JP5572686B2 - 分解性の移植可能な医療装置 - Google Patents
分解性の移植可能な医療装置 Download PDFInfo
- Publication number
- JP5572686B2 JP5572686B2 JP2012270170A JP2012270170A JP5572686B2 JP 5572686 B2 JP5572686 B2 JP 5572686B2 JP 2012270170 A JP2012270170 A JP 2012270170A JP 2012270170 A JP2012270170 A JP 2012270170A JP 5572686 B2 JP5572686 B2 JP 5572686B2
- Authority
- JP
- Japan
- Prior art keywords
- item
- implant
- implantable
- metal
- corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/04—Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
- A61F2/06—Blood vessels
- A61F2/07—Stent-grafts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/0006—Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
- B23K26/0624—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/352—Working by laser beam, e.g. welding, cutting or boring for surface treatment
- B23K26/355—Texturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
- B23K26/382—Removing material by boring or cutting by boring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0004—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof bioabsorbable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0058—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/003—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in adsorbability or resorbability, i.e. in adsorption or resorption time
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0067—Means for introducing or releasing pharmaceutical products into the body
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/04—Tubular or hollow articles
- B23K2101/06—Tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/12—Copper or alloys thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Biomedical Technology (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Cardiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Pulmonology (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Description
本発明は、医療装置および医療方法に関する。特に、本発明は、移植可能な管腔プロテーゼおよび生体内環境で分解するその他の医療装置に関する。
冠動脈疾患は、世界中の先進工業国において主要死亡原因となっている。当該疾患は、心臓へ血液を供給する主要な動脈の壁におけるアテローム硬化性の堆積物の蓄積として始まる。堆積物が蓄積すると、心臓への正常な血流が制限される。心臓は、そのような減少した血流をある程度埋め合わせることができるいくつかの代償機構を有する。これらの代償機構以外にも、定評ある多数の薬品治療が、軽度から中程度の冠動脈疾患を持つ患者における症状および死亡率の両方を改善することを示している。しかしながら、疾患が進行するにつれて、薬物治療にもかかわらず、その症状はより明白になる。特に運動時またはストレス時、心臓に十分な血液が得られない場合、進行性冠動脈疾患が消耗性胸痛または狭心症として現れる。現時点では、心臓へ流れる血液の量を増加させるために、機械的インターベンションが必要である。
Coronary Angioplasty;PTCA)処置を最初に行ったのは、Andreas Gruntzigである。彼は、小型バルーンを持つカテーテルを、大動脈を介して、部分閉塞のある冠動脈内へ進入させた。続いて、バルーンを膨張させ、血小板を動脈壁に対して圧迫し、心臓への血流を回復させた。
医療装置および医療方法は、臨床的に関連する期間にわたって分解性の本体を備える移植可能な構造体を利用する。本体は、様々な形態を取ってよく、様々な医学療法において使用され得る。好適な実施態様では、本体は、ステント、特に、冠動脈疾患の治療において使用される種類の血管ステントの形態を取る。本体は、装置に望ましい物理的および機械的属性を提供する材料を含む、または、それらの材料から形成もしくは構成される。好適な実施態様では、本体は、金属(純粋なもの、または不純物を持つもの)、金属合金、またはその組み合わせを含む。以下で使用する場合、「金属」という用語は、金属ならびに2つ以上の金属および金属合金の組み合わせに加えて、そのような純粋および不純な金属を含むものとする。移植可能な本体は、生理環境において、少なくとも部分的に分解性である。好ましくは、移植可能な構造体の材料は、以下で論じるように、臨床的に関連する期間の後に構造体が残存しないよう完全に分解可能であり、生理学的に良性の、好ましくは、生体内環境において自然発生する種類である分解副産物を生み出す。より好ましくは、移植可能な構造体の本体は、一般に生理環境内に存在するよりも少ない量の、分解副産物を生み出す。移植可能な構造体の分解速度は、個別に様々な性状において、またはその組み合わせにおいて、制御され得る。典型的な生理環境としては、血管腔ならびに尿管および尿道を含むその他の体腔、固形組織、脳組織等が挙げられる。
例えば、本願発明は以下を提供する。
(項目1)
少なくとも一つの面を有する移植可能な本体と、
上記少なくとも一つの面における少なくとも一つの腐食誘発機構であって、生理環境において、上記機構がない場合の速度よりも速い速度で、上記本体の少なくとも一部を分解させる腐食誘発機構と、
を備える、分解性の移植可能な構造体。
(項目2)
上記移植可能な本体は、金属、金属合金、またはその組み合わせを含む、項目1に記載の構造体。
(項目3)
上記金属、金属合金、またはその組み合わせは、コバルト、タングステン、ビスマス、銀、銅、鉄、亜鉛、マグネシウム、ジルコニウム、ニオブ、イリジウム、インジウム、ビスマス、スズ、ニッケル、およびその合金のうち少なくとも一つを含む、項目2に記載の構造体。
(項目4)
上記少なくとも一つの腐食誘発機構は、くぼみ、細孔、部分孔、空隙、またはこれらの組み合わせを備える、項目1に記載の構造体。
(項目5)
上記少なくとも一つの腐食誘発機構は、表面の凹凸、切り込み線、擦り傷、筋、隆線、隆起、ざらつき、多孔性焼結金属または合金、粗面、またはこれらの組み合わせを備える、項目1に記載の構造体。
(項目6)
上記少なくとも一つの腐食誘発機構は、孔、貫通孔、貫通焼結細孔、またはこれらの組み合わせを備える、項目1に記載の構造体。
(項目7)
上記移植可能な本体は、上記本体の第一の結合部分を伴う第一の面と、上記本体の第二の結合部分を伴う第二の面と、を有し、上記第一の面は、上記第一の結合部分を上記第二の結合部分とは異なる速度で分解させる密度で存在する腐食誘発機構を有する、項目1に記載の構造体。
(項目8)
上記移植可能な本体は、ステントを備える、項目1に記載の構造体。
(項目9)
第一の分解速度で分解する第一層であって、金属、金属合金、またはその組み合わせを含む第一層と、
上記第一の速度とは異なる第二の分解速度で分解する第二層であって、金属、金属合金、またはその組み合わせを含む第二層と、
を有する移植可能な本体を備え、上記層は生理環境において少なくとも一部の上記構造体を分解させる、分解性の移植可能な構造体。
(項目10)
上記第一層および第二層は、異なる不動態を有する、項目9に記載の構造体。
(項目11)
上記第一層および第二層は、電気化学的状態において異なっている、項目9に記載の構造体。
(項目12)
上記分解速度は、上記層の異なる厚さのために異なっている、項目9に記載の構造体。
(項目13)
上記移植可能な本体はステントを備える、項目9に記載の構造体。
(項目14)
分解速度を有する金属、金属合金、またはその組み合わせを含む移植可能な本体と、上記移植可能な本体の少なくとも一部を覆う層と、
を備え、上記層は上記移植可能な本体の上記分解速度を制御する、分解性の移植可能な構造体。
(項目15)
上記層は、不動態化層を備える、項目14に記載の構造体。
(項目16)
上記分解速度を制御するために、上記不動態化層の移植可能な構造体の厚さ、化学組成、耐久性、被覆率の量のうち少なくとも一つが選択される、項目15に記載の構造体。
(項目17)
上記分解速度を制御するために、上記不動態化層内に存在する耐食性酸化物の量が選択される、項目16に記載の構造体。
(項目18)
上記層は、セラミック、ポリマー、金属、金属合金、治療剤、腐食剤、放射線不透過性物質、またはこれらの組み合わせを含む、項目14に記載の構造体。
(項目19)
上記層は、上記移植可能な本体の基底部分を見せる開口部を有し、上記開口部は上記移植可能な本体の上記分解速度を制御することを補助する、項目18に記載の構造体。
(項目20)
上記移植可能な本体はステントを備える、項目14に記載の構造体。
(項目21)
ある分解速度で分解する部分を少なくとも有する金属、金属合金、またはその組み合わせを含み、上記分解速度は少なくとも二相の異なる分解速度を有する移植可能な本体を備える、分解性の移植可能な構造体。
(項目22)
上記少なくとも二相は、後の分解速度よりも遅い最初の分解速度を備える、項目21に記載の構造体。
(項目23)
上記少なくとも二相は、後の分解速度よりも速い最初の分解速度を備える、項目21に記載の構造体。
(項目24)
上記移植可能な本体はステントを備える、項目21に記載の構造体。
(項目25)
金属、金属合金、またはその組み合わせを含み、長さによって可変する分解速度で分解する部分を少なくとも有する移植可能な本体を備える、分解性の構造体。
(項目26)
上記移植可能な本体はステントを備える、項目25に記載の構造体。
(項目27)
金属、金属合金、またはその組み合わせを含み、その形状が分解速度に影響を及ぼす移植可能な本体を備える、分解性の構造体。
(項目28)
上記形状は、表面積対体積の比を備える、項目27に記載の構造体。
(項目29)
上記移植可能な本体はステントを備える、項目27に記載の構造体。
(項目30)
上記ステントは支柱の幅および支柱の厚さを有する支柱を含み、上記形状は、1.4対1を超える、支柱の幅対支柱の厚さ、または支柱の厚さ対支柱の幅の比を備える、項目29に記載の構造体。
(項目31)
分解速度を有する金属、金属合金、またはその組み合わせを含む移植可能な本体と、
移植可能な構造体から溶出する少なくとも一つの治療剤と、を備える分解性の構造体。
(項目32)
上記少なくとも一つの治療剤は、抗血小板剤、抗増殖剤、免疫抑制剤、薬理学的な因子、抗癌剤、抗炎症剤、医薬品、またはこれらの組み合わせを含む、項目31に記載の構造体。
(項目33)
上記移植可能な本体を少なくとも部分的に覆うコーティングをさらに備える、項目31に記載の構造体。
(項目34)
上記少なくとも一つの治療剤は、上記コーティングから溶出する、項目33に記載の構造体。
(項目35)
上記少なくとも一つの治療剤は、一相の分解において溶出する一つの治療剤と、もう一方の相の分解において溶出するもう一方の治療剤と、を含む、項目31に記載の構造体。
(項目36)
上記少なくとも一つの治療剤は、少なくとも部分的に腐食誘発機構内に含まれる、項目31に記載の構造体。
(項目37)
生理環境において、1ヶ月から5年の間の期間で溶解する速度に近い速度で分解する部分を少なくとも有する、金属、金属合金、またはその組み合わせを含む移植可能な本体
を備える、分解性の構造体。
(項目38)
金属から構成され、構造体を有する本体を備え、上記金属および構造体は、上記本体が生理環境において1ヶ月から5年までの期間で分解されることを可能にするために選択される、分解性のインプラント。
(項目39)
上記金属および構造体は、上記本体が4ヶ月から2年までの期間で分解されることを可能にするために選択される、項目38に記載のインプラント。
(項目40)
上記金属および構造体は、上記構造体が6ヶ月から12ヶ月までの期間で分解されることを可能にするために選択される、項目38に記載のインプラント。
(項目41)
上記金属および構造体は、上記本体が一日あたり平均で0.05%から3%まで質量を損失しながら分解されることを可能にするために選択される、項目38に記載のインプラント。
(項目42)
上記金属および構造体は、上記本体が一日あたり平均で0.1%から0.75%まで質量を損失しながら分解されることを可能にするために選択される、項目38に記載のインプラント。
(項目43)
上記金属および構造体は、上記本体が一日あたり平均で0.25%から0.5%まで質量を損失しながら分解されることを可能にするために選択される、項目38に記載のインプラント。
(項目44)
上記金属および構造体は、上記本体が一日あたり平均で0.05%から3%まで体積を損失しながら分解されることを可能にするために選択される、項目38に記載のインプラント。
(項目45)
上記金属および構造体は、上記本体が一日あたり平均で0.1%から0.75%まで体積を損失しながら分解されることを可能にするために選択される、項目38に記載のインプラント。
(項目46)
上記金属および構造体は、上記本体が一日あたり平均で0.25%から0.5%まで体積を損失しながら分解されることを可能にするために選択される、項目38に記載のインプラント。
(項目47)
上記金属は、鉄、コバルト、タングステン、モリブデン、銀、銅、およびジルコニウム、インジウム、ビスマス、スズ、ニッケルより成る群から選択される、項目38に記載のインプラント。
(項目48)
上記金属は、少なくとも90%の純度を有する、項目47に記載のインプラント。
(項目49)
上記純度は、少なくとも95%である、項目47に記載のインプラント。
(項目50)
上記純度は、少なくとも99.5%である、項目47に記載のインプラント。
(項目51)
上記金属は、鉄合金である、項目38に記載のインプラント。
(項目52)
上記鉄合金は、少なくとも25%の鉄を含む、項目51に記載のインプラント。
(項目53)
上記鉄合金は、少なくとも50%の鉄を含む、項目51に記載のインプラント。
(項目54)
上記鉄合金は、少なくとも75%の鉄を含む、項目51に記載のインプラント。
(項目55)
上記鉄合金は、少なくとも90%の鉄を含む、項目51に記載のインプラント。
(項目56)
上記鉄合金は、少なくとも99%の鉄を含む、項目51に記載のインプラント。
(項目57)
上記鉄合金は、炭素鋼である、項目51に記載のインプラント。
(項目58)
上記炭素鋼は、少なくとも0.05%から3%の炭素を含む、項目57に記載のインプラント。
(項目59)
上記炭素鋼は、少なくとも0.05%から1%の炭素を含む、項目57に記載のインプラント。
(項目60)
上記炭素鋼は、少なくとも0.1%から0.6%の炭素を含む、項目57に記載のインプラント。
(項目61)
上記炭素鋼は、1000シリーズの炭素鋼である、項目57に記載のインプラント。
(項目62)
上記鉄合金は、1300シリーズのマンガン鋼である、項目51に記載のインプラント。
(項目63)
上記鉄合金は、4000シリーズのモリブデン鋼である、項目51に記載のインプラント。
(項目64)
上記鉄合金は、4100シリーズのクロムモリブデン鋼である、項目51に記載のインプラント。
(項目65)
上記鉄合金は、4300シリーズのクロムモリブデン鋼である、項目51に記載のインプラント。
(項目66)
上記鉄合金は、8600シリーズのクロムモリブデン鋼である、項目51に記載のインプラント。
(項目67)
上記鉄合金は、4600シリーズのニッケル・クロムモリブデン鋼である、項目51に記載のインプラント。
(項目68)
上記鉄合金は、5100シリーズのクロム鋼である、項目51に記載のインプラント。
(項目69)
上記鉄合金は、6100シリーズのクロムバナジウム鋼である、項目51に記載のインプラント。
(項目70)
上記鉄合金は、9200シリーズのケイ素鋼である、項目51に記載のインプラント。
(項目71)
上記鉄合金は、少なくとも80%の鉄を包含する鋳鉄である、項目51に記載のインプラント。
(項目72)
上記金属合金は、銀を含む、項目51に記載のインプラント。
(項目73)
上記銀は、少なくとも25重量%存在する、項目72に記載のインプラント。
(項目74)
上記銀は、少なくとも50重量%存在する、項目72に記載のインプラント。
(項目75)
上記銀は、少なくとも75重量%存在する、項目72に記載のインプラント。
(項目76)
上記銀は、少なくとも90重量%存在する、項目72に記載のインプラント。
(項目77)
上記銀は、少なくとも95重量%存在する、項目72に記載のインプラント。
(項目78)
上記銀は、少なくとも98重量%存在する、項目72に記載のインプラント。
(項目79)
上記金属は、スズを含む、項目38に記載のインプラント。
(項目80)
上記スズは、少なくとも25重量%存在する、項目79に記載のインプラント。
(項目81)
上記スズは、少なくとも50重量%存在する、項目79に記載のインプラント。
(項目82)
上記スズは、少なくとも75重量%存在する、項目79に記載のインプラント。
(項目83)
上記スズは、少なくとも90重量%存在する、項目79に記載のインプラント。
(項目84)
上記スズは、少なくとも95重量%存在する、項目79に記載のインプラント。
(項目85)
上記スズは、少なくとも98重量%存在する、項目79に記載のインプラント。
(項目86)
上記金属は、コバルトを含む、項目38に記載のインプラント。
(項目87)
上記コバルトは、少なくとも25重量%存在する、項目86に記載のインプラント。(項目88)
上記コバルトは、少なくとも50重量%存在する、項目86に記載のインプラント。
(項目89)
上記コバルトは、少なくとも75重量%存在する、項目86に記載のインプラント。
(項目90)
上記コバルトは、少なくとも90重量%存在する、項目86に記載のインプラント。
(項目91)
上記コバルトは、少なくとも95重量%存在する、項目86に記載のインプラント。
(項目92)
上記コバルトは、少なくとも98重量%存在する、項目86に記載のインプラント。
(項目93)
上記金属は、タングステンを含む、項目38に記載のインプラント。
(項目94)
上記タングステンは、少なくとも25重量%存在する、項目93に記載のインプラント。
(項目95)
上記タングステンは、少なくとも50重量%存在する、項目93に記載のインプラント。
(項目96)
上記タングステンは、少なくとも75重量%存在する、項目93に記載のインプラント。
(項目97)
上記タングステンは、少なくとも90重量%存在する、項目93に記載のインプラント。
(項目98)
上記タングステンは、少なくとも95重量%存在する、項目93に記載のインプラント。
(項目99)
上記タングステンは、少なくとも98重量%存在する、項目93に記載のインプラント。
(項目100)
上記金属は、モリブデンを含む、項目38に記載のインプラント。
(項目101)
上記モリブデンは、少なくとも25重量%存在する、項目100に記載のインプラント。
(項目102)
上記モリブデンは、少なくとも50重量%存在する、項目100に記載のインプラント。
(項目103)
上記モリブデンは、少なくとも75重量%存在する、項目100に記載のインプラント。
(項目104)
上記モリブデンは、少なくとも90重量%存在する、項目100に記載のインプラント。
(項目105)
上記モリブデンは、少なくとも95重量%存在する、項目100に記載のインプラント。
(項目106)
上記モリブデンは、少なくとも98重量%存在する、項目100に記載のインプラント。(項目107)
上記金属は、0.0001amps/cm 2 から0.1amps/cm 2 までの範囲の腐食電流(Icorr)値を有する、項目38に記載のインプラント。
(項目108)
上記Icorr値は、0.001amps/cm 2 から0.01amps/cm 2 までの範囲である、項目107に記載のインプラント。
(項目109)
上記Icorr値は、0.0025amps/cm 2 から0.008amps/cm 2 までの範囲である、項目107に記載のインプラント。
(項目110)
上記金属は、生物学的に適合した分解産物に分解する、項目38に記載のインプラント。
(項目111)
上記分解産物は、自然の状態で人体中に存在する物質と化学的に同じものである、項目110に記載のインプラント。
(項目112)
上記金属は、延性である、項目38に記載のインプラント。
(項目113)
上記金属は、破壊前、少なくとも1.2倍に引き伸ばされることができる、項目112に記載のインプラント。
(項目114)
上記金属は、破壊前、少なくとも1.3倍に引き伸ばされることができる、項目112に記載のインプラント。
(項目115)
上記金属は、破壊前、少なくとも1.4倍に引き伸ばされることができる、項目112に記載のインプラント。
(項目116)
上記金属は、破壊前、少なくとも1.6倍に引き伸ばされることができる、項目112に記載のインプラント。
(項目117)
送達のための縮小幅および移植のための拡張幅を有する、引き伸ばし可能なプロテーゼを備える、項目38に記載のインプラント。
(項目118)
上記プロテーゼは、複数の支柱を備える、項目117に記載のインプラント。
(項目119)
上記支柱は、0.004インチ以下の厚さを有する、項目118に記載のインプラント。
(項目120)
上記支柱は、0.003インチ以下の厚さを有する、項目118に記載のインプラント。
(項目121)
上記支柱は、0.002インチ以下の厚さを有する、項目118に記載のインプラント。
(項目122)
上記支柱は、0.0015インチ以下の厚さを有する、項目118に記載のインプラント。
(項目123)
上記支柱は、0.001インチ以下の厚さを有する、項目118に記載のインプラント。
(項目124)
上記支柱は、幅対厚さの比が少なくとも1.4対1である、項目118に記載のインプラント。
(項目125)
上記支柱は、幅対厚さの比が少なくとも2対1である、項目118に記載のインプラント。
(項目126)
上記支柱は、幅対厚さの比が少なくとも3対1である、項目118に記載のインプラント。
(項目127)
上記支柱は、幅対厚さの比が少なくとも4対1である、項目118に記載のインプラント。
(項目128)
上記支柱は、厚さ対幅が少なくとも1.4対1である、項目118に記載のインプラント。
(項目129)
上記支柱は、厚さ対幅が少なくとも2対1である、項目118に記載のインプラント。
(項目130)
上記支柱は、厚さ対幅が少なくとも3対1である、項目118に記載のインプラント。
(項目131)
上記支柱は、厚さ対幅が少なくとも4対1である、項目118に記載のインプラント。
(項目132)
生理環境において1ヶ月間分解した後の上記支柱は、その初期の強度の少なくとも25%を依然として維持している、項目118に記載のインプラント。
(項目133)
生理環境において1ヶ月間分解した後の上記支柱は、その初期の強度の少なくとも50%を依然として維持している、項目118に記載のインプラント。
(項目134)
生理環境において1ヶ月間分解した後の上記支柱は、その初期の強度の少なくとも60%を依然として維持している、項目118に記載のインプラント。
(項目135)
上記金属および構造体は、その暴露された表面にわたって実質的に均一に分解するために選択される、項目38に記載のインプラント。
(項目136)
上記金属および構造体は、その暴露された表面にわたって非均一に分解するために選択される、項目38に記載のインプラント。
(項目137)
上記インプラント構造体は、腐食を促進する上記インプラントの暴露された表面において少なくとも一つの機構を備える、項目38に記載のインプラント。
(項目138)
上記機構は、くぼみ、細孔、空隙、焼結、隆起、隆線、および切り込み線のうちの一つ以上を含む、項目137に記載のインプラント。
(項目139)
上記機構は、上記機構のないインプラントと比較して少なくとも10%、生理環境において重量での分解速度を増加させる、項目137に記載のインプラント。
(項目140)
上記機構は、上記機構のないインプラントと比較して少なくとも20%、生理環境において重量での分解速度を増加させる、項目137に記載のインプラント。
(項目141)
上記機構は、上記機構のないインプラントと比較して少なくとも40%、生理環境において重量での分解速度を増加させる、項目137に記載のインプラント。
(項目142)
上記機構は、少なくとも100nmの平均表面粗度を提供する、項目137に記載のインプラント。
(項目143)
上記機構は、少なくとも400nmの平均表面粗度を提供する、項目137に記載のインプラント。
(項目144)
上記機構は、少なくとも1000nmの平均表面粗度を提供する、項目137に記載のインプラント。
(項目145)
上記インプラントの暴露された表面の少なくとも一部は、材料でコーティングされている、項目38に記載のインプラント。
(項目146)
上記コーティング材料は、生理環境において分解性である、項目145に記載のインプラント。
(項目147)
上記材料は、上記本体のものより速い分解速度を有する、項目146に記載のインプラント。
(項目148)
上記材料は、上記本体のものより遅い分解速度を有する、項目146に記載のインプラント。
(項目149)
上記コーティング材料は、生理環境において非分解性である、項目145に記載のインプラント。
(項目150)
上記コーティングは、上記本体の生理環境への暴露を制御するためにパターン化される、項目145に記載のインプラント。
(項目151)
上記コーティングは、多孔性である、項目145に記載のインプラント。
(項目152)
上記コーティングは、非多孔性である、項目145に記載のインプラント。
(項目153)
上記コーティングは、金属性である、項目145に記載のインプラント。
(項目154)
上記コーティングは、非金属性である、項目145に記載のインプラント。
(項目155)
上記コーティングは、セラミックである、項目145に記載のインプラント。
(項目156)
上記コーティングは、ポリマーを含む、項目145に記載のインプラント。
(項目157)
上記コーティングは、治療剤を含む、項目145に記載のインプラント。
(項目158)
上記ポリマーは、多孔率制御剤を含む、項目157に記載のインプラント。
(項目159)
上記多孔率制御剤は、塩および発泡剤より成る群から選択され、上記剤は、移植後少なくとも部分的に浸出する、項目158に記載のインプラント。
(項目160)
2つ以上のコーティング材料を含む、項目145に記載のインプラント。
(項目161)
上記2つ以上のコーティング材料は、異なる分解速度を有する、項目160に記載のインプラント。
(項目162)
上記2つ以上のコーティング材料は、重ねられる、項目160に記載のインプラント。
(項目163)
上記2つ以上のコーティング材料は、上記暴露された表面の異なる領域にわたってコーティングされる、項目160に記載のインプラント。
(項目164)
上記ポリマーコーティング材料は、0.1μmから100μmまでの範囲で上記本体にわたって厚さを有する、項目156に記載のインプラント。
(項目165)
上記ポリマーコーティング材料は、1μmから50μmまでの範囲で上記本体にわたって厚さを有する、項目156に記載のインプラント。
(項目166)
上記ポリマーのコーティング材料は、5μmから25μmまでの範囲で上記本体にわたって厚さを有する、項目156に記載のインプラント。
(項目167)
上記金属製コーティング材料は、0.1nmから100μmまでの範囲で上記本体にわたって厚さを有する、項目153に記載のインプラント。
(項目168)
上記コーティング材料は、1nmから50μmまでの範囲で上記本体にわたって厚さを有する、項目154に記載のインプラント。
(項目169)
上記コーティング材料は、5nmから25μmまでの範囲で上記本体にわたって厚さを有する、項目154に記載のインプラント。
(項目170)
上記コーティングは、治療剤を含む、項目145に記載のインプラント。
(項目171)
上記剤は、1ng/cm 2 から1000μg/cm 2 までの量で上記本体上に存在する、項目170に記載のインプラント。
(項目172)
上記剤は、1ng/cm 2 から500μg/cm 2 までの量で上記本体上に存在する、項目170に記載のインプラント。
(項目173)
上記剤は、10ng/cm 2 から400μg/cm 2 までの量で上記本体上に存在する、項目170に記載のインプラント。
(項目174)
上記治療剤は、生理環境において一日あたり1ng/cm 2 から1000μg/cm 2 までの速度で放出される、項目170に記載のインプラント。
(項目175)
上記治療剤は、生理環境において一日あたり1μg/cm 2 から200μg/cm 2 までの速度で放出される、項目170に記載のインプラント。
(項目176)
上記治療剤は、生理環境において一日あたり5mcg/cm 2 から100mcg/cm 2 までの速度で放出される、項目170に記載のインプラント。
(項目177)
上記治療剤は、生理環境において1日から3年までの範囲の期間にわたって上記本体から放出される、項目170に記載のインプラント。
(項目178)
上記治療剤は、生理環境において2週間から1年までの範囲の期間にわたって上記本体から放出される、項目170に記載のインプラント。
(項目179)
上記治療剤は、生理環境において1ヶ月から6ヶ月までの範囲の期間にわたって上記本体から放出される、項目170に記載のインプラント。
(項目180)
上記治療剤は、抗増殖剤を含む、項目170に記載のインプラント。
(項目181)
上記治療剤は、免疫抑制剤を含む、項目170に記載のインプラント。
(項目182)
上記治療剤は、抗新生物薬を含む、項目170に記載のインプラント。
(項目183)
上記治療剤は、抗炎症剤を含む、項目170に記載のインプラント。
(項目184)
上記治療剤は、抗血小板剤を含む、項目170に記載のインプラント。
(項目185)
上記治療剤は、シロリムスおよびそのアナログを含む、項目170に記載のインプラント。
(項目186)
上記治療剤は、パクリタキセルおよびそのアナログを含む、項目170に記載のインプラント。
(項目187)
上記金属は鉄を含み、上記化合物は鉄種である、項目111に記載のインプラント。
(項目188)
上記金属は、原則的に、鉄または鉄合金から成る、項目187に記載のインプラント。
(項目189)
上記化合物は、自然の状態で人体中に存在する量の10倍未満の量で生成される、項目188に記載のインプラント。
(項目190)
上記化合物は、自然の状態で人体中に存在する量の5倍未満の量で生成される、項目188に記載のインプラント。
(項目191)
上記化合物は、自然の状態で人体中に存在する量の2倍未満の量で生成される、項目188に記載のインプラント。
(項目192)
上記化合物は、自然の状態で人体中に存在する量以下の量で生成される、項目188に記載のインプラント。
(項目193)
上記機構は、上記暴露された表面にわたって均一に分布する、項目137に記載のインプラント。
(項目194)
上記機構は、上記暴露された表面にわたって非均一に暴露される、項目137に記載のインプラント。
(項目195)
上記機構は、1nmから1mmの範囲で、直径、奥行き、幅、および長さから選択される寸法を有する、項目137に記載のインプラント。
(項目196)
上記機構は、10nmから100マイクロメートルの範囲で、直径、奥行き、幅、および長さから選択される寸法を有する、項目137に記載のインプラント。
(項目197)
上記機構は、100nmから1マイクロメートルの範囲で、直径、奥行き、幅、および長さから選択される寸法を有する、項目137に記載のインプラント。
(項目198)
上記機構は、1/cm 2 から10 14 /cm 2 までの範囲の表面密度を有する、項目137に記載のインプラント。
(項目199)
上記機構は、100/cm 2 から108/cm 2 までの範囲の表面密度を有する、項目137に記載のインプラント。
(項目200)
上記機構は、1000/cm 2 から106/cm 2 までの範囲の表面密度を有する、項目137に記載のインプラント。
(項目201)
機構でコーティングされた表面積のパーセンテージは、0.1%から99.9%までの範囲である、項目137に記載のインプラント。
(項目202)
機構でコーティングされた表面積のパーセンテージは、5%から75%までの範囲である、項目137に記載のインプラント。
(項目203)
機構でコーティングされた表面積のパーセンテージは、10%から50%までの範囲である、項目137に記載のインプラント。
(項目204)
上記コーティングは、治療剤を含むか、それに隣接する、項目145に記載のインプラント。
(項目205)
上記コーティングは、上記分解するインプラントから周囲組織を保護する、項目145に記載のインプラント。
(項目206)
上記コーティングは、分解産物を周囲組織または血液から選択的に離れた方向へ導く、項目145に記載のインプラント。
(項目207)
上記コーティングは、分解産物を周囲組織または血液の方へ選択的に近づける方向へ導く、項目145に記載のインプラント。
(項目208)
上記コーティングは、分解産物を中和する、項目145に記載のインプラント。
(項目209)
上記コーティングの厚さ、化学組成、耐久性、および/または移植可能な構造体の被覆率のうちの少なくとも一つは、分解速度を制御するために選択される、項目14に記載の構造体。
(項目210)
上記多孔率制御剤は、塩および発泡剤より成る群から選択され、移植前少なくとも部分的に浸出する、項目158に記載のインプラント。
本発明の装置は、様々な形態を取ってよく、様々な医学療法において使用され得る。好適な実施態様では、当該装置は、血管疾患の治療において使用される血管ステントの形態を取る。ステントは、動脈、静脈、胆管、または食道等の様々な体腔において使用され得ることが十分に理解できる。
好適な実施態様では、インプラントはステントの形態を取る。ステントの設計は、いくつか例を挙げると、コイル、スロット付きチューブ、波形リング、シート、圧延シート、締め付け設計、およびステントグラフトを含む。図1は、ステント10の実施形態を拡張状態で図示するものである。示されているように、ステント10は、第一端12と、第二端14と、中心内腔16とを有する。ステント本体18は、第一端12から第二端14へ伸長している。本体18は、格子状構造を形成する支柱20を有する。支柱20は、円形、長方形またはその他の形状の断面を有し得る。一般に、支柱の厚さは、約0.0005インチから0.010インチ、好ましくは約0.001インチから0.004インチ、より好ましくは約0.0015インチから0.003インチの範囲である。支柱の幅は、一般に、約0.001インチから0.008インチ、好ましくは約0.002インチから0.004インチの範囲である。
上述したように、本発明の装置は、生物環境において分解性である。分解、微生物分解、溶解、生物吸収、吸収、融食、腐食、浸食、生物浸食、侵食性、生物侵食性、および崩壊という用語は、別段の定めがない限り、化学的、生物学的、電気的、機械的、またはその他任意の手段によって質量、体積、または機能におけるそのような劣化を表現するその他の用語と、同義で使用されることが十分に理解され得る。
好適な実施態様では、本発明の装置は、少なくとも部分的に分解性の金属、金属合金、またはその組み合わせを含む。
CR=(Icorr×K×EW)/d
CR 腐食速度(mm/年)
Icorr 腐食電流(amps/cm2)
K ファラデー定数=3272(mm/(amp‐cm‐年))
EW 当量(グラム/等価物)
d 密度(グラム/cm3)。
1)形状の変更
いくつかの実施態様では、インプラントの分解速度は、表面積対体積の比を最大にすることによって増加される。例えば、インプラントがステントの形態である場合、ステントの支柱の厚さと幅、または幅と厚さの比が1.4:1を超える、好ましくは2:1を超える、より好ましくは3:1を超えるものであってよい。好適な実施態様では、ステントの支柱の厚さは、約100ミクロン未満、好ましくは約70ミクロン未満、より好ましくは約50ミクロン未満である。これにより、必要とされる分解の絶対深度を最小にし、腐食副産物の局所化を最小限に抑える。一般に、インプラント表面積/長さは、約0.001cm2/mmから0.75cm2/mm、好ましくは約0.005cm2/mmから0.25cm2/mm、最も好ましくは0.01から0.1cm2/mmの範囲である。
いくつかの実施態様では、分解を誘発または補助するために、本発明のインプラントの本体に、腐食誘発機構が含まれる。少なくとも一つの露出面に存在する腐食誘発機構の例として、くぼみ、細孔、部分孔、空隙、表面の凹凸、擦り傷、筋、隆線、隆起、ざらつき、多孔性焼結金属もしくは合金、引っ掻き傷、粗面、孔、貫通孔、貫通焼結細孔、またはその他の幾何学的特徴もしくはランダム特徴、またはその組み合わせが挙げられる。腐食誘発機構は、インプラントが大きな孔、貯留槽、溝他を有する例を含む様々な形状または設計構成の面を含む、インプラントの任意の表面に存在し得る。そのような表面特徴は、一般に、重量に基づき10%以上、多くの場合、重量に基づき20%以上、頻繁に、重量に基づき40%以上分だけ、分解速度を増加させるであろう。100nmを超える、多くの場合400nmを超える、頻繁に1000nm(1μm)以上の平均表面粗さ(RA)を提供するために、いくつかの表面特徴が選択されるであろう。表面特徴は、インプラントの露出表面積全体に設けられてもよいし、その他の場合には分解速度を増加させるように設計された露出面の一部分のみに設けられてもよい。表面特徴の不均一な分解は、多くの場合、インプラントにおける不均一な分解プロファイルをもたらすであろうことが十分に理解されるであろう。
上述した腐食誘発機構のいくつかは、インプラント金属もしくは合金またはその組み合わせを、塩酸、フッ化水素酸、硝酸、リン酸、酢酸、クエン酸、ギ酸、乳酸、シュウ酸、王水、発煙硫酸、様々な状態の他のもの、またはその組み合わせ等であるがこれらに限定されない化学物質に暴露することによって形成され得る。
腐食誘発機構は、任意の適切なサイズ、直径、幅、長さ、深さ、外周、または寸法等を有してよい。いくつかの実施態様では、インプラント表面にある当該機構の平均直径、幅、または長さは、約1nmから1mm、好ましくは約10nmから100マイクロメートル、より好ましくは約100nmから1マイクロメートルの範囲である。筋および擦り傷等の線形特徴の長さは、これよりも長くてよい。いくつかの実施態様では、インプラント表面にある当該機構の平均深さは、約1nmから10mm、好ましくは約10nmから1mm、より好ましくは約100nmから1マイクロメートルの範囲である。当該機構は、同様の寸法のものであってもよいし、サイズまたは形状が可変してもよい。機構は、その他の機構内に包含されてもよいし、部分的に包含されてもよい。
腐食誘発機構の代替として、またはそれに加えて、本発明のインプラントは、金属または金属合金等、一つ以上の腐食強化元素の濃縮を有する材料から構成されてよい。したがって、腐食に対する金属もしくは金属合金またはその組み合わせの抵抗を下げる原子または化合物を、追加、または、すでにこれらの材料中に存在する場合には、増加してよい。例えば、合金中の炭素、鉄、銅、シリコン、カルシウム、硫黄、硫化マグネシウム、ケイ酸塩、もしくはその他の元素のような元素を濃縮するために、または、クロム、ニッケル、モリブデン、もしくはその他の腐食抵抗元素のようなある種の元素を消耗するために、合金を処理してよい。いくつかの実施態様では、腐食強化元素は、約0.1%を超える、好ましくは約1%を超える、より好ましくは約5%を超える組成を有するように追加され得る。さらに、一つ以上の腐食抵抗元素が消耗され得る。
上述した機構および元素の代替として、またはそれに加えて、本発明のインプラントは、インプラントの分解を制御する腐食制御剤を含んでよい。当該剤は、酸性化合物、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、塩酸、クエン酸、アミノ酸、ヒドロキシアパタイト、過酸化水素、水酸化カリウム等の塩基性化合物、酸性および塩基性医薬品、または、酸性もしくは塩基性副産物を持つポリマー他等の、合成物質または生物製剤、またはその組み合わせであってよい。インプラントにある剤の量は、約1ナノグラム/cm2から1000ナノグラム/cm2、好ましくは約1から500ナノグラム/cm2、より好ましくは約10から400ナノグラム/cm2の範囲であってよい。
いくつかの実施態様では、金属または合金粒子は、流体または組織中で、インプラントに隣接して送達される。これらの粒子は、インプラントに接触する流体中にあり、腐食誘発ガルバニ電池を作成する。そのようなガルバニ電池は、インプラントの腐食を制御する。図18は、ステント本体18等、インプラントに隣接する流体または組織42中の粒子40を図示している。これらの粒子は、通常、インプラントよりも不動態である金属または合金から作られる。その他の実施態様では、腐食を誘発するために、インプラントに隣接して非金属粒子が送達される。これらの粒子は、それらに対する組織応答を最小にするように、約1ナノメートルから1ミリメートルの範囲のサイズ、好ましくは0.1マイクロメートルから10マイクロメートルの範囲のサイズであってよい。それらは、カテーテル、注入バルーン、シリンジ、シリンジと針、またはその他の方法等の手段によって、インプラントに隣接して送達され得る。
いくつかの実施態様では、本発明のインプラントは、金属または合金の2つ以上の層から形成される。一実施態様では、これらの金属または合金は、異なる電気化学系列の、または/および異なる不動態の、異なる材料から作られてよい。例えば、一層がタングステンから作られ、他の層がクロムから作られる。別の例において、一層が鉄含有合金から作られ、他の層が銀から作られる。一実施態様では、これらの層は、移植時または移植後に物理的接触または流体接触してよい。一実施態様では、これらの層は、ポリマー、半導体、もしくは誘電体被覆等の層またはコーティングによって隔てられているが、移植時に、またはコーティングの分解が発生するにつれて最終的に、流体接触する。層の厚さ、表面積、被覆率は、望ましい腐食速度に応じて可変し得る。
腐食する際、多くの金属はその表面に酸化物層を形成する。その酸化層がさらなる腐食を阻止すると、当該金属は不動態化すると言われている。この状態の金属および金属合金は、耐食性であると考えられている。耐食性金属合金の例として、316、316L、430、304、17‐7、またはその他のステンレス鋼、コバルトクロム合金(L‐605等)、MP35N、Havar、コバルト‐20クロム‐15タングステン‐10ニッケル合金、NiTi合金他が挙げられる。
本発明のインプラントは、免疫賦活剤、抗癌剤、抗増殖剤、抗炎症剤、抗血栓症薬剤、抗血小板剤、抗真菌剤、抗糖尿病剤、抗脂質異常剤、抗血管形成剤、血管形成剤、降圧剤、避妊薬、抗抑制剤、抗発作剤、疼痛管理剤、抗依存性薬剤、治癒促進剤、排卵促進剤、代謝管理剤などの薬理学的な因子、または薬剤もしくはその組み合わせにおけるその他の薬効分類を含んでもよい。実例となる免疫賦活剤は、ラパマイシン、エベロリムス、ABT 578、AP20840、AP23841、AP23573、CCI−779、重水素化ラパマイシン、TAFA93、タクロリムス、シクロスポリン、TKB662、ミリオシン、それらのアナログ、プロドラッグ、塩、その他、またはその組み合わせを含むがそれらに限定されない。
EDMドリルまたはSwissスクリューを用いて、直径5mmのコバルト棒の中心に直径1.52mmの孔を開ける。続いて、外径が1.63mmになるまで、棒をセンターレス研削盤にかける。結果として生じたコバルトチューブを、摂氏850度で1時間、真空オーブン中で焼き戻す。チューブをレーザー切断し、長さ18mmの冠状動脈ステントとする。化学処置でスラグおよびスケールを除去した後、直径0.020インチの金属マンドレルにステントを留置し、回転させる。360メッシュの酸化アルミニウム吹き付け加工媒体を持つサンドブラスター(Econoline社、ミシガン州グランドヘブン)のエラーノズルをステントに方向付け、10秒間空気作動させて、コバルトステントのすべての面に梨地状表面を作成する。温水を入れたビーカーに数回浸漬し、その後、100%イソプロパノールを入れたビーカーに浸漬して、ステントを清浄する。続いて、100%イソプロパノールを満たしたビーカー中に、ステントを入れる。このビーカーを超音波浴(Branson Ultrasonic Corporation、コネチカット州ダンベリー)に入れ、当該浴中でステントを5分間清浄する。乾燥後、3.0×20mmステント送達カテーテルのバルーンにステントを圧着する。ステント送達システムをパウチ内に密封し、EtOで滅菌する。
送達カテーテルに圧着する前に、実施例1で作製した冠状動脈ステントを33%ラパマイシンおよび66%ポリエチレン‐ビニルアルコール共重合体を含む基質で被覆する。乾燥後、ステント送達カテーテルのバルーンにステントを圧着する。ステント送達システムをパウチ内に密封し、EtOで滅菌する。
1.6mmのODおよび0.6mmのIDタングステン棒から冠状動脈ステントを作製する。EDMドリルで孔を1mmまで拡大する。続いて、外径が1.11mmになるまで、棒をセンターレス研削盤にかける。結果として生じたタングステンチューブを、摂氏1400度で1時間、真空オーブン中で焼き戻す。長さ25mmのステントパターンが形成されるような掘削機EDMでスロットを切断して、チューブとする。EDMで切断していないほうの端部を除去する。化学処置でスラグおよびスケールを除去した後、摂氏45度に加熱した2N塩酸で6時間ステントをエッチングして、その表面上に腐食くぼみ特徴を誘発する。
銀ハイポチューブを切断し、8mmの冠状動脈ステントとする。化学処置でスラグおよびスケールを除去した後、20N塩酸中にステントを留置し、摂氏200度になるまで1時間加熱すると、腐食ピット表面特徴が生じる。熱湯を入れたビーカーに数回浸漬し、その後、100%イソプロパノールを入れたビーカーに浸漬して、ステントを清浄する。続いて、100%イソプロパノールを満たしたビーカー中に、ステントを入れる。このビーカーを超音波浴(Branson Ultrasonic Corporation、コネチカット州ダンベリー)に入れ、当該浴中でステントを5分間清浄する。乾燥後、2.5×10mmステント送達カテーテルのバルーンにステントを圧着する。プラスチックに脱酸素剤を埋入して作製したシースを、圧着されたステントの上に置く。ステント送達システムを金属パウチ内に密封し、ガンマ線滅菌で滅菌する。
実施例4と同じ手法で作製した18mmの冠状動脈ステントを、200μgのエポチロンDで被覆する。乾燥後、3.25×20mmステント送達カテーテルのバルーンにステントを圧着する。ステント送達システムを金属パウチ内に密封し、EtOで滅菌する。
実施例4と同じ手法で作製した13mmの尿道ステントを、タキソール、続いてポリジオキサノンのコーティングで被覆する。乾燥後、3.0×15mmステント送達カテーテルのバルーンにステントを圧着する。ステント送達システムをパウチ内に密封し、EtOで滅菌する。
マグネシウムハイポチューブをレーザー切断し、18mmの冠状動脈ステントとする。化学処置でスラグおよびスケールを除去した後、続いて、100%イソプロパノールを満たしたビーカー中に、ステントを入れる。このビーカーを超音波浴(Branson Ultrasonic Corporation、コネチカット州ダンベリー)に入れ、当該浴中でステントを5分間清浄する。スパッタリングにより、ステントを1オングストロームのクロムのコーティングで被覆する。清浄および乾燥後、2.5×20mmステント送達カテーテルのバルーンにステントを圧着する。ステント送達システムをパウチ内に密封し、EtOで滅菌する。
タングステンハイポチューブをレーザー切断し、長さ28mmの気管支ステントとする。化学処置でスラグおよびスケールを除去した後、タングステン蒸気の化学気相成長法によって、その表面に多くの小さなヒロックを蒸着させる。ヒロックは、400nmRaの間隔で密集していた。温水を入れたビーカーに数回浸漬し、その後、100%イソプロパノールを入れたビーカーに浸漬して、ステントを清浄する。乾燥後、35×30mmステント送達カテーテルのバルーンにステントを圧着する。ステント送達システムをパウチ内に密封し、EtOで滅菌する。
40%ビスマス‐60%スズチューブを回転固定具内に固着させる。チューブを曲げ、チューブの外面全体に傷がつくまで、チューブの表面に剃刀刃で傷をつける。腐食擦り傷特徴が不均一に分布される。次に、フェムト秒レーザーを使用してチューブをレーザー切断し、長さ14mmの動脈瘤ステントパターンとする。化学処置でスラグおよびスケールを除去した後、温水を入れたビーカーに数回浸漬し、その後、100%イソプロパノールを入れたビーカーに浸漬して、ステントを清浄する。乾燥後、2.5×15mmステント送達カテーテルのバルーンにステントを圧着する。ステント送達システムをパウチ内に密封し、EtOで滅菌する。
純タングステン金属から長方形の骨プレートを作製する。沸騰した20N塩酸にプレートを10分間浸して腐食くぼみ特徴を作成し、続いて、熱湯、その後100%イソプロパノール中における超音波清浄によって清浄する。清浄後、骨プレートを梱包し、25キログレイのガンマ放射線で滅菌する。骨プレートを骨折部の片側にある骨折した大腿骨に固定して、一時的な足場を作成する。骨プレートは、ある期間にわたって隣接する組織にその大部分を溶解し始める。
異なる処置を施した後の、コバルト、40%ビスマス‐60%インジウム合金タングステン、および316Lステンレス鋼から作製した平らな切り取り試片を、個別に秤量した。各切り取り試片を、生理食塩水を満たしたバイアル中に入れた。バイアルを摂氏37度まで加熱し、12rpmで回転させた。時間をおいて、切り取り試片をバイアルから除去し、温水で洗浄した後、100%イソプロパノールを満たしたディッシュに浸した。ディッシュを超音波浴中に5分間置いた。金属および合金からの速度損失の量を示したプロットを、図20〜21に示す。
1010炭素鋼チューブをレーザー切断し、長さ14mmの冠状動脈ステントとする。750℃で90分間、ステントを炉内で焼き戻す。続いてステントを清浄し、回転固定具内に固着させる。スラグおよびスケールが除去されてステントの表面が400nmRaの粗さのざらついた状態となるまで、20ミクロンの酸化アルミニウム媒体を用いてステントをサンドブラストする。清浄後、30%ラパマイシンアナログを包含する10ミクロンの炭酸ポリエチレンでステントを被覆し、3.5×15mmステント送達カテーテルのバルーンに圧着する。ステント送達システムをパウチ内に密封し、電子線で滅菌する。
コバルト箔をレーザー切断し、25mmのフラットパターンの冠状動脈ステントとする。700℃で90分間、当該箔を真空炉内で焼き戻す。ステントは次にHClでスケール除去し、清浄する。清浄後、パターン箔の片側(内腔側)を厚さ1ミクロンのPLLAで被覆する。次に、ステントを管状ステント内に溶接する。清浄後、40%ラパマイシンアナログを包含する厚さ5ミクロンの炭酸ポリエチレンでステントを完全に被覆し、3.0×26mmステント送達カテーテルのバルーンに圧着する。ステント送達システムをパウチ内に密封する。パウチを冷却容器内に置き、当該容器を電子線に暴露して、ステント送達システムを滅菌する。
1010炭素鋼チューブをレーザー切断し、長さ14mmの冠状動脈ステントとする。750℃で90分間、ステントを炉内で焼き戻す。続いてステントを清浄し、回転固定具内に固着させる。スラグおよびスケールが除去されてステントの表面が400nmの粗さ(Ra)のざらついた状態となるまで、20ミクロンの酸化アルミニウム媒体を用いてステントをサンドブラストする。清浄後、ステントを150マイクログラムのラパマイシンアナログで被覆し、3.5×15mmステント送達カテーテルのバルーンに圧着する。ステント送達システムをパウチ内に密封し、電子線で滅菌する。
Claims (33)
- 分解可能で移植可能な構造体であって、以下:
少なくとも1つの表面を有する金属を含む移植可能な本体;
該少なくとも1つの表面上の少なくとも1つの腐食誘発特徴であって、生理学的環境において、該本体の少なくとも一部分を、該特徴なしでの速度より大きい速度で分解させる腐食誘発特徴;および
該移植可能な本体の分解の速度を制御するための不動態化層またはコーティング、を含む構造体。 - 前記移植可能な本体が、金属、金属合金またはそれらの組み合わせを含む、請求項1に記載の構造体。
- 前記金属、金属合金またはそれらの組み合わせが、コバルト、タングステン、ビスマス、銀、銅、鉄、亜鉛、マグネシウム、ジルコニウム、ニオブ、インジウム、スズ、ニッケル、およびそれらの合金のうち少なくとも一つを含む、請求項2に記載の構造体。
- 前記少なくとも一つの腐食誘発特徴が、くぼみ、細孔、部分孔、貫通孔、焼結細孔空隙、表面の凹凸、切り込み線、擦り傷、筋、隆線、隆起、ざらつき、多孔性焼結金属または合金、粗面、またはこれらの組み合わせを含む、請求項1に記載の構造体。
- 前記移植可能な構造体が、移植前に、該移植可能な構造体の質量の5%未満、または該移植可能な構造体の表面積の10%未満だけ腐食するように準備される、請求項1〜4のいずれか1項に記載の移植可能な構造体。
- 前記移植可能な本体が、該本体の第一の関連する部分を備えた第一の表面および該本体の第二の関連する部分を備えた第二の表面を有し、該第一の表面が、該第一の関連する部分が該第二の関連する部分とは異なる速度で分解させる密度で存在する腐食誘発特徴を有する、請求項1に記載の構造体。
- 前記移植可能な本体が、ステントを含む、請求項1に記載の構造体。
- 前記金属が、鉄、コバルト、タングステン、モリブデン、銀、銅、ジルコニウム、インジウム、ビスマス、スズ、およびニッケルからなる群から選択される、請求項1〜7のいずれか1項に記載の移植可能な構造体。
- 前記金属が、少なくとも90%、または少なくとも95%、または少なくとも99.5%の純度を有する、請求項8に記載の移植可能な構造体。
- 前記金属が、鉄合金からなる、請求項1〜9のいずれか1項に記載の移植可能な構造体。
- 前記鉄合金が、少なくとも25%の鉄、少なくとも50%の鉄、少なくとも75%の鉄、少なくとも90%の鉄、または少なくとも99%の鉄を含む、請求項10に記載の移植可能な構造体。
- 前記鉄合金が、少なくとも0.05%〜3%の炭素を含む炭素鋼である、請求項10に記載の移植可能な構造体。
- 前記炭素鋼が、1000シリーズの炭素鋼、1300シリーズのマンガン鋼、4000シリーズのモリブデン鋼、4100シリーズのクロムモリブデン鋼、4300シリーズのクロムモリブデン鋼、8600シリーズのクロムモリブデン鋼、4600シリーズのニッケルクロムモリブデン鋼、5100シリーズのクロム鋼、6100シリーズのクロムバナジウム鋼、9200シリーズのケイ素鋼からなる群から選択される、請求項12に記載の移植可能な構造体。
- 前記鉄合金が、少なくとも80%の鉄を含む鋳鉄である、請求項10に記載の移植可能な構造体。
- 前記金属が、銀を含む合金を含む、請求項1〜10のいずれか1項に記載の移植可能な構造体。
- 前記銀が、少なくとも25重量%、少なくとも50重量%、少なくとも75重量%、少なくとも90重量%、少なくとも95重量%、または少なくとも98重量%存在する、請求項15に記載の移植可能な構造体。
- 前記金属が、スズを含む合金を含む、請求項1〜10のいずれか1項に記載の移植可能な構造体。
- 前記スズが、少なくとも25重量%、少なくとも50重量%、少なくとも75重量%、少なくとも90重量%、少なくとも95重量%、または少なくとも98重量%存在する、請求項17に記載の移植可能な構造体。
- 前記金属が、コバルトを含む合金を含む、請求項1〜10のいずれか1項に記載の移植可能な構造体。
- 前記コバルトが、少なくとも25重量%、少なくとも50重量%、少なくとも75重量%、少なくとも90重量%、少なくとも95重量%、または少なくとも98重量%存在する、請求項19に記載の移植可能な構造体。
- 前記金属が、タングステンを含む合金を含む、請求項1〜20のいずれか1項に記載の移植可能な構造体。
- 前記タングステンが、少なくとも25重量%、少なくとも50重量%、少なくとも75重量%、少なくとも90重量%、少なくとも95重量%、または少なくとも98重量%存在する、請求項21に記載の移植可能な構造体。
- 前記金属が、モリブデンを含む合金を含む、請求項1〜22のいずれか1項に記載の移植可能な構造体。
- 前記モリブデンが、少なくとも25重量%、少なくとも50重量%、少なくとも75重量%、少なくとも90重量%、少なくとも95重量%、または少なくとも98重量%存在する、請求項23に記載の移植可能な構造体。
- 前記金属が、0.0001amps/cm2から0.1amps/cm2までの範囲、0.001amps/cm2から0.01amps/cm2までの範囲、または0.0025amps/cm2から0.008amps/cm2までの範囲の腐食電流(Icorr)値を有する、請求項1〜24のいずれか1項に記載の移植可能な構造体。
- 前記金属が、人体中に天然に見出される物質と化学的に同じである、生物学的に適合した分解産物に分解する、請求項1〜25のいずれか1項に記載の移植可能な構造体。
- 前記金属が、延性である、請求項1〜26のいずれか1項に記載の移植可能な構造体。
- 前記金属が、破壊前、少なくとも1.2倍に引き伸ばされることができるか、破壊前、少なくとも1.3倍に引き伸ばされることができるか、破壊前、少なくとも1.4倍に引き伸ばされることができるか、または破壊前、少なくとも1.6倍に引き伸ばされることができる、請求項27に記載の移植可能な構造体。
- 前記少なくとも1つの表面上の少なくとも1つの腐食誘発特徴に加え、前記移植可能な本体が、少なくとも1つの腐食強化/抵抗元素を含む、請求項1〜28のいずれか1項に記載の移植可能な構造体。
- 前記腐食強化/抵抗元素が、炭素、鉄、銅、シリコン、カルシウム、硫黄、硫化マグネシウム、ケイ酸塩からなる群から選択される1つ以上の腐食強化元素の濃縮によるか、またはクロム、ニッケル、モリブデンからなる群から選択される1つ以上の腐食抵抗元素の消耗により提供される、請求項29に記載の移植可能な構造体。
- 濃縮または消耗が、前記移植可能な本体の表面で、該移植可能な本体の全体で、または該移植可能な本体の粒界に隣接して生じる、請求項30に記載の移植可能な構造体。
- 前記少なくとも1つの表面上の少なくとも1つの腐食誘発特徴に加え、前記移植可能な本体が、少なくとも1つの腐食制御剤を含む、請求項1〜31のいずれか1項に記載の移植可能な構造体。
- 前記腐食制御剤が、酸性化合物、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、塩酸、クエン酸、アミノ酸、ヒドロキシアパタイト、過酸化水素、水酸化カリウム、塩基性化合物、酸性および塩基性医薬品、または、酸性もしくは塩基性副産物を持つポリマー、またはそれらの組み合わせからなる群から選択される、請求項32に記載の移植可能な構造体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66870705P | 2005-04-05 | 2005-04-05 | |
US60/668,707 | 2005-04-05 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008505501A Division JP5312018B2 (ja) | 2005-04-05 | 2006-04-04 | 分解性の移植可能な医療装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014104970A Division JP2014176740A (ja) | 2005-04-05 | 2014-05-21 | 分解性の移植可能な医療装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013063319A JP2013063319A (ja) | 2013-04-11 |
JP5572686B2 true JP5572686B2 (ja) | 2014-08-13 |
Family
ID=37074075
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008505501A Active JP5312018B2 (ja) | 2005-04-05 | 2006-04-04 | 分解性の移植可能な医療装置 |
JP2012270170A Active JP5572686B2 (ja) | 2005-04-05 | 2012-12-11 | 分解性の移植可能な医療装置 |
JP2014104970A Withdrawn JP2014176740A (ja) | 2005-04-05 | 2014-05-21 | 分解性の移植可能な医療装置 |
JP2015253060A Withdrawn JP2016052602A (ja) | 2005-04-05 | 2015-12-25 | 分解性の移植可能な医療装置 |
JP2017082664A Withdrawn JP2017159060A (ja) | 2005-04-05 | 2017-04-19 | 分解性の移植可能な医療装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008505501A Active JP5312018B2 (ja) | 2005-04-05 | 2006-04-04 | 分解性の移植可能な医療装置 |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014104970A Withdrawn JP2014176740A (ja) | 2005-04-05 | 2014-05-21 | 分解性の移植可能な医療装置 |
JP2015253060A Withdrawn JP2016052602A (ja) | 2005-04-05 | 2015-12-25 | 分解性の移植可能な医療装置 |
JP2017082664A Withdrawn JP2017159060A (ja) | 2005-04-05 | 2017-04-19 | 分解性の移植可能な医療装置 |
Country Status (10)
Country | Link |
---|---|
US (3) | US20060229711A1 (ja) |
EP (3) | EP3225216A1 (ja) |
JP (5) | JP5312018B2 (ja) |
CN (3) | CN105030390A (ja) |
AU (1) | AU2006231652A1 (ja) |
BR (1) | BRPI0610519A2 (ja) |
CA (2) | CA2604419C (ja) |
IL (1) | IL186474A (ja) |
NZ (1) | NZ562957A (ja) |
WO (1) | WO2006108065A2 (ja) |
Families Citing this family (271)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6240616B1 (en) | 1997-04-15 | 2001-06-05 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a medicated porous metal prosthesis |
US10028851B2 (en) | 1997-04-15 | 2018-07-24 | Advanced Cardiovascular Systems, Inc. | Coatings for controlling erosion of a substrate of an implantable medical device |
US8172897B2 (en) | 1997-04-15 | 2012-05-08 | Advanced Cardiovascular Systems, Inc. | Polymer and metal composite implantable medical devices |
US7713297B2 (en) | 1998-04-11 | 2010-05-11 | Boston Scientific Scimed, Inc. | Drug-releasing stent with ceramic-containing layer |
US8741378B1 (en) | 2001-06-27 | 2014-06-03 | Advanced Cardiovascular Systems, Inc. | Methods of coating an implantable device |
AU2002345328A1 (en) | 2001-06-27 | 2003-03-03 | Remon Medical Technologies Ltd. | Method and device for electrochemical formation of therapeutic species in vivo |
US20060271168A1 (en) * | 2002-10-30 | 2006-11-30 | Klaus Kleine | Degradable medical device |
US8734421B2 (en) | 2003-06-30 | 2014-05-27 | Johnson & Johnson Consumer Companies, Inc. | Methods of treating pores on the skin with electricity |
US20080249633A1 (en) * | 2006-08-22 | 2008-10-09 | Tim Wu | Biodegradable Materials and Methods of Use |
US7901451B2 (en) | 2004-09-24 | 2011-03-08 | Biosensors International Group, Ltd. | Drug-delivery endovascular stent and method for treating restenosis |
KR100511618B1 (ko) * | 2005-01-17 | 2005-08-31 | 이경범 | 약물방출 조절형 다층 코팅 스텐트 및 이의 제조방법 |
WO2006108065A2 (en) | 2005-04-05 | 2006-10-12 | Elixir Medical Corporation | Degradable implantable medical devices |
CN101193600B (zh) * | 2005-04-29 | 2010-09-08 | 博维医药公司 | 实施内窥镜或关节镜手术的钳子 |
US20070050009A1 (en) * | 2005-08-30 | 2007-03-01 | Aiden Flanagan | Bioabsorbable stent |
US8840660B2 (en) | 2006-01-05 | 2014-09-23 | Boston Scientific Scimed, Inc. | Bioerodible endoprostheses and methods of making the same |
US20070160672A1 (en) * | 2006-01-06 | 2007-07-12 | Vipul Bhupendra Dave | Methods of making bioabsorbable drug delivery devices comprised of solvent cast films |
US20070162110A1 (en) * | 2006-01-06 | 2007-07-12 | Vipul Bhupendra Dave | Bioabsorbable drug delivery devices |
US20070158880A1 (en) * | 2006-01-06 | 2007-07-12 | Vipul Bhupendra Dave | Methods of making bioabsorbable drug delivery devices comprised of solvent cast tubes |
US8089029B2 (en) | 2006-02-01 | 2012-01-03 | Boston Scientific Scimed, Inc. | Bioabsorbable metal medical device and method of manufacture |
US20070224235A1 (en) | 2006-03-24 | 2007-09-27 | Barron Tenney | Medical devices having nanoporous coatings for controlled therapeutic agent delivery |
US8187620B2 (en) | 2006-03-27 | 2012-05-29 | Boston Scientific Scimed, Inc. | Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents |
US8048150B2 (en) | 2006-04-12 | 2011-11-01 | Boston Scientific Scimed, Inc. | Endoprosthesis having a fiber meshwork disposed thereon |
EP2023869B1 (en) * | 2006-05-12 | 2019-09-18 | Cardinal Health Switzerland 515 GmbH | Balloon expandable bioabsorbable drug eluting flexible stent |
US8815275B2 (en) | 2006-06-28 | 2014-08-26 | Boston Scientific Scimed, Inc. | Coatings for medical devices comprising a therapeutic agent and a metallic material |
EP2032091A2 (en) | 2006-06-29 | 2009-03-11 | Boston Scientific Limited | Medical devices with selective coating |
US9265866B2 (en) | 2006-08-01 | 2016-02-23 | Abbott Cardiovascular Systems Inc. | Composite polymeric and metallic stent with radiopacity |
JP2009545407A (ja) | 2006-08-02 | 2009-12-24 | ボストン サイエンティフィック サイムド,インコーポレイテッド | 三次元分解制御を備えたエンドプロテーゼ |
EP1891995A1 (en) * | 2006-08-08 | 2008-02-27 | Debiotech S.A. | Drug loading of porous coating |
US8900619B2 (en) * | 2006-08-24 | 2014-12-02 | Boston Scientific Scimed, Inc. | Medical devices for the release of therapeutic agents |
EP2083834B1 (en) | 2006-09-13 | 2017-06-21 | Elixir Medical Corporation | Macrocyclic lactone compounds and methods for their use |
US8088789B2 (en) | 2006-09-13 | 2012-01-03 | Elixir Medical Corporation | Macrocyclic lactone compounds and methods for their use |
US10695327B2 (en) | 2006-09-13 | 2020-06-30 | Elixir Medical Corporation | Macrocyclic lactone compounds and methods for their use |
EP2068757B1 (en) | 2006-09-14 | 2011-05-11 | Boston Scientific Limited | Medical devices with drug-eluting coating |
CA2663271A1 (en) * | 2006-09-15 | 2008-03-20 | Boston Scientific Limited | Bioerodible endoprostheses and methods of making the same |
EP2959925B1 (en) * | 2006-09-15 | 2018-08-29 | Boston Scientific Limited | Medical devices and methods of making the same |
WO2008034031A2 (en) | 2006-09-15 | 2008-03-20 | Boston Scientific Limited | Bioerodible endoprostheses and methods of making the same |
US20080086201A1 (en) * | 2006-09-15 | 2008-04-10 | Boston Scientific Scimed, Inc. | Magnetized bioerodible endoprosthesis |
EP2076296A2 (en) | 2006-09-15 | 2009-07-08 | Boston Scientific Scimed, Inc. | Endoprosthesis with adjustable surface features |
ES2357661T3 (es) * | 2006-09-15 | 2011-04-28 | Boston Scientific Scimed, Inc. | Endoprótesis bioerosionables con capas inorgánicas bioestables. |
US20100145436A1 (en) * | 2006-09-18 | 2010-06-10 | Boston Scientific Scimed, Inc. | Bio-erodible Stent |
CA2663745A1 (en) * | 2006-09-18 | 2008-03-27 | Boston Scientific Limited | Medical devices |
EP2068962B1 (en) * | 2006-09-18 | 2013-01-30 | Boston Scientific Limited | Endoprostheses |
CA2663559A1 (en) * | 2006-09-18 | 2008-03-27 | Boston Scientific Limited | Endoprostheses |
US9585989B2 (en) * | 2006-09-19 | 2017-03-07 | Boston Scientific Scimed, Inc. | Ureteral stent having variable hardness |
US20080090097A1 (en) * | 2006-10-11 | 2008-04-17 | The Penn State Research Foundation | Chemically and physically tailored structured thin film assemblies for corrosion prevention or promotion |
US8067055B2 (en) | 2006-10-20 | 2011-11-29 | Biosensors International Group, Ltd. | Drug-delivery endovascular stent and method of use |
US20080097591A1 (en) * | 2006-10-20 | 2008-04-24 | Biosensors International Group | Drug-delivery endovascular stent and method of use |
WO2008051867A2 (en) * | 2006-10-20 | 2008-05-02 | Elixir Medical Corporation | Luminal prostheses and methods for coating thereof |
US7981150B2 (en) * | 2006-11-09 | 2011-07-19 | Boston Scientific Scimed, Inc. | Endoprosthesis with coatings |
US7832251B2 (en) * | 2006-11-15 | 2010-11-16 | Abbott Laboratories | Patterned mold for medical device |
CN101652150B (zh) * | 2006-12-01 | 2013-12-11 | 韦克福里斯特大学健康科学院 | 结合胶原抑制剂的医疗装置 |
US7651527B2 (en) * | 2006-12-15 | 2010-01-26 | Medtronic Vascular, Inc. | Bioresorbable stent |
DE102006060501A1 (de) * | 2006-12-19 | 2008-06-26 | Biotronik Vi Patent Ag | Verfahren zur Herstellung einer korrosionshemmenden Beschichtung auf einem Implantat aus einer biokorrodierbaren Magnesiumlegierung sowie nach dem Verfahren hergestelltes Implantat |
ATE488259T1 (de) * | 2006-12-28 | 2010-12-15 | Boston Scient Ltd | Bioerodierbare endoprothesen und herstellungsverfahren dafür |
US20130150943A1 (en) | 2007-01-19 | 2013-06-13 | Elixir Medical Corporation | Biodegradable endoprostheses and methods for their fabrication |
US8814930B2 (en) * | 2007-01-19 | 2014-08-26 | Elixir Medical Corporation | Biodegradable endoprosthesis and methods for their fabrication |
EP2125064B1 (en) * | 2007-01-26 | 2017-04-26 | Boston Scientific Limited | Implantable medical endoprostheses |
ZA200904416B (en) * | 2007-01-30 | 2010-08-25 | Hemoteq Ag | Biodegradable vascular support |
DE102007004589A1 (de) * | 2007-01-30 | 2008-07-31 | Orlowski, Michael, Dr. | Bioresorbierbarer Metallstent mit kontrollierter Resorption |
AU2008210149B2 (en) * | 2007-01-30 | 2011-07-14 | Hemoteq Ag | Biodegradable vascular support |
AT504975B1 (de) * | 2007-02-19 | 2013-12-15 | Arc Austrian Res Centers Gmbh | Gitterteil aus metall und verfahren zur herstellung eines gitterteiles |
US8273402B2 (en) | 2007-02-26 | 2012-09-25 | Medtronic Vascular, Inc. | Drug coated stent with magnesium topcoat |
US20080206441A1 (en) * | 2007-02-27 | 2008-08-28 | Medtronic Vascular, Inc. | Ion Beam Etching a Surface of an Implantable Medical Device |
US8431149B2 (en) | 2007-03-01 | 2013-04-30 | Boston Scientific Scimed, Inc. | Coated medical devices for abluminal drug delivery |
US8070797B2 (en) | 2007-03-01 | 2011-12-06 | Boston Scientific Scimed, Inc. | Medical device with a porous surface for delivery of a therapeutic agent |
US20080243234A1 (en) * | 2007-03-27 | 2008-10-02 | Medtronic Vascular, Inc. | Magnesium Alloy Stent |
US20080249608A1 (en) * | 2007-04-04 | 2008-10-09 | Vipul Dave | Bioabsorbable Polymer, Bioabsorbable Composite Stents |
US8067054B2 (en) | 2007-04-05 | 2011-11-29 | Boston Scientific Scimed, Inc. | Stents with ceramic drug reservoir layer and methods of making and using the same |
US7976915B2 (en) | 2007-05-23 | 2011-07-12 | Boston Scientific Scimed, Inc. | Endoprosthesis with select ceramic morphology |
US7901452B2 (en) * | 2007-06-27 | 2011-03-08 | Abbott Cardiovascular Systems Inc. | Method to fabricate a stent having selected morphology to reduce restenosis |
US8002823B2 (en) | 2007-07-11 | 2011-08-23 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US7942926B2 (en) | 2007-07-11 | 2011-05-17 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
EP2187988B1 (en) | 2007-07-19 | 2013-08-21 | Boston Scientific Limited | Endoprosthesis having a non-fouling surface |
DE102007034363A1 (de) * | 2007-07-24 | 2009-01-29 | Biotronik Vi Patent Ag | Endoprothese |
US7931683B2 (en) | 2007-07-27 | 2011-04-26 | Boston Scientific Scimed, Inc. | Articles having ceramic coated surfaces |
US8815273B2 (en) | 2007-07-27 | 2014-08-26 | Boston Scientific Scimed, Inc. | Drug eluting medical devices having porous layers |
WO2009018340A2 (en) | 2007-07-31 | 2009-02-05 | Boston Scientific Scimed, Inc. | Medical device coating by laser cladding |
US8961589B2 (en) * | 2007-08-01 | 2015-02-24 | Abbott Cardiovascular Systems Inc. | Bioabsorbable coating with tunable hydrophobicity |
JP2010535541A (ja) | 2007-08-03 | 2010-11-25 | ボストン サイエンティフィック リミテッド | 広い表面積を有する医療器具用のコーティング |
DE102007038799A1 (de) * | 2007-08-17 | 2009-02-19 | Biotronik Vi Patent Ag | Implantat aus einer biokorrodierbaren Magnesiumlegierung und mit einer Beschichtung aus einem biokorrodierbaren Polyphosphazen |
US8052745B2 (en) * | 2007-09-13 | 2011-11-08 | Boston Scientific Scimed, Inc. | Endoprosthesis |
US8998978B2 (en) | 2007-09-28 | 2015-04-07 | Abbott Cardiovascular Systems Inc. | Stent formed from bioerodible metal-bioceramic composite |
US8142490B2 (en) | 2007-10-24 | 2012-03-27 | Cordis Corporation | Stent segments axially connected by thin film |
US7938855B2 (en) | 2007-11-02 | 2011-05-10 | Boston Scientific Scimed, Inc. | Deformable underlayer for stent |
US8029554B2 (en) | 2007-11-02 | 2011-10-04 | Boston Scientific Scimed, Inc. | Stent with embedded material |
US8216632B2 (en) | 2007-11-02 | 2012-07-10 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US20090118812A1 (en) * | 2007-11-02 | 2009-05-07 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US8118857B2 (en) * | 2007-11-29 | 2012-02-21 | Boston Scientific Corporation | Medical articles that stimulate endothelial cell migration |
EP2224860B1 (en) * | 2007-12-14 | 2011-09-14 | Micrus Endovascular Corporation | Multistrand coil for interventional therapy |
US20100008970A1 (en) * | 2007-12-14 | 2010-01-14 | Boston Scientific Scimed, Inc. | Drug-Eluting Endoprosthesis |
US7972373B2 (en) * | 2007-12-19 | 2011-07-05 | Advanced Technologies And Regenerative Medicine, Llc | Balloon expandable bioabsorbable stent with a single stress concentration region interconnecting adjacent struts |
KR100942807B1 (ko) * | 2007-12-26 | 2010-02-18 | 재단법인서울대학교산학협력재단 | 폐암의 예방 또는 치료용 유전자 치료제 및 약제 조성물 |
US20090204203A1 (en) * | 2008-02-07 | 2009-08-13 | Medtronic Vascular, Inc. | Bioabsorbable Stent Having a Radiopaque Marker |
CN102215682A (zh) * | 2008-03-11 | 2011-10-12 | 万能医药公司 | 大环内酯化合物及它们的使用方法 |
US20090240323A1 (en) * | 2008-03-20 | 2009-09-24 | Medtronic Vascular, Inc. | Controlled Degradation of Magnesium Stents |
DK2110147T3 (da) * | 2008-04-17 | 2012-01-09 | Astra Tech Ab | Forbedret medicinsk anordning med hydrofil beklædning |
EP2271380B1 (en) | 2008-04-22 | 2013-03-20 | Boston Scientific Scimed, Inc. | Medical devices having a coating of inorganic material |
WO2009132176A2 (en) | 2008-04-24 | 2009-10-29 | Boston Scientific Scimed, Inc. | Medical devices having inorganic particle layers |
US7998192B2 (en) | 2008-05-09 | 2011-08-16 | Boston Scientific Scimed, Inc. | Endoprostheses |
US8236046B2 (en) * | 2008-06-10 | 2012-08-07 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis |
US10245165B2 (en) | 2009-04-02 | 2019-04-02 | Q3 Medical Devices Limited | Stent |
EP2296578A4 (en) * | 2008-06-12 | 2014-01-15 | Elixir Medical Corp | INTRAVASCULAR STENT |
EP2303350A2 (en) | 2008-06-18 | 2011-04-06 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US8206636B2 (en) | 2008-06-20 | 2012-06-26 | Amaranth Medical Pte. | Stent fabrication via tubular casting processes |
US8206635B2 (en) | 2008-06-20 | 2012-06-26 | Amaranth Medical Pte. | Stent fabrication via tubular casting processes |
US10898620B2 (en) | 2008-06-20 | 2021-01-26 | Razmodics Llc | Composite stent having multi-axial flexibility and method of manufacture thereof |
US8114148B2 (en) | 2008-06-25 | 2012-02-14 | Boston Scientific Scimed, Inc. | Medical devices for delivery of therapeutic agent in conjunction with galvanic corrosion |
US8298466B1 (en) | 2008-06-27 | 2012-10-30 | Abbott Cardiovascular Systems Inc. | Method for fabricating medical devices with porous polymeric structures |
US9820746B2 (en) * | 2008-07-28 | 2017-11-21 | Incube Laboratories LLC | System and method for scaffolding anastomoses |
US7985252B2 (en) | 2008-07-30 | 2011-07-26 | Boston Scientific Scimed, Inc. | Bioerodible endoprosthesis |
US8382824B2 (en) | 2008-10-03 | 2013-02-26 | Boston Scientific Scimed, Inc. | Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides |
EP2179752B1 (de) * | 2008-10-06 | 2014-08-13 | Biotronik VI Patent AG | Implantat sowie Verfahren zur Herstellung desselben |
US20100094407A1 (en) * | 2008-10-10 | 2010-04-15 | Medtronic Vascular, Inc. | Multiple Bioactive Agent Eluting Stents |
US20100131051A1 (en) * | 2008-11-24 | 2010-05-27 | Medtronic Vascular, Inc. | Systems and Methods for Treatment of Aneurysms Using Zinc Chelator(s) |
US9283304B2 (en) * | 2008-11-25 | 2016-03-15 | CARDINAL HEALTH SWITZERLAND 515 GmbH | Absorbable stent having a coating for controlling degradation of the stent and maintaining pH neutrality |
US8231980B2 (en) | 2008-12-03 | 2012-07-31 | Boston Scientific Scimed, Inc. | Medical implants including iridium oxide |
DE102008054400A1 (de) * | 2008-12-09 | 2010-06-10 | Biotronik Vi Patent Ag | Implantat und Verfahren zur Herstellung desselben |
US20100217370A1 (en) * | 2009-02-20 | 2010-08-26 | Boston Scientific Scimed, Inc. | Bioerodible Endoprosthesis |
EP2403546A2 (en) | 2009-03-02 | 2012-01-11 | Boston Scientific Scimed, Inc. | Self-buffering medical implants |
US8071156B2 (en) | 2009-03-04 | 2011-12-06 | Boston Scientific Scimed, Inc. | Endoprostheses |
US8551454B2 (en) * | 2009-03-13 | 2013-10-08 | Luitpold Pharmaceuticals, Inc. | Device for intranasal administration |
US20120010645A1 (en) * | 2009-03-20 | 2012-01-12 | Proarc Medical Ltd. | Methods and devices for urethral treatment |
DE102009001895A1 (de) * | 2009-03-26 | 2010-09-30 | Biotronik Vi Patent Ag | Medizinisches Implantat zur Medikamentenfreisetzung mit poröser Oberfläche |
US20120089232A1 (en) | 2009-03-27 | 2012-04-12 | Jennifer Hagyoung Kang Choi | Medical devices with galvanic particulates |
US8435281B2 (en) | 2009-04-10 | 2013-05-07 | Boston Scientific Scimed, Inc. | Bioerodible, implantable medical devices incorporating supersaturated magnesium alloys |
US8287937B2 (en) | 2009-04-24 | 2012-10-16 | Boston Scientific Scimed, Inc. | Endoprosthese |
US9265633B2 (en) * | 2009-05-20 | 2016-02-23 | 480 Biomedical, Inc. | Drug-eluting medical implants |
EP2260884A1 (de) * | 2009-06-09 | 2010-12-15 | Heller, Jorg | Implantatsystem mit einem temporären Implantat und Verfahren zum Beeinflussung der Korrosionsrate eines Implantates |
EP2272547B1 (de) * | 2009-06-23 | 2017-01-11 | Biotronik VI Patent AG | Implantat und Verfahren zur Herstellung desselben |
EP3431112A1 (de) * | 2009-06-23 | 2019-01-23 | Biotronik Ag | Implantat und verfahren zur herstellung desselben |
US20110022158A1 (en) * | 2009-07-22 | 2011-01-27 | Boston Scientific Scimed, Inc. | Bioerodible Medical Implants |
CN101987226A (zh) * | 2009-08-03 | 2011-03-23 | 张振 | 可控快速降解的镁及镁合金管连接的放射性粒子链 |
EP2329853B1 (de) * | 2009-11-10 | 2015-07-22 | Biotronik VI Patent AG | Beschichtete Eisenbasislegierung für medizinische Implantate |
US10240419B2 (en) | 2009-12-08 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Downhole flow inhibition tool and method of unplugging a seat |
EP2515806B1 (en) * | 2009-12-21 | 2017-10-18 | PAT&Co bvba | Improvements to frameless intrauterine devices and systems |
US20110238150A1 (en) * | 2010-03-23 | 2011-09-29 | Boston Scientific Scimed, Inc. | Bioerodible Medical Implants |
US8668732B2 (en) | 2010-03-23 | 2014-03-11 | Boston Scientific Scimed, Inc. | Surface treated bioerodible metal endoprostheses |
US8895099B2 (en) * | 2010-03-26 | 2014-11-25 | Boston Scientific Scimed, Inc. | Endoprosthesis |
US8685433B2 (en) | 2010-03-31 | 2014-04-01 | Abbott Cardiovascular Systems Inc. | Absorbable coating for implantable device |
EP2384725B1 (de) * | 2010-05-06 | 2018-07-04 | Biotronik AG | Biokorrodierbares Implantat, bei dem eine Korrosion nach erfolgter Implantation durch einen externen Stimulus ausgelöst oder beschleunigt werden kann |
US8679394B2 (en) | 2010-06-10 | 2014-03-25 | Abbott Cardiovascular Systems Inc. | Laser system and processing conditions for manufacturing bioabsorbable stents |
EP2399620B1 (de) | 2010-06-28 | 2016-08-10 | Biotronik AG | Implantat und Verfahren zur Herstellung desselben |
CN103025335A (zh) | 2010-07-23 | 2013-04-03 | 强生消费者公司 | 产生腐蚀电流的金属颗粒及其用途 |
EP2422826A3 (de) * | 2010-08-27 | 2014-10-29 | Biotronik AG | Implantat und Verfahren zur Herstellung desselben |
CA2806599C (en) | 2010-08-31 | 2020-03-10 | Synthes Usa, Llc | Controlling the degradation of bioresorbable metal implants |
EP2433660B1 (de) | 2010-09-28 | 2014-07-30 | Biotronik AG | Beschichtetes Implantat aus einer biokorrodierbaren Magnesiumlegierung |
JP5636857B2 (ja) * | 2010-10-12 | 2014-12-10 | 国立大学法人茨城大学 | 生体組織接着用柔軟性金属箔テープ及びその接着方法 |
PL403688A1 (pl) | 2010-11-08 | 2014-02-17 | Hll Lifecare Limited | Wkladka wewnatrzmaciczna z kontrolowanym uwalnianiem miedzi oraz metoda przygotowywania wkladki copper-T powleczonej cienka warstewka biodegradowalna |
US20140012366A1 (en) * | 2011-03-22 | 2014-01-09 | Terumokabushiki Kaisha | Stent |
US20120259401A1 (en) * | 2011-04-08 | 2012-10-11 | Gerrans Lawrence J | Balloon catheter for launching drug delivery device |
CN102228721A (zh) * | 2011-06-09 | 2011-11-02 | 中国科学院金属研究所 | 一种可降解冠脉支架及其制备方法 |
US9492573B2 (en) * | 2011-07-06 | 2016-11-15 | Serene, Llc | Method of treating cholangiocarcinoma and apparatus |
US9707739B2 (en) * | 2011-07-22 | 2017-07-18 | Baker Hughes Incorporated | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
US9033055B2 (en) | 2011-08-17 | 2015-05-19 | Baker Hughes Incorporated | Selectively degradable passage restriction and method |
US9090956B2 (en) | 2011-08-30 | 2015-07-28 | Baker Hughes Incorporated | Aluminum alloy powder metal compact |
US20130138219A1 (en) * | 2011-11-28 | 2013-05-30 | Cook Medical Technologies Llc | Biodegradable stents having one or more coverings |
US9010416B2 (en) | 2012-01-25 | 2015-04-21 | Baker Hughes Incorporated | Tubular anchoring system and a seat for use in the same |
US20190269532A1 (en) * | 2012-03-09 | 2019-09-05 | Q3 Medical Devices Limited | Biodegradable supporting device with a radio-opaque marker |
WO2013133847A1 (en) * | 2012-03-09 | 2013-09-12 | Eventions, Llc | Biodegradable supporting device |
US8834902B2 (en) * | 2012-03-09 | 2014-09-16 | Q3 Medical Devices Limited | Biodegradable supporting device |
US20160089481A1 (en) * | 2012-03-30 | 2016-03-31 | Dentsply International Inc. | Medical device having a surface comprising gallium oxide |
US9333099B2 (en) | 2012-03-30 | 2016-05-10 | Abbott Cardiovascular Systems Inc. | Magnesium alloy implants with controlled degradation |
CN104411343B (zh) * | 2012-06-26 | 2018-05-08 | 雅培心血管系统公司 | 具有中空支撑单元和钝化涂层的可植入假体及其制造方法 |
US9084843B2 (en) | 2012-08-14 | 2015-07-21 | The Board Of Trustees Of The University Of Alabama | Biodegradable medical device having an adjustable degradation rate and methods of making the same |
US10959715B2 (en) * | 2012-10-31 | 2021-03-30 | W. L. Gore & Associates, Inc. | Devices and methods related to deposited support structures |
US9700441B2 (en) * | 2012-10-31 | 2017-07-11 | W. L. Gore & Associates, Inc. | Devices and methods related to deposited support structures |
US11744594B2 (en) | 2012-11-16 | 2023-09-05 | W.L. Gore & Associates, Inc. | Space filling devices |
US20140170600A1 (en) * | 2012-12-14 | 2014-06-19 | Park Istre Ii, Llc | Methods and systems for making colored dental parts |
JP6392250B2 (ja) | 2013-02-15 | 2018-09-19 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 生体内分解性の内部人工器官およびそれに使用する生体内分解性マグネシウム合金を加工する方法 |
WO2014153144A1 (en) * | 2013-03-14 | 2014-09-25 | Radisch Herbert R | Implantable medical devices comprising bio-degradable alloys with enhanced degradation rates |
CA2939823C (en) | 2013-03-14 | 2021-11-16 | Proarc Medical Ltd. | Methods and devices for urethral treatment |
WO2014144107A1 (en) | 2013-03-15 | 2014-09-18 | Hunter William L | Devices, systems and methods for monitoring hip replacements |
DE102013004625A1 (de) * | 2013-03-16 | 2014-09-18 | Universitätsklinikum Freiburg | Bioresorbierbarer Stent |
WO2014205346A1 (en) | 2013-06-21 | 2014-12-24 | Boston Scientific Scimed, Inc. | Stent with deflecting connector |
EP3848006A1 (en) | 2013-06-23 | 2021-07-14 | Canary Medical Inc. | Devices, systems and methods for monitoring knee replacements |
US9816339B2 (en) | 2013-09-03 | 2017-11-14 | Baker Hughes, A Ge Company, Llc | Plug reception assembly and method of reducing restriction in a borehole |
EP3062832B1 (en) | 2013-10-29 | 2017-09-27 | Boston Scientific Scimed, Inc. | Bioerodible magnesium alloy microstructures for endoprostheses |
CN104587534A (zh) * | 2013-10-31 | 2015-05-06 | 先健科技(深圳)有限公司 | 可吸收铁基合金支架 |
EA032712B1 (ru) * | 2013-12-20 | 2019-07-31 | Ньюронано Аб | Медицинское устройство, содержащее электрод и источник света |
CN105142688B (zh) | 2014-02-04 | 2018-01-19 | 艾博特心血管系统公司 | 具有基于novolimus和丙交酯的涂层使得novolimus与涂层具有最小键合量的药物递送支架或支撑件 |
US11167343B2 (en) | 2014-02-21 | 2021-11-09 | Terves, Llc | Galvanically-active in situ formed particles for controlled rate dissolving tools |
US10689740B2 (en) | 2014-04-18 | 2020-06-23 | Terves, LLCq | Galvanically-active in situ formed particles for controlled rate dissolving tools |
US10865465B2 (en) | 2017-07-27 | 2020-12-15 | Terves, Llc | Degradable metal matrix composite |
US10150713B2 (en) | 2014-02-21 | 2018-12-11 | Terves, Inc. | Fluid activated disintegrating metal system |
EP3128960A1 (en) | 2014-04-08 | 2017-02-15 | Boston Scientific Scimed, Inc. | Partially coated stents |
US10426869B2 (en) | 2014-05-05 | 2019-10-01 | The University Of Toledo | Biodegradable magnesium alloys and composites |
JP2016005533A (ja) * | 2014-05-30 | 2016-01-14 | 株式会社日本ステントテクノロジー | ステント |
US9381280B2 (en) | 2014-06-13 | 2016-07-05 | Abbott Cardiovascular Systems Inc. | Plasticizers for a biodegradable scaffolding and methods of forming same |
WO2015200718A1 (en) | 2014-06-25 | 2015-12-30 | Hunter William L | Devices, systems and methods for using and monitoring tubes in body passageways |
US9259339B1 (en) | 2014-08-15 | 2016-02-16 | Elixir Medical Corporation | Biodegradable endoprostheses and methods of their fabrication |
US9855156B2 (en) | 2014-08-15 | 2018-01-02 | Elixir Medical Corporation | Biodegradable endoprostheses and methods of their fabrication |
US9480588B2 (en) | 2014-08-15 | 2016-11-01 | Elixir Medical Corporation | Biodegradable endoprostheses and methods of their fabrication |
US9730819B2 (en) * | 2014-08-15 | 2017-08-15 | Elixir Medical Corporation | Biodegradable endoprostheses and methods of their fabrication |
CN104189962B (zh) * | 2014-08-29 | 2016-01-20 | 东莞颠覆产品设计有限公司 | 一种表面具有Fe-TiO2涂层的心血管支架及其制备方法 |
CN104189961B (zh) * | 2014-08-29 | 2016-01-20 | 东莞颠覆产品设计有限公司 | 一种表面具有Ag-TiO2涂层的心血管支架及其制备方法 |
US20180125365A1 (en) | 2014-09-17 | 2018-05-10 | Canary Medical Inc. | Devices, systems and methods for using and monitoring medical devices |
CN104436314A (zh) * | 2014-11-04 | 2015-03-25 | 无锡贺邦金属制品有限公司 | 一种具有抗菌功能的固骨钉用合金材料 |
US10378303B2 (en) | 2015-03-05 | 2019-08-13 | Baker Hughes, A Ge Company, Llc | Downhole tool and method of forming the same |
CA2973155A1 (en) | 2015-03-11 | 2016-09-15 | Boston Scientific Scimed, Inc. | Bioerodible magnesium alloy microstructures for endoprostheses |
EP3269401A4 (en) * | 2015-03-12 | 2018-10-10 | Utah-Inha DDS & Advanced Therapeutics Research Center | Stent having functional material coated on cell space thereof |
BR112017017572B1 (pt) * | 2015-03-31 | 2021-10-05 | Toray Industries, Inc | Material metálico antitrombogênico, e, dispositivo médico implantável |
US10232082B2 (en) | 2015-06-29 | 2019-03-19 | 480 Biomedical, Inc. | Implantable scaffolds for treatment of sinusitis |
US20160374800A1 (en) * | 2015-06-29 | 2016-12-29 | Changcheng You | Implantable scaffolds for treatment of sinusitis |
CN105056297B (zh) * | 2015-08-06 | 2018-02-23 | 孙培强 | 一种抗菌能力强的医用钛合金棒材 |
CN105232193A (zh) * | 2015-08-19 | 2016-01-13 | 北京迈迪顶峰医疗科技有限公司 | 一种肺动脉支架 |
CN106474545B (zh) * | 2015-08-28 | 2020-04-10 | 元心科技(深圳)有限公司 | 可吸收铁基合金植入医疗器械 |
DE102015119539B4 (de) * | 2015-11-12 | 2022-12-22 | Kulzer Gmbh | Hochschlagzähes, transparentes Prothesenmaterial mit niedrigem Rest-MMA Gehalt |
CN106693043B (zh) * | 2015-11-18 | 2020-06-16 | 先健科技(深圳)有限公司 | 可吸收铁基合金植入医疗器械及其制备方法 |
CN106806938B (zh) * | 2015-11-27 | 2020-04-14 | 先健科技(深圳)有限公司 | 可吸收铁基合金植入医疗器械 |
CN106890368A (zh) * | 2015-12-18 | 2017-06-27 | 华东理工大学 | 用于肿瘤定向治疗的输尿管支架及制备方法 |
CN106902395B (zh) * | 2015-12-22 | 2020-04-07 | 先健科技(深圳)有限公司 | 可吸收铁基合金植入医疗器械 |
CN105597163B (zh) * | 2015-12-29 | 2019-05-31 | 先健科技(深圳)有限公司 | 铁基合金植入医疗器械及其制备方法 |
CN106955374B (zh) * | 2016-01-08 | 2019-11-08 | 先健科技(深圳)有限公司 | 植入式器械 |
CN105457106B (zh) * | 2016-01-11 | 2019-02-01 | 光钰科技股份有限公司 | 适用于热熔植入至骨矫正处或病骨的骨钉 |
US10967103B2 (en) | 2016-02-03 | 2021-04-06 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Systems and methods for selective coating removal for resorbable metal medical devices |
WO2017165717A1 (en) | 2016-03-23 | 2017-09-28 | Canary Medical Inc. | Implantable reporting processor for an alert implant |
TWI604819B (zh) * | 2016-04-13 | 2017-11-11 | Bioabsorbable bone nail capable of developing under x-ray and its making method | |
EP3861961A1 (en) | 2016-05-16 | 2021-08-11 | Elixir Medical Corporation | Uncaging stent |
CN107376035B (zh) * | 2016-05-16 | 2020-12-01 | 深圳生命谷科技研究院有限公司 | 一种血管支架及其制备方法 |
US11622872B2 (en) | 2016-05-16 | 2023-04-11 | Elixir Medical Corporation | Uncaging stent |
JP2019516468A (ja) * | 2016-05-25 | 2019-06-20 | キュースリー メディカル デヴァイシズ リミテッドQ3 Medical Devices Limited | 生体分解性支持デバイス |
EP3463128B1 (en) * | 2016-06-03 | 2021-11-10 | Q3 Medical Devices Limited | Stent |
CN105903092A (zh) * | 2016-06-23 | 2016-08-31 | 刘芸 | 子宫置入物及子宫置入物的置入系统 |
EP3474787A4 (en) * | 2016-06-23 | 2020-02-19 | Poly-Med, Inc. | MEDICAL IMPLANTS WITH MANAGED BIODEGRADATION |
CN108261559B (zh) * | 2016-12-30 | 2021-07-30 | 元心科技(深圳)有限公司 | 可吸收铁基器械 |
AU2017393044B2 (en) | 2017-01-10 | 2022-03-10 | Fuji Light Metal Co., Ltd. | Magnesium alloy |
EP3574928B1 (en) | 2017-01-30 | 2023-12-27 | JAPAN Medical Device Technology Co., Ltd. | High performance bioabsorbable stent |
CN106620889A (zh) * | 2017-02-16 | 2017-05-10 | 鼎科医疗技术(苏州)有限公司 | 一种可植入体内的医疗器件及其制作方法 |
CN109010931B (zh) * | 2017-06-09 | 2022-03-11 | 上海微创医疗器械(集团)有限公司 | 介入医疗器械及阿非迪霉素的应用 |
US11559612B2 (en) * | 2017-07-28 | 2023-01-24 | University of Pittsburgh —of the Commonwealth System of Higher Education | Use of self-assembled alkylsilane coatings for drug delivery applications |
CN107413287A (zh) * | 2017-08-15 | 2017-12-01 | 泰州希斯曼金属制品有限公司 | 在生物介质中用杀菌金属的纳米级对象的电化学处理方法 |
CN107607071B (zh) * | 2017-09-26 | 2020-11-06 | 深圳市领先医疗服务有限公司 | 可降解药物涂层支架涂层厚度的测量方法 |
CN109589456B (zh) * | 2017-09-30 | 2024-03-19 | 元心科技(深圳)有限公司 | 植入式器械 |
CN107595449A (zh) * | 2017-10-16 | 2018-01-19 | 鼎科医疗技术(苏州)有限公司 | 一种降低电化学腐蚀的可降解金属支架制备方法及其制得的金属支架 |
GB201718299D0 (en) | 2017-11-03 | 2017-12-20 | Ab Wasstand Dev | Stents |
CN107899070A (zh) * | 2017-11-13 | 2018-04-13 | 西南大学 | 一种仿松质骨结构与超低弹性模量的人工骨骼及制备方法 |
TWI645075B (zh) * | 2017-12-13 | 2018-12-21 | 蔡永芳 | 開發單晶異向性氧化物在合金醫療器材上之製備方法 |
US12016764B2 (en) | 2017-12-22 | 2024-06-25 | Poly-Med, Inc. | Tubular implants with controlled biodegradation |
CN109966562B (zh) * | 2017-12-27 | 2021-12-17 | 元心科技(深圳)有限公司 | 可吸收金属支架 |
WO2019142077A1 (en) * | 2018-01-16 | 2019-07-25 | Gyrus Acmi, Inc. | Urological stent |
US11065136B2 (en) * | 2018-02-08 | 2021-07-20 | Covidien Lp | Vascular expandable devices |
US11065009B2 (en) | 2018-02-08 | 2021-07-20 | Covidien Lp | Vascular expandable devices |
US20210007974A1 (en) * | 2018-04-02 | 2021-01-14 | Battelle Memorial Institute | Coatings for biological interface on implants |
DE102018110591B4 (de) | 2018-05-03 | 2022-11-03 | Acandis Gmbh | Medizinische Vorrichtung mit Fibrinbeschichtung, System und Set mit einer derartigen Vorrichtung sowie Herstellverfahren |
EP3796948A4 (en) | 2018-05-22 | 2022-03-02 | Interface Biologics Inc. | COMPOSITIONS AND METHODS FOR ADMINISTRATION OF MEDICATIONS TO A VESSEL WALL |
US10441449B1 (en) | 2018-05-30 | 2019-10-15 | Vesper Medical, Inc. | Rotary handle stent delivery system and method |
CN108962864B (zh) * | 2018-06-14 | 2020-02-14 | 中国电子科技集团公司第二十四研究所 | 一种用于瞬态电路的可水解封装外引线及制作方法 |
CN111801435A (zh) | 2018-07-09 | 2020-10-20 | 株式会社日本医疗机器技研 | 镁合金 |
WO2020028643A1 (en) * | 2018-08-02 | 2020-02-06 | The Regents Of The University Of California | Biodegradable zinc-based materials including dispersed nanostructures for biomedical applications |
US10960110B2 (en) * | 2018-08-21 | 2021-03-30 | Jian Xie | Iron-based biodegradable metals for implantable medical devices |
US10449073B1 (en) | 2018-09-18 | 2019-10-22 | Vesper Medical, Inc. | Rotary handle stent delivery system and method |
CN111329632B (zh) * | 2018-12-19 | 2021-10-22 | 元心科技(深圳)有限公司 | 可吸收金属支架 |
CN110859997B (zh) * | 2018-12-20 | 2020-06-23 | 四川大学 | 具有成骨-抗炎-血糖三维响应结构的牙种植体及其制备方法 |
CN113301860A (zh) | 2019-01-18 | 2021-08-24 | W.L.戈尔及同仁股份有限公司 | 可生物吸收的医疗设备 |
AU2020209921B2 (en) * | 2019-01-18 | 2023-09-07 | W. L. Gore & Associates, Inc. | Bioabsorbable filament medical devices |
CN109731137B (zh) * | 2019-03-13 | 2021-05-07 | 陕西师范大学 | 具有生物抗污功能的白蛋白涂层的制备方法及具有生物抗污功能的材料 |
DE102019121562B4 (de) * | 2019-08-09 | 2024-01-11 | Acandis Gmbh | Medizinische Vorrichtung zur Behandlung von Aneurysmen |
CN110755177A (zh) * | 2019-10-25 | 2020-02-07 | 上海交通大学医学院附属第九人民医院 | 一种骨缺损植入物及构建方法、制备方法、计算机可读存储介质、设备 |
CN110859650A (zh) * | 2019-11-27 | 2020-03-06 | 苏州森锋医疗器械有限公司 | 一种吻合钉 |
EP4069901A1 (en) | 2019-12-03 | 2022-10-12 | Cortronik GmbH | Adaptive chemical post-processing of nonwovens for cardiovascular applications |
US11219541B2 (en) | 2020-05-21 | 2022-01-11 | Vesper Medical, Inc. | Wheel lock for thumbwheel actuated device |
CN112494189A (zh) * | 2020-11-03 | 2021-03-16 | 北京科技大学 | 一种可降解金属宫腔支架和释放系统及使用方法 |
CN115038470A (zh) * | 2020-12-28 | 2022-09-09 | 元心科技(深圳)有限公司 | 骨科内固定植入医疗器械 |
US20220354489A1 (en) | 2021-05-10 | 2022-11-10 | Cilag Gmbh International | Absorbable staple comprising strain limiting features |
CN113750297B (zh) * | 2021-09-03 | 2022-04-15 | 东华大学 | 一种结构和功能仿生尿道支架及其制备方法 |
CN114059146A (zh) * | 2021-11-16 | 2022-02-18 | 湖南华耀百奥医疗科技有限公司 | 一种可降解金属骨结合植入物的表面处理方法 |
CN113975470B (zh) * | 2021-11-22 | 2023-09-22 | 山东瑞安泰医疗技术有限公司 | 一种可降解金属钼基合金血管内支架制备方法 |
WO2023096800A1 (en) * | 2021-11-23 | 2023-06-01 | Elixir Medical Corporation | Anticoagulant compounds comprising chelating agents and cationic anti-coagulation enhancers and methods and devices for their use |
KR102512526B1 (ko) * | 2022-08-18 | 2023-03-21 | 강금용 | 생분해성 마그네슘을 포함하는 관상동맥용 스텐트의 제조방법 및 이의 제조방법으로 제조된 스텐트 |
DE102022129920B3 (de) | 2022-11-11 | 2023-12-28 | Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden e.V. (IFW Dresden e.V.) | Implantatsystem mit aktiv regulierbarer Degradation und Verfahren zur aktiv regulierbaren Degradation eines Implantatsystems |
CN116036385B (zh) * | 2023-03-31 | 2023-07-04 | 艾柯医疗器械(北京)股份有限公司 | 一种自膨式编织植入物及其制备方法及包含其的血流导向系统 |
Family Cites Families (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2950022C2 (de) * | 1979-12-17 | 1984-01-12 | Vsesojuznyj kardiologičeskij naučnyj centr Akademii medicinskich Nauk SSSR,, Moskva | Elektrischer Leiter zur Implantation in den menschlichen Körper |
US4645503A (en) * | 1985-08-27 | 1987-02-24 | Orthomatrix Inc. | Moldable bone-implant material |
US4733665C2 (en) | 1985-11-07 | 2002-01-29 | Expandable Grafts Partnership | Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft |
US4979822A (en) * | 1989-05-30 | 1990-12-25 | Pacific Scientific Company | Particle measuring fluid cell having non-corrodible shims |
US5496359A (en) * | 1989-07-25 | 1996-03-05 | Smith & Nephew Richards, Inc. | Zirconium oxide and zirconium nitride coated biocompatible leads |
WO1991017724A1 (en) * | 1990-05-17 | 1991-11-28 | Harbor Medical Devices, Inc. | Medical device polymer |
CA2060635A1 (en) * | 1991-02-12 | 1992-08-13 | Keith D'alessio | Bioabsorbable medical implants |
CA2079417C (en) | 1991-10-28 | 2003-01-07 | Lilip Lau | Expandable stents and method of making same |
FR2689400B1 (fr) * | 1992-04-03 | 1995-06-23 | Inoteb | Materiau pour prothese osseuse contenant des particules de carbonate de calcium dispersees dans une matrice polymere bioresorbable. |
US5522895A (en) * | 1993-07-23 | 1996-06-04 | Rice University | Biodegradable bone templates |
US6235061B1 (en) * | 1994-04-04 | 2001-05-22 | The Penn State Research Foundation | Poly(organophosphazene) matrices for bone replacement |
US5649977A (en) * | 1994-09-22 | 1997-07-22 | Advanced Cardiovascular Systems, Inc. | Metal reinforced polymer stent |
US5741329A (en) * | 1994-12-21 | 1998-04-21 | Board Of Regents, The University Of Texas System | Method of controlling the pH in the vicinity of biodegradable implants |
AU716005B2 (en) * | 1995-06-07 | 2000-02-17 | Cook Medical Technologies Llc | Implantable medical device |
CA2252860C (en) * | 1996-05-28 | 2011-03-22 | 1218122 Ontario Inc. | Resorbable implant biomaterial made of condensed calcium phosphate particles |
US6174329B1 (en) * | 1996-08-22 | 2001-01-16 | Advanced Cardiovascular Systems, Inc. | Protective coating for a stent with intermediate radiopaque coating |
US5997517A (en) * | 1997-01-27 | 1999-12-07 | Sts Biopolymers, Inc. | Bonding layers for medical device surface coatings |
US6240616B1 (en) * | 1997-04-15 | 2001-06-05 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a medicated porous metal prosthesis |
US8172897B2 (en) * | 1997-04-15 | 2012-05-08 | Advanced Cardiovascular Systems, Inc. | Polymer and metal composite implantable medical devices |
US6610764B1 (en) * | 1997-05-12 | 2003-08-26 | Metabolix, Inc. | Polyhydroxyalkanoate compositions having controlled degradation rates |
CN2304419Y (zh) * | 1997-06-13 | 1999-01-20 | 王槐茂 | 血管支架 |
DE19731021A1 (de) * | 1997-07-18 | 1999-01-21 | Meyer Joerg | In vivo abbaubares metallisches Implantat |
US5980564A (en) * | 1997-08-01 | 1999-11-09 | Schneider (Usa) Inc. | Bioabsorbable implantable endoprosthesis with reservoir |
US6241771B1 (en) * | 1997-08-13 | 2001-06-05 | Cambridge Scientific, Inc. | Resorbable interbody spinal fusion devices |
US6626939B1 (en) * | 1997-12-18 | 2003-09-30 | Boston Scientific Scimed, Inc. | Stent-graft with bioabsorbable structural support |
US20020099438A1 (en) * | 1998-04-15 | 2002-07-25 | Furst Joseph G. | Irradiated stent coating |
US20030040790A1 (en) * | 1998-04-15 | 2003-02-27 | Furst Joseph G. | Stent coating |
DE19856983A1 (de) * | 1998-06-25 | 1999-12-30 | Biotronik Mess & Therapieg | Implantierbare, bioresorbierbare Gefäßwandstütze, insbesondere Koronarstent |
EP0966979B1 (de) * | 1998-06-25 | 2006-03-08 | Biotronik AG | Implantierbare, bioresorbierbare Gefässwandstütze, insbesondere Koronarstent |
US6325824B2 (en) * | 1998-07-22 | 2001-12-04 | Advanced Cardiovascular Systems, Inc. | Crush resistant stent |
CN1132636C (zh) * | 1999-01-28 | 2003-12-31 | 蒲忠杰 | 一种医用扩张人体管道支架的制备方法 |
CN2383533Y (zh) * | 1999-06-09 | 2000-06-21 | 安泰科技股份有限公司 | 医用球囊扩张血管内支架 |
US20020144757A1 (en) * | 2000-07-07 | 2002-10-10 | Craig Charles Horace | Stainless steel alloy with improved radiopaque characteristics |
US7402173B2 (en) * | 2000-09-18 | 2008-07-22 | Boston Scientific Scimed, Inc. | Metal stent with surface layer of noble metal oxide and method of fabrication |
EP1355588B1 (en) * | 2000-12-22 | 2007-08-15 | Avantec Vascular Corporation | Device for delivery of therepeutic agents |
US7077859B2 (en) | 2000-12-22 | 2006-07-18 | Avantec Vascular Corporation | Apparatus and methods for variably controlled substance delivery from implanted prostheses |
US20030033007A1 (en) * | 2000-12-22 | 2003-02-13 | Avantec Vascular Corporation | Methods and devices for delivery of therapeutic capable agents with variable release profile |
EP1370306B1 (de) * | 2001-01-05 | 2005-10-19 | Jacqueline Yvonne Hausdorf | Durch korrosion abbaubare metallische medizinische implantate |
WO2003009777A2 (en) * | 2001-07-26 | 2003-02-06 | Avantec Vascular Corporation | Delivery of therapeutic capable agents |
US6840961B2 (en) * | 2001-12-21 | 2005-01-11 | Etex Corporation | Machinable preformed calcium phosphate bone substitute material implants |
WO2003063733A1 (en) * | 2002-01-31 | 2003-08-07 | Radi Medical Systems Ab | Stent |
US20030153971A1 (en) * | 2002-02-14 | 2003-08-14 | Chandru Chandrasekaran | Metal reinforced biodegradable intraluminal stents |
DE10207161B4 (de) | 2002-02-20 | 2004-12-30 | Universität Hannover | Verfahren zur Herstellung von Implantaten |
CN2542279Y (zh) * | 2002-03-21 | 2003-04-02 | 有研亿金新材料股份有限公司 | 一种记忆合金医用内支架 |
US7261734B2 (en) * | 2002-04-23 | 2007-08-28 | Boston Scientific Scimed, Inc. | Resorption-controllable medical implants |
US20030204239A1 (en) * | 2002-04-26 | 2003-10-30 | Wenda Carlyle | Endovascular stent with a preservative coating |
US7122048B2 (en) * | 2002-05-03 | 2006-10-17 | Scimed Life Systems, Inc. | Hypotube endoluminal device |
CN100435880C (zh) * | 2003-02-28 | 2008-11-26 | 微创医疗器械(上海)有限公司 | 一种药物洗脱介入医疗器械及其制备方法 |
US20040006380A1 (en) * | 2002-07-05 | 2004-01-08 | Buck Jerrick C. | Stent delivery system |
US7628696B2 (en) | 2002-07-12 | 2009-12-08 | Atronic International Gmbh | Gaming device with network port for selecting jackpot frequency |
JP2005533604A (ja) * | 2002-07-25 | 2005-11-10 | アバンテック バスキュラー コーポレーション | 治療薬を送達する装置とこれに関する方法 |
DE10237572A1 (de) † | 2002-08-13 | 2004-02-26 | Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin | Stent mit polymerer Beschichtung |
US6638301B1 (en) * | 2002-10-02 | 2003-10-28 | Scimed Life Systems, Inc. | Medical device with radiopacity |
US7169178B1 (en) * | 2002-11-12 | 2007-01-30 | Advanced Cardiovascular Systems, Inc. | Stent with drug coating |
EP1444993B2 (en) * | 2003-02-10 | 2013-06-26 | W.C. Heraeus GmbH | Improved metal alloy for medical devices and implants |
DE10329260A1 (de) * | 2003-06-23 | 2005-01-13 | Biotronik Meß- und Therapiegeräte GmbH & Co. Ingenieurbüro Berlin | Stent mit einem Beschichtungssystem |
DE10361940A1 (de) * | 2003-12-24 | 2005-07-28 | Restate Patent Ag | Degradationssteuerung biodegradierbarer Implantate durch Beschichtung |
CN1314466C (zh) * | 2004-01-16 | 2007-05-09 | 东南大学 | 表面沉积钙磷陶瓷的镍钛非血管腔道支架及其制备方法 |
CN100371032C (zh) * | 2004-01-16 | 2008-02-27 | 东南大学 | 防再狭窄药物缓释型血管支架及其制备方法 |
DE102004043231A1 (de) † | 2004-09-07 | 2006-03-09 | Biotronik Vi Patent Ag | Endoprothese aus einer Magnesiumlegierung |
US7879109B2 (en) * | 2004-12-08 | 2011-02-01 | Biomet Manufacturing Corp. | Continuous phase composite for musculoskeletal repair |
JP5247984B2 (ja) * | 2005-02-10 | 2013-07-24 | コーディス・コーポレイション | 機械的強度および薬理機能を強化した生分解性医療用具 |
AU2006221046B2 (en) * | 2005-03-03 | 2012-02-02 | Icon Medical Corp. | Improved metal alloys for medical device |
WO2006108065A2 (en) | 2005-04-05 | 2006-10-12 | Elixir Medical Corporation | Degradable implantable medical devices |
CN101516292B (zh) † | 2006-09-22 | 2013-08-21 | 友和安股份公司 | 由生物可降解金属构成的植入物及其制造方法 |
US20110022158A1 (en) * | 2009-07-22 | 2011-01-27 | Boston Scientific Scimed, Inc. | Bioerodible Medical Implants |
CN103249434B (zh) * | 2011-02-24 | 2015-06-10 | 百多力股份公司 | 生物腐蚀性的镁合金植入物 |
-
2006
- 2006-04-04 WO PCT/US2006/012725 patent/WO2006108065A2/en active Application Filing
- 2006-04-04 US US11/398,363 patent/US20060229711A1/en not_active Abandoned
- 2006-04-04 CA CA 2604419 patent/CA2604419C/en not_active Expired - Fee Related
- 2006-04-04 JP JP2008505501A patent/JP5312018B2/ja active Active
- 2006-04-04 EP EP16198729.2A patent/EP3225216A1/en not_active Withdrawn
- 2006-04-04 CN CN201510553158.6A patent/CN105030390A/zh active Pending
- 2006-04-04 NZ NZ562957A patent/NZ562957A/en not_active IP Right Cessation
- 2006-04-04 AU AU2006231652A patent/AU2006231652A1/en not_active Abandoned
- 2006-04-04 EP EP20060740576 patent/EP1865882A4/en not_active Withdrawn
- 2006-04-04 CA CA 2885981 patent/CA2885981A1/en not_active Abandoned
- 2006-04-04 BR BRPI0610519-0A patent/BRPI0610519A2/pt not_active IP Right Cessation
- 2006-04-04 CN CN201410378516.XA patent/CN104146795B/zh active Active
- 2006-04-04 CN CN200680018207.5A patent/CN101257860B/zh active Active
- 2006-04-04 EP EP14177702.9A patent/EP2796112B2/en active Active
-
2007
- 2007-10-07 IL IL186474A patent/IL186474A/en active IP Right Grant
-
2012
- 2012-12-11 JP JP2012270170A patent/JP5572686B2/ja active Active
-
2014
- 2014-05-21 JP JP2014104970A patent/JP2014176740A/ja not_active Withdrawn
-
2015
- 2015-12-23 US US14/998,288 patent/US10350093B2/en active Active
- 2015-12-25 JP JP2015253060A patent/JP2016052602A/ja not_active Withdrawn
-
2017
- 2017-04-19 JP JP2017082664A patent/JP2017159060A/ja not_active Withdrawn
-
2019
- 2019-06-05 US US16/432,640 patent/US20200188142A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
EP2796112B2 (en) | 2023-08-09 |
CN105030390A (zh) | 2015-11-11 |
US20200188142A1 (en) | 2020-06-18 |
EP1865882A2 (en) | 2007-12-19 |
WO2006108065A2 (en) | 2006-10-12 |
IL186474A0 (en) | 2008-01-20 |
EP3225216A1 (en) | 2017-10-04 |
JP2016052602A (ja) | 2016-04-14 |
CN101257860B (zh) | 2015-10-21 |
CA2604419A1 (en) | 2006-10-12 |
JP2017159060A (ja) | 2017-09-14 |
CN104146795B (zh) | 2017-11-10 |
CN104146795A (zh) | 2014-11-19 |
AU2006231652A1 (en) | 2006-10-12 |
JP2014176740A (ja) | 2014-09-25 |
JP5312018B2 (ja) | 2013-10-09 |
JP2008534232A (ja) | 2008-08-28 |
NZ562957A (en) | 2011-03-31 |
US20060229711A1 (en) | 2006-10-12 |
EP1865882A4 (en) | 2013-05-08 |
EP2796112B1 (en) | 2016-11-16 |
IL186474A (en) | 2015-05-31 |
US10350093B2 (en) | 2019-07-16 |
US20160128849A1 (en) | 2016-05-12 |
CN101257860A (zh) | 2008-09-03 |
BRPI0610519A2 (pt) | 2010-06-22 |
EP2796112A1 (en) | 2014-10-29 |
CA2885981A1 (en) | 2006-10-12 |
CA2604419C (en) | 2015-03-24 |
JP2013063319A (ja) | 2013-04-11 |
WO2006108065A3 (en) | 2007-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5572686B2 (ja) | 分解性の移植可能な医療装置 | |
US20190070334A1 (en) | Luminal prostheses and methods for coating thereof | |
JP5204666B2 (ja) | 生体侵食性体内プロテーゼ、およびその製造方法 | |
US20090030500A1 (en) | Iron Ion Releasing Endoprostheses | |
JP2012526609A (ja) | 生物侵食性の内部人工器官 | |
AU2015252144A1 (en) | Degradable implantable medical devices | |
AU2014200856A1 (en) | Degradable implantable medical devices | |
AU2012202683B2 (en) | Degradable implantable medical devices | |
JP2007185365A (ja) | ステント及びステントの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131025 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140521 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140610 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140630 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5572686 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |