[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5569174B2 - 製鋼スラグからの鉄及び燐の回収方法並びに高炉スラグ微粉末または高炉スラグセメント及び燐酸資源原料 - Google Patents

製鋼スラグからの鉄及び燐の回収方法並びに高炉スラグ微粉末または高炉スラグセメント及び燐酸資源原料 Download PDF

Info

Publication number
JP5569174B2
JP5569174B2 JP2010140382A JP2010140382A JP5569174B2 JP 5569174 B2 JP5569174 B2 JP 5569174B2 JP 2010140382 A JP2010140382 A JP 2010140382A JP 2010140382 A JP2010140382 A JP 2010140382A JP 5569174 B2 JP5569174 B2 JP 5569174B2
Authority
JP
Japan
Prior art keywords
phosphorus
slag
iron
hot metal
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010140382A
Other languages
English (en)
Other versions
JP2012001797A (ja
Inventor
直樹 菊池
章敏 松井
克則 高橋
博幸 當房
康夫 岸本
泰子 八尾
匡平 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010140382A priority Critical patent/JP5569174B2/ja
Publication of JP2012001797A publication Critical patent/JP2012001797A/ja
Application granted granted Critical
Publication of JP5569174B2 publication Critical patent/JP5569174B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Compounds Of Iron (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、溶銑の予備脱燐処理によって生成される脱燐スラグなどの燐を含有する製鋼スラグから、該製鋼スラグに含有される鉄及び燐を回収する方法、並びに、鉄及び燐の回収された製鋼スラグをリサイクルした際に得られる高炉スラグ微粉末または高炉スラグセメント、更に回収される燐酸資源原料に関する。
鉄鉱石の成分に起因して、高炉で溶製される溶銑(「高炉溶銑」とも呼ぶ)には燐(P)が含有される。燐は鋼材にとって有害成分であるので、従来から、鉄鋼製品の材料特性向上のために、製鋼工程において脱燐処理が行われている。この脱燐処理においては、溶銑中或いは溶鋼中の燐は、一般的に、酸素ガスや酸化鉄によって酸化され、その後、酸化された燐(P25)がCaOを主成分とするスラグ中へと固定されることによって除去されている。溶銑中或いは溶鋼中の燐を酸素ガスによって酸化する際には鉄も酸化され、酸化鉄を添加しない場合であっても、スラグ中には鉄も酸化鉄の形態で含有される。
溶銑の予備脱燐処理や転炉での脱炭精錬などで発生する、燐を含有する製鋼スラグは、従来、土木用材料などとして製鋼プロセスの系外に排出されており、燐を含有する製鋼スラグ中の燐及び鉄は回収されることはない。尚、予備脱燐処理とは、溶銑を転炉にて脱炭精錬する前に、予め溶銑中の燐を除去する処理のことである。
近年、環境対策及び省資源の観点から、製鋼スラグのリサイクル使用を含めて、製鋼スラグの発生量を削減することが実施されている。例えば、予備脱燐処理された溶銑の転炉脱炭精錬において発生したスラグ(転炉脱炭精錬において発生するスラグを「転炉スラグ」という)を、鉄源及び造滓剤用のCaO源として、鉄鉱石の焼結工程を経て高炉にリサイクルすることや、溶銑予備処理工程のCaO源としてリサイクルすることなどが行われている。
予備脱燐処理された溶銑(「脱燐溶銑」ともいう)、特に鉄鋼製品の燐濃度レベルまで予備脱燐処理された脱燐溶銑の転炉脱炭精錬において発生する転炉スラグは、燐をほとんど含有せず、このスラグを高炉ヘリサイクルすることに起因する溶銑中燐濃度の増加(ピックアップ)は危惧する必要はない。しかしながら、予備脱燐処理時に発生するスラグや、予備脱燐処理されていない溶銑(「通常溶銑」ともいう)或いは予備脱燐処理されていても脱燐処理後の燐濃度が鉄鋼製品の燐濃度レベルまで低下していない脱燐溶銑の転炉脱炭精錬で発生する転炉スラグのように、燐を含有するスラグでは、高炉に酸化物の形態でリサイクルされた燐が、高炉内で還元されて溶銑の燐含有量を増加させ、その結果、溶銑からの脱燐の負荷が増加するという悪循環に陥る。
そこで、燐を含有する製鋼スラグのリサイクルについては、特に還元精錬を伴う工程へのリサイクルについては、溶銑での燐のピックアップを防止するべく、種々の提案がなされている。勿論、予備脱燐処理などの酸化工程へのリサイクルの場合にも、脱燐剤としての機能が損なわれ、リサイクルされる量は限られる。
例えば、特許文献1には、クロム鉱石の溶融還元製錬工程と、該溶融還元製錬によって溶製された含クロム溶銑の転炉脱炭精錬工程との組み合わせによってステンレス溶鋼を溶製する際に、前記含クロム溶銑の脱燐処理により発生した脱燐スラグに炭材を加えて加熱し、脱燐スラグに気化脱燐処理を施し、気化脱燐処理後の脱燐スラグを前記溶融還元製錬工程にリサイクルする技術が開示されている。
また、特許文献2には、溶融状態の高炉スラグと、溶融状態の転炉スラグとを混合し、この混合スラグ中に、炭素、珪素、マグネシウムの1種以上を添加すると同時に、酸素ガスを吹き込んで、混合スラグ中の燐酸化物を還元して燐蒸気とし、且つ、混合スラグ中の硫黄(S)をSO2とし、これらを揮発させて燐及び硫黄の少ないスラグとなし、このスラグを高炉または転炉にリサイクルする技術が開示されている。
また、特許文献3には、アルカリ金属炭酸塩を主成分とする造滓剤を用いた、溶銑または溶鋼の脱燐処理で生成する脱燐スラグを、水及び炭酸ガスで処理してアルカリ金属リン酸塩を含む抽出液を得、該抽出液にカルシウム化合物を添加して、燐を燐酸カルシウムとして析出させて分離回収する技術が開示されている。
また、特許文献4には、燐を含有する精錬スラグと溶融鉄とを収容した容器内に、炭材及び酸化性ガスを供給して炭材を燃焼させ、前記精錬スラグを溶融するとともに、精錬スラグ中の燐を溶融鉄浴中に還元抽出し、燐抽出後の低燐スラグを精錬用スラグとして回収し、これらの工程を1回もしくは2回以上繰り返し実施して、前記溶融鉄浴中の燐濃度を高め、次いで、このようにして燐濃度を高めた溶融鉄浴を酸化脱燐して高濃度の燐を含有するスラグを得る技術が開示されている。
また、特許文献5には、溶銑の脱燐処理や脱炭精錬などで発生した燐を含有するスラグを粉砕し、粉砕したスラグを炭素源及び媒溶剤とともに溶銑浴に吹き付けると同時に溶銑浴に向けて酸素ガスを供給し、スラグ中の燐を溶銑中に還元抽出し、燐が還元されたスラグを焼結工程にリサイクルし、このスラグからの燐の還元抽出工程を繰り返し実施して、溶銑中の燐を濃化させ、次いで、燐の濃化した溶銑に酸素ガスを吹き込んで脱炭精錬し、燐濃度の高いスラグを回収し、回収したスラグを例えば燐酸肥料として利用する技術が開示されている。
また更に、特許文献6には、溶銑の脱燐処理で発生する燐を含有するスラグを溶銑浴に投入し、炭材及び酸素源を供給して前記スラグ中の燐を溶銑浴中に還元抽出して0.5〜3質量%の燐を含有する溶銑を溶製し、この溶銑を脱炭精錬してP25濃度が10〜30質量%であるスラグを回収し、回収したスラグを燐酸肥料として利用する技術が開示されている。
特開2004−143492号公報 特開昭55−97408号公報 特開昭56−22613号公報 特開平7−316621号公報 特開昭61−147807号公報 特開平11−158526号公報
しかしながら、上記従来技術には以下の問題点がある。
即ち、特許文献1では、脱燐スラグは、燐が気化脱燐により除去されてリサイクル可能となるが、気化脱燐した燐は回収されておらず、燐資源の確保という観点からは効果的なリサイクル方法とはいえない。
特許文献2では、燐を含有する転炉スラグに、転炉スラグとほぼ同量の高炉スラグを混合させているが、近年、高炉スラグは、廃棄物ではなく、土木・建築資材として利用価値の高い資源と位置づけられており、このような高炉スラグを転炉スラグの希釈用として使用することは経済的に不利である。
特許文献3は湿式処理であり、湿式処理の場合、処理に必要な薬品が高価であるのみならず、大掛かりな処理設備が必要であり、設備費及び運転費ともに高価となる。
特許文献4では、スラグからの燐抽出を繰り返し行う場合には、溶銑の燐濃度が徐々に高まるので、燐抽出処理(還元処理)に時間を要し、燐抽出後の低燐スラグの回収タイミングと該スラグを溶銑脱燐工程にリサイクルするタイミングとが一致しないなどの混乱を生じる。また、製鋼プロセス内の容器間で、溶鉄、溶融スラグの移し替えを行うので、鉄歩留まりが低下する、並びに、高燐溶銑やスラグが容器に付着して燐のピックアップによる成分不良が発生しやすいという問題がある。更に、燐を含有する精錬スラグの還元反応を炭素源のみを使用しており、低エネルギー化、特にCO2発生量削減の観点からは不利である。また更に、反応容器として転炉を使用した場合には、転炉からのスラグの移し変えが通常プロセスに加えて発生し、本来は溶銑の脱燐処理或いは脱炭精錬を行う転炉の生産性を大幅に低下させる。
特許文献5及び特許文献6では、スラグ中の燐を濃化させた燐濃度の高い溶銑を脱炭精錬することによって当該溶銑中の燐をスラグに回収しており、脱炭精錬工程での脱燐負荷が高く、精錬時間及び精錬剤使用量の増加に繋がる。また、燐を含有するスラグの還元反応を炭素源のみを使用しており、低エネルギー化、特にCO2発生量削減の観点からは不利である。また、特許文献6は、同一炉でスラグ還元(燐の還元抽出)→除滓→燐濃縮を行っており、転炉の生産性低下、溶銑温度の低下、高燐スラグ付着による燐汚染とそれに伴う燐成分不良などを招く。
本発明は上記事情に鑑みてなされたもので、その目的とするところは、脱燐スラグや転炉スラグなどの燐を含有する製鋼スラグのリサイクルにあたり、該製鋼スラグから燐及び鉄を安価に且つ効率的に回収するとともに、回収した燐及び鉄をそれぞれ資源として有効活用することのできる、製鋼スラグからの鉄及び燐の回収方法を提供するとともに、鉄及び燐の回収された製鋼スラグをリサイクルした際に得られる高炉スラグ微粉末または高炉スラグセメント、並びに、製鋼スラグから回収される高品質の燐酸資源原料を提供することである。
上記課題を解決するための第1の発明に係る製鋼スラグからの鉄及び燐の回収方法は、製鋼精錬プロセスにおいて発生した燐を含有する製鋼スラグであって固化した後に金属鉄が分離された製鋼スラグを、炭素、珪素、アルミニウムのうちの1種以上を含有する還元剤を用いて還元処理して、前記製鋼スラグ中の鉄酸化物及び燐酸化物を溶融状態の燐含有溶融鉄として製鋼スラグから還元・回収する第1の工程と、鉄酸化物及び燐酸化物が還元・回収された製鋼スラグを、製銑工程または製鋼工程におけるCaO源としてリサイクルする第2の工程と、前記還元処理により回収した燐含有溶融鉄を、フッ素を含有しないCaO系フラックスを用いて、燐含有溶融鉄中の燐濃度が0.1質量%以下となるまで脱燐処理し、CaO系フラックス中に燐を濃縮させる第3の工程と、前記脱燐処理が施された、燐濃度が0.1質量%以下の燐含有溶融鉄を、鉄源として高炉から出銑された高炉溶銑に混合する第4の工程と、を有することを特徴とする。
第2の発明に係る製鋼スラグからの鉄及び燐の回収方法は、第1の発明において、転炉での溶銑の脱炭精錬において発生したスラグを、前記第1の工程の還元処理に供することを特徴とする。
第3の発明に係る製鋼スラグからの鉄及び燐の回収方法は、第1の発明において、転炉での溶銑の脱炭精錬において発生したスラグと、溶銑の予備脱燐処理で発生したスラグとの混合物を、前記第1の工程の還元処理に供することを特徴とする。
第4の発明に係る製鋼スラグからの鉄及び燐の回収方法は、第1ないし第3の発明の何れかにおいて、前記燐含有溶融鉄は、炭素を3質量%以上含有する溶銑であることを特徴とする。
第5の発明に係る製鋼スラグからの鉄及び燐の回収方法は、第1ないし第4の発明の何れかにおいて、前記第1の工程の還元処理を高炉溶銑の存在下で行うことを特徴とする。
第6の発明に係る製鋼スラグからの鉄及び燐の回収方法は、第1ないし第5の発明の何れかにおいて、前記第3の工程で燐が濃縮されたCaO系フラックスは、燐資源として利用されることを特徴とする。
第7の発明に係る製鋼スラグからの鉄及び燐の回収方法は、第1ないし第6の発明の何れかにおいて、前記第1の工程の還元処理によって鉄酸化物及び燐酸化物が還元・回収された製鋼スラグから、該スラグに混入する金属鉄を分離し、金属鉄の分離された製鋼スラグを製銑工程または製鋼工程でのCaO源としてリサイクルすることを特徴とする。
第8の発明に係る製鋼スラグからの鉄及び燐の回収方法は、第1ないし第7の発明の何れかにおいて、前記第1の工程の還元処理で還元される製鋼スラグは、塩基度調整のためのSiO2含有物質が混合された製鋼スラグであることを特徴とする。
第9の発明に係る製鋼スラグからの鉄及び燐の回収方法は、第1ないし第8の発明の何れかにおいて、前記第2の工程における製鋼スラグのリサイクル先は、鉄鉱石の焼結工程または高炉での溶銑製造工程であることを特徴とする。
第10の発明に係る製鋼スラグからの鉄及び燐の回収方法は、第1ないし第8の発明の何れかにおいて、前記第2の工程における製鋼スラグのリサイクル先は、溶銑の脱燐工程または転炉での溶銑脱炭精錬工程であることを特徴とする。
第11の発明に係る高炉スラグ微粉末または高炉スラグセメントは、第1ないし第8の発明の何れか1つに記載の製鋼スラグからの鉄及び燐の回収方法における第2の工程でのスラグのリサイクル先が鉄鉱石の焼結工程または高炉での溶銑製造工程であり、該スラグを鉄鉱石の焼結工程または高炉での溶銑製造工程にリサイクルしたときに高炉から排出される高炉スラグを用いて製造されるものであることを特徴とする。
第12の発明に係る燐酸資源原料は、第1ないし第10の発明の何れか1つに記載の製鋼スラグからの鉄及び燐の回収方法における第3の工程にて燐が濃縮され、その後、燐含有溶融鉄と分離され、回収されたCaO系フラックスからなることを特徴とする。
本発明によれば、溶銑の予備脱燐処理により発生する脱燐スラグや、通常溶銑或いは脱燐が十分でない脱燐溶銑を使用した転炉脱炭精錬により発生する転炉スラグなどの燐を含有する製鋼スラグのリサイクルにあたり、先ず、製鋼スラグに混入する金属鉄を分離・除去し、次いで、金属鉄の除去された製鋼スラグ中の鉄酸化物及び燐酸化物を燐含有溶融鉄として還元・回収し、鉄酸化物及び燐酸化物の除去された製鋼スラグは、製銑工程または製鋼工程におけるCaO源としてリサイクルし、燐含有溶融鉄は、燐濃度が0.1質量%以下まで脱燐処理されて高炉溶銑と混合され、一方、燐含有溶融鉄中の燐は、脱燐処理によりCaO系フラックス中に、燐資源として回収するに十分な程度にまで濃縮されるので、製鋼スラグの製銑工程または製鋼工程へのリサイクル使用において、溶銑の燐濃度を上昇させる、或いは脱燐剤としての機能を損なうなどの弊害をもたらすことなく、製鋼スラグに含有される鉄及び燐をそれぞれ資源として有効活用することが実現される。
特に、還元処理後の製鋼スラグを鉄鉱石の焼結工程または高炉での溶銑製造工程へリサイクルすることにより、製鋼スラグは高炉スラグへと改質される。この高炉スラグを、微粉末状としてセメントの混和材として使用することで、本来製鋼スラグ中に存在していたCaOがセメントと同様にポラゾン反応を起こしてコンクリートの強度発現に寄与するという効果が得られる。従来、セメント原料のCaO分は炭酸カルシウム(CaCO3)を焼成したものを使用しており、この場合には焼成エネルギーが必要であり、且つCO2が発生するが、高炉スラグ微粉末をセメントに混ぜて高炉スラグセメントとする場合には、焼成エネルギー及びCO2発生量を、高炉スラグ微粉末/普通ポルトランドセメントの混合比率に応じて低減可能となる。
本発明で使用した脱燐処理設備の概略図を示す図である。 高燐溶銑の脱燐処理中の燐の挙動を示す図である。
以下、本発明を詳細に説明する。
本発明者らは、溶銑の予備脱燐処理時に発生する脱燐スラグや、通常溶銑或いは予備脱燐処理されていても脱燐処理後の燐濃度が製品の燐濃度レベルに比較して高い脱燐溶銑を使用した転炉脱炭精錬時に発生する転炉スラグなどの燐を含有する製鋼スラグ(「燐含有製鋼スラグ」とも呼ぶ)を、脱燐剤(P25を固定するためのCaO)や造滓剤用のCaO源として製銑工程または製鋼工程でリサイクル使用するにあたり、製鋼スラグに含有される燐は高炉の還元雰囲気下では還元されて溶銑に移行し、溶銑中の燐濃度が上昇することから、該製鋼スラグに含有される燐の、高炉から出銑される溶銑への影響を解消することを検討した。
予め製品の燐濃度レベルまで予備脱燐処理が施された溶銑の脱炭精錬時に発生する転炉スラグは、溶銑での燐濃度のピックアップを来すことなく、鉄鉱石の焼結工程を経て高炉に造滓剤としてリサイクル使用されている。従って、燐含有製鋼スラグから燐を除去すれば、高炉へのリサイクル使用は可能になる。そこで、燐含有製鋼スラグからの燐の除去を検討した。
燐含有製鋼スラグには、燐はP25なる酸化物で含有されており、また、一般的に製鋼スラグはCaO及びSiO2を主成分としており、燐は、カルシウム(Ca)及び珪素(Si)に比較して酸素との親和力が弱いことから、燐含有製鋼スラグを、炭素、珪素、アルミニウムなどで還元すれば、燐含有製鋼スラグ中のP25は容易に還元されることが分かった。この場合、燐含有製鋼スラグには、鉄が、FeOやFe23の形態(以下、まとめて「FexO」と記す)の酸化物で含有されており、これらの鉄酸化物は酸素との親和力が燐と同等であるので、燐含有製鋼スラグを、炭素、珪素、アルミニウムなどで還元すると、同時に製鋼スラグ中のFexOが還元される。
ところで、燐含有製鋼スラグ中には、精錬反応中に混入する或いは排滓中に混入するなどして金属鉄(溶銑または溶鋼)が5〜10質量%程度含有される。この金属鉄はスラグと分離可能であり、また、金属状態であることから、スラグ中のP25、FeXOなどを還元する際に還元する必要がなく、更に、金属鉄を事前に除去することで、単位質量あたりの燐含有製鋼スラグの高温処理に必要なエネルギーを低減することができる。そこで、本発明においては、燐含有製鋼スラグを還元する前に、予め燐含有製鋼スラグから金属鉄を分離・除去することとした。
燐含有製鋼スラグを含めて製鋼スラグは、スラグヤードなどに放流され、放流後に大気中で放冷されて冷却し、固化した後にブルドーザーなどの重機によって掘り起こされて回収されている。重機によって掘り起こされたままのスラグはサイズが様々で搬送しにくいことから破砕されるのが一般的である。本発明では、この破砕された段階での燐含有製鋼スラグで金属鉄を分離・除去することとした。また、金属鉄の分離・除去にあたって、必要に応じて燐含有製鋼スラグを更に細かく破砕しても構わない。金属鉄の分離・除去方法は、磁気分離、比重分離、粒径分離、風力分離などを用いることができる。尚、これらの分離手段を用いても製鋼スラグ中の金属鉄の全てが分離・除去されることはなく、スラグ粒中に埋もれた微粒の金属鉄など、或る程度の金属鉄は残留するが、本発明においては、或る程度の金属鉄が残留していても、上記の分離手段によって少なくとも1回以上処理された製鋼スラグを「金属鉄が分離された製鋼スラグ」と定義する。
還元処理において、燐は鉄中への溶解度が高く、還元により生成した燐は、還元により生成した鉄に迅速に溶解する。ここで、本発明は、燐含有製鋼スラグから燐を除去して燐含有量の低い製鋼スラグに改質することを目的としており、還元により生成した燐を製鋼スラグから迅速に分離するには、還元により生成した鉄が溶融状態になるように、高温下で還元することが望ましいことが分かった。つまり、還元により生成した鉄が溶融状態であれば、溶融した鉄はスラグと分離しやすく、還元によって生成した鉄の製鋼スラグからの分離が促進される。また、この溶融鉄に、生成した燐が溶解することで、燐の製鋼スラグからの分離も迅速化する。製鋼スラグを溶融状態にした場合には、燐を含有する鉄との分離が更に促進されることも分かった。
この場合、生成される溶融鉄の融点が低いほど、溶融鉄とスラグとの分離が促進されることから、生成される溶融鉄に炭素を溶解させ、溶融鉄として溶銑を生成させることが好ましいことも分かった。具体的には、溶融鉄の炭素濃度が3質量%以上になると、溶融鉄つまり溶銑の液相線温度が1300℃以下となることから、生成される溶融鉄の炭素濃度を3質量%以上とすることが好ましい。生成される溶融鉄に炭素を溶解させるには、炭素を還元剤として使用する、または、珪素やアルミニウムなどを還元剤とする場合には、炭素を製鋼スラグと共存させることにより、生成する溶融鉄は浸炭して自ずと燐を高濃度で含有する溶銑(この溶銑を高炉溶銑と区別するために「高燐溶銑」と呼び、凝固したものを含めて「高燐銑鉄」と称す)になる。
また、予め高炉溶銑を別途装入し、高炉溶銑を燐含有製鋼スラグと共存させた状態で還元処理を行うことにより、上記の条件が全て満足され、燐の製鋼スラグからの分離が促進化することも分かった。つまり、溶銑を調達できる条件であるならば、予め高炉溶銑を別途装入して燐含有製鋼スラグの還元処理を行うことが好ましいことが分かった。
還元処理後の製鋼スラグをそのまま脱燐剤や造滓剤のCaO源として製銑工程及び製鋼工程にリサイクルしてもよいが、還元処理後の製鋼スラグには微細な金属鉄つまり高燐銑鉄が残存することから、鉄及び燐の回収を高めるとともに、燐をリサイクルさせない観点から、還元処理後の製鋼スラグから金属鉄を分離・除去することが好ましい。還元処理後の製鋼スラグからの金属鉄の分離・除去方法は、必要に応じて還元処理後の製鋼スラグを破砕した後、磁気分離、比重分離、粒径分離、風力分離などを用いて行うことができる。回収される金属鉄には燐が濃化しており、還元処理後の製鋼スラグから金属鉄を分離・除去することにより、還元処理後の製鋼スラグの燐含有量が低下する。
還元処理後の製鋼スラグは、処理前の燐含有製鋼スラグに比較して燐の含有量が大幅に低下しており、溶銑の燐濃度の上昇を招くことなく、脱燐剤や造滓剤のCaO源として製銑工程及び製鋼工程でのリサイクル使用が可能となる。
ところで、一般的に、燐含有製鋼スラグ中の燐及び鉄の質量比(質量%P/質量%Fe)は、0.005〜0.075であるので、還元後の溶融鉄(高燐溶銑)には燐が0.5〜7.5質量%程度含有される。これに対して、現在、高炉から出銑される高炉溶銑の燐含有量は、0.1質量%程度である。従って、燐濃度が0.5〜7.5質量%の高燐溶銑を、燐濃度が0.1質量%程度の高炉溶銑のレベルまで脱燐できない場合には、前記高燐溶銑の運用は限られたものとなり、場合によっては鉄源として利用できないことも起こり得る。
そこで、現在、高炉溶銑の予備脱燐処理に使用されている脱燐処理設備を用い、燐濃度が4.0質量%(水準1)、2.0質量%(水準2)、1.1質量%(水準3)、0.5質量%(水準4)の4水準に調整された高炉溶銑を高燐溶銑の代替として使用し、脱燐試験を実施した。高炉溶銑の燐濃度は、鉄−燐合金を用いて調整した。
図1に、使用した脱燐処理設備の概略図を示す。図1において、燐濃度が調整された高燐溶銑2を収容した溶銑鍋4が、台車5に積載されて脱燐処理設備1に搬入されている。この脱燐処理設備1には、溶銑鍋4の内部を上下移動可能な、上吹きランス6及びインジェクションランス7が設置されており、上吹きランス6からは、酸素ガスまたは鉄鉱石などの酸化鉄が高燐溶銑2に吹き付けられ、また、インジェクションランス7からは、CaO系フラックスまたは酸化鉄が高燐溶銑2に吹き込まれる構成になっている。脱燐処理設備1には、更に、CaO系フラックスや酸化鉄を溶銑鍋4の内部に上置き添加するためのホッパー、シュートなどの原料供給設備が設置されているが、図1では省略している。
この脱燐処理設備1を用い、溶銑鍋内の200トンの高燐溶銑2に対して、上吹きランス6から酸素ガスを吹き付けると同時に、インジェクションランス7から、窒素ガスを搬送用ガスとして粉体状のCaO系フラックスを吹き込んで高燐溶銑2の脱燐処理を実施した。吹き込まれたCaO系フラックスは溶融して脱燐スラグ3を形成する。この場合、高燐溶銑中の燐は酸素ガスによって酸化されてP25となり、滓化したCaO系フラックスに取り込まれて高燐溶銑2の脱燐が進行する。実験条件を表1に示す。尚、CaO系フラックスとしては生石灰を使用し、ホタル石などのフッ素源を含有しないものである。また、所定量のCaOを溶銑に添加するにあたり、インジェクションランス7と併用して上吹きランス6より酸素ガスとともに溶銑浴面に吹き付けてもよい。
Figure 0005569174
実験で行った脱燐処理における高燐溶銑中の燐の挙動を図2に示す。図2に示すように、脱燐反応速度は脱燐処理開始前の溶銑中燐濃度が高いほど高位であることが分かった。また、高炉溶銑に対して一般的に行われている脱燐処理方法であっても、高炉溶銑と同等な燐濃度0.1質量%程度までの脱燐処理が、高燐溶銑2に対して可能であることが分かった。そして、脱燐処理後の高燐溶銑2は、高炉溶銑と何ら遜色なく、鉄源として高炉溶銑に混合して使用可能であることが確認できた。
また、この脱燐処理で生成した脱燐スラグの組成を表2に示す。この脱燐スラグを燐資源として有効活用するには、燐酸鉱石の組成である3CaO・P25(CaOとP25との質量比=54:46)と同等レベルとすることが好ましく、従って、脱燐スラグは少なくとも20質量%のP25を含有することを目標とした。
Figure 0005569174
表2に示すように、脱燐処理前の溶銑中燐濃度が0.5質量%の水準4であっても、生成される脱燐スラグにはP25が20質量%含有されており、更に、水準1及び水準2では脱燐スラグ中のP25濃度はCaO濃度よりも高く、3CaO・P25の組成よりも更にP25が濃縮されることが分かった。つまり、生成される脱燐スラグは燐資源として十分に活用可能であることが分かった。その一例として、脱燐処理後の燐酸が濃縮されたスラグ中に含まれる燐酸のうち70質量%以上がクエン酸可溶性燐酸(ク溶性燐酸:植物が根から酸を出すことで吸収できる燐酸)であることから、燐酸肥料として利用可能であることが確認できた。
尚、高炉溶銑の予備脱燐処理に用いるCaO系フラックスは、ホタル石などのフッ素源を5質量%程度添加することにより、CaOの滓化が促進されて脱燐反応が促進されることが知られているが、生成される脱燐スラグを、例えば燐肥料として使用する場合には、燐肥料(脱燐スラグ)からフッ素が溶出し、土壌環境基準に対してフッ素溶出値が問題となるため、本発明においてはフッ素源を使用しないこととした。また、フッ素はスラグ中の燐酸を固定し、ク溶性燐酸の割合の少ないフッ素化合物(フッ化アパタイト)を生成するため、フッ素を含有するスラグを肥料用原料として用いた場合には、ク溶性燐酸濃度を十分に確保することができなくなる。この観点からもフッ素化合物を使用することは好ましくない。
本発明は、上記試験結果に基づいてなされたものであり、本発明に係る製鋼スラグからの鉄及び燐の回収方法は、製鋼精錬プロセスにおいて発生した燐を含有する製鋼スラグであって固化した後に金属鉄が分離された製鋼スラグを、炭素、珪素、アルミニウムのうちの1種以上を含有する還元剤を用いて還元処理して、前記製鋼スラグ中の鉄酸化物及び燐酸化物を溶融状態の燐含有溶融鉄として製鋼スラグから還元・回収する第1の工程と、鉄酸化物及び燐酸化物が還元・回収された製鋼スラグを、製銑工程または製鋼工程におけるCaO源としてリサイクルする第2の工程と、前記還元処理により回収した燐含有溶融鉄を、フッ素を含有しないCaO系フラックスを用いて、燐含有溶融鉄中の燐濃度が0.1質量%以下となるまで脱燐処理し、CaO系フラックス中に燐を濃縮させる第3の工程と、前記脱燐処理が施された、燐濃度が0.1質量%以下の燐含有溶融鉄を、鉄源として高炉から出銑された高炉溶銑に混合する第4の工程と、を有することを特徴とする。
上記構成の本発明によれば、溶銑の予備脱燐処理により発生する脱燐スラグや通常溶銑或いは脱燐が十分でない脱燐溶銑を使用した転炉脱炭精錬により発生する転炉スラグなどの燐を含有する製鋼スラグのリサイクルにあたり、先ず、製鋼スラグに混入する金属鉄を分離・除去し、次いで、金属鉄の除去された製鋼スラグ中の鉄酸化物及び燐酸化物を燐含有溶融鉄として還元・回収し、鉄酸化物及び燐酸化物の除去された製鋼スラグは、製銑工程または製鋼工程におけるCaO源としてリサイクルし、燐含有溶融鉄は、燐濃度が0.1質量%以下まで脱燐処理されて高炉溶銑に混合され、一方、燐含有溶融鉄中の燐は、脱燐処理によりCaO系フラックス中に、燐資源として回収するに十分な程度に濃縮されるので、溶銑の燐濃度を上昇させるなどの弊害をもたらすことなく、製鋼スラグに含有される鉄及び燐をそれぞれ資源として有効活用することが実現される。
尚、予め製品の燐濃度レベルまで予備脱燐処理が施された溶銑の脱炭精錬時に発生する転炉スラグも、燐の含有量はゼロでなく燐を含有する。従って、この転炉スラグにも本発明を適用することは可能であるが、当該スラグは燐の含有量が低く、そのまま高炉などにリサイクルしても、燐の影響は無視することができ、本発明を適用することにより却ってコスト上昇を招く。従って、本発明で対象とする、燐を含有する製鋼スラグとは、その製鋼スラグを高炉などにリサイクルすると溶銑または溶鋼の燐濃度が上昇し、通常の操業に対してコスト上昇を発生させる濃度以上の燐を含有する製鋼スラグである。
還元処理によって鉄酸化物及び燐酸化物の除去された製鋼スラグのリサイクル方法としては、上記説明のように、鉄鉱石の焼結工程におけるCaO源(造滓剤)として利用し、その後、高炉での溶銑製造工程で装入原料として使用する方法以外に、高炉での溶銑製造工程での造滓剤として直接使用する方法、または、高炉溶銑の予備脱燐処理における脱燐剤としてのCaO系フラックスとして使用する方法、或いは、転炉での溶銑の脱炭精錬工程における造滓剤として使用する方法、更には、高炉溶銑の脱硫処理におけるCaO系脱硫剤として使用する方法などが、好適な例として挙げられる。これ以外の工程であっても、製鉄所における製銑工程及び製鋼工程である限り、生石灰を使用している工程であれば、生石灰の代替として使用可能である。
更に、本発明を実施する上で好適な、燐を含有する製鋼スラグの例を示せば、通常溶銑或いは脱燐が十分でない脱燐溶銑を使用した転炉脱炭精錬により発生した転炉スラグ単独、及び、この転炉スラグと溶銑の予備脱燐処理により発生する脱燐スラグとの混合物が好適である。
これは、転炉スラグは塩基度(質量%CaO/質量%SiO2)が高く(通常3〜5程度)、第2工程の鉄鉱石の焼結工程におけるCaO源として有利である。但し、転炉スラグは塩基度が高く、焼結工程時の滓化性に劣ることから、滓化性を高めたい場合には、転炉スラグに脱燐スラグを混合すればよい。脱燐スラグは、塩基度が1.5〜2.5程度であり、含有されるSiO2によって滓化性が向上する。つまり、転炉スラグと脱燐スラグとの混合物を使用した場合には、焼結工程においては、フッ素源を使用しなくても、焼結が円滑に行われ、また、燐含有溶融鉄の燐濃度が高くなることから、第3工程において回収される脱燐処理後のCaO系フラックスの燐濃度が上昇し、燐資源としての活用が促進される。しかしながら、脱燐スラグを単独で使用することは、塩基度が低く焼結工程におけるCaO源として不足するので、好ましくない。
また、第1工程の還元処理に供する製鋼スラグとして、転炉スラグと脱燐スラグとの混合物を使用した場合には、脱燐スラグに含有されるSiO2によって還元処理される製鋼スラグの滓化性が向上し、還元処理時、還元して得られる燐含有溶融鉄と製鋼スラグとの分離が促進されるという効果も発現する。転炉スラグの塩基度を低下させる手段として、脱燐スラグに替わって、珪石、珪砂、グラスウール、シリコンスラッジのようなSiO2含有物質を製鋼スラグに混合することも可能である。
燐含有製鋼スラグには、マンガンがMnOやMn23の形態の酸化物で含有されることがあり、これらのマンガン酸化物も酸素との親和力が鉄や燐と同等であることから、製鋼スラグを、炭素、珪素、アルミニウムなどで還元処理することによって製鋼スラグ中のマンガン酸化物も同時に還元され、高燐溶銑に移行する。この高燐溶銑を脱燐処理すると、高燐溶銑中のマンガンも酸化されて生成する脱燐スラグにマンガンが含有される。脱燐スラグを燐資源として活用する場合、該スラグに含有されるマンガン酸化物によって相対的にP25濃度が低下すると、燐資源としての付加価値が下がる場合もあるので、このような場合には、マンガン酸化物の少ない燐含有製鋼スラグを処理の対象とする、或いは、高燐溶銑の脱燐処理前に予めマンガンを酸化除去するなどの対策を行うことが好ましい。
尚、発生する転炉スラグの全量を本発明の第1の工程の還元処理に供しても構わないが、溶銑の予備脱燐処理において転炉スラグを使用することは省資源の観点からも有効であり、従って、発生した転炉スラグの一部を溶銑の予備脱燐処理工程におけるCaO源として使用し、この転炉スラグの残部を、第1の工程の還元処理に供しても構わない。
高炉から出銑された高炉溶銑をトピードカーで受銑し、トピードカーに収容された高炉溶銑に脱珪処理及び予備脱燐処理を施し、その後、高炉溶銑を溶銑鍋に移し替え、溶銑鍋内の高炉溶銑に機械攪拌式脱硫処理を施し、この脱硫処理終了後の高炉溶銑を転炉に装入して転炉にて脱炭精錬を施し、かくして、高炉溶銑から溶鋼を溶製する、製銑−製鋼工程において、本発明を適用した。高炉での出銑から転炉脱炭精錬終了までの高炉溶銑及び溶鋼の化学成分の例を表3に示す。
Figure 0005569174
表3に示すように、脱珪、脱燐後の高炉溶銑には0.05質量%の燐が含有されており、製品の燐濃度レベル(0.025質量%以下)に比較して高く、この高炉溶銑を用いた転炉脱炭精錬により発生する転炉スラグには、1.5質量%程度の燐(P25で3.4質量%程度)が含有される。この製鋼スラグを焼結工程でのCaO源とした再使用すると、高炉溶銑の燐の濃化が発生する。そこで、この転炉スラグに本発明を適用する試験(本発明例1)を実施した。
磁力が3000G、スラグの処理能力が50〜150t/Hrである磁力選別機を用いて転炉スラグを磁気分離し、転炉スラグ中の金属鉄を予め分離・除去した。この予め金属鉄が分離・除去された250トンの転炉スラグ、50トンの高炉溶銑、及び還元剤としてのコークスを3相交流式のアーク炉に装入し、アークを発生させて転炉スラグ及びコークスを加熱して、転炉スラグの還元処理を実施した。高炉溶銑は、溶湯を予め炉内に存在させて製鋼スラグを加熱することにより、製鋼スラグの還元を促進させると同時に、製鋼スラグの還元により生成する燐含有鉄を迅速に取り込み、燐含有鉄と製鋼スラグとの分離を促進させる目的で、装入したものである。尚、高炉溶銑の温度は1300℃であった。30分間の還元処理により、予め装入した高炉溶銑と合わせて約100トンの高燐溶銑が得られた。表4に、還元処理の条件を示し、表5に、還元処理前後の製鋼スラグの組成を示す。
Figure 0005569174
Figure 0005569174
また、溶銑の予備脱燐処理で発生し、上記磁力選別機によって予め金属鉄の分離・除去された脱燐スラグと上記転炉スラグとの混合物(混合比=1:1)に本発明を適用する試験(本発明例2)も実施した。尚、転炉スラグの組成は本発明例1で使用した転炉スラグ(表5参照)と同一であり、脱燐スラグの組成は、CaO:22質量%、SiO2:18質量%、P:2.4質量%、FexO:28質量%、MgO:5.2質量%、MnO:4.1質量%であった。
上記のアーク炉に、転炉スラグと脱燐スラグとの混合物250トンと、高炉溶銑50トンと、還元剤としてのコークスを装入し、アークを発生させて混合スラグ及びコークスを加熱して、混合スラグの還元処理を実施した。高炉溶銑は、溶湯を予め炉内に存在させて混合スラグを加熱することにより、混合スラグの還元を促進させると同時に、混合スラグの還元により生成する燐含有鉄を迅速に取り込み、燐含有鉄と混合スラグとの分離を促進させる目的で、装入したものである。
上記の本発明例1に比べて炉内スラグが早期に溶融し、25分間の還元処理により、予め装入した高炉溶銑と合わせて約100トンの高燐溶銑が得られた。還元処理の条件は前述した表4と同一である。前述した表5に還元処理前後の混合スラグの組成を示す。
本発明例1及び本発明例2ともに、得られた高燐溶銑をアーク炉から溶銑鍋に出湯し、その後、炉内に残留する約200トンのスラグをスラグポットに排出した。得られた高燐溶銑の化学成分は、本発明例1では、炭素:4.3質量%、珪素:0.01質量%、マンガン:2.2質量%、燐:3.0質量%、硫黄:0.05質量%で、本発明例2では、炭素:4.3質量%、珪素:0.01質量%、マンガン:3.1質量%、燐:4.5質量%、硫黄:0.05質量%であった。本発明例2の方が燐濃度が高いが、その他は同等であった。
燐含有製鋼スラグのP/Feは、P濃度に換算すると0.5〜7.5質量%であるが、本実施例では高炉溶銑を用いて約1/2の濃度に希釈しており、この場合にはP濃度は0.25〜3.75質量%となり、上記燐濃度はこの範囲内であり、従来の実績と一致している。この高燐溶銑に対して、図1に示す脱燐処理設備を用いて脱燐処理を施した。表6に、本発明例1及び本発明例2で高燐溶銑に対して行った脱燐処理条件を示す。
Figure 0005569174
この脱燐処理により、高燐溶銑の燐濃度は、本発明例1及び本発明例2ともに0.1質量%まで減少した。脱燐処理前後の高燐溶銑の化学組成を表7に示す。また、この高燐溶銑の脱燐処理により、本発明例1及び本発明例2ともに、CaO:62質量%、SiO2:2.2質量%、P:28質量%、FexO:2.8質量%、MgO:4質量%、MnO:0.8質量%の脱燐スラグが得られた。この脱燐スラグは、燐肥料として利用が可能であった。
Figure 0005569174
脱燐処理後の高燐溶銑を、高炉溶銑に混合し、混合した溶銑に対して脱珪・脱燐処理を施し、その後、脱硫処理工程を経て、転炉に装入した。転炉では通常の精錬を施し、所定の成分の溶鋼を溶製した。
一方、還元処理後の転炉スラグは、冷却した後、鉄鉱石の焼結工程において、造滓剤用のCaO源として使用し、製造した焼結鉱は、鉄源として高炉に装入し、高炉溶銑を溶製した。溶製された高炉溶銑の燐濃度は0.1質量%程度で、全く問題はなかった。また、還元処理後のスラグをリサイクルした際に高炉から排出された高炉スラグを用いて高炉スラグ微粉末及び高炉スラグセメントを製造した結果、JIS A 6206「コンクリート用高炉スラグ微粉末」の品質規格を満足しており、JIS R 5211「高炉セメント」の強度などの特性も従来と同等で何ら問題はなく、従来と同様にセメント製造の省エネルギー化が可能であった。
これに対して、上記製鋼工程において発生する転炉スラグをそのまま焼結鉱のCaO源としてリサイクルした場合には、高炉から出銑される溶銑の燐濃度が高くなり、溶銑の予備脱燐処理における脱燐剤(酸素源及びCaO系フラックス)の原単位及び発生する脱燐スラグ量が1.5倍になり、生産性は20%低下した。
尚、本発明においては、転炉スラグに含有される鉄分の約90質量%が回収されており、これは、転炉スラグをそのまま焼結鉱のCaO源としてリサイクルした場合よりも高い回収率であった。
実施例1に示す製銑−製鋼工程において発生する転炉スラグ及び脱燐スラグに対して還元処理を実施し、還元処理前の製鋼スラグからの金属鉄除去の有無、及び、還元処理後の製鋼スラグからの金属鉄除去の有無による、還元処理での高燐銑鉄の回収率への影響を調査した。
還元処理前の製鋼スラグの磁気分離及び還元処理後の製鋼スラグの磁気分離は、何れも、磁力が3000G、スラグの処理能力が50〜150t/Hrである磁力選別機を用いて行った。還元処理後の製鋼スラグから磁気分離によって回収した金属鉄は高燐銑鉄として算定した。また、還元処理は、加熱バーナーを備えたロータリーキルンを用い、バーナーによってロータリーキルン内に装入した製鋼スラグ及びコークスを加熱して実施した。ロータリーキルンの運転温度を1450〜1550℃に調整しており、還元処理によって溶融状態の高燐溶銑が得られた。表8に、合計5回の試験(試験番号1〜5)の試験条件及び試験結果を示す。
Figure 0005569174
試験番号1は、金属鉄を分離していない転炉スラグ(塩基度(質量%CaO/質量%SiO2)=3.0)及び金属鉄を分離していない予備脱燐スラグ(塩基度=1.5)の混合物を還元処理した試験、試験番号2は、磁気分離を施した転炉スラグ(塩基度=3.0)及び磁気分離を施した予備脱燐スラグ(塩基度=1.5)の混合物を還元処理した試験、試験番号3は、磁気分離を施した転炉スラグ(塩基度=3.0)及び磁気分離を施した予備脱燐スラグ(塩基度=1.5)の混合物を還元処理し、還元した後のスラグを更に磁気分離して高燐銑鉄を回収した試験、試験番号4は、磁気分離を施した転炉スラグ(塩基度=3.0)にSiO2含有物質としてグラスウール(SiO2=100質量%)を混合して塩基度を2.25に調整したものを還元処理し、還元した後のスラグを更に磁気分離して高燐銑鉄を回収した試験、試験番号5は、磁気分離を施した転炉スラグ(塩基度=3.0)にSiO2含有物質としてシリコンスラッジ(Si=15質量%、SiO2=85質量%)を混合して塩基度を2.25に調整したものを還元処理し、還元した後のスラグを更に磁気分離して高燐銑鉄を回収した試験である。
表8に示すように、還元処理前にスラグ中の金属鉄を分離・除去することにより、少ない還元用コークスの使用量で、より多くの高燐銑鉄を回収できることが確認できた。また、還元処理後のスラグを磁気分離することで、更に多くの高燐銑鉄の回収が可能になることも確認できた。
また、試験番号2で得られた高燐銑鉄を、溶銑鍋において150トンの高炉溶銑と混合し、混合後の溶銑に対し、CaO源(生石灰)及び酸素源を供給して脱燐処理を実施した。そして、脱燐処理によって得られたスラグを回収し、回収したスラグに対して燐酸肥料としての肥効試験を行った。その際、比較のために、通常の製鋼スラグについても肥効試験を実施した。
肥効試験方法は、使用植物として「小松菜」を用い、「表層腐食質黒ボク土」を使用土として、100mg−P25/ポットの肥効試験対象のスラグを添加し、毒性の評価を示す発芽率、生育促進効果の評価を示す草丈(高さ)、生体重(g/ポット)の3項目について評価した。具体的には、薬品で同一P25濃度になるように調整した物質を基準材とし、基準材での結果を100としたときの3項目の値の平均値で評価した。
肥効試験を行った2種類のスラグの成分、ク溶性燐酸濃度、及び、発芽率、草丈(高さ)、生体重(g/ポット)の3項目の肥効試験結果を表9に示す。尚、肥効試験結果は数値が高いほど、燐酸肥料として優れていることを示している。
Figure 0005569174
表9に示すように、本発明により得られるスラグは、ク溶性燐酸濃度が高く、燐酸肥料として優れていることが確認できた。
1 脱燐処理設備
2 高燐溶銑
3 脱燐スラグ
4 溶銑鍋
5 台車
6 上吹きランス
7 インジェクションランス

Claims (12)

  1. 製鋼精錬プロセスにおいて発生した燐を含有する製鋼スラグであって固化した後に金属鉄が分離された製鋼スラグを、炭素、珪素、アルミニウムのうちの1種以上を含有する還元剤を用いて還元処理して、前記製鋼スラグ中の鉄酸化物及び燐酸化物を、燐濃度が0.5質量%以上の溶融状態の燐含有溶融鉄として製鋼スラグから還元・回収する工程と、前記還元処理により回収した燐含有溶融鉄を、フッ素を含有しないCaO系フラックスを用いて、燐含有溶融鉄中の燐濃度が0.1質量%以下となるまで脱燐処理し、CaO系フラックス中に燐を 2 5 として20質量%以上濃縮させる工程と、を有することを特徴とする、製鋼スラグからの鉄及び燐の回収方法。
  2. 転炉での溶銑の脱炭精錬において発生したスラグを、前記還元処理に供することを特徴とする、請求項1に記載の製鋼スラグからの鉄及び燐の回収方法。
  3. 転炉での溶銑の脱炭精錬において発生したスラグと、溶銑の予備脱燐処理で発生したスラグとの混合物を、前記還元処理に供することを特徴とする、請求項1に記載の製鋼スラグからの鉄及び燐の回収方法。
  4. 前記燐含有溶融鉄は、炭素を3質量%以上含有する溶銑であることを特徴とする、請求項1ないし請求項3の何れか1つに記載の製鋼スラグからの鉄及び燐の回収方法。
  5. 記還元処理を高炉溶銑の存在下で行うことを特徴とする、請求項1ないし請求項4の何れか1つに記載の製鋼スラグからの鉄及び燐の回収方法。
  6. CaO系フラックス中に燐を濃縮させる工程で燐が濃縮されたCaO系フラックス、燐資源として利用することを特徴とする、請求項1ないし請求項5の何れか1つに記載の製鋼スラグからの鉄及び燐の回収方法。
  7. 記還元処理によって鉄酸化物及び燐酸化物が還元・回収された製鋼スラグから、該スラグに混入する金属鉄を分離し、金属鉄の分離された製鋼スラグを製銑工程または製鋼工程でのCaO源としてリサイクルすることを特徴とする、請求項1ないし請求項6の何れか1つに記載の製鋼スラグからの鉄及び燐の回収方法。
  8. 記還元処理で還元される製鋼スラグは、塩基度調整のためのSiO2含有物質が混合された製鋼スラグであることを特徴とする、請求項1ないし請求項7の何れか1つに記載の製鋼スラグからの鉄及び燐の回収方法。
  9. 前記還元処理によって鉄酸化物及び燐酸化物が還元・回収された製鋼スラグを、鉄鉱石の焼結工程または高炉での溶銑製造工程へリサイクルすることを特徴とする、請求項1ないし請求項8の何れか1つに記載の製鋼スラグからの鉄及び燐の回収方法。
  10. 前記還元処理によって鉄酸化物及び燐酸化物が還元・回収された製鋼スラグを、溶銑の脱燐工程または転炉での溶銑脱炭精錬工程へリサイクルすることを特徴とする、請求項1ないし請求項8の何れか1つに記載の製鋼スラグからの鉄及び燐の回収方法。
  11. 請求項1ないし請求項8の何れか1つに記載の製鋼スラグからの鉄及び燐の回収方法における還元処理によって鉄酸化物及び燐酸化物が還元・回収された製鋼スラグのリサイクル先が鉄鉱石の焼結工程または高炉での溶銑製造工程であり、該スラグを鉄鉱石の焼結工程または高炉での溶銑製造工程にリサイクルしたときに高炉から排出される高炉スラグを用いて製造されるものであることを特徴とする、高炉スラグ微粉末または高炉スラグセメント。
  12. 請求項1ないし請求項10の何れか1つに記載の製鋼スラグからの鉄及び燐の回収方法におけるCaO系フラックス中に燐を濃縮させる工程にて燐が濃縮され、その後、燐含有溶融鉄と分離され、回収されたCaO系フラックスからなることを特徴とする燐酸資源原料。
JP2010140382A 2010-06-21 2010-06-21 製鋼スラグからの鉄及び燐の回収方法並びに高炉スラグ微粉末または高炉スラグセメント及び燐酸資源原料 Active JP5569174B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010140382A JP5569174B2 (ja) 2010-06-21 2010-06-21 製鋼スラグからの鉄及び燐の回収方法並びに高炉スラグ微粉末または高炉スラグセメント及び燐酸資源原料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010140382A JP5569174B2 (ja) 2010-06-21 2010-06-21 製鋼スラグからの鉄及び燐の回収方法並びに高炉スラグ微粉末または高炉スラグセメント及び燐酸資源原料

Publications (2)

Publication Number Publication Date
JP2012001797A JP2012001797A (ja) 2012-01-05
JP5569174B2 true JP5569174B2 (ja) 2014-08-13

Family

ID=45534111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010140382A Active JP5569174B2 (ja) 2010-06-21 2010-06-21 製鋼スラグからの鉄及び燐の回収方法並びに高炉スラグ微粉末または高炉スラグセメント及び燐酸資源原料

Country Status (1)

Country Link
JP (1) JP5569174B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105579598A (zh) * 2013-09-02 2016-05-11 德国莱歇公司 用于处理钢渣的方法和水硬性矿物粘合剂

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5907834B2 (ja) * 2012-07-25 2016-04-26 新日鐵住金株式会社 人工燐鉱石の製造方法
JP6261173B2 (ja) * 2013-02-22 2018-01-17 株式会社神戸製鋼所 高炉の操業方法
JP5935770B2 (ja) * 2013-07-19 2016-06-15 Jfeスチール株式会社 燐酸資源原料の製造方法及び燐酸質肥料
JP6252438B2 (ja) * 2014-11-06 2017-12-27 Jfeスチール株式会社 高温スラグからの鉄分離装置及び方法
CN104711391B (zh) * 2015-03-27 2016-08-17 青岛钢铁控股集团有限责任公司 一种对转炉渣中磷进行分离及回收利用转炉渣的方法
CA3078912A1 (en) * 2017-10-20 2019-04-25 Nippon Steel Corporation Method of dechromizing molten iron and method of manufacturing phosphate fertilizer raw material
CN108264224A (zh) * 2017-12-30 2018-07-10 王虎 一种在转炉炼钢过程中将钢渣熔炼成矿物棉料的冶炼工艺
CN112209647B (zh) * 2020-10-15 2022-04-22 湖南大学 一种绿色节能的人造轻质骨料及其制备方法
WO2022163156A1 (ja) * 2021-02-01 2022-08-04 Jfeスチール株式会社 溶鉄の精錬方法およびそれを用いた溶鋼の製造方法
KR20230136164A (ko) * 2021-02-01 2023-09-26 제이에프이 스틸 가부시키가이샤 용철의 정련 방법 및 그것을 이용한 용강의 제조 방법
CN113278755A (zh) * 2021-06-02 2021-08-20 维泰(南通)金属材料有限公司 一种提高钢铁固废熔融还原过程金属化率的方法
CN115544735B (zh) * 2022-09-15 2025-03-25 包头钢铁(集团)有限责任公司 一种模拟高炉内碱金属和氟循环富集对高炉含铁炉料还原性影响的方法
JP2024044728A (ja) * 2022-09-21 2024-04-02 株式会社神戸製鋼所 鉄源の製造方法
CN116855647A (zh) * 2023-07-04 2023-10-10 中南大学 一种基于熔渣低碳脱磷的钢渣全量利用技术
CN118637879B (zh) * 2024-08-19 2024-12-06 四川济通工程试验检测有限公司 一种早强型磷渣基混凝土的制备工艺

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233897A (en) * 1975-09-10 1977-03-15 Nippon Steel Corp Method for treatment of iron slag
JPS52156713A (en) * 1976-06-23 1977-12-27 Nippon Steel Corp Treatment of steel making slag
JPS5827917A (ja) * 1981-08-11 1983-02-18 Kawasaki Steel Corp 転炉スラグ等の処理方法
JPS61147807A (ja) * 1984-12-21 1986-07-05 Kawasaki Steel Corp 精錬滓の変成処理方法
JPH04120209A (ja) * 1990-09-10 1992-04-21 Sumitomo Metal Ind Ltd 転炉滓再利用による造滓剤
JPH06115984A (ja) * 1992-09-29 1994-04-26 Kawasaki Steel Corp 製鋼スラグの熱間改質法
JPH07316621A (ja) * 1994-05-18 1995-12-05 Sumitomo Metal Ind Ltd 精錬スラグの処理方法
JPH11158526A (ja) * 1997-11-28 1999-06-15 Sumitomo Metal Ind Ltd 高pスラグの製造方法
JP4734167B2 (ja) * 2006-05-08 2011-07-27 新日本製鐵株式会社 製鋼スラグの処理方法
JP5320680B2 (ja) * 2007-03-13 2013-10-23 Jfeスチール株式会社 高燐スラグの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105579598A (zh) * 2013-09-02 2016-05-11 德国莱歇公司 用于处理钢渣的方法和水硬性矿物粘合剂

Also Published As

Publication number Publication date
JP2012001797A (ja) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5569174B2 (ja) 製鋼スラグからの鉄及び燐の回収方法並びに高炉スラグ微粉末または高炉スラグセメント及び燐酸資源原料
JP5332651B2 (ja) 製鋼スラグからの鉄及び燐の回収方法
JP5560947B2 (ja) 製鋼スラグからの鉄及び燐の回収方法並びに高炉スラグ微粉末または高炉スラグセメント及び燐酸資源原料
JP5935770B2 (ja) 燐酸資源原料の製造方法及び燐酸質肥料
JP5573403B2 (ja) 製鋼スラグの資源化方法及び燐酸肥料用原料
JP5320680B2 (ja) 高燐スラグの製造方法
JP5594183B2 (ja) 製鋼スラグからの鉄及び燐の回収方法及び燐酸肥料用原料
JP5531536B2 (ja) 製鋼スラグからの鉄及び燐の回収方法
JP5720497B2 (ja) 製鋼スラグからの鉄及び燐の回収方法
JP5915711B2 (ja) 製鋼スラグからの鉄及び燐の回収方法
JP2015140294A (ja) リン酸質肥料原料、リン酸質肥料およびその製造方法
JP5829788B2 (ja) 燐酸資源原料の製造方法
JP5712747B2 (ja) 製鋼スラグからの鉄及び燐の回収方法
JP6011556B2 (ja) 燐酸質肥料原料の製造方法
KR101189183B1 (ko) 석유탈황 폐촉매 중 유가금속 회수방법
JP6295692B2 (ja) 製鋼スラグの処理方法
JP2017071858A (ja) 溶銑脱硫スラグからの精錬用フラックスの回収方法および溶銑の脱りん・脱硫方法
JP2004244728A (ja) クロム含有鋼精錬スラグに含有される金属成分の回収利用方法

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5569174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250