[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5583440B2 - Mechanical seal sliding material and mechanical seal - Google Patents

Mechanical seal sliding material and mechanical seal Download PDF

Info

Publication number
JP5583440B2
JP5583440B2 JP2010062451A JP2010062451A JP5583440B2 JP 5583440 B2 JP5583440 B2 JP 5583440B2 JP 2010062451 A JP2010062451 A JP 2010062451A JP 2010062451 A JP2010062451 A JP 2010062451A JP 5583440 B2 JP5583440 B2 JP 5583440B2
Authority
JP
Japan
Prior art keywords
dynamic pressure
groove
pressure generating
sliding material
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010062451A
Other languages
Japanese (ja)
Other versions
JP2011196429A (en
Inventor
猛 細江
秀行 井上
芳博 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Priority to JP2010062451A priority Critical patent/JP5583440B2/en
Publication of JP2011196429A publication Critical patent/JP2011196429A/en
Application granted granted Critical
Publication of JP5583440B2 publication Critical patent/JP5583440B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Sealing (AREA)

Description

本発明は、メカニカルシールの摺動材及びこの摺動材を用いたメカニカルシールに関し、特に摺動面に動圧生成溝を設けたものに関する。   The present invention relates to a sliding material for a mechanical seal and a mechanical seal using the sliding material, and particularly relates to a sliding surface provided with a dynamic pressure generating groove.

従来から、メカニカルシールの静止側摺動材又は回転側摺動材として使用される摺動材の摺動面に、相手摺動材との相対回転によって摺動面間に動圧を生成する動圧生成溝を設けたものが知られている。たとえば、特許文献1には、動圧生成溝を微小な凹凸部が所定ピッチで繰り返される多数の周期構造の溝とした構成が提案されている。   Conventionally, a dynamic pressure is generated between sliding surfaces of a sliding material used as a stationary sliding material or a rotating sliding material of a mechanical seal by relative rotation with a mating sliding material. One having a pressure generating groove is known. For example, Patent Document 1 proposes a configuration in which the dynamic pressure generating grooves are grooves having a number of periodic structures in which minute uneven portions are repeated at a predetermined pitch.

このような動圧生成溝によって、被封止流体側から被封止流体を汲み入れ、溝終端の壁に当てることにより正圧を生じさせ、摺動面間に流体潤滑膜を保持して摺動面の摩擦を低減するようになっている。   With such a dynamic pressure generating groove, the sealed fluid is pumped from the sealed fluid side and applied to the wall at the end of the groove to generate a positive pressure. The friction on the moving surface is reduced.

WO2009/087995号公報WO2009 / 087995

しかし、従来の動圧生成溝を設けた摺動材では、動圧生成溝によって発生する流体圧によって摩耗が低減されるものの、発生する圧力によって隙間が広がるので、被封止流体が反被封止流体側への漏洩量が多くなってしまう。特許文献1のような微細構造とした場合、漏洩量が少なくなるものの、近年では、使用条件がより厳しくなっており、漏洩量をより低減することが要請されている。   However, in the sliding material provided with the conventional dynamic pressure generating groove, although wear is reduced by the fluid pressure generated by the dynamic pressure generating groove, the gap is widened by the generated pressure, so that the fluid to be sealed is anti-encapsulated. The amount of leakage to the stop fluid side will increase. In the case of a fine structure as in Patent Document 1, although the amount of leakage is reduced, in recent years, the use conditions have become more severe, and it is required to further reduce the amount of leakage.

本発明は上記した従来の要請に応えるべくなされたもので、その目的とするところは、被封止流体の漏洩量をより少なくし、さらなる潤滑特性の向上を図り得るメカニカルシールの摺動材及びそれを用いたメカニカルシールを提供することにある。   The present invention has been made to meet the above-described conventional demands, and the object of the present invention is to reduce the amount of fluid to be sealed and to further improve the lubrication characteristics, and to provide a sliding material for a mechanical seal. It is to provide a mechanical seal using the same.

上記目的を達成するために、本発明は、
互いに回転摺動するメカニカルシールの静止側摺動材又は回転側摺動材として使用される環状の摺動材であって、摺動面に相手摺動材との相対回転によって摺動面間に動圧を生成する動圧生成溝が周方向に複数設けられたメカニカルシールの摺動材において、
前記摺動面の動圧生成溝に対して反被封止流体側の領域に、回転中心を中心とする円環状の環状溝を設け
前記動圧生成溝は微小な凹凸部が10μm以下のピッチで繰り返される多数の周期構造の溝とすると共に、溝の深さを1μm以下とし、
さらに、前記摺動面の外周から動圧生成溝の被封止流体側端部が被封止流体側に露出しており、
前記動圧生成溝は、レーザ照射により形成された多数の周期構造の溝が周全体に亘って形成されていることを特徴とする。
前記環状溝は、微小な凹凸部が半径方向に同心円状に所定ピッチで繰り返される多数の周期構造の溝とすることができる。
In order to achieve the above object, the present invention provides:
An annular sliding material used as a stationary sliding material or rotating sliding material for mechanical seals that rotate and slide relative to each other. In the sliding material of the mechanical seal provided with a plurality of dynamic pressure generating grooves for generating dynamic pressure in the circumferential direction,
In the region on the anti-sealed fluid side with respect to the dynamic pressure generating groove on the sliding surface, an annular ring groove centering on the rotation center is provided ,
The dynamic pressure generating groove is a groove having a number of periodic structures in which minute uneven portions are repeated at a pitch of 10 μm or less, and the depth of the groove is 1 μm or less.
Furthermore, the sealed fluid side end of the dynamic pressure generating groove is exposed to the sealed fluid side from the outer periphery of the sliding surface ,
The dynamic pressure generating groove is characterized in that a plurality of periodic structure grooves formed by laser irradiation are formed over the entire circumference .
The annular groove may be a groove having a number of periodic structures in which minute uneven portions are repeated concentrically in a radial direction at a predetermined pitch.

また、本発明のメカニカルシールは、互いに相対回転するハウジングと回転軸間をシールするもので、前記ハウジングに取り付けられる静止側摺動材と、前記回転軸に取り付けられ前記静止側摺動材と回転摺動する回転側摺動材とを有し、前記静止側摺動材と回転側摺動材の内の一方の摺動材の摺動面に、相手摺動材との相対回転によって摺動面間に動圧を生成する動圧生成溝が形成されたメカニカルシールにおいて、
前記摺動面の動圧生成溝に対して反被封止流体側の領域に、回転中心と同心円状の環状溝を設け、
前記動圧生成溝は微小な凹凸部が10μm以下のピッチで繰り返される多数の周期構造の溝とすると共に、溝の深さを1μm以下とし、
さらに、前記摺動面の外周から動圧生成溝の被封止流体側端部が被封止流体側に露出しており、
前記動圧生成溝は、レーザ照射により形成された多数の周期構造の溝が周全体に亘って形成されていることを特徴とする。
The mechanical seal of the present invention seals between a housing and a rotating shaft that rotate relative to each other. The stationary-side sliding material that is attached to the housing, and the stationary-side sliding material that is attached to the rotating shaft and rotates. Sliding on the sliding surface of one of the stationary sliding material and the rotating sliding material by relative rotation with the mating sliding material. In the mechanical seal in which a dynamic pressure generating groove for generating dynamic pressure between the surfaces is formed,
An annular groove concentric with the rotation center is provided in a region on the anti-sealed fluid side with respect to the dynamic pressure generating groove of the sliding surface,
The dynamic pressure generating groove is a groove having a number of periodic structures in which minute uneven portions are repeated at a pitch of 10 μm or less, and the depth of the groove is 1 μm or less.
Furthermore, the sealed fluid side end of the dynamic pressure generating groove is exposed to the sealed fluid side from the outer periphery of the sliding surface ,
The dynamic pressure generating groove is characterized in that a plurality of periodic structure grooves formed by laser irradiation are formed over the entire circumference .

本発明によれば、摺動面の被被封止流体側の端縁から摺動面間に被封止流体が汲み入れられて摺動面間に流体潤滑膜が形成され、動圧生成溝によって正圧を発生させて相手摺動材との間の浮上力が確保される。
一方、動圧生成溝に対して反被封止流体側の領域には環状溝に沿った環状の流れが生成されており、この環状の流れが壁となり、動圧生成溝から反被封止流体側の空間へ排出される被封止流体の漏洩量が低減される。それにより、摺動材は良好・安定的な潤滑性を得ることができる。
また、動圧生成溝と環状溝の少なくとも一方を、周期構造の溝とすることにより、潤滑膜が安定して保持され摺動面同士が過大に押圧することが無いため、良好な摩擦係数のシールを得ることができる。さらに、摩擦を少なくするために、摺動面での温度上昇も少なく、良好なシール性を確保することができる。
According to the present invention, the fluid to be sealed is pumped between the sliding surfaces from the edge of the sliding surface on the sealed fluid side, and a fluid lubrication film is formed between the sliding surfaces. As a result, a positive pressure is generated and a floating force between the mating sliding material is secured.
On the other hand, an annular flow along the annular groove is generated in the region on the anti-sealed fluid side with respect to the dynamic pressure generating groove, and this annular flow becomes a wall, and the anti-sealed from the dynamic pressure generating groove. The leakage amount of the sealed fluid discharged to the fluid side space is reduced. Thereby, the sliding material can obtain good and stable lubricity.
In addition, since at least one of the dynamic pressure generating groove and the annular groove is a groove having a periodic structure, the lubricating film is stably held and the sliding surfaces are not excessively pressed. A seal can be obtained. Furthermore, in order to reduce friction, the temperature rise on the sliding surface is small, and good sealing performance can be ensured.

図1(A)は本発明の実施の形態に係るメカニカルシールの摺動材の摺動面を模式的に示す図、(B)は(A)の動圧生成溝の周期構造を部分的に示す模式図、(C)は(B)のC部を拡大して示す模式図である。1A schematically shows a sliding surface of a sliding material of a mechanical seal according to an embodiment of the present invention, and FIG. 1B partially shows a periodic structure of a dynamic pressure generating groove in FIG. The schematic diagram to show, (C) is a schematic diagram which expands and shows the C section of (B). 図2(A)はメカニカルシールの漏洩量を測定する試験機の概略構成を示す図、(B)は本発明が適用された静止側摺動材の摺動面を模式的に示す図、(C)は比較例となる静止側摺動材の摺動面を模式的に示す図である。FIG. 2A is a diagram showing a schematic configuration of a testing machine that measures the leakage amount of a mechanical seal, FIG. 2B is a diagram schematically showing a sliding surface of a stationary sliding material to which the present invention is applied, C) is a diagram schematically showing a sliding surface of a stationary sliding material as a comparative example.

以下に本発明を図示の実施例に基づいて詳細に説明する。
この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
Hereinafter, the present invention will be described in detail based on illustrated embodiments.
The dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to those unless otherwise specified.

図1(A)はメカニカルシール用の摺動材の摺動面の動圧生成溝を模式的に示す正面図、(B),(C)は(A)の動圧生成溝の微細な周期構造を示す模式図である。
図1(A)は、摺動材1の摺動面Sを示すもので、特に図示しないが、互いに回転摺動するメカニカルシールの静止側摺動材又は回転側摺動材として使用されるものである。メカニカルシールの構成としては、特に、形式は問わない。また、摺動材の断面形状、材質等も問わず、種々の構造のものに適用可能である。
1A is a front view schematically showing a dynamic pressure generating groove on a sliding surface of a sliding material for a mechanical seal, and FIGS. 1B and 1C are fine periods of the dynamic pressure generating groove in FIG. It is a schematic diagram which shows a structure.
FIG. 1 (A) shows the sliding surface S of the sliding material 1, which is not particularly shown, but is used as a stationary sliding material or a rotating sliding material for mechanical seals that rotate and slide relative to each other. It is. The configuration of the mechanical seal is not particularly limited. Moreover, it is applicable to the thing of various structures irrespective of the cross-sectional shape of a sliding material, a material, etc.

図示例では、ハウジングに固定される静止側摺動材に利用されるもので、外径側が被封止流体側Fで、内径側が反被封止流体側である大気側Aである。
この摺動面Sは回転軸と直交する平坦面で、外径線S11と内径線S12の間の環状の中途領域に、動圧生成溝2が周方向に複数設けられている。この複数の動圧生成溝2が設けられた領域を動圧生成溝形成領域200とすると、摺動面Sは、この動圧生成溝形成領域200に対して被封止流体側(外径側)の被封止流体側領域S、動圧生成溝形成領域200に対して反被封止流体側(内径側)である大気側領域Sの3つの環状領域が、回転中心Oを中心として同心円状に区分されている。
In the illustrated example, it is used for a stationary-side sliding material fixed to a housing, and the outer diameter side is the sealed fluid side F, and the inner diameter side is the atmosphere side A which is the anti-sealed fluid side.
The sliding surface S is a flat surface perpendicular to the rotation axis, an annular middle region between the external diameter line S 11 and the inner diameter line S 12, the dynamic pressure generating groove 2 is provided with a plurality in the circumferential direction. When the region in which the plurality of dynamic pressure generating grooves 2 are provided is defined as a dynamic pressure generating groove forming region 200, the sliding surface S is on the sealed fluid side (outer diameter side) with respect to the dynamic pressure generating groove forming region 200. the sealing fluid side area S F) of the three annular regions of the atmosphere-side region S a is counter to be sealed fluid side of the dynamic pressure generating groove forming area 200 (inner diameter side), the rotation center O As concentric circles.

動圧生成溝2は、図示例では、回転接線方向に対して、半径方向外方に向かうに従って周方向同一方向に徐々に傾斜角度が小さくなるような曲線状のスパイラル溝で、周方向に多数設けられている。
この動圧生成溝2は、微小な凹凸が所定ピッチで繰り返される周期構造によって構成さ
れるもので、そのピッチは10μm以下、その溝の深さは1μm以下に形成されることが好ましい。一つの動圧生成溝2は微小な凹凸の谷部であり、図1(A)では、各動圧生成溝2間の周方向の間隔は広く描いているが、模式的に示しているだけで、周期構造は10μm以下のピッチで形成されている。摺動面S自体は鏡面加工によって、動圧生成溝2が明瞭になる程度の表面粗さに設定される。
In the illustrated example, the dynamic pressure generating groove 2 is a curved spiral groove whose inclination angle gradually decreases in the same circumferential direction as it goes outward in the radial direction with respect to the rotational tangential direction. Is provided.
The dynamic pressure generating groove 2 is formed by a periodic structure in which minute irregularities are repeated at a predetermined pitch, and the pitch is preferably 10 μm or less and the depth of the groove is preferably 1 μm or less. One dynamic pressure generating groove 2 is a valley with minute irregularities, and in FIG. 1A, the circumferential interval between the dynamic pressure generating grooves 2 is drawn wide, but is only schematically shown. The periodic structure is formed with a pitch of 10 μm or less. The sliding surface S itself is set to such a surface roughness that the dynamic pressure generating groove 2 becomes clear by mirror finishing.

このような微細な周期溝は、WO2009/087995号公報にも記載されている通り、フェムト秒レーザによって加工される。すなわち、加工閾値近傍の照射強度で直線偏光のレーザーを照射し、入射光と基板の表面に沿った散乱光又はプラズマ波の干渉により、波長オーダーのピッチと溝深さを持つ周期構造が偏光方向に直交して自己組織的に形成される。このとき、フェムト秒レーザーをオーバーラップさせながら走査することにより、周期構造のパターンを表面に形成することができる。このようなフェムト秒レーザーを利用した周期構造ではその方向性の制御が可能であり、加工位置の制御も可能であり、メカニカルシールの潤滑性向上及び漏洩低減に有効なサブミクロンオーダーの深さの溝の形成が可能である。もちろん、加工方法はフェムト秒レーザによるレーザ加工に限定されるものではなく、他の加工方法によって形成してもよい。   Such fine periodic grooves are processed by a femtosecond laser as described in WO2009 / 087995. In other words, a linearly polarized laser beam is irradiated with an irradiation intensity near the processing threshold, and a periodic structure having a wavelength order pitch and groove depth is polarized by the interference of incident light and scattered light or plasma waves along the surface of the substrate. Is formed in a self-organizing manner orthogonal to At this time, the pattern of the periodic structure can be formed on the surface by scanning with the femtosecond lasers overlapped. In such a periodic structure using femtosecond lasers, the directionality can be controlled, the processing position can also be controlled, and the depth of submicron order effective in improving lubricity and reducing leakage of mechanical seals. Grooves can be formed. Of course, the processing method is not limited to the laser processing by the femtosecond laser, and may be formed by other processing methods.

なお、動圧生成溝2はスパイラル溝に限るものではなく、回転接線に対して周方向一方向に傾斜する直線状の溝でもよい。また、この例では、一方向の回転により正圧を生成する形成する溝パターンとなっているが、両方向の回転により正圧を得るような構成でもよい。その場合には、半径方向に延びる放射状溝としてもよいし、また、WO2009/087995号公報にも記載されているように、傾斜の向きの互いに逆向きの溝を形成した動圧生成溝形成領域を、周方向に交互に設ける構成としてもよい。
この動圧生成溝形成領域2の反被封止流体側(内径側)である大気側領域Sには、回転中心Oを中心とする円環状の環状溝3が設けられている。この環状溝3も、半径方向に同心円状に複数周期的に設けられたもので、環状溝3が形成された領域を環状溝領域300とすると、所定幅の円環状の領域である。
The dynamic pressure generating groove 2 is not limited to the spiral groove, and may be a linear groove that is inclined in one circumferential direction with respect to the rotational tangent. Further, in this example, the groove pattern is formed so as to generate a positive pressure by rotation in one direction, but a configuration in which a positive pressure is obtained by rotation in both directions may be used. In that case, radial grooves extending in the radial direction may be used, and as described in WO2009 / 087995, a dynamic pressure generating groove forming region in which grooves having inclined directions opposite to each other are formed. May be provided alternately in the circumferential direction.
The anti-target sealing fluid side of the dynamic pressure generating groove formed region 2 to the atmosphere side region S A is (inner diameter side), annular ring groove 3 around the rotation center O are provided. The annular groove 3 is also provided in a plurality of cycles concentrically in the radial direction. If the region where the annular groove 3 is formed is an annular groove region 300, the annular groove 3 is an annular region having a predetermined width.

この実施例では、環状溝3も微小な凹凸部が所定ピッチで繰り返される周期構造によって構成される。もっとも、このように微細な凹凸部の周期構造である必要はなく、大きいサイズの所定幅の環状溝であってもよい。
この摺動面Sに接する相手摺動材の摺動部5の形状は、動圧生成溝形成領域200と環状溝形成領域300を包含する幅の環状の領域である。摺動部5の外径線51を、動圧生成溝形成領域200の外径線201よりも僅かに内側に位置させ、動圧生成溝2の被封止流体側端部が被封止流体側Fに露出していることが好ましい。
もっとも、摺動部5の外径線51が動圧生成溝形成領域200の外径線201よりも外側に位置していてもよい。
一方、環状溝形成領域300は、その外径線301が、動圧生成溝形成領域200の内径線202からランド部を隔てて所定寸法離れていることが好ましい。摺動部5の内径線52は、環状溝領域300の内径線302と摺動面Sの内径線S12の間である。
In this embodiment, the annular groove 3 is also constituted by a periodic structure in which minute uneven portions are repeated at a predetermined pitch. However, it is not necessary to have such a periodic structure of fine uneven portions, and an annular groove having a large width and a predetermined width may be used.
The shape of the sliding portion 5 of the mating sliding material in contact with the sliding surface S is an annular region having a width including the dynamic pressure generating groove forming region 200 and the annular groove forming region 300. The outer diameter line 51 of the sliding portion 5 is positioned slightly inside the outer diameter line 201 of the dynamic pressure generation groove forming region 200, and the sealed fluid side end of the dynamic pressure generation groove 2 is the sealed fluid. Preferably it is exposed on side F.
But the outer diameter line 51 of the sliding part 5 may be located outside the outer diameter line 201 of the dynamic pressure generating groove forming region 200.
On the other hand, it is preferable that the outer diameter line 301 of the annular groove forming region 300 is separated from the inner diameter line 202 of the dynamic pressure generating groove forming region 200 by a predetermined dimension with a land portion therebetween. Inner diameter line of the sliding portion 5 52 is between the inner diameter of line S 12 of internal diameter line 302 and the sliding surface S of the annular groove region 300.

本発明によれば、被封止流体が動圧生成溝2の外径端部から動圧生成溝2に汲み入れられ、動圧生成溝2によって正圧が発生し、静止側摺動材に対して回転側摺動材に浮上力が確保される。
一方、動圧生成溝2に対して反被封止流体側の大気側領域Sには、環状溝3に沿った環状の流れが生成されており、この環状の流れが壁となり、大気側Aへの被封止流体の漏洩が低減される。漏洩量を低減させることにより、摺動面間に形成される流体潤滑膜が安定して保持されるので、回転側および静止側摺動材は良好・安定的な潤滑性を得ることができる。
また、動圧生成溝2と環状溝3の少なくとも一方を、周期構造の溝とすることにより、
摺動面同士が過大に押圧することが無いため、良好な摩擦係数のシールを得ることができる。さらに、摩擦が少なくなるために、摺動面での温度上昇も少なく、良好なシール性を確保することができる。
According to the present invention, the fluid to be sealed is pumped into the dynamic pressure generating groove 2 from the outer diameter end portion of the dynamic pressure generating groove 2, and positive pressure is generated by the dynamic pressure generating groove 2. On the other hand, a levitation force is ensured on the rotating side sliding member.
On the other hand, the atmosphere-side area S A of the anti-target sealing fluid side with respect to the dynamic pressure generating grooves 2 are generated annular flow along the annular groove 3, the annular flow is a wall, atmosphere side Leakage of the sealed fluid to A is reduced. By reducing the amount of leakage, the fluid lubricating film formed between the sliding surfaces is stably held, so that the rotating and stationary sliding materials can obtain good and stable lubricity.
Further, by making at least one of the dynamic pressure generating groove 2 and the annular groove 3 into a groove having a periodic structure,
Since the sliding surfaces do not press excessively, a seal having a good friction coefficient can be obtained. Further, since the friction is reduced, the temperature rise on the sliding surface is small, and a good sealing property can be ensured.

[他の実施の形態]
なお、上記実施の形態では、動圧生成溝形成領域200を半径方向一か所に設けた例について説明したが、動圧生成溝形成領域200を半径方向に複数同心円状に形成してもよい。
また、動圧生成溝2をフェムト秒レーザで加工した微細な周期構造とした例について説
明したが、フェムト秒レーザで加工した周期構造に限定されるものではなく、フェムト秒レーザ以外で加工するような構造としてもよい。
一方、環状溝3についても、環状溝形成領域300を半径方向一か所に設けた場合を例示しているが、環状溝形成領域300を半径方向に複数同心円状に設けてもよい。
[Other embodiments]
In the above-described embodiment, the example in which the dynamic pressure generating groove forming region 200 is provided in one radial direction has been described. However, a plurality of the dynamic pressure generating groove forming regions 200 may be formed concentrically in the radial direction. .
Further, the example in which the dynamic pressure generating groove 2 is a fine periodic structure processed by a femtosecond laser has been described. However, the present invention is not limited to the periodic structure processed by the femtosecond laser, and may be processed by other than the femtosecond laser. but it may also as a structure.
On the other hand, as for the annular groove 3, the case where the annular groove forming region 300 is provided in one radial direction is illustrated, but a plurality of annular groove forming regions 300 may be provided concentrically in the radial direction .

実験例
図2は、メカニカルシールの漏洩量(リーク量)を測定する試験機を示している。
この試験機は、ハウジング20と、ハウジング20に相対回転自在に挿入される回転軸15とを備え、ハウジング20と回転軸15の間に、試験対象のメカニカルシールを装着するようになっている。
ハウジング20は内部中空の円筒形状で、ハウジング20の内部が試験用の被封止流体が収納される流体室20Aとなっている。このハウジング20の一端に、回転軸15を挿入するための軸挿入口が設けられ、片持ち状態の回転軸15の自由端が軸挿入口から挿入される。
Experimental Example FIG. 2 shows a testing machine that measures the leakage amount (leakage amount) of a mechanical seal.
This testing machine includes a housing 20 and a rotating shaft 15 that is inserted into the housing 20 so as to be relatively rotatable, and a mechanical seal to be tested is mounted between the housing 20 and the rotating shaft 15.
The housing 20 has a hollow cylindrical shape, and the inside of the housing 20 is a fluid chamber 20A in which a test fluid to be sealed is stored. A shaft insertion opening for inserting the rotating shaft 15 is provided at one end of the housing 20, and the free end of the cantilevered rotating shaft 15 is inserted from the shaft insertion opening.

回転軸15は、モータ16により回転駆動される。モータ16は図示されていないインバータにより回転数が制御され、モータ16は両方向に回転可能である。
回転軸15には、軸心方向に流通路15Aが設けられ、この流通路15Aにはパイプ14が貫通して配置され、このパイプ14から、油等の被封止流体が導入されて流体室20A内に流入するとともに、流通路15Aから流出される。この流通路15Aとパイプ14の端部は、図示省略の油循環ユニットに連通しており、このパイプ14に接続されたポンプ装置により、所定圧力、所定温度に制御された被封止流体が流体室20Aと油循環ユニットとの間を循環するように構成されている。
The rotating shaft 15 is rotationally driven by a motor 16. The rotation speed of the motor 16 is controlled by an inverter (not shown), and the motor 16 can rotate in both directions.
The rotary shaft 15 is provided with a flow passage 15A in the axial direction. A pipe 14 is disposed through the flow passage 15A, and a fluid to be sealed such as oil is introduced from the pipe 14 to the fluid chamber. While flowing into 20A, it flows out of the flow passage 15A. The flow passage 15A and the end of the pipe 14 communicate with an oil circulation unit (not shown), and the fluid to be sealed is controlled to a predetermined pressure and a predetermined temperature by a pump device connected to the pipe 14. It is configured to circulate between the chamber 20A and the oil circulation unit.

ハウジング20の軸挿入口の枠体に、Oリングを介して、試験片の静止側摺動材11が嵌着される。また、回転軸15に固着された保持装置13に、試験片となる回転側摺動材12が軸方向へ移動自在にスプリングにより所定荷重によって付勢された状態で保持される。
これにより、回転側摺動材12の摺動部12Aが静止側摺動材11の対向摺動面に密接し、流体室20A内の被封止流体が外部へ漏えいしないようにシールされる。静止側摺動材11と回転側摺動材12の外径側は被封止流体、内径側は大気に接触している。
また、ハウジング20の軸挿入口と反対側の端部は、ベアリング18に回転可能に保持された軸19に固着され、静止側摺動材11と回転側摺動材12との回転時の摩擦力(摺動抵抗)により回転可能な構造とされており、これによって回転トルクを測定可能に構成されている。
The stationary sliding material 11 of the test piece is fitted to the frame of the shaft insertion opening of the housing 20 via an O-ring. Further, the rotating side sliding member 12 serving as a test piece is held by the holding device 13 fixed to the rotating shaft 15 in a state of being urged by a predetermined load by a spring so as to be movable in the axial direction.
As a result, the sliding portion 12A of the rotation-side sliding material 12 is in close contact with the opposed sliding surface of the stationary-side sliding material 11, and is sealed so that the sealed fluid in the fluid chamber 20A does not leak to the outside. The stationary-side sliding material 11 and the rotating-side sliding material 12 are in contact with the sealed fluid on the outer diameter side and the atmosphere on the inner diameter side.
Further, the end of the housing 20 opposite to the shaft insertion port is fixed to a shaft 19 that is rotatably held by the bearing 18, and friction during rotation between the stationary sliding material 11 and the rotating sliding material 12. The structure is configured to be rotatable by force (sliding resistance), whereby the rotational torque can be measured.

本試験機は、内流・アンバランス型であり、被封止流体の圧力とスプリングの弾発力に
よりシール面を押圧する。被封止流体の圧力が0のときは、保持装置13のスプリングのみにより摺動面が押圧され、被封止流体の圧力増加により摺動面への押しつけ圧力が増加する。
このような構成の試験機を用いて、本発明の実施例としてメカニカルシール摺動材と比較例としての摺動材について、その漏洩量(リーク量)を測定する。
漏洩量は、あらかじめ重量を測定した濾紙に漏洩した被封止流体を沁み込ませた後、再度重量を測定し、重量の差を漏洩量とすることにより求める。
This testing machine is an internal flow / unbalanced type, and presses the sealing surface by the pressure of the fluid to be sealed and the spring force of the spring. When the pressure of the sealed fluid is 0, the sliding surface is pressed only by the spring of the holding device 13, and the pressing pressure against the sliding surface increases due to the increase in the pressure of the sealed fluid.
Using the testing machine having such a configuration, the leakage amount (leakage amount) is measured for the mechanical seal sliding material as an example of the present invention and the sliding material as a comparative example.
The amount of leakage is obtained by squeezing the leaked fluid into the filter paper whose weight has been measured in advance and then measuring the weight again and taking the difference in weight as the amount of leakage.

本発明の実施例及び比較例のメカニカルシールの摺動材を加工制作する際の条件、及びその特性等の条件は以下の通りである。
1.フェムト秒レーザー試験片加工条件
(1)周期構造の角度:スパイラル(動圧生成溝):回転接線方向に対して45°
環状溝:回転接線方向に対して0°
レーザ:チタンサファイアレーザ(パルス幅120fs、中心波長800nm、繰り返し周波数1kHz)
The conditions for processing and producing the sliding material of the mechanical seal of the examples and comparative examples of the present invention, and the conditions such as the characteristics thereof are as follows.
1. Femtosecond laser specimen processing conditions (1) Angle of periodic structure: Spiral (dynamic pressure generating groove): 45 ° with respect to rotational tangential direction
Annular groove: 0 ° to the rotation tangential direction
Laser: Titanium sapphire laser (pulse width 120 fs, center wavelength 800 nm, repetition frequency 1 kHz)

2.実験条件
(1)摺動材:回転側摺動材:炭化ケイ素材料(φ25×φ44×t12)
静止側摺動材:炭化ケイ素材料(φ28×φ50×t14)
摺動部形状:(φ32×φ40)
(2)表面粗さ:Ra0.02μm以下(フェムト秒レーザ照射前鏡面仕上げ表面粗さ)
Ra 0.05〜0.10μm(ラッピング工程後の表面粗さ)
(3)平坦度:1バンド(ヘリウムライト)以下
(4)被封止流体:出光興産スーパーマルチオイル10
(5)試験時間:0.5(h)
(6)被封止流体温度:30℃
(7)被封止流体圧力:0,0.07,0.15,0.3,0.5,1.0(MPaG)(8)周速:1,2,5,10(m/s)
(9)スプリング荷重:20(N)
2. Experimental conditions (1) Sliding material: Rotating side sliding material: Silicon carbide material (φ25 × φ44 × t12)
Static side sliding material: Silicon carbide material (φ28 × φ50 × t14)
Sliding part shape: (φ32 × φ40)
(2) Surface roughness: Ra 0.02 μm or less (mirror finish surface roughness before femtosecond laser irradiation)
Ra 0.05-0.10 μm (surface roughness after lapping process)
(3) Flatness: 1 band (helium light) or less (4) Sealed fluid: Idemitsu Kosan Super Multi Oil 10
(5) Test time: 0.5 (h)
(6) Sealed fluid temperature: 30 ° C
(7) Sealed fluid pressure: 0, 0.07, 0.15, 0.3, 0.5, 1.0 (MPaG) (8) Peripheral speed: 1, 2, 5, 10 (m / s) )
(9) Spring load: 20 (N)

本発明の実施例及び比較例の具体的な構成は次の通りである。
実施例1
実施例1として、回転側摺動材12には鏡面仕上げした摺動面を有する摺動材、静止側摺動材11には鏡面仕上げした後にフェムト秒レーザーにて複数の微細なスパイラル溝を、動圧生成溝形成領域200に全周にわたって形成し、さらに大気側領域Sの環状溝形成領域300に環状溝を半径方向に周期的に形成したメカニカルシールの摺動材を用いた。
静止側摺動材11の摺動面Sは、図2(A)に示すように、φ28×φ50mm(内径×外径)の範囲、動圧生成溝形成領域200の中心直径はφ39.5mm、幅tが2mmである。また、環状溝形成領域300は、中心直径Dは、36mm、幅tが0.5mmであり、溝間のピッチ及び溝深さは動圧生成溝と同一である。
そして、静止側摺動材11の摺動面S上で、回転側摺動材12が摺接する摺動部12Aの形状は、φ32×φ40mm(内径×外径)の範囲であり、動圧生成溝形成領域200の被封止流体側の端部が摺動部12Aの形状の被封止流体側の端部より外側に位置する。
Specific configurations of examples and comparative examples of the present invention are as follows.
Example 1
As Example 1, a sliding material having a mirror-finished sliding surface on the rotation-side sliding material 12, and a plurality of fine spiral grooves with a femtosecond laser after mirror-finishing on the stationary-side sliding material 11, A mechanical seal sliding material is used that is formed in the dynamic pressure generating groove forming region 200 over the entire circumference, and further annular grooves are periodically formed in the annular groove forming region 300 of the atmosphere side region SA in the radial direction.
As shown in FIG. 2 (A), the sliding surface S of the stationary-side sliding member 11 has a range of φ28 × φ50 mm (inner diameter × outer diameter), the center diameter of the dynamic pressure generating groove forming region 200 is φ39.5 mm, width t 2 is 2mm. Further, the annular groove forming region 300, the center diameter D 3 is 36 mm, a is 0.5mm wide t 3, the pitch and groove depth between the grooves is the same as the dynamic pressure generating grooves.
Then, on the sliding surface S of the stationary-side sliding material 11, the shape of the sliding portion 12A in which the rotary-side sliding material 12 is in sliding contact is in a range of φ32 × φ40 mm (inner diameter × outer diameter), and dynamic pressure generation is performed. The end portion of the groove forming region 200 on the sealed fluid side is located outside the end portion on the sealed fluid side of the shape of the sliding portion 12A.

比較例
上記実施例1と同一寸法形状の静止側摺動材111で、同一の寸法形状の動圧生成溝を動圧生成溝形成領域200に全周にわたって形成し、環状溝を形成していない摺動材を比較例とした。回転側摺動材は上記実施例1と同一である。
このような実施例及び比較例に対する漏洩量の検出結果は、次の表1、2の通りである

表1は、実施例1の条件における被封止流体圧力及び回転周速毎の漏洩量を示す表であり、表2は、比較例の条件における被封止流体圧力及び回転周速毎の漏洩量を示す表である。

Figure 0005583440
Figure 0005583440
Comparative Example With the stationary-side sliding material 111 having the same size and shape as in the first embodiment, the dynamic pressure generating groove having the same size and shape is formed over the entire circumference in the dynamic pressure generating groove forming region 200, and no annular groove is formed. A sliding material was used as a comparative example. The rotation-side sliding material is the same as that in the first embodiment.
The leakage amount detection results for the examples and comparative examples are as shown in Tables 1 and 2 below.
Table 1 is a table showing the amount of leakage for each sealed fluid pressure and rotational peripheral speed under the conditions of Example 1, and Table 2 is the leakage for each sealed fluid pressure and rotational peripheral speed under the conditions of the comparative example. It is a table | surface which shows quantity.
Figure 0005583440
Figure 0005583440

表1及び表2に示すように、本実施例の条件の範囲では、0.0484〜0.7671[cc/h]の範囲、比較例では0.1876〜2.0993[cc/h]の範囲となり、すべての条件の範囲で微量であった。   As shown in Tables 1 and 2, in the range of the conditions of this example, the range of 0.0484 to 0.7671 [cc / h], and in the comparative example, 0.1876 to 2.0993 [cc / h]. It was a range, and it was a trace amount in the range of all conditions.

以上説明したように、本発明のメカニカルシールの摺動材においては、摺動面に微細な複数のスパイラル溝を形成しているので、メカニカルシールとして構成した場合、摺動面間への被封止流体の導入及びその保持を良好に行え、安定的かつ良好な潤滑特性を得ることができる。
また、直線偏光のフェムト秒レーザを、加工閾値近傍の照射エネルギーで材料表面に照射することにより、動圧生成溝及び環状溝を形成しているので、摺動面の表面に微細溝を一定ピッチで多数簡単に形成することができる。
As described above, in the sliding material of the mechanical seal of the present invention, a plurality of fine spiral grooves are formed on the sliding surface. Therefore, when configured as a mechanical seal, sealing between the sliding surfaces is performed. It is possible to satisfactorily introduce and hold the stop fluid and obtain stable and good lubrication characteristics.
In addition, the dynamic pressure generating groove and the annular groove are formed by irradiating the material surface with a linearly polarized femtosecond laser with an irradiation energy in the vicinity of the processing threshold, so fine grooves are formed at a constant pitch on the surface of the sliding surface. Can be easily formed.

1 摺動材
2 動圧生成溝
3 環状溝
200 動圧生成溝形成領域
300 環状溝形成領域
11 静止側摺動材
12 回転側摺動材
13 保持装置
14 パイプ
15 回転軸、15A 流通路
16 モータ
18 ベアリング、19 軸
20 ハウジング
20A 流体室
被封止流体側領域
大気側領域
O 回転中心
S 摺動面
S11 外径線
S12 内径線
DESCRIPTION OF SYMBOLS 1 Sliding material 2 Dynamic pressure generating groove 3 Annular groove 200 Dynamic pressure generating groove forming area 300 Annular groove forming area 11 Stationary side sliding material 12 Rotating side sliding material 13 Holding device 14 Pipe 15 Rotating shaft, 15A Flow path 16 Motor 18 Bearing, 19 Shaft 20 Housing 20A Fluid chamber S F Sealed fluid side area S A Atmosphere side area O Rotation center S Sliding surface S11 Outer diameter line S12 Inner diameter line

Claims (3)

互いに回転摺動するメカニカルシールの静止側摺動材又は回転側摺動材として使用される環状の摺動材であって、摺動面に相手摺動材との相対回転によって摺動面間に動圧を生成する動圧生成溝が周方向に複数設けられたメカニカルシールの摺動材において、
前記摺動面の動圧生成溝に対して反被封止流体側の領域に、回転中心を中心とする円環状の環状溝を設け
前記動圧生成溝は微小な凹凸部が10μm以下のピッチで繰り返される多数の周期構造の溝とすると共に、溝の深さを1μm以下とし、
さらに、前記摺動面の外周から動圧生成溝の被封止流体側端部が被封止流体側に露出しており、
前記動圧生成溝は、レーザ照射により形成された多数の周期構造の溝が周全体に亘って形成されていることを特徴とするメカニカルシールの摺動材。
An annular sliding material used as a stationary sliding material or rotating sliding material for mechanical seals that rotate and slide relative to each other. In the sliding material of the mechanical seal provided with a plurality of dynamic pressure generating grooves for generating dynamic pressure in the circumferential direction,
In the region on the anti-sealed fluid side with respect to the dynamic pressure generating groove on the sliding surface, an annular ring groove centering on the rotation center is provided ,
The dynamic pressure generating groove is a groove having a number of periodic structures in which minute uneven portions are repeated at a pitch of 10 μm or less, and the depth of the groove is 1 μm or less.
Furthermore, the sealed fluid side end of the dynamic pressure generating groove is exposed to the sealed fluid side from the outer periphery of the sliding surface ,
The dynamic pressure generating groove is a sliding material for a mechanical seal, wherein a plurality of periodic structure grooves formed by laser irradiation are formed over the entire circumference .
前記環状溝は、微小な凹凸部が半径方向に同心円状に所定ピッチで繰り返される多数の周期構造の溝とした請求項1に記載のメカニカルシールの摺動材。 2. The sliding material for a mechanical seal according to claim 1, wherein the annular groove is a groove having a number of periodic structures in which minute uneven portions are repeated concentrically in a radial direction at a predetermined pitch. 互いに相対回転するハウジングと回転軸間をシールするもので、前記ハウジングに取り付けられる静止側摺動材と、前記回転軸に取り付けられ前記静止側摺動材と回転摺動する回転側摺動材とを有し、前記静止側摺動材と回転側摺動材の内の一方の摺動材の摺動面に、相手摺動材との相対回転によって摺動面間に動圧を生成する動圧生成溝が形成されたメカニカルシールにおいて、
前記摺動面の動圧生成溝に対して反被封止流体側の領域に、回転中心と同心円状の環状溝を設け、
前記動圧生成溝は微小な凹凸部が10μm以下のピッチで繰り返される多数の周期構造の溝とすると共に、溝の深さを1μm以下とし、
さらに、前記摺動面の外周から動圧生成溝の被封止流体側端部が被封止流体側に露出しており、
前記動圧生成溝は、レーザ照射により形成された多数の周期構造の溝が周全体に亘って形成されていることを特徴とするメカニカルシール。
Sealing between a housing and a rotating shaft that rotate relative to each other, a stationary sliding material attached to the housing, and a rotating sliding material attached to the rotating shaft and rotating and sliding with the stationary sliding material A sliding surface of one of the stationary side sliding material and the rotating side sliding material, and generating dynamic pressure between the sliding surfaces by relative rotation with the counterpart sliding material. In the mechanical seal in which the pressure generating groove is formed,
An annular groove concentric with the rotation center is provided in a region on the anti-sealed fluid side with respect to the dynamic pressure generating groove of the sliding surface,
The dynamic pressure generating groove is a groove having a number of periodic structures in which minute uneven portions are repeated at a pitch of 10 μm or less, and the depth of the groove is 1 μm or less.
Furthermore, the sealed fluid side end of the dynamic pressure generating groove is exposed to the sealed fluid side from the outer periphery of the sliding surface,
The dynamic pressure generating groove is a mechanical seal in which a plurality of periodic structure grooves formed by laser irradiation are formed over the entire circumference .
JP2010062451A 2010-03-18 2010-03-18 Mechanical seal sliding material and mechanical seal Active JP5583440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010062451A JP5583440B2 (en) 2010-03-18 2010-03-18 Mechanical seal sliding material and mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010062451A JP5583440B2 (en) 2010-03-18 2010-03-18 Mechanical seal sliding material and mechanical seal

Publications (2)

Publication Number Publication Date
JP2011196429A JP2011196429A (en) 2011-10-06
JP5583440B2 true JP5583440B2 (en) 2014-09-03

Family

ID=44874918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010062451A Active JP5583440B2 (en) 2010-03-18 2010-03-18 Mechanical seal sliding material and mechanical seal

Country Status (1)

Country Link
JP (1) JP5583440B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2853785B1 (en) 2012-05-21 2017-08-02 Eagle Industry Co., Ltd. Sliding component
CN104185756B (en) 2012-05-21 2016-10-26 伊格尔工业股份有限公司 Slide unit
JP6080845B2 (en) 2012-05-21 2017-02-15 イーグル工業株式会社 Sliding parts
CN104019237B (en) * 2014-05-29 2016-12-07 浙江工业大学 Deep trouth annulus dynamic pressure type end surface mechanical sealing structure
KR102610647B1 (en) * 2019-02-04 2023-12-07 이구루코교 가부시기가이샤 sliding parts
WO2020166590A1 (en) 2019-02-14 2020-08-20 イーグル工業株式会社 Sliding component
EP3929454B1 (en) 2019-02-21 2024-07-17 Eagle Industry Co., Ltd. Sliding components
US11892081B2 (en) 2019-07-26 2024-02-06 Eagle Industry Co., Ltd. Sliding component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04321880A (en) * 1991-04-18 1992-11-11 Nippon John Kureen Kk Mechanical seal and manufacture of slide surface used for the same
US6446976B1 (en) * 2000-09-06 2002-09-10 Flowserve Management Company Hydrodynamic face seal with grooved sealing dam for zero-leakage
JP4719414B2 (en) * 2003-12-22 2011-07-06 イーグル工業株式会社 Sliding parts
JP2009250378A (en) * 2008-04-08 2009-10-29 Eagle Ind Co Ltd Mechanical seal device for liquid

Also Published As

Publication number Publication date
JP2011196429A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5583440B2 (en) Mechanical seal sliding material and mechanical seal
JP5278970B2 (en) Mechanical seal sliding material and mechanical seal
JP6076971B2 (en) Sliding parts
JP5871289B2 (en) Sliding parts
JP5936079B2 (en) mechanical seal
JP6403848B2 (en) Sliding parts
US9228660B2 (en) Sliding member
JP6080845B2 (en) Sliding parts
JP5881716B2 (en) Sliding parts
JP5995967B2 (en) Sliding parts
JP2004003578A (en) Sliding component
WO2013035502A1 (en) Sliding component
JP6138132B2 (en) Sliding parts
JP2005180652A (en) Sliding part
JP5950998B2 (en) Shaft seal device
JPWO2013031529A1 (en) Sliding parts
JPWO2016143721A1 (en) Sliding parts
JP2019027466A (en) mechanical seal
WO2020166590A1 (en) Sliding component
JPH1137303A (en) Mechanical seal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140716

R150 Certificate of patent or registration of utility model

Ref document number: 5583440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250