pbからなる群から選ばれる少なくとも1種以上、を含むものでもよい。
The hot tool steel according to the present embodiment is further selected as a selection element,
(A) W,
(B) Co,
(C) at least one selected from the group consisting of Nb, Ta, Ti, Zr, Al, and N,
(D) at least one selected from the group consisting of Cu, Ni, and B, and / or
(E) It may contain at least one selected from the group consisting of S, Ca, Se, Te, Bi, and Pb.
(8)0.30≦W≦4.00質量%
Wは、炭化物の析出によって強度を上げるため(析出硬化)、添加することができる選択元素である。W量が0.30質量%未満では高強度化の効果が小さい。一方で、W量が4.00質量%を超えると効果の飽和と著しいコスト増を招く。そこで、W量は、0.30≦W≦4.00質量%とする。
(8) 0.30 ≦ W ≦ 4.00 mass%
W is a selective element that can be added to increase strength by precipitation of carbide (precipitation hardening). If the amount of W is less than 0.30% by mass, the effect of increasing the strength is small. On the other hand, if the amount of W exceeds 4.00% by mass, the effect is saturated and the cost is significantly increased. Therefore, the W amount is set to 0.30 ≦ W ≦ 4.00 mass%.
(9)0.30≦Co≦3.00質量%
Coは、母材への固溶によって強度を上げるため(固溶硬化)、添加することができる選択元素である。Co量が0.30質量%未満では高強度化の効果が小さい。一方で、Co量が3.00質量%を超えると効果の飽和とコストの著しい増加を招く。そこで、Co量は、0.30≦Co≦3.00質量%とする。
(9) 0.30 ≦ Co ≦ 3.00 mass%
Co is a selective element that can be added to increase the strength by solid solution in the base material (solid solution hardening). If the amount of Co is less than 0.30% by mass, the effect of increasing the strength is small. On the other hand, if the amount of Co exceeds 3.00 mass%, saturation of effects and a significant increase in cost are caused. Therefore, the amount of Co is set to 0.30 ≦ Co ≦ 3.00 mass%.
(10)0.004≦Nb≦0.100質量%、
0.004≦Ta≦0.100質量%、
0.004≦Ti≦0.100質量%、
0.004≦Zr≦0.100質量%、
0.004≦Al≦0.050質量%、及び、
0.004≦N≦0.050質量%からなる群から選ばれる少なくとも1種以上
Nb、Ta、Ti、Zr、Al、及び、Nは、結晶粒を微細化(結晶粒微細化)して強度と靭性を上げるため、添加することができる選択元素である。いずれの元素も、所定量未満では強度と靭性の改善効果が小さい。また、所定量を超えると炭化物や窒化物や酸化物が過度に生成し、かえって靭性の低下を招く。
(10) 0.004 ≦ Nb ≦ 0.100 mass%,
0.004 ≦ Ta ≦ 0.100 mass%,
0.004 ≦ Ti ≦ 0.100 mass%,
0.004 ≦ Zr ≦ 0.100 mass%,
0.004 ≦ Al ≦ 0.050 mass%, and
At least one or more selected from the group consisting of 0.004 ≦ N ≦ 0.050 mass% Nb, Ta, Ti, Zr, Al, and N are strengths obtained by refining crystal grains (refining crystal grains). It is a selective element that can be added to increase toughness. If any element is less than a predetermined amount, the effect of improving strength and toughness is small. On the other hand, when the amount exceeds a predetermined amount, carbides, nitrides, and oxides are excessively generated, which leads to a decrease in toughness.
(11)0.15≦Cu≦1.50質量%、
0.15≦Ni≦1.50質量%、及び、
0.0010≦B≦0.0100質量%、からなる群から選ばれる少なくとも1種以上
Cu、Ni、及び、Bは、焼入れ性を向上させるため(焼入性向上)、添加することができる選択元素である。いずれの元素も、所定量未満では焼入れ性の改善効果が小さい。また、所定量を超えると効果が飽和して実益に乏しい。特に、Cu、及び、Niは、過度の添加が熱伝導率を低下させる。
(11) 0.15 ≦ Cu ≦ 1.50 mass%,
0.15 ≦ Ni ≦ 1.50 mass%, and
At least one selected from the group consisting of 0.0010 ≦ B ≦ 0.0100% by mass Cu, Ni, and B are selections that can be added to improve hardenability (improving hardenability) It is an element. If any element is less than the predetermined amount, the effect of improving the hardenability is small. Moreover, if it exceeds a predetermined amount, the effect is saturated and the actual profit is poor. In particular, excessive addition of Cu and Ni lowers the thermal conductivity.
(12)0.010≦S≦0.500質量%、
0.0005≦Ca≦0.2000質量%、
0.03≦Se≦0.50質量%、
0.005≦Te≦0.100質量%、
0.01≦Bi≦0.30質量%、及び、
0.03≦Pb≦0.50質量%からなる群から選ばれる少なくとも1種以上
S、Ca、Se、Te、Bi、及び、Pbは、被削性を向上させるため(被削性向上)、添加することができる選択元素である。いずれの元素も、所定量未満では被削性の改善効果が小さい。また、所定量を超えると熱間加工性が著しく劣化するため、塑性加工における割れが多発して生産性と歩留まりを低下させる。
(12) 0.010 ≦ S ≦ 0.500 mass%,
0.0005 ≦ Ca ≦ 0.2000 mass%,
0.03 ≦ Se ≦ 0.50 mass%,
0.005 ≦ Te ≦ 0.100 mass%,
0.01 ≦ Bi ≦ 0.30 mass%, and
At least one selected from the group consisting of 0.03 ≦ Pb ≦ 0.50 mass% S, Ca, Se, Te, Bi, and Pb are for improving machinability (improving machinability), It is a selective element that can be added. If any element is less than a predetermined amount, the machinability improving effect is small. Moreover, since hot workability will deteriorate remarkably when it exceeds predetermined amount, the crack in plastic processing will occur frequently and productivity and a yield will be reduced.
(製造方法)
本実施形態に係る鋼は、例えば、以下の手順により得ることができるが、これに限定されるものではない。
(Production method)
Although the steel which concerns on this embodiment can be obtained with the following procedures, for example, it is not limited to this.
(1)鋳造
上記所定成分となるように配合された原料を溶解させ、溶湯を鋳型に鋳込んでインゴットを得る。
(1) Casting The raw materials blended so as to have the predetermined components are melted, and the molten metal is cast into a mold to obtain an ingot.
(2)均質化熱処理・熱間加工
得られたインゴットの成分を均一化させ、かつ、鋳造組織を破壊するために均質化熱処理及び熱間加工を行う。均質化熱処理及び熱間加工の条件は、それぞれ、成分に応じて最適な条件を選択するのが好ましい。
均質化熱処理は、通常、インゴットを1100〜1500℃で10〜30時間程度保持することにより行われる。
熱間加工は、通常、1000〜1300℃で行われ、加工終了後は空冷される。
(2) Homogenizing heat treatment / hot working Homogenizing heat treatment and hot working are performed to homogenize the components of the obtained ingot and destroy the cast structure. As the conditions for the homogenization heat treatment and the hot working, it is preferable to select optimum conditions according to the components.
Homogenization heat processing is normally performed by hold | maintaining an ingot at 1100-1500 degreeC for about 10 to 30 hours.
Hot working is usually performed at 1000 to 1300 ° C., and air cooling is performed after the end of the working.
(3)焼戻し・球状化焼鈍・粗加工
本実施形態に係る鋼は、比較的良好な焼入性を備えているので、熱間加工後の空冷時にベイナイト変態やマルテンサイト変態が生じ、硬化している場合が多い。そのため、熱間加工後、焼戻し及び球状化焼鈍を行って素材を軟化させた後、粗加工を行うとよい。
焼戻し条件は、成分に応じて最適な条件を選択するのが好ましい。焼戻しは、通常、600〜750℃で1〜10時間程度保持することにより行われる。
球状化焼鈍は、鋼の硬さが90〜97HRB程度になるように行うのが好ましい。球状化焼鈍は、通常、800〜950℃で1〜10時間程度保持した後、1時間あたり5〜30℃の速度で冷却することにより行われる。
粗加工は、軟化させた素材を所定形状になるように機械加工することにより行われる。
(3) Tempering, spheroidizing annealing and roughing Since the steel according to this embodiment has relatively good hardenability, bainite transformation and martensitic transformation occur during air cooling after hot working, and harden. There are many cases. For this reason, after hot working, tempering and spheroidizing annealing are performed to soften the material, followed by roughing.
As the tempering conditions, it is preferable to select optimum conditions according to the components. Tempering is usually performed by holding at 600 to 750 ° C. for about 1 to 10 hours.
The spheroidizing annealing is preferably performed so that the steel has a hardness of about 90 to 97 HRB. Spheroidizing annealing is usually performed by holding at 800 to 950 ° C. for about 1 to 10 hours and then cooling at a rate of 5 to 30 ° C. per hour.
The roughing is performed by machining the softened material into a predetermined shape.
(4)調質(焼入れ・焼戻し)
調質(焼入れ・焼戻し)は、粗加工された素材を所望の硬さにするために行う。焼入れ条件及び焼戻し条件は、それぞれ、成分及び要求特性に応じて最適な条件を選択するのが好ましい。
焼入れは、通常、1000〜1050℃で0.5〜5時間保持した後、急冷することにより行われる。急冷方法は、特に限定されるものではなく、目的に応じて最適な方法を選択するのが好ましい。急冷方法としては、例えば、水冷、油冷、衝風冷却がある。
焼戻しは、通常、500〜650℃で1〜10時間保持することにより行われる。
以上(1)〜(4)の工程を経ることにより、被削性を汎用金型鋼(JIS SKD61)と同等以上に維持しながら、汎用金型鋼よりも熱伝導率に優れ、かつ、汎用金型鋼よりも衝撃値が高い鋼が得られる。
(4) Conditioning (quenching / tempering)
Conditioning (quenching and tempering) is performed in order to make the rough-processed material a desired hardness. As for quenching conditions and tempering conditions, it is preferable to select optimum conditions according to the components and required characteristics, respectively.
Quenching is usually performed by holding at 1000 to 1050 ° C. for 0.5 to 5 hours and then rapidly cooling. The rapid cooling method is not particularly limited, and it is preferable to select an optimum method according to the purpose. Examples of the rapid cooling method include water cooling, oil cooling, and blast cooling.
Tempering is usually performed by holding at 500 to 650 ° C. for 1 to 10 hours.
Through the above steps (1) to (4), the machinability is maintained to be equal to or higher than that of general-purpose mold steel (JIS SKD61), and the thermal conductivity is superior to that of general-purpose mold steel, and the general-purpose mold steel. Steel with a higher impact value is obtained.
(5)仕上げ加工
仕上げ加工は、所望の硬さに調質された素材に対して行われる。
この(5)の工程を経ることにより、本実施形態に係る熱間工具鋼を用いた鋼製品が得られる。
(5) Finishing process The finishing process is performed on a material tempered to a desired hardness.
By passing through the step (5), a steel product using the hot work tool steel according to the present embodiment is obtained.
(作用)
本実施形態に係る熱間工具鋼は、Si量が最適化されているので、汎用金型鋼と同等以上の被削性を確保でき、かつ、汎用金型鋼よりも優れた熱伝導率が得られる。また、本実施形態に係る熱間工具鋼は、Mn量、Cr量、Mo量、V量が最適化されているので、汎用金型鋼と同等以上の被削性を確保しながら、汎用金型鋼よりも熱伝導率に優れ、かつ、衝撃値が高い。そのため、本発明に係る熱間工具鋼は、金型加工にかかるコストが汎用金型鋼よりも高くなることは無い。また、本発明に係る熱間工具鋼は、焼付きやヒートチェックが生じにくい。その結果、長い金型寿命が得られ、ダイカストや温熱間鍛造の製造コスト低減や生産性向上が達成される。
(Function)
Since the hot work tool steel according to the present embodiment has an optimized amount of Si, machinability equivalent to or higher than that of general-purpose mold steel can be secured, and thermal conductivity superior to that of general-purpose mold steel can be obtained. . In addition, since the hot work tool steel according to the present embodiment is optimized in terms of Mn amount, Cr amount, Mo amount, and V amount, the general-purpose mold steel while ensuring machinability equivalent to or higher than that of the general-purpose mold steel. Better thermal conductivity and higher impact value. Therefore, the hot tool steel according to the present invention does not have a higher cost for die machining than general-purpose die steel. Moreover, the hot work tool steel according to the present invention hardly causes seizure or heat check. As a result, a long die life can be obtained, and the manufacturing cost reduction and productivity improvement of die casting and hot forging can be achieved.
(実施例A)
下記実施例Bの各発明鋼を作製するために、好ましいSi量、Mn量、Cr量、Mo量、V量を調査すべく実施例1〜5を行った。
(Example A)
In order to manufacture each invention steel of the following Example B, Examples 1-5 were performed in order to investigate preferable Si amount, Mn amount, Cr amount, Mo amount, and V amount.
(実施例1:Si量調査)
好ましいSi量を調査したので図1及び図2を参照して説明する。
図1は、0.35質量%C−0.82質量%Mn−5.73質量%Cr−1.21質量%Mo−0.62質量%V−x質量%Si鋼を切削した場合に、切削工具が寿命となるまでに削った距離をSi量に対して示す。ここで、図1及び図2の各プロット点の数値は、上側の数値がx値(質量%)を示し、下側の数値がその削った距離(mm)を示す。被削性評価用試験片は、55mm×55mm×200mmの角棒(下記実施例Bと同様の手順で作製したものであり球状化焼鈍で90〜97HRBまで軟化させたもの)であり、切削工具の横逃げ面最大磨耗量が300μmとなった時点を寿命と判定した。切削距離が大きいほど、良く削れて好ましい。
図1によれば、Si量の増加に伴い切削距離が大きくなることから、被削性向上の観点では、Si量が多いほどよい。図1によれば、Si量が0.40質量%以下では、切削距離の減少が目立つ。従って、Si量は、被削性を向上させるとの観点によれば、0.40質量%超が好ましく、0.44質量%以上がより好ましく、0.48質量%以上が更に好ましい。一方、Si量が0.75質量%以上になると改善効果が顕著ではない。
(Example 1: Si amount investigation)
A preferred amount of Si has been investigated and will be described with reference to FIGS.
FIG. 1 shows a case where 0.35 mass% C-0.82 mass% Mn-5.73 mass% Cr-1.21 mass% Mo-0.62 mass% Vx mass% Si steel is cut. The distance shaved until the cutting tool reaches the end of its life is shown relative to the amount of Si. Here, as for the numerical value of each plot point in FIG. 1 and FIG. 2, the upper numerical value indicates the x value (mass%), and the lower numerical value indicates the shaved distance (mm). The test piece for machinability evaluation is a 55 mm × 55 mm × 200 mm square bar (prepared in the same procedure as in Example B below and softened to 90 to 97 HRB by spheroidizing annealing), and a cutting tool The point at which the maximum lateral flank wear amount was 300 μm was determined as the life. The larger the cutting distance, the better the cutting.
According to FIG. 1, the cutting distance increases with an increase in the Si amount. Therefore, the larger the Si amount, the better from the viewpoint of improving machinability. According to FIG. 1, when the Si amount is 0.40% by mass or less, the cutting distance is noticeably reduced. Therefore, the amount of Si is preferably more than 0.40% by mass, more preferably 0.44% by mass or more, and still more preferably 0.48% by mass or more from the viewpoint of improving machinability. On the other hand, when the Si amount is 0.75% by mass or more, the improvement effect is not remarkable.
図1と同じ素材のφ11mm×50mmの丸棒を1030℃に加熱して急冷し、焼戻して49HRCに調質した。更に、この丸棒からφ10mm×2mmの熱伝導率測定用試験片を作製した。図2は、レーザーフラッシュ法によって室温で測定した熱伝導率をSi量に対して示したものである。図2の各プロット点の数値は、上側の数値がx値(質量%)を示し、下側の数値が熱伝導率(W/m/K)を示す。熱伝導率が大きいほど、金型となった場合の冷却能に優れるため好ましい。
図2によれば、Si量の増加に伴い熱伝導率が低下し、Si量が0.80質量%を超えると、熱伝導率は汎用金型鋼(JIS SKD61(熱伝導率24W/m/K))と比較して、それほど差がない程度にまで低下する。このため、汎用金型鋼(JIS SKD61(熱伝導率24W/m/K))以上の熱伝導率を得るという観点から、Si量の上限として0.75質量%未満を選択した。
また、図2によれば、Si量が0.10〜0.40質量%の範囲では28.3W/m/K以上の高い熱伝導率が得られ、Si量が0.10〜0.70質量%の範囲では26W/m/K以上の良好な熱伝導率が得られる。
以上のことから、Si量が増加すると熱伝導率が低下するが、汎用金型鋼と比較の観点では、Si量は0.75質量%未満の範囲を上限とすればよい。熱伝導率を高めるとの観点によれば、Si量は0.70質量%以下がより好ましく、0.65質量%以下が更に好ましい。
A round bar of φ11 mm × 50 mm made of the same material as in FIG. 1 was heated to 1030 ° C., rapidly cooled, tempered and tempered to 49 HRC. Furthermore, a test piece for measuring thermal conductivity of φ10 mm × 2 mm was produced from this round bar. FIG. 2 shows the thermal conductivity measured at room temperature by the laser flash method with respect to the amount of Si. As for the numerical value of each plot point in FIG. 2, the upper numerical value indicates the x value (mass%), and the lower numerical value indicates the thermal conductivity (W / m / K). Higher thermal conductivity is preferable because of excellent cooling ability when it becomes a mold.
According to FIG. 2, the thermal conductivity decreases as the Si amount increases, and when the Si amount exceeds 0.80% by mass, the thermal conductivity is a general-purpose mold steel (JIS SKD61 (thermal conductivity 24 W / m / K )) To a level that is not so different. For this reason, from the viewpoint of obtaining a thermal conductivity equal to or higher than that of general-purpose mold steel (JIS SKD61 (thermal conductivity 24 W / m / K)), less than 0.75 mass% was selected as the upper limit of the Si amount.
In addition, according to FIG. 2, a high thermal conductivity of 28.3 W / m / K or more can be obtained when the Si amount is in the range of 0.10 to 0.40 mass%, and the Si amount is 0.10 to 0.70. In the mass% range, a good thermal conductivity of 26 W / m / K or more can be obtained.
From the above, the thermal conductivity decreases as the amount of Si increases, but from the viewpoint of comparison with general-purpose mold steel, the upper limit of the amount of Si may be less than 0.75% by mass. From the viewpoint of increasing the thermal conductivity, the amount of Si is more preferably 0.70% by mass or less, and further preferably 0.65% by mass or less.
(実施例2:Mn量調査)
好ましいMn量を調査したので図3及び図4を参照して説明する。
図3は、0.32質量%C−0.42質量%Si−5.03質量%Cr−1.22質量%Mo−0.60質量%V−x質量%Mn鋼の室温における衝撃値をMn量に対してプロットしたものである。ここで、図3の各プロット点の数値は、上側の数値がx値(質量%)を示し、下側の数値が衝撃値(J/cm2)を示す。衝撃値測定用供試材は、11mm×11mm×55mmの角棒(下記実施例Bと同様の手順で作製したものであり球状化焼鈍で90〜97HRBまで軟化させたもの)を1030℃に加熱して急冷、焼戻して49HRCに調質したものである。この角棒から10mm×10mm×55mmのJIS 3号衝撃試験片を作製し、衝撃値を室温で測定した。衝撃値が大きいほど、金型となった場合に割れにくいため好ましい。
図3によれば、Mn量が0.50質量%以下では、衝撃値が相対的に低くなっていることがわかる。また、図3によれば、衝撃値は、Mn量が増加するにつれて向上するものの、1.50質量%を超えると低下することがわかる。
図3によれば、Mn量を0.45質量%、0.55質量%とすれば、衝撃値として30J/cm2以上が得られることがわかった。そこで、Mn量は、0.45と0.55の間である0.50質量%をMn量の下限値とした。また、図3によれば、Mn量を0.65質量%以上とすれば、衝撃値として31J/cm2以上が得られる。但し、図3によれば、Mn量が1.50質量%を超えると、衝撃値は良好ではあるが低下する。
(Example 2: Mn content investigation)
Since the preferable amount of Mn was investigated, it demonstrates with reference to FIG.3 and FIG.4.
FIG. 3 shows the impact value at room temperature of 0.32 mass% C-0.42 mass% Si-5.03 mass% Cr-1.22 mass% Mo-0.60 mass% Vx mass% Mn steel. It is plotted against the amount of Mn. Here, as for the numerical value of each plot point in FIG. 3, the upper numerical value indicates the x value (mass%), and the lower numerical value indicates the impact value (J / cm 2 ). The test material for impact value measurement was prepared by heating a square bar of 11 mm × 11 mm × 55 mm (produced in the same procedure as in Example B below and softened to 90 to 97 HRB by spheroidizing annealing) to 1030 ° C. Then, it was rapidly cooled and tempered and tempered to 49HRC. A 10 mm × 10 mm × 55 mm JIS No. 3 impact test piece was produced from this square bar, and the impact value was measured at room temperature. A larger impact value is preferable because it is less likely to break when it becomes a mold.
According to FIG. 3, it can be seen that the impact value is relatively low when the amount of Mn is 0.50 mass% or less. Moreover, according to FIG. 3, although an impact value improves as the amount of Mn increases, it turns out that it will fall when it exceeds 1.50 mass%.
According to FIG. 3, when the amount of Mn was 0.45 mass% and 0.55 mass%, it was found that an impact value of 30 J / cm 2 or more was obtained. Therefore, the Mn amount is 0.50% by mass, which is between 0.45 and 0.55, as the lower limit of the Mn amount. Moreover, according to FIG. 3, when the amount of Mn is 0.65 mass% or more, an impact value of 31 J / cm 2 or more is obtained. However, according to FIG. 3, when the amount of Mn exceeds 1.50 mass%, the impact value is good but decreases.
図4は、図3と同じ素材の室温における熱伝導率をMn量に対してプロットしたものである。ここで、図4の各プロット点の数値は、上側の数値がx値(質量%)を示し、下側の数値が熱伝導率(W/m/K)を示す。
尚、熱伝導率の測定は、実施例1と同様にレーザーフラッシュ法によって行った。
図4によれば、Mn量の増加に伴い熱伝導率が低下する。図4によれば、Mn量は、熱伝導率として、JIS SKD61(熱伝導率24W/m/K)と比較して冷却能が改善する26W/m/K以上を得るには、1.50質量%以下とすればよく、更に冷却能が改善する26.4W/m/K以上を得るには、1.35質量%以下とすればよく、更に冷却能が改善する26.8W/m/Kを得るには、1.20質量%以下とすればよい。
FIG. 4 is a plot of the thermal conductivity at room temperature of the same material as in FIG. 3 against the amount of Mn. Here, as for the numerical value of each plot point in FIG. 4, the upper numerical value indicates the x value (mass%), and the lower numerical value indicates the thermal conductivity (W / m / K).
The thermal conductivity was measured by the laser flash method as in Example 1.
According to FIG. 4, the thermal conductivity decreases as the amount of Mn increases. According to FIG. 4, the amount of Mn is 1.50 in order to obtain a thermal conductivity of 26 W / m / K or more where the cooling ability is improved as compared with JIS SKD61 (thermal conductivity 24 W / m / K). What is necessary is just to set it as mass% or less, and in order to obtain 26.4 W / m / K or more which further improves cooling capacity, it should just be 1.35 mass% or less, and it further improves cooling capacity 26.8 W / m / K. In order to obtain K, the content may be 1.20% by mass or less.
(実施例3:Cr量調査)
好ましいCr量を調査したので図5及び図6を参照して説明する。
図5は、49HRCに調質した0.35質量%C−0.51質量%Si−0.84質量%Mn−1.22質量%Mo−0.61質量%V−xCr質量%鋼の室温における衝撃値をCr量に対してプロットしたものである。ここで、図5の各プロット点の数値は、上側の数値がx値(質量%)を示し、下側の数値が衝撃値(J/cm2)を示す。また、試験片の作製及び衝撃値の測定は、実施例2と同様にして行った。
図5によれば、Cr量の増加に伴い衝撃値が増加し、特にCr量が5質量%を超えるとその効果が顕著である。図5によれば、Cr量は、衝撃値として、27.2J/cm2以上を得るには5.24質量%以上とすればよいことがわかった。よって、衝撃値確保の観点からCr量の下限を5.24質量%以上とした。また、図5によれば、Cr量が5質量%未満の場合、衝撃値の低下が顕著である。
(Example 3: Investigation of Cr content)
Since the preferable Cr amount was investigated, it demonstrates with reference to FIG.5 and FIG.6.
FIG. 5 shows room temperature of 0.35 mass% C-0.51 mass% Si-0.84 mass% Mn-1.22 mass% Mo-0.61 mass% V-xCr mass% steel tempered to 49 HRC. The impact value at is plotted against the Cr content. Here, as for the numerical value of each plot point in FIG. 5, the upper numerical value indicates the x value (mass%), and the lower numerical value indicates the impact value (J / cm 2 ). Moreover, the production of the test piece and the measurement of the impact value were performed in the same manner as in Example 2.
According to FIG. 5, the impact value increases as the Cr content increases, and the effect is particularly remarkable when the Cr content exceeds 5 mass%. According to FIG. 5, it was found that the Cr amount should be 5.24% by mass or more in order to obtain 27.2 J / cm 2 or more as an impact value. Therefore, the lower limit of the Cr amount is set to 5.24% by mass or more from the viewpoint of securing the impact value. Further, according to FIG. 5, when the Cr content is less than 5% by mass, the impact value is significantly reduced.
図6は、0.21質量%C−0.41質量%Si−0.52質量%Mn−1.22質量%Mo−0.61質量%V−x質量%Cr鋼の室温における熱伝導率を、Cr量に対してプロットしたものである。ここで、図6の各プロット点の数値は、上側の数値がx値(質量%)を示し、下側の数値が熱伝導率(W/m/K)を示す。尚、熱伝導率の測定は、実施例1と同様にレーザーフラッシュ法によって行った。
図6によれば、Cr量の増加に伴い熱伝導率が低下する。図6によれば、Cr量は、熱伝導率として、JIS SKD61(熱伝導率24W/m/K)と比較して冷却能が改善する25W/m/K以上を得るには9.00質量%以下とすればよく、冷却能が改善する25.6W/m/K以上を得るには8.40質量%以下とすればよく、更に冷却能が改善する26.3W/m/K以上を得るには7.80質量%以下とすればよい。また、図6によれば、Cr量は、熱伝導率として、JIS SKD61と比較して冷却能が飛躍的に改善する28W/m/K以上を得るには6.70質量%以下とすればよい。
FIG. 6 shows room temperature thermal conductivity of 0.21 mass% C-0.41 mass% Si-0.52 mass% Mn-1.22 mass% Mo-0.61 mass% Vx mass% Cr steel. Is plotted against the Cr content. Here, as for the numerical value of each plot point in FIG. 6, the upper numerical value indicates the x value (mass%), and the lower numerical value indicates the thermal conductivity (W / m / K). The thermal conductivity was measured by the laser flash method as in Example 1.
According to FIG. 6, thermal conductivity falls with the increase in Cr amount. According to FIG. 6, the Cr amount is 9.00 mass for obtaining a thermal conductivity of 25 W / m / K or more where the cooling ability is improved as compared with JIS SKD61 (thermal conductivity 24 W / m / K). %, And in order to obtain 25.6 W / m / K or more which improves the cooling capacity, it may be 8.40% by mass or less, and 26.3 W / m / K or more which further improves the cooling capacity. In order to obtain, it should just be 7.80 mass% or less. Further, according to FIG. 6, the Cr amount should be 6.70% by mass or less in order to obtain 28 W / m / K or more in which the cooling performance is dramatically improved as compared with JIS SKD61. Good.
(実施例4:Mo量調査)
好ましいMo量を調査したので図7を参照して説明する。
図7は、0.35質量%C−0.47質量%Si−0.83質量%Mn−5.74質量%Cr−0.59質量%V−x質量%Mo鋼の高温強度(600℃での変形抵抗)をMo量に対して示す。ここで、図7の各プロット点の数値は、上側の数値がx値(質量%)を示し、下側の数値が高温強度(MPa)を示す。変形抵抗測定用供試材は、φ15mm×50mmの丸棒(下記実施例Bと同様の手順で作製したものであり球状化焼鈍で90〜97HRBまで軟化させたもの)を1030℃に加熱して急冷し、焼戻して45HRCに調質したものである。この丸棒からφ14mm×21mmの変形抵抗測定用試験片を作製し、試験片を5℃/sで600℃に加熱して100sの保持後、ひずみ速度10s−1で加工して変形抵抗を測定した。
(Example 4: Mo amount investigation)
Since the preferable amount of Mo was investigated, it demonstrates with reference to FIG.
FIG. 7 shows the high temperature strength (600 ° C.) of 0.35% by mass C-0.47% by mass Si-0.83% by mass Mn-5.74% by mass Cr-0.59% by mass Vx% by mass Mo steel. (Deformation resistance) is shown with respect to the Mo amount. Here, as for the numerical value of each plot point in FIG. 7, the upper numerical value indicates the x value (mass%), and the lower numerical value indicates the high temperature strength (MPa). The test material for measuring deformation resistance was a φ15 mm × 50 mm round bar (produced in the same procedure as in Example B below and softened to 90 to 97 HRB by spheroidizing annealing) to 1030 ° C. Quenched, tempered and tempered to 45HRC. A test piece for measuring deformation resistance of φ14 mm × 21 mm was prepared from this round bar, and the test piece was heated to 600 ° C. at 5 ° C./s, held for 100 s, and then processed at a strain rate of 10 s −1 to measure the deformation resistance. did.
ここで「変形抵抗」とは、材料を変形させるために要する単位面積当たりの力である。具体的には、「変形抵抗」は、ひずみ速度10s−1での加工中の力pwと、その力に垂直な接触面積awからKf=pw/awとして求めたKfをいう(以下、「変形抵抗」というときは同様の意味で用いる)。 Here, “deformation resistance” is a force per unit area required to deform a material. Specifically, "deformation resistance", the force p w during working at strain rate 10s -1, the K f was determined from the vertical contact area a w to that force as K f = p w / a w (Hereinafter referred to as “deformation resistance” in the same meaning).
このように測定した変形抵抗を600℃での強度(高温強度)と定義し、これをMo量に対してプロットした(図7参照)。高変形抵抗であるほど強度が高いため、磨耗しにくく好ましい。
図7によれば、高温強度は、Mo量の増加に伴い増加し、特にMo量が1.08質量%(JIS SKD61の含有量に相当する)超の範囲では高温強度の増加により比較的高い高温強度(>930MPa)が得られる。図7によれば、Mo量が1.25質量%以上3質量%以下では高温強度の増加が緩やかになり、Mo量が3質量%以上では高温強度の増加が飽和する。そこで、高温強度の増加傾向が緩やかになるMo量1.25質量%以下においては、例えば、Mo量は、1.15質量%超がより好ましく、1.20質量%以上が更に好ましい。
また、図7によれば、Mo量は、高温強度として、950MPa以上を得るには1.23質量%以上、970MPa以上を得るには2.5質量%以上とすればよい。ただし、Mo量が3質量%以上の範囲では、著しいコスト増を招来する。そのため、Mo量は、コスト低減の観点から、2.99質量%未満が好ましく、2.80質量%以下がより好ましく、2.50質量%以下が更に好ましい。
The deformation resistance thus measured was defined as the strength at 600 ° C. (high temperature strength), and this was plotted against the Mo amount (see FIG. 7). The higher the deformation resistance, the higher the strength.
According to FIG. 7, the high-temperature strength increases with an increase in the Mo amount, and is relatively high due to the increase in the high-temperature strength, particularly in the range where the Mo amount exceeds 1.08 mass% (corresponding to the content of JIS SKD61). High temperature strength (> 930 MPa) is obtained. According to FIG. 7, the increase in high temperature strength is moderate when the Mo amount is 1.25% by mass or more and 3% by mass or less, and the increase in high temperature strength is saturated when the Mo amount is 3% by mass or more. Therefore, in the Mo amount of 1.25% by mass or less where the increasing tendency of the high-temperature strength is moderate, for example, the Mo amount is more preferably more than 1.15% by mass, and further preferably 1.20% by mass or more.
Moreover, according to FIG. 7, Mo amount should just be 1.23 mass% or more in order to obtain 950 Mpa or more and 2.5 mass% or more to obtain 970 Mpa or more as high temperature strength. However, when the amount of Mo is in the range of 3% by mass or more, a significant cost increase is caused. Therefore, the Mo amount is preferably less than 2.99% by mass from the viewpoint of cost reduction, more preferably 2.80% by mass or less, and further preferably 2.50% by mass or less.
(実施例5:V量調査)
好ましいV量を調査したので図8を参照して説明する。
図8は、48HRCに調質した0.34質量%C−0.49質量%Si−0.82質量%Mn−5.75質量%Cr−1.23質量%Mo−x質量%V鋼の衝撃値をV量に対して示す。ここで、図8の各プロット点の数値は、上側の数値がx値(質量%)を示し、下側の数値が衝撃値(J/cm2)を示す。また、ここで、試験片の作製及び衝撃値の測定は、実施例2と同様にして行った。
図8によれば、V量を0.1〜1質量%の範囲で変化させた場合には、どの値でも良好な衝撃値(20J/cm2以上)が得られる。図8によれば、V量が0.30質量%付近とV量0.70質量%付近が変曲点となっている。従って、V量を0.30質量%超0.70質量%未満とすれば、焼入性向上や炭化物形成による鋼の高強度化に寄与すると考えられる。一方、図8によれば、V量が0.30質量%以下になると衝撃値の低下が顕著であり、V量が0.70質量%以上になると衝撃値の低下に加えて素材コストの上昇が工業的に大きな問題となる。従って、V量は、0.30<V<0.70質量%が好ましい。図8によれば、V量は、衝撃値として、31J/cm2以上を得るには0.40質量%以上の範囲、34J/cm2以上を得るには0.50質量%以上の範囲とすればよいことがわかる。
(Example 5: V amount investigation)
A preferred V amount has been investigated and will be described with reference to FIG.
FIG. 8 shows a 0.34 mass% C-0.49 mass% Si-0.82 mass% Mn-5.75 mass% Cr-1.23 mass% Mo-x mass% V steel tempered to 48 HRC. The impact value is shown with respect to the V amount. Here, as for the numerical value of each plot point in FIG. 8, the upper numerical value indicates the x value (mass%), and the lower numerical value indicates the impact value (J / cm 2 ). Here, the preparation of the test piece and the measurement of the impact value were performed in the same manner as in Example 2.
According to FIG. 8, when the amount of V is changed in the range of 0.1 to 1% by mass, a good impact value (20 J / cm 2 or more) can be obtained at any value. According to FIG. 8, the inflection point is in the vicinity of 0.30% by mass of V and 0.70% by mass of V. Therefore, if the V content is more than 0.30% by mass and less than 0.70% by mass, it is considered that it contributes to improving the hardenability and increasing the strength of the steel by forming carbides. On the other hand, according to FIG. 8, when the V amount is 0.30% by mass or less, the impact value is remarkably reduced. When the V amount is 0.70% by mass or more, the impact value is decreased and the material cost is increased. Is a big industrial problem. Therefore, the V amount is preferably 0.30 <V <0.70% by mass. According to FIG. 8, the amount of V is 0.40% by mass or more for obtaining an impact value of 31 J / cm 2 or more, and 0.50% by mass or more for obtaining 34 J / cm 2 or more. You can see that
(実施例B)
実施例Aの調査結果に基づいて、各発明鋼及び各比較鋼を作製し、評価したのでこれについて説明する。
(Example B)
Each inventive steel and each comparative steel was prepared and evaluated based on the investigation results of Example A, which will be described.
(試験片及びダイカスト型の作製)
表1及び表2に示す各実施例及び各比較例(比較鋼A11はJIS SKD61)について、各鋼種を真空中で溶解し、溶湯を鋳型に鋳込んで6tonのインゴットとした。
このインゴットを1240℃で均質化処理した。その後、断面が310mm×660mmの矩形ブロックを熱間鍛造で製造した。
次いで、その矩形ブロックを700℃で焼戻した後、更に900℃へ加熱して徐冷した。これにより、その矩形ブロックを90〜97HRBまで軟化させた。そして、この矩形ブロックから700kg程度のダイカスト型を削りだした。
このダイカスト型を真空中で1030℃まで加熱し、1Hrの保持後に窒素ガスを噴射して焼入れた。引き続き、580〜610℃で焼戻して42HRC程度に調質した。
調質後、そのダイカスト型から各種試験片を切り出した。また、そのダイカスト型に仕上げの機械加工を施して約650kgのダイカスト型を製造した。
(Production of test pieces and die cast molds)
About each Example and each comparative example (Comparative steel A11 is JIS SKD61) shown in Table 1 and Table 2, each steel type was melt | dissolved in the vacuum and the molten metal was cast into the casting_mold | template, and it was set as 6 ton ingot.
The ingot was homogenized at 1240 ° C. Thereafter, a rectangular block having a cross section of 310 mm × 660 mm was manufactured by hot forging.
Next, the rectangular block was tempered at 700 ° C., and further heated to 900 ° C. and gradually cooled. This softened the rectangular block to 90-97 HRB. Then, a die cast mold of about 700 kg was cut out from the rectangular block.
This die casting mold was heated to 1030 ° C. in a vacuum, and after holding for 1 hour, nitrogen gas was injected and quenched. Subsequently, it was tempered at 580 to 610 ° C. and tempered to about 42 HRC.
After tempering, various test pieces were cut out from the die cast mold. Further, the die casting mold was subjected to finishing machining to produce a die casting mold of about 650 kg.
(基礎特性の測定・調査)
ダイカスト型から切出した各試験片を用いて、基礎特性(高温強度・熱伝導率・衝撃値・耐食性・コスト)を測定・調査した。
高温強度は次のようにして測定した。ダイカスト型からφ14mm×21mmの試験片を切り出した。その試験片を5℃/sで600℃に加熱して100sの保持後、ひずみ速度10s−1で加工して変形抵抗を測定した。その結果は表3に示す通りである。
熱伝導率は次のようにして測定した。ダイカスト型からφ10mm×2mmの試験片を切り出した。レーザーフラッシュ法によって室温でその試験片の熱伝導率を測定した。その結果は表3に示す通りである。
衝撃値は次のようにして測定した。ダイカスト型から10mm×10mm×55mmのJIS 3号衝撃試験片を切り出した。室温でその試験片の衝撃値を測定した。その結果は表3に示す通りである。
耐食性は次のようにして測定した。ダイカスト型から試験片を切り出し、その試験片に孔を設けた。そして、この孔の内部に30℃の工業用水を5.0リットル/minで24Hr通水した。通水後の孔内面における錆びの発生状況を目視で評価した。その結果は表3に示す通りである。
(Measurement and investigation of basic characteristics)
Basic characteristics (high temperature strength, thermal conductivity, impact value, corrosion resistance, cost) were measured and investigated using each test piece cut out from the die cast mold.
The high temperature strength was measured as follows. A test piece of φ14 mm × 21 mm was cut out from the die cast mold. The test piece was heated to 600 ° C. at 5 ° C./s and held for 100 s, and then processed at a strain rate of 10 s −1 to measure deformation resistance. The results are as shown in Table 3.
The thermal conductivity was measured as follows. A test piece of φ10 mm × 2 mm was cut out from the die cast mold. The thermal conductivity of the specimen was measured at room temperature by the laser flash method. The results are as shown in Table 3.
The impact value was measured as follows. A 10 mm × 10 mm × 55 mm JIS No. 3 impact test piece was cut out from the die cast mold. The impact value of the specimen was measured at room temperature. The results are as shown in Table 3.
Corrosion resistance was measured as follows. A test piece was cut out from the die cast mold, and a hole was provided in the test piece. Then, industrial water at 30 ° C. was passed through the hole at a rate of 5.0 liter / min for 24 hours. The state of occurrence of rust on the inner surface of the hole after passing water was visually evaluated. The results are as shown in Table 3.
(基礎特性の評価)
高温強度は、920MPa以上を良好(表3で「○」で示す)、それ以外のものを不良(表3で「×」で示す)と評価した。熱伝導率は、26W/m/K以上を良好(表3で「○」で示す)、それ以外のものを不良(表3で「×」で示す)と判断した。衝撃値は、20J/cm2超を良好(表3で「○」で示す)、それ以外のものを不良(表3で「×」で示す)と評価した。耐食性は、JIS SKD61(比較鋼A11)を基準として、それよりも錆が発生していないものを良好(表3で「○」で示す)、それと同等に錆が発生したものをやや不良(表3で「△」で示す)、それよりも錆が発生したものを不良(表3で「×」で示す)と評価した。
発明鋼は全項目において良好な特性を示した。また、発明鋼の被削性は、汎用金型鋼(JIS SKD61)より悪くなることは無かった。尚、被削性の評価は、実際にダイカスト金型を切削した時の作業効率と切削工具の損耗状態から判断している。被削性が悪い鋼を切削すると、切削工具には局部的な異常磨耗や欠けを生じやすいため、切削工具の頻繁な交換による作業効率の低下と、多量の切削工具を使うことによるコストの増加を余儀なくされる。発明鋼を切削した際の作業効率や切削工具の損耗状態は汎用鋼の場合と同等であり、発明鋼の被削性は汎用鋼と同等であることが実際の金型加工において確認できた。
熱伝導率が27W/m/Kを超えた発明鋼は、Si量が0.55質量%以下(発明鋼A12を除くとSi量が0.52質量%以下)、Mn量が0.81〜1.04質量%(発明鋼A12を除くと0.81〜0.95質量%、更に発明鋼A11を除くと0.81〜0.84質量%)、Cr量が5.55〜5.74質量%(発明鋼A12を除くと5.63〜5.74質量%、更に発明鋼A11を除くと5.71〜5.74質量%)だった。
衝撃値が34J/cm2以上となった発明鋼は、Mn量が0.51〜1.42質量%(発明鋼A05を除くと0.51〜0.83質量%)、Cr量が5.25〜8.61質量%(実施例A01を除くと5.25〜8.08質量%)、V量が0.57〜0.69質量%だった。
(Evaluation of basic characteristics)
The high-temperature strength was evaluated as good (indicated by “◯” in Table 3) at 920 MPa or more and defective (indicated by “x” in Table 3) otherwise. The thermal conductivity was determined to be 26 W / m / K or more as good (indicated by “◯” in Table 3), and otherwise defective (indicated by “X” in Table 3). The impact value was evaluated as good (indicated by “◯” in Table 3) exceeding 20 J / cm 2 and defective (indicated by “x” in Table 3) other than that. Corrosion resistance is based on JIS SKD61 (Comparative Steel A11) as a standard when rust is not generated (shown by “◯” in Table 3), and when rust is generated, it is somewhat poor (Table 3 was indicated as “△”), and those having rusted more than that were evaluated as defective (indicated by “x” in Table 3).
Invented steel showed good properties in all items. Moreover, the machinability of the inventive steel was never worse than that of general-purpose mold steel (JIS SKD61). The evaluation of machinability is judged from the work efficiency when the die casting die is actually cut and the wear state of the cutting tool. Cutting steel with poor machinability tends to cause local abnormal wear and chipping in the cutting tool, resulting in lower work efficiency due to frequent replacement of the cutting tool and increased cost due to the use of a large number of cutting tools. Will be forced. The working efficiency when cutting the invention steel and the wear state of the cutting tool were the same as in the case of the general-purpose steel, and it was confirmed in actual die machining that the machinability of the invention steel was the same as that of the general-purpose steel.
Invented steel having a thermal conductivity of more than 27 W / m / K has an Si content of 0.55% by mass or less (excluding Invention Steel A12, the Si content is 0.52% by mass or less), and an Mn content of 0.81 to 1.04% by mass (0.81 to 0.95% by mass excluding the invention steel A12, 0.81 to 0.84% by mass excluding the invention steel A11), and the amount of Cr is 5.55 to 5.74. It was mass% (5.63-5.74 mass% excluding invention steel A12, 5.71-5.74 mass% excluding invention steel A11).
The invention steel having an impact value of 34 J / cm 2 or more has a Mn content of 0.51 to 1.42 mass% (excluding invention steel A05, 0.51 to 0.83 mass%), and a Cr content of 5. It was 25 to 8.61% by mass (excluding Example A01, 5.25 to 8.08% by mass), and the V amount was 0.57 to 0.69% by mass.
一方、比較鋼A11の場合、高温強度及びコスト以外の評価項目は全て「×」であった。用いた試験片は、焼入れ速度が小さくなる大きなダイカスト型から切り出した試験片だった。そのため、特に、比較鋼A11は、Vの炭窒化物が多くなり、衝撃値が低くなっていた。
他の比較鋼は、一部の評価項目では比較鋼A11(JIS SKD61)より良好であるが、全項目が「○」となる鋼種はなかった。
On the other hand, in the case of the comparative steel A11, all the evaluation items other than the high temperature strength and the cost were “x”. The test piece used was a test piece cut out from a large die-cast mold with a low quenching speed. Therefore, in particular, the comparative steel A11 has a large amount of V carbonitride and has a low impact value.
Other comparative steels were better than comparative steel A11 (JIS SKD61) in some evaluation items, but there were no steel types in which all items were “◯”.
例えば、比較鋼A01は、過少Cのため高温強度が低下した。また、過少Vのため焼入れ時に結晶粒が粗大化し衝撃値が低下した。更に、比較鋼01は、Cr及びMoが比較的少なめだったため、耐食性が悪かった。
比較鋼A02は、過剰C、過剰Vのため炭化物量が過剰となり、衝撃値が低下した。また、比較鋼A02は、Si及びMnが比較的多めだったため、熱伝導率が低下した。更に、比較鋼A02は、Cr及びMoが比較的少なめだったため、耐食性が悪く、過剰Vのためコスト高となった。
比較鋼A03は、過剰Siのため熱伝導率が低下した。
比較鋼A04は、過少Siであるにも係わらず、Mn及びCrが比較的多めだったため、熱伝導率が低下した。
For example, the comparative steel A01 has a low C strength due to a low C content. Moreover, because of the excessive V, the crystal grains became coarse during quenching and the impact value decreased. Further, the comparative steel 01 had poor corrosion resistance because Cr and Mo were relatively small.
In comparative steel A02, the amount of carbides was excessive due to excess C and excess V, and the impact value decreased. Moreover, since comparative steel A02 had comparatively much Si and Mn, thermal conductivity fell. Further, the comparative steel A02 had relatively little Cr and Mo, so the corrosion resistance was poor, and the cost was high due to excessive V.
In comparison steel A03, the thermal conductivity decreased due to excess Si.
In comparison steel A04, although the amount of Si was too small, Mn and Cr were relatively large, so that the thermal conductivity was lowered.
比較鋼A05は、過少Mnのため焼入性が不足し、衝撃値が低下した。また、比較鋼A05は、Cr量がやや低いため、耐食性が悪かった。
比較鋼A06は、過剰Mnのため熱伝導率が低下した。また、比較鋼A06は、衝撃値が良好と判断されたが、その値は判断基準をかろうじて満たす程度だった。更に、比較鋼A06は、C量が多いことからCr炭化物も多量に形成され,この結果として固溶Cr量が減ったため、耐食性が悪かった。
比較鋼A07は、過少Crのため焼入性が不足し、衝撃値が低下した。また、比較鋼A07は、過少Crのため、耐食性が悪かった。
比較鋼A08は、過剰Crのため熱伝導率が低下した。
比較鋼A09は、過少Moのため高温強度が低下した。
比較鋼A10は、過剰Moのため著しいコスト高だった。
比較鋼A11は、過剰Siのため熱伝導率が低下し、過少Mn、過剰Vのため衝撃値が低下した。
Since comparative steel A05 had insufficient Mn, the hardenability was insufficient and the impact value was lowered. Moreover, since comparative steel A05 had a slightly low Cr content, the corrosion resistance was poor.
In comparison steel A06, the thermal conductivity decreased due to excess Mn. Moreover, although the comparative steel A06 was judged to have a good impact value, the value barely met the judgment criteria. Furthermore, since comparative steel A06 had a large amount of C, a large amount of Cr carbide was formed, and as a result, the amount of solid solution Cr decreased, and thus the corrosion resistance was poor.
Since comparative steel A07 had insufficient Cr, its hardenability was insufficient and the impact value was lowered. Further, the comparative steel A07 was poor in corrosion resistance because of too little Cr.
In comparison steel A08, thermal conductivity decreased due to excess Cr.
In comparison steel A09, the high-temperature strength decreased due to the insufficient Mo.
The comparative steel A10 was extremely expensive due to excess Mo.
In Comparative Steel A11, the thermal conductivity decreased due to excessive Si, and the impact value decreased due to excessive Mn and excessive V.
(ダイカスト型を用いた実機試験)
ダイカスト型を用いた実機試験を次のようにして行った。作製したダイカスト型をマシンに組み付け、アルミ合金の鋳造を行った。アルミ合金には、ADC12を用い、溶解保持炉の温度は680℃とした。また、ダイカスト品の重量は約5kg、1サイクルは60sである。10000ショットの鋳造後、金型表面のヒートチェックと、内部冷却回路の腐食亀裂を評価した。また、10000ショットの鋳造が完了するまでの間、顕著な焼付きが発生したか、内部冷却回路の割れによる水漏れがあったかについても評価した。表4は、実機試験の結果を示す。尚、表4の熱伝導率及び衝撃値は、表3に示したものをそのまま掲載している。
(Actual machine test using a die-casting mold)
An actual machine test using a die-cast mold was performed as follows. The produced die casting mold was assembled in a machine, and an aluminum alloy was cast. ADC12 was used for the aluminum alloy, and the temperature of the melting and holding furnace was 680 ° C. The weight of the die-cast product is about 5 kg, and one cycle is 60 s. After casting 10,000 shots, a heat check on the mold surface and corrosion cracks in the internal cooling circuit were evaluated. In addition, it was also evaluated whether remarkable seizure occurred until the completion of the 10,000 shot casting, or whether there was water leakage due to cracks in the internal cooling circuit. Table 4 shows the results of the actual machine test. The thermal conductivity and impact value shown in Table 4 are the same as those shown in Table 3.
(実機試験の評価)
ヒートチェック、焼付き、摩耗、水孔の割れは、目視で判断し、それぞれ、発生しなかったものを良好(表4で「○」で示す)、若干発生したものをやや不良(表4で「△」で示す)、発生したものを不良(表4で「×」で示す)と評価した。
発明鋼は全項目において良好な特性を示したのに対し、比較鋼はいずれかの項目において評価基準を満たさないものがあった。その理由は、発明鋼は上記成分組成を備え、熱伝導率及び衝撃値が高いことによるが、比較鋼は上記成分組成を備えておらず熱伝導率及び/又は衝撃値が低いためである。
(Evaluation of actual machine test)
Heat check, seizure, abrasion, and water hole cracking were judged visually, and those that did not occur were good (indicated by “◯” in Table 4), and those that occurred slightly were slightly bad (in Table 4). The occurrence was evaluated as defective (indicated by “x” in Table 4).
Invented steels showed good properties in all items, while some of the comparative steels did not satisfy the evaluation criteria in any item. The reason is that the steel according to the invention has the above component composition and has high thermal conductivity and impact value, but the comparative steel does not have the above component composition and has low thermal conductivity and / or impact value.
すなわち、発明鋼は、熱伝導率が高いため熱応力が小さくなり、ヒートチェックが発生しにくい。また、発明鋼は、熱伝導率が高いため型の過熱が抑制され、アルミ合金と型との焼付きが激減した。更に、高速で射出されたアルミ合金による磨耗も極めて僅かであり、高温強度の高さに対応している。発明鋼は、内部冷却回路の腐食もそれほど顕著ではなく、腐食部を起点とした割れの貫通による水漏れも発生しなかった。 In other words, the inventive steel has a high thermal conductivity, so the thermal stress is small and heat check is difficult to occur. Inventive steel has high thermal conductivity, so that overheating of the mold is suppressed, and seizure between the aluminum alloy and the mold is drastically reduced. Furthermore, the wear caused by the aluminum alloy injected at a high speed is very slight, corresponding to the high temperature strength. Invented steel was not so noticeable in corrosion of the internal cooling circuit, and water leakage due to crack penetration starting from the corroded portion did not occur.
これに対し、比較鋼A01〜A10(比較鋼A02を除く)は、JIS SKD61(比較鋼A11)よりは改善傾向にあるが、発明鋼と比べて劣ることがわかる。また、比較鋼A02は、JIS SKD61(比較鋼A11)よりも更に悪くなっていることがわかる。
熱伝導率と衝撃値が共に低い鋼種(比較鋼A02,A11)はヒートチェックが発生しやすい。また、熱伝導率が低い鋼種(比較鋼A02,A03,A04,A06,A08,A11)では焼付が頻発した。耐食性が低い鋼種(比較鋼A01,A02,A05,A06,A07)では、内部冷却回路の腐食もかなり深刻で、腐食部を基点とした割れも散発した。内部高温強度が低い鋼種(比較鋼A01,A09)では、磨耗が目立つ。比較鋼A10は、Mo含有量が高いため、コストや省資源化の観点から推奨できる材料ではない。
In contrast, the comparative steels A01 to A10 (excluding the comparative steel A02) tend to be improved compared to JIS SKD61 (comparative steel A11), but are inferior to the inventive steel. Moreover, it turns out that comparative steel A02 is still worse than JIS SKD61 (comparative steel A11).
Steel types with low thermal conductivity and low impact values (comparative steels A02 and A11) are susceptible to heat check. Further, seizure frequently occurred in the steel types having low thermal conductivity (comparative steels A02, A03, A04, A06, A08, A11). In the steel types having low corrosion resistance (comparative steels A01, A02, A05, A06, A07), the corrosion of the internal cooling circuit was quite serious, and the cracks based on the corroded part were also sporadically scattered. In steel types with low internal high-temperature strength (comparative steels A01 and A09), wear is conspicuous. Since the comparative steel A10 has a high Mo content, it is not a material that can be recommended from the viewpoint of cost and resource saving.
特に、比較鋼A11(JIS SKD61)は、基礎特性の場合と同様、摩耗とコスト以外の項目は全て「×」又は「△」となった。比較鋼A11は、熱伝導率が低いため型が過熱され、アルミ合金と型の焼付が頻発した。また、ヒートチェックが多く発生した理由は、熱伝導率が低いことから熱応力が高くなるためである。 In particular, as for the comparative steel A11 (JIS SKD61), the items other than wear and cost were all “x” or “Δ” as in the case of the basic characteristics. In Comparative Steel A11, since the thermal conductivity was low, the mold was overheated, and the aluminum alloy and the mold were frequently baked. The reason why many heat checks are generated is that the thermal stress is high because the thermal conductivity is low.
更に、今回実機試験で用いた金型は、サイズの大きい金型である。この試験結果によれば、発明鋼を用いた金型は、そのサイズが大型でも、高い衝撃値が得られ、熱伝導率が高く、高温強度が高いことが判明した。 Furthermore, the mold used in the actual machine test is a large mold. According to this test result, it was found that even when the mold using the inventive steel is large in size, a high impact value is obtained, the thermal conductivity is high, and the high-temperature strength is high.
以上本発明について説明したが、本発明は、上記実施形態に何ら限定されるものではない。 Although the present invention has been described above, the present invention is not limited to the above embodiment.
本発明に係る熱間工具鋼及びこれを用いた鋼製品は、被削性を汎用金型鋼(JIS SKD61)と同等以上に維持しながら、汎用金型鋼より熱伝導率を向上させ、かつ、汎用金型鋼よりも衝撃値を高めたものであるため、金型メーカー及び金型ユーザにとって産業上極めて有益である。 The hot work tool steel according to the present invention and the steel product using the hot tool steel improve the thermal conductivity compared to the general-purpose mold steel while maintaining the machinability equivalent to or higher than that of the general-purpose mold steel (JIS SKD61). Since the impact value is higher than that of mold steel, it is extremely useful industrially for mold manufacturers and mold users.
Claims (7)
0.40<Si<0.75質量%、
0.65≦Mn≦1.50質量%、
5.24≦Cr≦9.00質量%、
1.08<Mo≦2.50質量%、及び、
0.30<V<0.70質量%を含み、
残部がFe及び不可避的不純物からなることを特徴とする熱間工具鋼。 0.20 ≦ C ≦ 0.42 % by mass,
0.40 <Si <0.75% by mass,
0.65 ≦ Mn ≦ 1.50 mass%,
5.24 ≦ Cr ≦ 9.00 mass%,
1.08 <Mo ≦ 2.50 mass%, and
Including 0.30 <V <0.70 mass%,
A hot work tool steel characterized in that the balance consists of Fe and inevitable impurities.
0.30≦W≦4.00質量%を含むことを特徴とする請求項1に記載の熱間工具鋼。 Furthermore,
The hot work tool steel according to claim 1, comprising 0.30 ≦ W ≦ 4.00 mass%.
0.30≦Co≦3.00質量%を含むことを特徴とする請求項1又は2に記載の熱間工具鋼。 Furthermore,
The hot work tool steel according to claim 1, wherein the hot work tool steel contains 0.30 ≦ Co ≦ 3.00 mass%.
0.004≦Nb≦0.100質量%、
0.004≦Ta≦0.100質量%、
0.004≦Ti≦0.100質量%、
0.004≦Zr≦0.100質量%、
0.004≦Al≦0.050質量%、及び、
0.004≦N≦0.024質量%からなる群から選ばれる少なくとも1種以上を含むことを特徴とする請求項1〜3のいずれかに記載の熱間工具鋼。 Furthermore,
0.004 ≦ Nb ≦ 0.100 mass%,
0.004 ≦ Ta ≦ 0.100 mass%,
0.004 ≦ Ti ≦ 0.100 mass%,
0.004 ≦ Zr ≦ 0.100 mass%,
0.004 ≦ Al ≦ 0.050 mass%, and
The hot work tool steel according to any one of claims 1 to 3, comprising at least one selected from the group consisting of 0.004≤N≤0.024 mass%.
0.15≦Cu≦1.50質量%、
0.15≦Ni≦0.96質量%、及び、
0.0010≦B≦0.0100質量%からなる群から選ばれる少なくとも1種以上を含むことを特徴とする請求項1〜4のいずれかに記載の熱間工具鋼。 Furthermore,
0.15 ≦ Cu ≦ 1.50 mass%,
0.15 ≦ Ni ≦ 0.96 % by mass, and
The hot tool steel according to claim 1, comprising at least one selected from the group consisting of 0.0010 ≦ B ≦ 0.0100 mass%.
0.010≦S≦0.500質量%、
0.0005≦Ca≦0.2000質量%、
0.03≦Se≦0.50質量%、
0.005≦Te≦0.100質量%、
0.01≦Bi≦0.30質量%、及び、
0.03≦Pb≦0.50質量%からなる群から選ばれる少なくとも1種以上を含むことを特徴とする請求項1〜5のいずれかに記載の熱間工具鋼。 Furthermore,
0.010 ≦ S ≦ 0.500 mass%,
0.0005 ≦ Ca ≦ 0.2000 mass%,
0.03 ≦ Se ≦ 0.50 mass%,
0.005 ≦ Te ≦ 0.100 mass%,
0.01 ≦ Bi ≦ 0.30 mass%, and
The hot work tool steel according to claim 1, comprising at least one selected from the group consisting of 0.03 ≦ Pb ≦ 0.50 mass%.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009143377A JP5515442B2 (en) | 2009-06-16 | 2009-06-16 | Hot tool steel and steel products using the same |
CN201010203494.5A CN101921958B (en) | 2009-06-16 | 2010-06-12 | Hot work tool steel and steel product using the same |
EP10006150.6A EP2270245B1 (en) | 2009-06-16 | 2010-06-14 | Hot work tool steel and steel product using the same |
KR1020100057289A KR20100135206A (en) | 2009-06-16 | 2010-06-16 | Hot work tool steel and steel product using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009143377A JP5515442B2 (en) | 2009-06-16 | 2009-06-16 | Hot tool steel and steel products using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011001573A JP2011001573A (en) | 2011-01-06 |
JP5515442B2 true JP5515442B2 (en) | 2014-06-11 |
Family
ID=42937576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009143377A Active JP5515442B2 (en) | 2009-06-16 | 2009-06-16 | Hot tool steel and steel products using the same |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2270245B1 (en) |
JP (1) | JP5515442B2 (en) |
KR (1) | KR20100135206A (en) |
CN (1) | CN101921958B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10829841B2 (en) | 2014-11-11 | 2020-11-10 | Nippon Koshuha Steel Co., Ltd. | Hot work tool steel |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT12365U1 (en) * | 2010-12-23 | 2012-04-15 | Advanced Manufacture Technology Ct Camtc | A FORMAT |
DE102011079954A1 (en) * | 2011-07-28 | 2013-01-31 | Aktiebolaget Skf | Component and method for producing the component |
EP2662460A1 (en) * | 2012-05-07 | 2013-11-13 | Valls Besitz GmbH | Tough bainitic heat treatments on steels for tooling |
CN102719758A (en) * | 2012-06-25 | 2012-10-10 | 山东理工大学 | Anti-oxidation and anti-thermal fatigue hot working die steel and manufacturing method thereof |
JP6146030B2 (en) * | 2013-02-04 | 2017-06-14 | 大同特殊鋼株式会社 | Mold repair welding material |
EP2994547A1 (en) * | 2013-03-01 | 2016-03-16 | Rovalma, S.A. | High thermal diffusivity, high toughness and low crack risk during heat treatment tool steel |
JP6337524B2 (en) * | 2014-03-07 | 2018-06-06 | 大同特殊鋼株式会社 | Steel for mold |
CN104911479A (en) * | 2014-03-15 | 2015-09-16 | 紫旭盛业(昆山)金属科技有限公司 | Hot work die |
JP6647771B2 (en) * | 2014-05-23 | 2020-02-14 | 大同特殊鋼株式会社 | Mold steel and mold |
JP2015224363A (en) * | 2014-05-27 | 2015-12-14 | 大同特殊鋼株式会社 | Steel for metallic mold and metallic mold |
CN104294159B (en) * | 2014-08-25 | 2016-05-11 | 张家港市品杰模具材料有限公司 | A kind of plastic die steel and preparation and Technology for Heating Processing |
WO2016136401A1 (en) * | 2015-02-25 | 2016-09-01 | 日立金属株式会社 | Hot-working tool and manufacturing method therefor |
CN104674137A (en) * | 2015-03-20 | 2015-06-03 | 苏州科胜仓储物流设备有限公司 | High-strength steel plate for retreat-type storage rack and thermal treatment process of high-strength steel plate |
CN104745941B (en) * | 2015-04-08 | 2017-01-18 | 马鞍山市致远锻造有限公司 | Mould material for high-strength forging |
CN105018863A (en) * | 2015-07-13 | 2015-11-04 | 江苏曜曜铸业有限公司 | Alloy used for clutch housing mould |
JP6520518B2 (en) * | 2015-07-24 | 2019-05-29 | 大同特殊鋼株式会社 | Mold repair welding material |
JP6859623B2 (en) * | 2015-09-11 | 2021-04-14 | 大同特殊鋼株式会社 | Mold steel and molding tools |
CN105803341B (en) * | 2016-04-20 | 2017-09-12 | 上海瀚氏模具成型有限公司 | A kind of preparation method of the anti-rotten steel mold of nanosizing low-alloy abrasion-proof |
CN105714203B (en) * | 2016-04-20 | 2017-12-08 | 上海瀚氏模具成型有限公司 | A kind of preparation method of making Nano surface high-strength temperature-resistant steel mold |
CN105803314B (en) * | 2016-05-09 | 2018-03-27 | 天津钢研海德科技有限公司 | One kind has high performance advanced hot die steel and its manufacture method |
CN105970109A (en) * | 2016-06-09 | 2016-09-28 | 广东世创金属科技股份有限公司 | High-performance hot work steel and preparation method thereof |
CN106119738A (en) * | 2016-06-28 | 2016-11-16 | 浙江工贸职业技术学院 | A kind of alloy material for marine drilling platform gauge valve spool and manufacture method |
CN106435353B (en) * | 2016-08-24 | 2018-09-18 | 营口市特殊钢锻造有限责任公司 | A kind of Cr5 series hot die steel |
US10988823B2 (en) * | 2017-03-28 | 2021-04-27 | Daido Steel Co., Ltd. | Annealed steel material and method for manufacturing the same |
JP7062961B2 (en) * | 2017-03-28 | 2022-05-09 | 大同特殊鋼株式会社 | Annealed steel and its manufacturing method |
CN107419187A (en) * | 2017-06-30 | 2017-12-01 | 太仓旺美模具有限公司 | A kind of hot die steel |
CN107557699A (en) * | 2017-07-29 | 2018-01-09 | 沈阳湛轩新材料科技有限公司 | A kind of hot die steel and preparation method thereof |
CN108085607B (en) * | 2017-12-20 | 2019-09-27 | 马鞍山市盛磊耐磨合金制造有限公司 | A kind of HP lining plate of coal grinder |
JP7144717B2 (en) * | 2018-04-02 | 2022-09-30 | 大同特殊鋼株式会社 | Mold steel and mold |
US20210262071A1 (en) * | 2018-10-05 | 2021-08-26 | Hitachi Metals, Ltd. | Hot work tool steel and hot work tool |
CN110195186B (en) * | 2019-05-14 | 2021-02-23 | 鞍钢股份有限公司 | Ultra-thick hot-rolled high-alloy hot-work die steel and preparation method thereof |
CN110373611B (en) * | 2019-08-28 | 2020-06-19 | 福建三宝钢铁有限公司 | Ti-containing deformed steel bar and preparation method thereof |
CN111139406A (en) * | 2019-12-23 | 2020-05-12 | 兴化市润萍金属制品有限公司 | High-mechanical-strength alloy steel and preparation method thereof |
CN111101061B (en) * | 2019-12-31 | 2021-05-04 | 龙南龙钇重稀土科技股份有限公司 | Method for manufacturing hot work die steel electroslag remelting ingot |
CN111621719A (en) * | 2020-07-07 | 2020-09-04 | 西安工业大学 | High-strength heat-resistant die-casting aluminum alloy and smelting method |
CN111876564B (en) * | 2020-07-14 | 2022-03-04 | 昆山正通铭金属有限公司 | Spheroidizing annealing process of hexagonal alloy tool steel S2 |
CN112011740B (en) * | 2020-08-31 | 2021-11-02 | 天津钢研海德科技有限公司 | High-toughness and high-hardness die steel and preparation method thereof |
CN113122684B (en) * | 2021-04-25 | 2023-03-24 | 中航上大高温合金材料股份有限公司 | Processing method for improving SDH13 performance of die steel |
CN114000049B (en) * | 2021-09-29 | 2022-05-06 | 武钢集团昆明钢铁股份有限公司 | Nitrogen-rich vanadium-niobium microalloyed large-size HRB400E straight-bar anti-seismic steel bar and preparation method thereof |
CN115058665B (en) * | 2022-06-21 | 2023-09-08 | 中海油田服务股份有限公司 | Alloy material and air gun surface repairing method |
CN115354238B (en) * | 2022-08-10 | 2023-06-30 | 中天钢铁集团有限公司 | Manufacturing method of normalizing-free steel for warm forging inner star wheel |
CN116024498A (en) * | 2022-12-26 | 2023-04-28 | 河南中原特钢装备制造有限公司 | Fine-grain high-strength-toughness mirror plastic die steel and heat treatment method thereof |
CN116024500B (en) * | 2023-02-10 | 2024-08-23 | 攀钢集团江油长城特殊钢有限公司 | Steel for hot forging die and preparation method thereof |
CN117721377B (en) * | 2023-12-11 | 2024-08-27 | 中煤张家口煤矿机械有限责任公司 | Wear-resistant sprocket material |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS546807A (en) * | 1977-06-20 | 1979-01-19 | Hitachi Metals Ltd | Hot tool steel for dicast mold |
JPS6059053A (en) | 1983-09-09 | 1985-04-05 | Daido Steel Co Ltd | Hot working tool steel |
JPS6462444A (en) | 1987-09-02 | 1989-03-08 | Kawasaki Steel Co | Press die steel |
JPH084809B2 (en) | 1989-05-29 | 1996-01-24 | 住友金属工業株式会社 | Hot slab width sizing mold |
JPH06322483A (en) | 1993-05-07 | 1994-11-22 | Daido Steel Co Ltd | Hot tool steel excellent in hardenability and creep property |
JPH0762494A (en) | 1993-08-30 | 1995-03-07 | Daido Steel Co Ltd | Hot tool steel having excellent low cycle fatigue characteristic |
JP2636816B2 (en) | 1995-09-08 | 1997-07-30 | 大同特殊鋼株式会社 | Alloy tool steel |
JP3780690B2 (en) * | 1998-03-23 | 2006-05-31 | 住友金属工業株式会社 | Hot work tool steel with excellent machinability and tool life |
JP4055273B2 (en) * | 1998-11-27 | 2008-03-05 | 住友金属工業株式会社 | Hot tool steel and hot tool with excellent wear resistance, crack resistance and large crack resistance |
JP2003268500A (en) * | 2002-03-15 | 2003-09-25 | Daido Steel Co Ltd | Tool steel for hot working excellent in machinability and its production method |
JP4192579B2 (en) | 2002-11-29 | 2008-12-10 | 住友金属工業株式会社 | Steel for plastic mold |
JP4605695B2 (en) | 2004-04-19 | 2011-01-05 | 本田技研工業株式会社 | Pre-hardened steel for die casting molds |
JP2007197784A (en) * | 2006-01-27 | 2007-08-09 | Daido Steel Co Ltd | Alloy steel |
JP4992344B2 (en) | 2006-08-30 | 2012-08-08 | 大同特殊鋼株式会社 | Mold steel with excellent thermal fatigue properties |
KR20120006091A (en) * | 2006-09-15 | 2012-01-17 | 히타치 긴조쿠 가부시키가이샤 | Hot-working tool steel having excellent toughness and high-temperature strength and method for production thereof |
JP5212772B2 (en) * | 2006-09-15 | 2013-06-19 | 日立金属株式会社 | Hot work tool steel with excellent toughness and high temperature strength |
JP2008121032A (en) | 2006-11-08 | 2008-05-29 | Daido Steel Co Ltd | Die steel superior in spheroidizing annealing property and hardenability |
WO2010074017A1 (en) * | 2008-12-25 | 2010-07-01 | 日立金属株式会社 | Steel tempering method |
-
2009
- 2009-06-16 JP JP2009143377A patent/JP5515442B2/en active Active
-
2010
- 2010-06-12 CN CN201010203494.5A patent/CN101921958B/en active Active
- 2010-06-14 EP EP10006150.6A patent/EP2270245B1/en active Active
- 2010-06-16 KR KR1020100057289A patent/KR20100135206A/en active Search and Examination
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10829841B2 (en) | 2014-11-11 | 2020-11-10 | Nippon Koshuha Steel Co., Ltd. | Hot work tool steel |
Also Published As
Publication number | Publication date |
---|---|
EP2270245B1 (en) | 2015-12-16 |
CN101921958B (en) | 2015-02-18 |
CN101921958A (en) | 2010-12-22 |
KR20100135206A (en) | 2010-12-24 |
JP2011001573A (en) | 2011-01-06 |
EP2270245A1 (en) | 2011-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5515442B2 (en) | Hot tool steel and steel products using the same | |
JP2011001572A (en) | Tool steel for hot work and steel product using the same | |
JP6432070B2 (en) | Hot die steel for long-life die casting excellent in high-temperature thermal conductivity and method for producing the same | |
JP5276330B2 (en) | Cold mold steel and cold press mold | |
JP5076683B2 (en) | High toughness high speed tool steel | |
JP2009242820A (en) | Steel, steel for die and die using the same | |
US11141778B2 (en) | Steel for molds and molding tool | |
JP2008169411A (en) | Steel for die materials | |
JP2009013465A (en) | Tool steel, member for forming using the same, and method for verifying quality of tool steel | |
EP2154260B1 (en) | Free-cutting alloy tool steel | |
US6841122B2 (en) | Hot working die steel excelling in molten corrosion resistance and strength at elevated temperature and member for high temperature use formed of the hot working die steel | |
JP5029942B2 (en) | Hot work tool steel with excellent toughness | |
JP5402529B2 (en) | Steel for mold | |
JP2014025103A (en) | Hot tool steel | |
EP3569719B1 (en) | Steel for die-casting die, die-casting die and use of the die-casting die | |
JP5444938B2 (en) | Steel for mold | |
JP2005336553A (en) | Hot tool steel | |
JP3581028B2 (en) | Hot work tool steel and high temperature members made of the hot work tool steel | |
JP2005307242A (en) | Prehardened steel for die casting mold | |
CN112899559B (en) | Steel for mold and mold | |
JP7540437B2 (en) | Steel for hot stamping dies, hot stamping dies and their manufacturing method | |
JPH11269603A (en) | Hot tool steel excellent in machinability and tool life | |
JP2001020041A (en) | Tool steel excellent in weldability and machinability and tool and die | |
JPH1161362A (en) | Tool steel for hot working | |
KR20240061233A (en) | Free-cutting carbon steel, method of fabricating the same, and method for fabricating parts of free-cutting carbon steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131023 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140304 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140317 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5515442 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |