JP5504681B2 - Rotary compressor - Google Patents
Rotary compressor Download PDFInfo
- Publication number
- JP5504681B2 JP5504681B2 JP2009095844A JP2009095844A JP5504681B2 JP 5504681 B2 JP5504681 B2 JP 5504681B2 JP 2009095844 A JP2009095844 A JP 2009095844A JP 2009095844 A JP2009095844 A JP 2009095844A JP 5504681 B2 JP5504681 B2 JP 5504681B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure side
- piston
- rotary compressor
- vane
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/32—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
- F04C18/324—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the inner member and reciprocating with respect to the outer member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/08—Rotary pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/08—Rotary pistons
- F01C21/0809—Construction of vanes or vane holders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2210/00—Fluid
- F04C2210/26—Refrigerants with particular properties, e.g. HFC-134a
- F04C2210/261—Carbon dioxide (CO2)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2210/00—Fluid
- F04C2210/26—Refrigerants with particular properties, e.g. HFC-134a
- F04C2210/263—HFO1234YF
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2250/00—Geometry
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Description
本発明は、シリンダに形成されたスロット内に挿入され、圧縮室を高圧側と低圧側とに仕切り、かつ円柱状の円柱部を有するベーンを備えるロータリ圧縮機に関する。 The present invention relates to a rotary compressor provided with a vane that is inserted into a slot formed in a cylinder, partitions a compression chamber into a high-pressure side and a low-pressure side, and has a cylindrical columnar portion.
従来、冷凍装置や空気調和装置などにおいては、蒸発器で蒸発したガス冷媒を吸入し、吸入したガス冷媒を凝縮するために必要な圧力まで圧縮して冷媒回路中に高温高圧のガス冷媒を送り出す圧縮機が使用されている。このような圧縮機の一つとして、ローリングピストン型ロータリ圧縮機(以下、単にロータリ圧縮機という)が知られている。 Conventionally, in a refrigeration apparatus, an air conditioner, etc., gas refrigerant evaporated by an evaporator is sucked, compressed to a pressure necessary to condense the sucked gas refrigerant, and high-temperature and high-pressure gas refrigerant is sent out into the refrigerant circuit. A compressor is used. As one of such compressors, a rolling piston rotary compressor (hereinafter simply referred to as a rotary compressor) is known.
図10は、従来のロータリ圧縮機の一例を示す部分縦断面図である。また、図11は、図10に示すロータリ圧縮機の、面A−Aに沿う横断面を示す図である。 FIG. 10 is a partial longitudinal sectional view showing an example of a conventional rotary compressor. Moreover, FIG. 11 is a figure which shows the cross section which follows surface AA of the rotary compressor shown in FIG.
図10,11に例示されるように、ロータリ圧縮機においては、電動機202と圧縮機構部203とがシャフト231で連結して密閉容器201内に収納される。圧縮機構部203は、シリンダ230と、該シリンダ230の上端面及び下端面を閉塞する上軸受234及び下軸受235とを備えている。シリンダ230、上軸受234及び下軸受235により、圧縮室239と呼ばれる空間が形成される。 As illustrated in FIGS. 10 and 11, in the rotary compressor, the electric motor 202 and the compression mechanism unit 203 are connected by a shaft 231 and stored in the sealed container 201. The compression mechanism unit 203 includes a cylinder 230, and an upper bearing 234 and a lower bearing 235 that close the upper end surface and the lower end surface of the cylinder 230. A space called a compression chamber 239 is formed by the cylinder 230, the upper bearing 234, and the lower bearing 235.
圧縮室239内には、上軸受234及び下軸受235に支持されるシャフト231の偏心部231aに嵌合されたピストン232が備わる。圧縮室239内にはさらに、ピストン232の外周の偏心回転に追従して往復運動し、圧縮室239内を低圧側と高圧側とに仕切るベーン233が備わる。 In the compression chamber 239, a piston 232 fitted to the eccentric portion 231a of the shaft 231 supported by the upper bearing 234 and the lower bearing 235 is provided. The compression chamber 239 further includes a vane 233 that reciprocates following the eccentric rotation of the outer periphery of the piston 232 and partitions the compression chamber 239 into a low pressure side and a high pressure side.
シャフト231には、中心軸に沿って油穴241が形成されると共に、上軸受234の下端部分及び下軸受235の上端部分に近接する部分には、油穴241に連通した給油穴242及び給油穴243が設けられている。また、シャフト231において、偏心部231aに近接する部分には、上記油穴241に連通した給油穴244が設けられる。また、シャフト231の外周には、この給油穴244の開口部分を通る油溝245が形成されている。 An oil hole 241 is formed in the shaft 231 along the central axis, and an oil supply hole 242 communicating with the oil hole 241 and an oil supply are provided in a portion close to the lower end portion of the upper bearing 234 and the upper end portion of the lower bearing 235. A hole 243 is provided. An oil supply hole 244 communicating with the oil hole 241 is provided in a portion of the shaft 231 that is close to the eccentric portion 231a. An oil groove 245 that passes through the opening of the oil supply hole 244 is formed on the outer periphery of the shaft 231.
シリンダ230には、圧縮室239の低圧側にガスを吸入する吸入ポート240が開通されており、上軸受234には、低圧側から転じて形成される圧縮室239の高圧側からガスを吐出する吐出ポート238が開通されている。吐出ポート238は、上軸受234を貫通する平面視で円形の孔として形成される。また、上軸受234において吐出ポート238の上方に相当する部分には、所定の大きさ以上の圧力を吐出ポート238から受けた場合に開放される吐出弁236が設けられる。上軸受234にはさらに、吐出弁236を覆うように、カップマフラ−237が配置されている。 A suction port 240 that sucks gas into the low pressure side of the compression chamber 239 is opened in the cylinder 230, and gas is discharged from the high pressure side of the compression chamber 239 formed by turning from the low pressure side to the upper bearing 234. The discharge port 238 is opened. The discharge port 238 is formed as a circular hole in plan view that penetrates the upper bearing 234. Further, a discharge valve 236 that is opened when a pressure of a predetermined magnitude or more is received from the discharge port 238 is provided at a portion corresponding to the upper portion of the upper bearing 234 above the discharge port 238. A cup muffler-237 is further disposed on the upper bearing 234 so as to cover the discharge valve 236.
以上のような構成のロータリ圧縮機において、圧縮室239の低圧側では、ピストン232とシリンダ230の摺接部分が偏心回転により吸入ポート240を通過し始めると、吸入室が徐々に拡大する。この間、吸入ポート240から吸入室内にガスが吸入される。一方、高圧側では、ピストン232の摺動部が吐出ポート238へと、圧縮室239を徐々に縮小しながら近づいていき、所定圧力以上に圧縮された時点で吐出弁236が開いて吐出ポート238からガスが流出する。流出したガスは、カップマフラ−237により密閉容器201内に吐出される。 In the rotary compressor configured as described above, on the low pressure side of the compression chamber 239, when the sliding contact portion of the piston 232 and the cylinder 230 starts to pass through the suction port 240 due to eccentric rotation, the suction chamber gradually expands. During this time, gas is sucked into the suction chamber from the suction port 240. On the other hand, on the high pressure side, the sliding portion of the piston 232 approaches the discharge port 238 while gradually reducing the compression chamber 239. When the pressure is compressed to a predetermined pressure or higher, the discharge valve 236 is opened and the discharge port 238 is opened. Out of the gas. The outflowing gas is discharged into the sealed container 201 by the cup muffler-237.
上記の構成では、ピストン232とベーン233の先端との摺動部分では、オイルが保持されにくく、摺動性が厳しい。つまり油膜が形成され難いため、金属接触が起こり、磨耗が起こりやすい。さらに、近年の代替冷媒の移行により、非共沸混合冷媒のR407CやR410Aを従来のロータリ圧縮機で使用すると、これら冷媒自身の潤滑性が悪いため、上記摺動部分での磨耗がさらに発生しやすい。 In the above configuration, the oil is hardly held at the sliding portion between the piston 232 and the tip of the vane 233, and the sliding property is severe. That is, since it is difficult to form an oil film, metal contact occurs and wear tends to occur. Furthermore, due to the recent shift of alternative refrigerants, when the non-azeotropic refrigerants R407C and R410A are used in conventional rotary compressors, the lubricity of these refrigerants themselves is poor, and thus wear at the sliding parts further occurs. Cheap.
このような磨耗を解決手段がいくつか提案されている。図12は、上記磨耗の問題の一解決手段である揺動ピストン型ロータリ圧縮機の要部を示す横断面図である。図12において、このピストン型ロータリ圧縮機は、シリンダ130と、シリンダ130内に配置されたクランク軸131の偏心部131aに嵌合されたピストン132と、シリンダ130に形成されたスロット130b内を往復運動してピストン132が揺動自由に接続されるベーン133とを備えている。このように、ピストン132を揺動自由にすることで、ピストン132とベーン133の先端の揺動部にオイルが保持されやすくなり、それによって油膜が形成されやすくなるため、ベーン133の先端の信頼性を大幅に向上させることが出来る(例えば特許文献1を参照)。 Several means for solving such wear have been proposed. FIG. 12 is a cross-sectional view showing a main part of a swinging piston type rotary compressor which is one means for solving the above-mentioned wear problem. In FIG. 12, this piston type rotary compressor reciprocates in a cylinder 130, a piston 132 fitted to an eccentric portion 131 a of a crankshaft 131 disposed in the cylinder 130, and a slot 130 b formed in the cylinder 130. And a vane 133 which is moved and is connected to the piston 132 so as to freely swing. In this way, by making the piston 132 swing freely, the oil is easily held at the swinging portion at the tip of the piston 132 and the vane 133, thereby easily forming an oil film. Can be improved significantly (see, for example, Patent Document 1).
しかしながら、図12に示す揺動ピストン型ロータリ圧縮機では、ピストン132とベーン133の揺動部には必ず隙間を設けなければならないため、前述のローリングピストン型と較べて、揺動部の隙間を通じて、圧縮室の高圧側から低圧側へとガスやオイルの漏れが生じやすい。その結果、従来の揺動ピストン型では圧縮損失が増加し、圧縮機の効率が低下するという課題があった。 However, in the oscillating piston type rotary compressor shown in FIG. 12, a gap must be provided in the oscillating part of the piston 132 and the vane 133. Gas and oil are likely to leak from the high pressure side to the low pressure side of the compression chamber. As a result, the conventional oscillating piston type has a problem that the compression loss increases and the efficiency of the compressor decreases.
それゆえに、本発明は、圧縮室の高圧側から低圧側へのガスやオイルの漏れが生じにくいロータリ圧縮機を提供することを目的とする。 Therefore, an object of the present invention is to provide a rotary compressor in which leakage of gas and oil from the high pressure side to the low pressure side of the compression chamber hardly occurs.
上記目的を達成するために、本発明は、シリンダと、シリンダ内に配置される、シャフトの偏心部と、偏心部に嵌合され、円弧角が180°超の円柱状の溝が形成されたピストンと、シリンダに形成されたスロット内に挿入され、該シリンダ内の空間を高圧側と低圧側とに仕切り、かつ溝に係合する円柱状の円柱部を有するベーンと、を備えるロータリ圧縮機であって、溝の円弧の延長線がピストンの外周線より内側にあることを特徴とする。 To achieve the above object, according to the present invention, a cylinder, an eccentric part of a shaft disposed in the cylinder, and a cylindrical groove fitted to the eccentric part and having an arc angle of more than 180 ° are formed. A rotary compressor comprising: a piston; and a vane having a columnar cylindrical portion that is inserted into a slot formed in the cylinder, partitions a space in the cylinder into a high pressure side and a low pressure side, and engages with a groove. The extension line of the arc of the groove is inside the outer peripheral line of the piston.
上記構成によれば、ピストンに形成される溝の円弧部分を増加させることが出来るため、高圧側と低圧側とのシール幅が増加する。これにより、ベーンがスロット内を往復運動する際に、高圧側から低圧側へのガスやオイルの漏れを最小限に抑制できるので、高い効率を持ったロータリ圧縮機を提供することが可能となる。 According to the said structure, since the circular arc part of the groove | channel formed in a piston can be increased, the seal width of a high voltage | pressure side and a low voltage | pressure side increases. As a result, when the vane reciprocates in the slot, the leakage of gas and oil from the high pressure side to the low pressure side can be suppressed to the minimum, so that a rotary compressor having high efficiency can be provided. .
本発明は、シリンダと、シリンダ内に配置される、シャフトの偏心部と、偏心部に嵌合され、円弧角が180°超の円柱状の溝が形成されたピストンと、シリンダに形成されたスロット内に挿入され、該シリンダ内の空間を高圧側と低圧側とに仕切り、かつ溝に係合する円柱状の円柱部を有するベーンとを備えるロータリ圧縮機であって、溝の円弧の延長線がピストンの外周線より内側にあることを特徴とする。 The present invention is formed in a cylinder, an eccentric portion of a shaft disposed in the cylinder, a piston fitted with the eccentric portion and formed with a cylindrical groove having an arc angle of over 180 °, and the cylinder A rotary compressor provided with a vane inserted into a slot, partitioning a space in the cylinder into a high-pressure side and a low-pressure side, and having a cylindrical columnar portion engaged with the groove, and extending the arc of the groove It is characterized in that the line is inside the outer peripheral line of the piston.
上記構成にて溝の円弧部を増加させることが出来ることから、高圧側と低圧側とのシール幅が増加する。これによって、ベーンがスロット内を往復運動する際に、圧縮機の高圧側から低圧側へのガスやオイルの漏れを減少させることができ、その結果、ロータリ圧縮機の効率が向上する。また、ピストンの溝を加工する際に、最初にピストンに穴を空け、その後に円弧部以外の加工を施すことが出来る。これにより、溝の円弧部の真円度や直角度などの加工精度が向上し、加工コストを低減できるとともに、ロータリ圧縮機の効率も向上する。 Since the arc portion of the groove can be increased with the above configuration, the seal width between the high pressure side and the low pressure side increases. As a result, when the vane reciprocates in the slot, leakage of gas and oil from the high pressure side to the low pressure side of the compressor can be reduced, and as a result, the efficiency of the rotary compressor is improved. Further, when machining the groove of the piston, it is possible to first make a hole in the piston and then process other than the arc portion. As a result, the processing accuracy such as roundness and squareness of the arc portion of the groove is improved, the processing cost can be reduced, and the efficiency of the rotary compressor is improved.
好ましくは、ベーンの二側面の中心面に対して円柱部が高圧側に寄っている。ここで、ロータリ圧縮機では、ピストンとベーンの運動中の接触をさけるためどちらか一方に逃がし部分を設ける必要がある。その逃がし部分の高圧側では、トップクリアランスボリュームとなり、吸入時に再膨張することにより損失となる。しかし、上記構成を採用することで高圧側の逃がし量が減ることから、トップクリアランスボリュームを減らすことができ、圧縮機の効率が向上する。 Preferably, the cylindrical portion is closer to the high pressure side with respect to the center surface of the two side surfaces of the vane. Here, in the rotary compressor, it is necessary to provide a relief portion to either avoid contact of the piston and in the vane movement. On the high-pressure side of the relief portion, the top clearance volume is reached, and loss occurs due to re-expansion during inhalation. However, by adopting the above configuration, the amount of escape on the high pressure side is reduced, so that the top clearance volume can be reduced and the efficiency of the compressor is improved.
さらに好ましくは、ベーンの二側面のどちらか一方にマークがあることを特徴とする。このマークは組み立て時に、ベーンの上下を判断する目印とすることができるので、ロータリ圧縮機の組み立て間違いによるロスを減少することが可能となる。 More preferably, there is a mark on either one of the two side surfaces of the vane. Since this mark can be used as a mark for determining whether the vane is up or down during assembly, it is possible to reduce a loss due to a wrong assembly of the rotary compressor.
ロータリ圧縮機では、作動流体として、高圧冷媒であるCO2 が用いられることが可能である。CO2 に関しては、差圧が大きく、摺動損失や漏れ損失が大きいが、円柱部と溝とを上記のようにすることで、作動流体としてCO2 を用いるのにより好適になる。これにより、圧縮機の効率と信頼性を向上させることが可能となる。 In the rotary compressor, CO 2 that is a high-pressure refrigerant can be used as the working fluid. Regarding CO 2 , the differential pressure is large and sliding loss and leakage loss are large, but it is more preferable to use CO 2 as the working fluid by making the cylindrical portion and the groove as described above. As a result, the efficiency and reliability of the compressor can be improved.
ロータリ圧縮機では、作動冷媒として炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とし、2重結合を有しないハイドロフルオロカーボンと混合した冷媒を用いることが可能である。この冷媒は、塩素を含まないため摺動部分の信頼性が非常に厳しい。しかし、溝を上記のようにし、この冷媒を用いることで、より効果的に圧縮機の効率と信頼性を向上させることが可能となる。また、この冷媒に関しては、オゾン
破壊が無く、地球温暖化係数が低いため、地球に優しい空調サイクルの構成に寄与することが可能となる。
In the rotary compressor, it is possible to use a refrigerant mixed with a hydrofluorocarbon having a double bond between carbon and carbon as a base component, and a hydrofluorocarbon having no double bond as a working refrigerant. Since this refrigerant does not contain chlorine, the reliability of the sliding portion is very strict. However, the efficiency and reliability of the compressor can be improved more effectively by making the groove as described above and using this refrigerant. Moreover, since this refrigerant has no ozone destruction and a low global warming potential, it can contribute to the configuration of an air-conditioning cycle that is friendly to the earth.
以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、本発明の一実施形態に係る揺動ピストン型ロータリ圧縮機の部分縦断面図である。図2は、図1に示すロータリ圧縮機の圧縮機構の拡大図である。 FIG. 1 is a partial longitudinal sectional view of a swinging piston type rotary compressor according to an embodiment of the present invention. FIG. 2 is an enlarged view of a compression mechanism of the rotary compressor shown in FIG.
図1,2において、ロータリ圧縮機においては、電動機2と圧縮機構部3とがシャフト31で連結して密閉容器1内に収納される。圧縮機構部3は、シリンダ30と、該シリンダ30の上端面及び下端面を閉塞し、シャフト31を支持する上軸受34及び下軸受35とを備えている。シリンダ30、上軸受34及び下軸受35により、圧縮室39と呼ばれる空間が形成される。 1 and 2, in the rotary compressor, the electric motor 2 and the compression mechanism unit 3 are connected by a shaft 31 and stored in the sealed container 1. The compression mechanism unit 3 includes a cylinder 30, an upper bearing 34 and a lower bearing 35 that close the upper end surface and the lower end surface of the cylinder 30 and support the shaft 31. A space called a compression chamber 39 is formed by the cylinder 30, the upper bearing 34, and the lower bearing 35.
圧縮室39内には、シャフト31の偏心部31aに嵌合されたピストン32が備わる。圧縮室39内にはさらに、ピストン32の外周の偏心回転に追従して往復運動し、圧縮室39内を低圧側と高圧側とに仕切るベーン33が備わる。ベーン33の本体部分は、シリンダ30に設けられたスロット30b内に往復運動可能に挿入される。 In the compression chamber 39, a piston 32 fitted to the eccentric portion 31a of the shaft 31 is provided. The compression chamber 39 further includes a vane 33 that reciprocates following the eccentric rotation of the outer periphery of the piston 32 to partition the compression chamber 39 into a low pressure side and a high pressure side. The main body portion of the vane 33 is inserted into a slot 30b provided in the cylinder 30 so as to be able to reciprocate.
シャフト31には、中心軸に沿って油穴41が形成されると共に、上軸受34の下端部分及び下軸受35の上端部分に近接する部分には、油穴41に連通した給油穴42及び給油穴43が設けられている。また、シャフト31において偏心部31aに近接する部分には、上記油穴41に連通した給油穴44が設けられる。また、シャフト31の外周には、この給油穴44の開口部分を通る油溝45が形成されている。 An oil hole 41 is formed in the shaft 31 along the central axis, and an oil supply hole 42 and an oil supply communicating with the oil hole 41 are provided in portions close to the lower end portion of the upper bearing 34 and the upper end portion of the lower bearing 35. A hole 43 is provided. An oil supply hole 44 communicating with the oil hole 41 is provided in a portion of the shaft 31 adjacent to the eccentric portion 31a. An oil groove 45 that passes through the opening of the oil supply hole 44 is formed on the outer periphery of the shaft 31.
シリンダ30には、圧縮室39の低圧側にガスを吸入する吸入ポート40が開通されており、上軸受34には、低圧側から転じて形成される圧縮室39の高圧側からガスを吐出する吐出ポート38が開通されている。吐出ポート38は、上軸受34を貫通する平面視で円形の孔として形成される。また、上軸受34において吐出ポート38の上方には、所定の大きさ以上の圧力を吐出ポート38から受けた場合に開放される吐出弁36が設けられる。上軸受34にはさらに、吐出弁36を覆うように、カップマフラ−37が配置されている。 The cylinder 30 is opened with a suction port 40 for sucking gas into the low pressure side of the compression chamber 39, and the upper bearing 34 discharges gas from the high pressure side of the compression chamber 39 formed by turning from the low pressure side. The discharge port 38 is opened. The discharge port 38 is formed as a circular hole in plan view that penetrates the upper bearing 34. A discharge valve 36 is provided above the discharge port 38 in the upper bearing 34 and is opened when pressure of a predetermined magnitude or more is received from the discharge port 38. A cup muffler 37 is further disposed on the upper bearing 34 so as to cover the discharge valve 36.
ここで、図3は、図1に示すシャフト31が一回転する間における圧縮機構部3の状態遷移を示す図である。なお、図3では、ベーン33の円柱部33aがシリンダ30の内壁に最も近接する位置を0度としている。図3において、低圧側では、ピストン32とシリンダ30との摺接部分は、吸入ポート40を通過すると、ガスの吸入室を徐々に拡大しながら吸入ポート40から離れていく。この間、吸入ポート40から吸入室内にガスが吸入される。一方、高圧側では、ピストン32の摺動部が圧縮室を徐々に縮小しながら吐出ポート38へ近づいていき、圧縮室39内のガスが所定圧力以上に圧縮された時点で吐出弁36(図1参照)が開き、吐出ポート38からガスが流出する。流出したガスは、図1に示すカップマフラ−37より密閉容器1内、より具体的には圧縮機構部3の外側である高圧の吐出空間52に吐出される。一方、偏心部31a、上軸受34及びピストン32の各内周面の間には空間46(図2参照)があり、偏心部31a、下軸受け35及びピストン32の各内周面との間には空間47(図2参照)がある。その空間46,47には、油穴41から給油穴42,43を経て油が漏れ込んでくる。また、この空間46,47は、ほぼ常に、圧縮室39の内部の圧力より高い状態にある。 Here, FIG. 3 is a diagram showing a state transition of the compression mechanism unit 3 during one rotation of the shaft 31 shown in FIG. In FIG. 3, the position at which the cylindrical portion 33 a of the vane 33 is closest to the inner wall of the cylinder 30 is defined as 0 degree. In FIG. 3, on the low pressure side, the sliding contact portion between the piston 32 and the cylinder 30 moves away from the suction port 40 while gradually expanding the gas suction chamber when passing through the suction port 40. During this time, gas is sucked from the suction port 40 into the suction chamber. On the other hand, on the high pressure side, the sliding portion of the piston 32 gradually approaches the discharge port 38 while gradually reducing the compression chamber, and when the gas in the compression chamber 39 is compressed to a predetermined pressure or higher, the discharge valve 36 (FIG. 1) opens, and gas flows out from the discharge port 38. The outflowing gas is discharged from the cup muffler 37 shown in FIG. 1 into the high-pressure discharge space 52 inside the sealed container 1, more specifically, outside the compression mechanism unit 3. On the other hand, there are spaces 46 (see FIG. 2) between the inner peripheral surfaces of the eccentric portion 31a, the upper bearing 34, and the piston 32, and between the eccentric portion 31a, the lower bearing 35, and the inner peripheral surfaces of the piston 32. Has a space 47 (see FIG. 2). Oil leaks into the spaces 46 and 47 from the oil hole 41 through the oil supply holes 42 and 43. The spaces 46 and 47 are almost always higher than the pressure inside the compression chamber 39.
図4は、図1,2に示すピストン32とベーン33との分解斜視図である。図3において、ベーン33は、円柱形状を有する円柱部33aを先端部分に有する。また、ピストン
32には、この円柱部33aの直径と概ね同径で、円弧角が180°超の円柱状の溝32aが形成されている。円柱部33aはこの溝32aに揺動自在に嵌合して、両者は接続される。
FIG. 4 is an exploded perspective view of the piston 32 and the vane 33 shown in FIGS. In FIG. 3, the vane 33 has a columnar portion 33a having a columnar shape at the tip portion. The piston 32 is formed with a cylindrical groove 32a having a diameter substantially the same as the diameter of the cylindrical portion 33a and an arc angle exceeding 180 °. The cylindrical portion 33a is swingably fitted in the groove 32a, and both are connected.
ここで、図5に示すように、溝32aの円弧の延長線Laはピストン32の外周線の延長線Lbより内側にある。延長線Laが延長線Lbより内側にあると、溝32aの円弧部分を大きく増加させることが出来ることから、圧縮室39における高圧側と低圧側のシール幅が増加し、ガスやオイルの漏れが減少することにより、圧縮機の効率が向上する。また、ピストン32の溝32aを加工する際に、最初にピストン32に穴を空け、その後に円弧部以外の加工を施すことが出来る。これにより、溝32aの円弧部の真円度、直角度などの加工精度が向上し、加工コストを低減できるとともに、効率も向上する。 Here, as shown in FIG. 5, the arc extension line La of the groove 32 a is inside the extension line Lb of the outer peripheral line of the piston 32. If the extension line La is inside the extension line Lb, the arc portion of the groove 32a can be greatly increased. Therefore, the seal width on the high-pressure side and the low-pressure side in the compression chamber 39 is increased, and gas and oil leaks. By reducing, the efficiency of the compressor is improved. Further, when machining the groove 32a of the piston 32, it is possible to first make a hole in the piston 32 and then perform machining other than the arc portion. As a result, the processing accuracy such as roundness and squareness of the arc portion of the groove 32a is improved, the processing cost can be reduced, and the efficiency is improved.
それに対し、図6に示すように、延長線Laが延長線Lbより外側にあると、溝32aの円弧部が減少し、シール幅も減少する。 On the other hand, as shown in FIG. 6, when the extension line La is outside the extension line Lb, the arc portion of the groove 32a is reduced and the seal width is also reduced.
また、好ましくは、図7に示すように、スロット30bの内壁と接するベーン33の二側面の中心平面Paを基準として、円柱部33aの中心平面Pbは圧縮室39の高圧側に寄せられる。ここで、揺動ピストン型ロータリ圧縮機では、ピストン32とベーン33の運動中の接触をさけるためどちらか一方に逃がし部分を設ける必要があり、その逃がし部分の高圧側はトップクリアランスボリュームVとなる。このトップクリアランスボリュームVはガス吸入時に再膨張するため、損失となる。より具体的には、図8に示すように、中心平面Pcと円柱部33aの軸心Xを一致させるか、中心平面Paに対して円柱部33aを低圧側に寄せてしまうと、高圧側のトップクリアランスボリュームVが大きくなってしまう。それに対し、図7に示すように、円柱部33aは圧縮室39の高圧側に寄せることにより、高圧側のトップクリアランスボリュームVを小さくすることが可能となるため、吸入時における損失が減少し、圧縮機の効率が向上する。 Preferably, as shown in FIG. 7, the center plane Pb of the cylindrical portion 33 a is brought closer to the high-pressure side of the compression chamber 39 with reference to the center plane Pa of the two side surfaces of the vane 33 in contact with the inner wall of the slot 30 b. Here, in the rolling piston rotary compressor, to avoid contact during movement of the piston 32 and the vane 33 it is necessary to provide a relief portion to either the high pressure side of the relief portion becomes the top clearance volume V . Since the top clearance volume V is re-expanded during gas inhalation, a loss occurs. More specifically, as shown in FIG. 8, if the center plane Pc and the axis X of the cylindrical portion 33 a are aligned or the cylindrical portion 33 a is moved to the low pressure side with respect to the central plane Pa, The top clearance volume V becomes large. On the other hand, as shown in FIG. 7, the cylindrical portion 33a can be made closer to the high pressure side of the compression chamber 39, so that the top clearance volume V on the high pressure side can be reduced. The efficiency of the compressor is improved.
また、図9に示すように、ベーン33の上端面か下端面のどちらか一方に、例えば小さなくぼみをマーク33cとして設けることが好ましい。これにより、組み立て時に上下方向を判断する目印となり、組み立て間違いによるロスを減少することが可能となる。 Moreover, as shown in FIG. 9, it is preferable to provide, for example, a small depression as a mark 33c on either the upper end surface or the lower end surface of the vane 33. Thereby, it becomes a mark which judges the up-down direction at the time of an assembly, and it becomes possible to reduce the loss by an assembly mistake.
また、本圧縮機は、作動流体としてCO2を用いるのに好適である。CO2 は、差圧が大きく、漏れ損失と摺動損失が大きいが、本実施形態に係るピストン32とベーン33を採用することにより、より効果的に圧縮機の効率と信頼性の向上が可能となる。 Further, the compressor is suitable for use with CO 2 as the working fluid. CO 2 has a large differential pressure and a large leakage loss and sliding loss. By adopting the piston 32 and the vane 33 according to this embodiment, the efficiency and reliability of the compressor can be improved more effectively. It becomes.
また、作動流体として炭素と炭素間に2重結合を有するハイドロフルオロオレフィンをベース成分とし、2重結合を有しないハイドロフルオロカーボンと混合した冷媒が本圧縮機に用いられる。この冷媒は塩素を含まないため摺動部の信頼性が非常に厳しいが、本実施形態に係るピストン32とベーン33を採用することにより、より効果的に信頼性と効率を向上することが出来る。さらに、オゾン破壊のないまた地球温暖化係数の低い冷媒であるため地球に優しい空調サイクルを構成することができる。 In addition, a refrigerant mixed with a hydrofluoroolefin having a double bond between carbon and carbon as a working fluid and having a double bond as a working fluid is used for the compressor. Since this refrigerant does not contain chlorine, the reliability of the sliding portion is very severe. However, by adopting the piston 32 and the vane 33 according to this embodiment, the reliability and efficiency can be improved more effectively. . Furthermore, since it is a refrigerant that does not destroy ozone and has a low global warming potential, it can constitute an air-conditioning cycle that is friendly to the earth.
本発明にかかるロータリ圧縮機は、圧縮室の高圧側から低圧側へのガスやオイルの漏れが生じにくく、給湯器装置、空気調和機、冷凍冷蔵庫、除湿機等に好適である。 The rotary compressor according to the present invention hardly leaks gas or oil from the high pressure side to the low pressure side of the compression chamber, and is suitable for a water heater device, an air conditioner, a refrigerator-freezer, a dehumidifier, and the like.
30 シリンダ
30b スロット
31 シャフト
31a 偏心部
32 ピストン
32a 溝
33 ベーン
33a 円柱部
La 延長線(溝の円弧側)
Lb 延長線(ピストン外周側)
30 Cylinder 30b Slot 31 Shaft 31a Eccentric part 32 Piston 32a Groove 33 Vane 33a Cylindrical part La Extension line (arc side of groove)
Lb extension line (piston outer circumference side)
Claims (2)
前記シリンダ内に配置される、シャフトの偏心部と、
前記偏心部に嵌合され、円弧角が180°超の円柱状の溝が形成されたピストンと、
前記シリンダに形成されたスロット内に挿入され、該シリンダ内の空間を高圧側と低圧側とに仕切り、かつ前記溝に係合する円柱状の円柱部を有するベーンと、
を備えるロータリ圧縮機であって、
前記溝の円弧の延長線が前記ピストンの外周線より内側にあり、前記ベーンの二側面の中心面に対して前記円柱部が前記高圧側に寄っていることを特徴とする、ロータリ圧縮機。 A cylinder,
An eccentric portion of a shaft disposed in the cylinder;
A piston fitted into the eccentric part and formed with a cylindrical groove having an arc angle of more than 180 °;
A vane that is inserted into a slot formed in the cylinder, divides a space in the cylinder into a high-pressure side and a low-pressure side, and has a cylindrical columnar portion that engages with the groove;
A rotary compressor comprising:
Ri inside near the outer periphery line of the arc of extension said piston of said groove, wherein said cylindrical portion is closer to the high-pressure side with respect to the center plane of the two side surfaces of said vane, rotary compressor .
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009095844A JP5504681B2 (en) | 2009-04-10 | 2009-04-10 | Rotary compressor |
EP10761437.2A EP2418386B1 (en) | 2009-04-10 | 2010-04-07 | Rotary compressor |
PCT/JP2010/002544 WO2010116733A2 (en) | 2009-04-10 | 2010-04-07 | Rotary compressor |
CN201080008127.8A CN102317631B (en) | 2009-04-10 | 2010-04-07 | Rotary compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009095844A JP5504681B2 (en) | 2009-04-10 | 2009-04-10 | Rotary compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010248911A JP2010248911A (en) | 2010-11-04 |
JP5504681B2 true JP5504681B2 (en) | 2014-05-28 |
Family
ID=42936655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009095844A Active JP5504681B2 (en) | 2009-04-10 | 2009-04-10 | Rotary compressor |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2418386B1 (en) |
JP (1) | JP5504681B2 (en) |
CN (1) | CN102317631B (en) |
WO (1) | WO2010116733A2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012004145A1 (en) | 2012-02-29 | 2013-08-29 | Dieter Brox | Controllable vane compressor e.g. single-vane compressor, for compressing fluid in cooling system in electric car, has rotor within housing wall connected with shaft, where fluid in pressure area is displaced into pressure output via groove |
KR102249115B1 (en) * | 2014-09-19 | 2021-05-07 | 엘지전자 주식회사 | Compressor |
CN106939886A (en) * | 2016-01-04 | 2017-07-11 | 熵零技术逻辑工程院集团股份有限公司 | Hydraulic mechanism and apply its system |
CN107061264A (en) * | 2016-01-04 | 2017-08-18 | 熵零技术逻辑工程院集团股份有限公司 | Hydraulic mechanism and apply its system |
KR102288429B1 (en) | 2019-07-17 | 2021-08-10 | 엘지전자 주식회사 | Rotary Compressor |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE355665C (en) * | 1922-06-29 | Max Guettner | Elastic mounting of the piston on the drive shaft in compressors with an eccentric | |
BE371144A (en) * | ||||
FR923927A (en) * | 1946-03-18 | 1947-07-22 | Colombo & Mengato | Improvements to rotary air and other gas compressors |
GB995084A (en) * | 1960-07-09 | 1965-06-16 | N G N Ltd | Improvements in or relating to rotary pumps |
FR1480236A (en) * | 1966-03-28 | 1967-05-12 | Nimex | Sealed device for transmitting a translational movement |
JPH06323272A (en) * | 1993-05-11 | 1994-11-22 | Daikin Ind Ltd | Rotary compressor |
JP2000120572A (en) | 1998-10-12 | 2000-04-25 | Sanyo Electric Co Ltd | Rotary compressor |
JP2003003967A (en) * | 2001-06-25 | 2003-01-08 | Hitachi Ltd | Rotary piston type compressor and refrigerator or air conditioner using this compressor |
TWI645031B (en) * | 2005-06-24 | 2018-12-21 | 哈尼威爾國際公司 | Compositions containing fluorine substituted olefins amd uses thereof |
JP5018008B2 (en) * | 2006-10-13 | 2012-09-05 | ダイキン工業株式会社 | Rotary fluid machine |
JP2008223551A (en) * | 2007-03-09 | 2008-09-25 | Daikin Ind Ltd | Compressor of air conditioner |
-
2009
- 2009-04-10 JP JP2009095844A patent/JP5504681B2/en active Active
-
2010
- 2010-04-07 EP EP10761437.2A patent/EP2418386B1/en active Active
- 2010-04-07 CN CN201080008127.8A patent/CN102317631B/en active Active
- 2010-04-07 WO PCT/JP2010/002544 patent/WO2010116733A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2010116733A2 (en) | 2010-10-14 |
JP2010248911A (en) | 2010-11-04 |
EP2418386A4 (en) | 2014-07-23 |
EP2418386A2 (en) | 2012-02-15 |
CN102317631B (en) | 2014-02-26 |
WO2010116733A3 (en) | 2010-12-16 |
CN102317631A (en) | 2012-01-11 |
EP2418386B1 (en) | 2017-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8635884B2 (en) | Multi-cylinder rotary compressor and refrigeration cycle apparatus | |
JP5528379B2 (en) | Rotary compressor | |
JP5504681B2 (en) | Rotary compressor | |
JP5542675B2 (en) | Rotary compressor | |
JP5040934B2 (en) | Hermetic compressor | |
JP5540557B2 (en) | Rotary compressor | |
JP2016017473A (en) | Rotary compressor | |
JP2014240634A (en) | Rotary type fluid machine | |
JP5870246B2 (en) | Rotary compressor | |
JP6090379B2 (en) | Rotary compressor | |
JP2010031733A (en) | Rotary compressor | |
KR20150093196A (en) | Rotary compressor and refrigeration cycle device | |
JP2011252475A (en) | Rotary compressor | |
JP5879474B2 (en) | Rotary compressor | |
JP2010242696A (en) | Rotary compressor | |
WO2013080519A1 (en) | Rotary compressor | |
JP6758422B2 (en) | Rotating compressor | |
JP4961961B2 (en) | Rotary fluid machine | |
JP2014190176A (en) | Rotary compressor and refrigeration cycle device | |
JP2011157911A (en) | Rotary compressor | |
JP5915175B2 (en) | Rotary compressor | |
JP2010031734A (en) | Rotary compressor | |
JP2011179452A (en) | Rotary compressor | |
JP2011163257A (en) | Hermetic compressor | |
JP2017082842A (en) | Bearing structure and scroll compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120227 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20121214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130820 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130909 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20140107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140303 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5504681 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |