[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5551063B2 - Method and apparatus for separating a mixture of hydrogen, methane and carbon monoxide by cryogenic distillation - Google Patents

Method and apparatus for separating a mixture of hydrogen, methane and carbon monoxide by cryogenic distillation Download PDF

Info

Publication number
JP5551063B2
JP5551063B2 JP2010504804A JP2010504804A JP5551063B2 JP 5551063 B2 JP5551063 B2 JP 5551063B2 JP 2010504804 A JP2010504804 A JP 2010504804A JP 2010504804 A JP2010504804 A JP 2010504804A JP 5551063 B2 JP5551063 B2 JP 5551063B2
Authority
JP
Japan
Prior art keywords
liquid
tower
column
methane
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010504804A
Other languages
Japanese (ja)
Other versions
JP2010526271A (en
Inventor
ビリー、ジャン
エルナンデ、アントワーヌ
キー、マリー−クニー
Original Assignee
レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード filed Critical レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード
Publication of JP2010526271A publication Critical patent/JP2010526271A/en
Application granted granted Critical
Publication of JP5551063B2 publication Critical patent/JP5551063B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0271Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of H2/CO mixtures, i.e. of synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/02Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams using a pump in general or hydrostatic pressure increase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/20Quasi-closed internal or closed external hydrogen refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/24Quasi-closed internal or closed external carbon monoxide refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/30Quasi-closed internal or closed external helium refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/42Quasi-closed internal or closed external nitrogen refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/50Quasi-closed internal or closed external oxygen refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/58Quasi-closed internal or closed external argon refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/34Details about subcooling of liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、低温蒸留によって水素、メタンおよび一酸化炭素の混合物を分離する方法および装置に関する。特に、CH4製品を液体状態でできる限り兼ね備える低CH4含有量を有するH2/COの混合物を製造する方法に関する。 The present invention relates to a method and apparatus for separating a mixture of hydrogen, methane and carbon monoxide by low temperature distillation. In particular, it relates to a process for producing a mixture of H 2 / CO having a low CH 4 content that combines CH 4 products in the liquid state as much as possible.

一酸化炭素および水素の生産用ユニットは、2つの部分に分けることができる。   The unit for producing carbon monoxide and hydrogen can be divided into two parts.

合成ガス(実質的にH2,CO,CH4,ArおよびN2を含む混合物)の生成。合成ガスを生産するために用いられる種々の産業ルートの間で、蒸気改質は最も重要である。炉を含むこのユニットの設計は、要求されるCOおよび水素の製品に基づく。しかしながら、石炭のガス化に基づくユニットは操作コストに関していくつかの有益さを表わし、かつ特に中国のような国で増大する発展を経験するように思われる。そのようなユニットの設計、石炭を酸素でガス化するための反応器を備える、はCOおよび水素の要求される製品に基づく。 Generation of synthesis gas (essentially H 2, CO, mixtures containing CH 4, Ar and N 2). Among the various industrial routes used to produce syngas, steam reforming is the most important. The design of this unit, including the furnace, is based on the required CO and hydrogen products. However, coal gasification units represent some benefit in terms of operating costs and appear to experience increasing development, especially in countries such as China. The design of such a unit, comprising a reactor for gasifying coal with oxygen, is based on the required products of CO and hydrogen.

合成ガスの精製。これは:
合成ガスに含まれる酸性ガスの殆どを取除くための液体溶媒スクラビングユニット、
吸収材床を精製する精製ユニット、
COおよび/または水素および/または一酸化炭素の混合物およびオキシガスとして知られている水素の混合物を規定されるH2/CO比で生産する低温箱として知られている低温分離ユニット
の特色をなす。
Syngas purification. this is:
A liquid solvent scrubbing unit to remove most of the acid gas contained in the synthesis gas;
A purification unit for refining the absorbent floor,
It features a cryogenic separation unit known as a cold box that produces a mixture of CO and / or hydrogen and / or carbon monoxide and a mixture of hydrogen known as oxygas with a defined H 2 / CO ratio.

一般的に、合成ガスは次の化合物:H2,CO,CH4,N2,Arを含む高圧(15と60バールの間)混合物を含む。 Generally, synthesis gas following compounds: containing H 2, CO, CH 4, N 2, ( between 15 and 60 bar) pressure containing Ar mixture.

水素、一酸化炭素およびメタンを含む混合物を低温学的に分離する方法の2つの知られた主要な一群で、これらはメタン洗浄と部分凝縮である。   Two known major groups of processes for cryogenic separation of mixtures containing hydrogen, carbon monoxide and methane, these are methane washing and partial condensation.

メタン洗浄の有益さの1つは、水素生産を圧力下、良好な純度、0.5モル%から僅かなppmの範囲にあってもよいCO含有量をなすことである。しかしながら、メタン洗浄を用いるこの種の方法で、残留CH4含有量は一般的に1モル%を下回って得ることができない。 One benefit of methane scrubbing is to make hydrogen production under pressure with good purity and a CO content that may range from 0.5 mol% to a slight ppm. However, with this type of process using methane washing, the residual CH 4 content cannot generally be obtained below 1 mol%.

1モル%未満のCH4(特にMeOHの生産に対して)を含む水素またはH2/CO混合物を製造するための望ましい幾つかの例において、取りうる唯一の方法は合成ガスがH2/COガス混合物中のCH4含有量を1モル%を下回って下げる熱力学的平衡に達するように−186℃の等級の温度にまで冷却される部分凝縮に供する方法である。 In some desirable examples for producing hydrogen or H 2 / CO mixtures containing less than 1 mol% CH 4 (especially for the production of MeOH), the only method that can be taken is that the synthesis gas is H 2 / CO It is a process that is subjected to partial condensation that is cooled to a temperature of the order of −186 ° C. so as to reach a thermodynamic equilibrium in which the CH 4 content in the gas mixture is lowered below 1 mol%.

この温度レベルに到達することは、循環コンプレッサのエネルギー条件で高価である。   Reaching this temperature level is expensive with the energy requirements of the circulating compressor.

これに提示される発明を前提とする着想は、分離エネルギー(および循環コンプレッサに供給されるべきエネルギー)を明らかに低減できるであろう。   The idea based on the invention presented here could clearly reduce the separation energy (and the energy to be supplied to the circulating compressor).

USA−A−4488890およびUS−A−6098424は方法が一酸化炭素循環によって全ての冷却エネルギーを実質的に生産する液体一酸化炭素スクラバー塔を持つ方法を提示する。   USA-A-4488890 and US-A-6098424 present a process with a liquid carbon monoxide scrubber tower in which the process produces substantially all of the cooling energy through a carbon monoxide cycle.

水素の混合物および低CH4含有量(一般的に1モル%を下回る)を含むCOの混合物の生産の状況において、着想は合成ガスを−167℃(それゆえ部分凝縮スキムより20℃暖かい)に近似した温度に冷却することで、気相は液体COが塔の上部に注入されるCOスクラバー塔で処理される。 In the context of the production of a mixture of hydrogen and a mixture of CO with a low CH 4 content (generally below 1 mol%), the idea is to bring the synthesis gas to −167 ° C. (and therefore 20 ° C. warmer than the partial condensation skim). By cooling to an approximate temperature, the gas phase is processed in a CO scrubber tower where liquid CO is injected into the top of the tower.

本発明の1つの主題は、水素、一酸化炭素およびメタンの混合物を低温蒸留によって分離する方法であり、方法において前記混合物は交換ラインで冷却され、かつ少なくとも一部が液体COスクラバー塔に送られ、ガスは前記スクラバー塔の上部で注ぎ出され、スクラバー塔からの下部リカーが、できる限り精製後に、CO/CH4分離塔に送られ、COに富む液体はCO/CH4分離塔の上部で引き抜かれ、少なくとも部分的に加圧され、かつ少なくとも一部は前記スクラバー塔の上部に送られ、メタンに富む液体が最終製品として前記CO/CH4分離塔の下部で取り出され、分離エネルギーの少なくとも一部は循環流体としての窒素、メタン、酸素、アルゴン、ヘリウムまたは水素を用いる閉サイクルによって供される。 One subject of the present invention is a process for separating a mixture of hydrogen, carbon monoxide and methane by cryogenic distillation, wherein said mixture is cooled in an exchange line and at least partly sent to a liquid CO scrubber column. The gas is poured out at the top of the scrubber tower, and the lower liquor from the scrubber tower is sent to the CO / CH 4 separation tower after purification as much as possible, and the CO-rich liquid is fed at the top of the CO / CH 4 separation tower. Withdrawn, at least partially pressurized, and at least partially sent to the top of the scrubber tower, and a methane-rich liquid is withdrawn as a final product at the bottom of the CO / CH 4 separation tower, at least of the separation energy. Some are provided by a closed cycle using nitrogen, methane, oxygen, argon, helium or hydrogen as the circulating fluid.

他の選択側面:
前記スクラバー塔の上部で注ぎ出されるガスは、H2の混合物および1モル%未満のCH4を含むCOの混合物である;
前記閉サイクルはCO/CH4分離塔の頭部リキーを凝縮するために用いられる;
前記閉サイクルはCO/CH4分離塔および/またはストリッピング塔の下部リキーを再沸騰するために用いられる;
前記閉サイクルはこのCH4を液化するために用いられるエネルギーの少なくとも一部を提供する;
前記閉サイクルの2つの液体は、前記交換ラインで少なくとも2つの異なる圧力で気化される;
前記CO/CH4分離塔から引き抜かれる一酸化炭素に富む液体の少なくとも一部はポンプを用いて加圧され、かつ汲み上げられた液体の少なくとも一部はスクライバー塔に送られる;
次のリストの少なくとも2つの温度は多くとも5℃だけ異なる:
・前記混合物が前記スクラバー塔に入る入口温度
・前記CO/CH4塔からのCOに富む液体の温度
・過冷却液体メタンの温度。
Other selection aspects:
Gas poured at the top of the scrubbing column is a mixture of CO containing mixture and 1 less than mole% CH 4 in H 2;
Said closed cycle is used to condense the CO / CH 4 separator head liquid;
Said closed cycle is used to re-boil the CO / CH 4 separation column and / or the lower liquor of the stripping column;
The closed cycle provides at least a portion of the energy used to liquefy this CH 4 ;
The two liquids in the closed cycle are vaporized at at least two different pressures in the exchange line;
At least a portion of the carbon monoxide rich liquid withdrawn from the CO / CH 4 separation column is pressurized using a pump and at least a portion of the pumped liquid is sent to the scriber column;
At least two temperatures in the following list differ by at most 5 ° C:
The inlet temperature at which the mixture enters the scrubber tower The temperature of the CO-rich liquid from the CO / CH 4 tower The temperature of the supercooled liquid methane.

本発明の別の側面は、水素、一酸化炭素およびメタンを低温蒸留によって分離する装置を提供し、前記装置は液体COスクラバー塔、CO/CH4分離塔、混合物が冷却される交換ライン、冷却混合物の少なくとも一部を前記スクラバー塔に送るための手段、前記スクラバー塔の上部でガスを注ぎ出すための手段、下部リキーを前記スクラバー塔から、可能な限り精製後、CO/CH4分離塔に送るための手段、CO/CH4分離塔からCOに富む液体を引き抜くための手段、引いた液体の少なくとも一部を加圧するための手段、加圧液体の少なくとも一部をスクラバー塔の上部に送るための手段およびメタンに富む液体を最終製品としてCO/CH4分離塔の下部で引き抜くための手段、分離エネルギーの少なくとも一部を供するために循環流体として窒素、メタン、酸素、アルゴン、ヘリウムまたは水素を用いる閉サイクルを備える。 Another aspect of the present invention provides an apparatus for separating hydrogen, carbon monoxide and methane by cryogenic distillation, said apparatus comprising a liquid CO scrubber tower, a CO / CH 4 separation tower, an exchange line for cooling the mixture, cooling Means for sending at least a portion of the mixture to the scrubber tower, means for pouring gas at the top of the scrubber tower, and lower liquor from the scrubber tower to the CO / CH 4 separation tower after purification as much as possible. Means for sending, means for withdrawing CO rich liquid from the CO / CH 4 separation column, means for pressurizing at least a portion of the drawn liquid, sending at least a portion of the pressurized liquid to the top of the scrubber tower It means for withdrawing at unit and lower CO / CH 4 separation column a liquid rich in methane as a final product for circulation in order to provide at least a portion of the separation energy It comprises nitrogen as the body, methane, oxygen, argon, a closed cycle using helium or hydrogen.

他の選択側面によれば、前記装置は
CH4を液体から最終製品として引き抜くための手段;
このCH4を液化するために用いられるエネルギーの少なくとも一部を供する閉サイクル;
前記CO/CH4分離塔の上流のスクラバー塔の下部リキーを精製するためのストリッピング塔;
前記CO/CH4分離塔の上部および前記スクラバー塔の上部に接続されるポンプ
を備える。
According to another optional aspect, said device is means for withdrawing CH 4 from the liquid as a final product;
A closed cycle that provides at least a portion of the energy used to liquefy this CH 4 ;
A stripping tower for purifying the lower liquor of the scrubber tower upstream of the CO / CH 4 separation tower;
A pump connected to the upper part of the CO / CH 4 separation tower and the upper part of the scrubber tower;

記載なし。not listed. 記載なし。not listed.

本発明は、本発明に係る装置を示す図面を参照して詳細に説明する。   The invention will be described in detail with reference to the drawings showing an apparatus according to the invention.

図1において、高圧力(一般的に15と60バールの間)で得られる合成ガス1は主要熱交換器3で冷却され、かつ交換ラインで部分的に凝縮されて−167℃の温度に下げられる。気相は、スクラバー塔5の下部に送られ、ここでそれは塔5の上部に注入される液体CO51で洗浄される。前記スクラバー塔5の上部で精製される蒸気7中のCH4含有量を1モル%未満に下げることができ、それによってそれは例えばMeOHユニットの交換ラインで再加熱した後に処理することができる。 In FIG. 1, the synthesis gas 1 obtained at high pressure (generally between 15 and 60 bar) is cooled in the main heat exchanger 3 and partially condensed in the exchange line to a temperature of −167 ° C. It is done. The gas phase is sent to the lower part of the scrubber tower 5 where it is washed with liquid CO 51 injected into the upper part of the tower 5. The CH 4 content in the steam 7 purified at the top of the scrubber column 5 can be reduced to less than 1 mol%, so that it can be treated after reheating, for example, in the exchange line of the MeOH unit.

液体COスクラバー塔5下部での液相11は、CH4を非常に富み、かつCOおよび溶解水素もまた含む。この液体11は、下部リボイラーを有するストリッピング塔13の上部にフラッシュ塔17の下部リキーの水素を分離しかつその含有量を低減するために送られ、それによって塔33中のCOおよびCH4の分離の間に凝縮できない水素の量を低減する。 The liquid phase 11 at the bottom of the liquid CO scrubber column 5 is very rich in CH 4 and also contains CO and dissolved hydrogen. This liquid 11 is sent to the upper part of the stripping column 13 with the lower reboiler to separate and reduce the content of the lower liquor of the flash column 17 and thereby reduce the content of CO and CH 4 in the column 33. Reduce the amount of hydrogen that cannot be condensed during the separation.

前記ストリッピング塔からのガス21は交換ライン3で加熱され、かつ燃料としてふるまう。   The gas 21 from the stripping tower is heated in the exchange line 3 and behaves as fuel.

ストリッピング塔13からの下部リキーは、熱交換器19によって過冷却され、それからCO/CH4分離塔に2つの部分で送られる。一部27はバルブ31で膨張され、塔33の上部に送られる。残部23は、バルブ29で膨張され、それから加熱25によって加熱され、それから塔33の下部に送られる。COは上部で液体形態47にて生成され、かつCOスクラバー塔5の圧力レベルまでその圧力を上昇するポンプ49に送られる。それゆえ、少なくとも1つの低温ポンプ、およびCO/CH4分離塔33の上部とCOスクラバー塔5の上部の間のバルブ53を通して内部液体COループである。 The lower liquor from the stripping tower 13 is supercooled by the heat exchanger 19 and then sent in two parts to the CO / CH 4 separation tower. Part 27 is expanded by a valve 31 and sent to the top of the tower 33. The remainder 23 is expanded by a valve 29 and then heated by the heating 25 and then sent to the lower part of the tower 33. CO is produced in liquid form 47 at the top and is sent to a pump 49 that raises its pressure to the pressure level of the CO scrubber tower 5. It is therefore an internal liquid CO loop through at least one cryogenic pump and a valve 53 between the top of the CO / CH 4 separation tower 33 and the top of the CO scrubber tower 5.

ことによると、液体CO55の一部は混合流れ9を形成すためにスクラバー塔5の頂部ガスにバルブ57を通して送ることができる。これは、ガスのCO/H2比を調節できる。 Perhaps a part of the liquid CO 55 can be sent through the valve 57 to the top gas of the scrubber column 5 to form a mixed stream 9. This can adjust the CO / H 2 ratio of the gas.

CH439は、CO/CH4塔33の下部にて液体形態で生成される。CO/CH4塔は、下部リボイラー37および上部凝縮器35を有する。 CH 4 39 is produced in liquid form at the bottom of the CO / CH 4 column 33. The CO / CH 4 tower has a lower reboiler 37 and an upper condenser 35.

このスキムを持つ選択肢の1つは、低CH4含有量、COの僅かな痕跡を含む純粋メタンを持つH2/CO混合物7を生成し、補い、それによってLNG45の形態で市場に出すことができる。 One option with this skim is to produce and supplement an H 2 / CO mixture 7 with low CH 4 content, pure methane with a slight trace of CO, thereby bringing it to market in the form of LNG45. it can.

CO/CH4塔の下部を出たこの液体CH439は“煮て除く”と呼ばれる気化液体の生産に限定されるように貯蔵のために送る前に、交換ライン41で過冷却される。バルブ43は、短絡ライン41に用いることができる。 This liquid CH 4 39 exiting the bottom of the CO / CH 4 tower is subcooled in the exchange line 41 before being sent for storage as limited to the production of vaporized liquid called “boil off”. The valve 43 can be used for the short circuit line 41.

ことによると、CO/CH4塔33からの頂部ガス59はコンプレサ61で圧縮され、流れ63を形成し、交換ラインで凝縮され、かつポンプ49からの汲み上げ流れの代わりまたは付加してスクラバー塔5の上部に送られる。 The top gas 59 from the CO / CH 4 tower 33 is compressed by the compressor 61 to form a stream 63, condensed in the exchange line, and in place of or in addition to the pumping stream from the pump 49. Sent to the top of the.

分離エネルギーは、外部閉サイクルによって供給される。このサイクルもまたこのCH439を液化するためのエネルギーを供給できる。 The separation energy is supplied by an external closed cycle. This cycle can also supply energy to liquefy this CH 4 39.

前記サイクルのために用いられるガスは、リストN2,CH4,O2,Ar,He,H2等から選択することができる。ガス65は、CO/CH4塔を再沸騰するために用いられ、それから2つに分けられる液体67を形成する。一部71は、バルブ73を通過し、上部凝縮器35に送られる。凝縮器で気化された流れは流れ81,83として順番にコンプレッサ85,87,89に送られる。コンプレッサ89で圧縮された流れ91は、2つのコンプレッサ97,99で平行して圧縮される2つの部分93,95に分けられる。圧縮流れ95,101は2つに分けられる流れ103を形成するために結合される。一部105は、2つに分けられる前に、交換ライン3で部分的に冷却される。画分109はタービン111で中間温度に膨張し、その膨張流れ113は交換ライン3にて中間温度レベルで流れ81に返送される。他の画分は、交換ライン3で冷却される109の温度より低い温度レベルでタービン115に送られ、かつ交換ライン3の上流の流れ81と結合する。流れ107は、交換ライン3で完全に冷却され、かつCO/CH4塔を再沸騰するために流れ65として送られる。 The gas used for the cycle can be selected from the list N 2 , CH 4 , O 2 , Ar, He, H 2 or the like. The gas 65 is used to reboil the CO / CH 4 tower, and then forms a liquid 67 that is divided in two. Part 71 passes through valve 73 and is sent to upper condenser 35. The flow vaporized in the condenser is sent to the compressors 85, 87, and 89 as flows 81 and 83 in order. The stream 91 compressed by the compressor 89 is divided into two parts 93 and 95 which are compressed in parallel by the two compressors 97 and 99. The compressed streams 95, 101 are combined to form a stream 103 that is divided into two. The part 105 is partially cooled in the exchange line 3 before being divided in two. Fraction 109 is expanded to an intermediate temperature by turbine 111 and its expanded stream 113 is returned to stream 81 at an intermediate temperature level in exchange line 3. The other fraction is sent to the turbine 115 at a temperature level below the temperature of 109 cooled in the exchange line 3 and is combined with the stream 81 upstream of the exchange line 3. Stream 107 is completely cooled in exchange line 3 and sent as stream 65 to reboil the CO / CH 4 column.

交換器3にて2つの異なる圧力で流れ77,81を気化することは熱交換を最大限に活用できる。   Vaporizing the streams 77 and 81 at two different pressures in the exchanger 3 can make the most of heat exchange.

図2において、高圧(一般的に15と60バールの間)で得られる合成ガス1は15モル%のメタンを含む。それは2つに分けられ、一部1Aは主要交換器3で冷却され、かつ残り1Bは流れ1Aと後方で混合される前に主要交換器を迂回し、CO/CH4塔33のリボイラー37および環状流れ3に送られる。下部リボイラーで冷却される環状流れ4は主要交換器3の中間温度で返送され、交換ラインで−167℃の温度に部分的に凝縮される。それは、スクラバー塔5の下部に送られ、ここでそれは塔5の上部に注入される液体CO51で洗浄される。前記スクラバー塔5の上部で精製される蒸気7中のCH4含有量を1モル%未満に下げることができ、それによってそれは例えばMeOHユニットの交換ラインで加熱した後に処理することができる。 In FIG. 2, the synthesis gas 1 obtained at high pressure (generally between 15 and 60 bar) contains 15 mol% of methane. It is divided in two, part 1A is cooled by the main exchanger 3 and the remaining 1B bypasses the main exchanger before being mixed with the stream 1A backwards, and the reboiler 37 of the CO / CH 4 column 33 and Sent to the annular stream 3. The annular stream 4 cooled in the lower reboiler is returned at the intermediate temperature of the main exchanger 3 and is partially condensed in the exchange line to a temperature of −167 ° C. It is sent to the bottom of the scrubber tower 5 where it is washed with liquid CO 51 injected into the top of the tower 5. The CH 4 content in the steam 7 purified at the top of the scrubber column 5 can be reduced to less than 1 mol%, so that it can be processed after heating, for example, in the exchange line of the MeOH unit.

液体COスクラバー塔5下部での液相11は、CH4を非常に富み、かつCOおよび溶解水素もまた含む。この液体11は、下部リボイラーを有するストリッピング塔13の上部にフラッシュ塔17の下部リキーの水素を分離し、かつその含有量を低減するために送られ、それによって塔33中のCOおよびCH4の分離の間に凝縮できない水素の量を低減する。 The liquid phase 11 at the bottom of the liquid CO scrubber column 5 is very rich in CH 4 and also contains CO and dissolved hydrogen. This liquid 11 is sent to the upper part of the stripping tower 13 with the lower reboiler to separate and reduce the content of the lower liquor of the flash tower 17, thereby reducing the CO and CH 4 in the tower 33. Reducing the amount of hydrogen that cannot be condensed during the separation of

前記ストリッピング塔からのガス21は交換ライン3で加熱され、かつ燃料としてふるまう。   The gas 21 from the stripping tower is heated in the exchange line 3 and behaves as fuel.

ストリッピング塔13からの下部リキーは、交換器19によって過冷却され、それからCO/CH4分離塔に2つの部分で送られる。一部27はバルブ31で膨張され、塔33の上部に送られる。残部23は、バルブ29で膨張され、それから加熱25によって加熱され、それから塔33の下部に送られる。COは上部で液体形態47にて生成され、かつCOスクラバー塔5の圧力レベルまでその圧力を上昇するポンプ49に送られる。それゆえ、少なくとも1つの低温ポンプ、およびCO/CH4分離塔33の上部とCOスクラバー塔5の上部の間のバルブ53を通して内部液体COループである。 The lower liquor from the stripping column 13 is supercooled by the exchanger 19 and then sent in two parts to the CO / CH 4 separation column. Part 27 is expanded by a valve 31 and sent to the top of the tower 33. The remainder 23 is expanded by a valve 29 and then heated by the heating 25 and then sent to the lower part of the tower 33. CO is produced in liquid form 47 at the top and is sent to a pump 49 that raises its pressure to the pressure level of the CO scrubber tower 5. It is therefore an internal liquid CO loop through at least one cryogenic pump and a valve 53 between the top of the CO / CH 4 separation tower 33 and the top of the CO scrubber tower 5.

ことによると、液体CO55の一部は混合流れ9を形成すためにスクラバー塔5の頂部ガスにバルブ55を通して送ることができる。これは、ガスのCO/H2比を調節できる。 Perhaps a portion of the liquid CO 55 can be sent through the valve 55 to the top gas of the scrubber column 5 to form a mixed stream 9. This can adjust the CO / H 2 ratio of the gas.

CH439は、CO/CH4塔33の下部にて液体形態で生成される。CO/CH4塔は、下部リボイラー37および上部凝縮器35を有する。 CH 4 39 is produced in liquid form at the bottom of the CO / CH 4 column 33. The CO / CH 4 tower has a lower reboiler 37 and an upper condenser 35.

このスキムを持つ選択肢の1つは、LNG45の形態で市場に出すことができるように低CH4含有量のH 2 /CO混合物7、COの僅かな痕跡を含む純粋メタンを生成し、補うことであるOne option with this scheme is to produce pure methane containing small traces of H 2 / CO mixture 7, CO low CH 4 content so can be marketed in the form of LNG45, cormorants complement That is .

CO/CH4塔の下部を出たこの液体CH439は“煮て除く”と呼ばれる気化液体の生産に限定されるように貯蔵のために送る前に、交換ライン41で過冷却される。バルブ43は、短絡ライン41に用いることができる。 This liquid CH 4 39 exiting the bottom of the CO / CH 4 tower is subcooled in the exchange line 41 before being sent for storage as limited to the production of vaporized liquid called “boil off”. The valve 43 can be used for the short circuit line 41.

ことによると、CO/CH4塔33からの頂部ガス59はコンプレサ61で圧縮され、流れ63を形成し、交換ラインで凝縮され、かつポンプ49からの汲み上げ流れの代わりまたは付加してスクラバー塔5の上部に送られる。 The top gas 59 from the CO / CH 4 tower 33 is compressed by the compressor 61 to form a stream 63, condensed in the exchange line, and in place of or in addition to the pumping stream from the pump 49. Sent to the top of the.

分離エネルギーは、外部閉サイクルによって供給される。このサイクルもまたこのCH439を液化するためのエネルギーを供給できる。 The separation energy is supplied by an external closed cycle. This cycle can also supply energy to liquefy this CH 4 39.

前記循環のために用いられるガスは、リストN2,CH4,O2,Ar,He,H2から選択することができる。 The gas used for the circulation can be selected from the list N 2 , CH 4 , O 2 , Ar, He, H 2 .

ストリパー塔13の再沸騰は、循環ガス169の流れによってなされる。冷却流れ171は、バルブ173で膨張され、CO/CH4塔33の上部凝縮器35に流れ177として送られる。流れ175は流れ177および179を形成するために分けられる。流れ177は、凝縮器35で冷却される。流れ179は、バルブ181を経由して交換器3に送られ、ここでそれは再び暖められる。リボイラー35で再び暖められた流れ180は流れ167および194と混合され、流れ183になる。この流れ183は、一旦僅かに熱くなり、流れ179と結合される。10バールで結合した流れ185は直列サイクルコンプレッサ85,87に送られ、それから一部をコンプレッサ89に送る。89で圧縮された流れの一部169は塔13の再沸騰のために39バールで送られ、かつ残り191はコンプレッサ197で50バールに圧縮され、流れ201を形成する。流れ201は、流れ203を形成するために2つに分けられ、その流れ203はバルブ205を通してタービン211に進み、膨張流れ167になる。流れ202は、交換器3を真っ直ぐ通過し、かつ3つに分かれる。流れ190は、タービン211にまた送られ、流れ174は流れ171と混合され、かつ流れ186はそれがコンプレッサ87からの流れ192と結合し結合流れ189を形成する前に、交換器で再び暖められる。流れ189はコンプレッサ199に送られ、交換器3で部分的に冷却され、かつタービン215で膨張されて膨張流れ194を形成する。 The reboiling of the stripper column 13 is performed by the flow of the circulating gas 169. The cooling stream 171 is expanded by a valve 173 and sent to the upper condenser 35 of the CO / CH 4 tower 33 as a stream 177. Stream 175 is split to form streams 177 and 179. Stream 177 is cooled by condenser 35. Stream 179 is sent to exchanger 3 via valve 181 where it is warmed again. Stream 180 rewarmed with reboiler 35 is mixed with streams 167 and 194 to stream 183. This stream 183 becomes slightly hot once and is combined with stream 179. Stream 185 combined at 10 bar is sent to series cycle compressors 85, 87 and then a portion is sent to compressor 89. A portion 169 of the stream compressed at 89 is sent at 39 bar for reboiling of column 13 and the remainder 191 is compressed at 50 bar by compressor 197 to form stream 201. Stream 201 is split into two to form stream 203, which passes through valve 205 to turbine 211 and becomes expanded stream 167. The stream 202 passes straight through the exchanger 3 and is divided into three. Stream 190 is also sent to turbine 211, stream 174 is mixed with stream 171, and stream 186 is warmed again in the exchanger before it combines with stream 192 from compressor 87 to form combined stream 189. . Stream 189 is sent to compressor 199, partially cooled by exchanger 3, and expanded by turbine 215 to form expanded stream 194.

コンプレッサ197はタービン211に連結され、かつコンプレッサ199はタービン215に連結される。   The compressor 197 is connected to the turbine 211 and the compressor 199 is connected to the turbine 215.

交換器3にて2つの異なる圧力で流れ179,186を気化することは熱交換を最大限に活用できる。   Vaporizing streams 179 and 186 at two different pressures in exchanger 3 can maximize heat exchange.

この文献に亘って、用語“塔の上部”は塔の上部から厳密な意味でこの位置を下回る最大10理論段数での位置までの位置範囲を含む。   Throughout this document, the term “top of the tower” includes a range of positions from the top of the tower to a position with a maximum of 10 theoretical plates below this position in the strict sense.

Claims (13)

水素、一酸化炭素およびメタンの混合物を低温蒸留によって分離する方法であり、前記混合物は交換ライン(3)で冷却され、かつ少なくとも一部が液体COスクラバー塔(5)に送られ、ガス(7)は前記スクラバー塔の上部で取り出され、スクラバー塔から出た下部液体(11)がその後精製され、CO/CH4分離塔(33)に送られ、COに富む液体(47)はCO/CH4分離塔の上部で引き抜かれ、ポンプで少なくとも部分的に加圧され、かつ加圧された液体の少なくとも一部は前記交換ラインで暖められず、かつ冷却されずに前記スクラバー塔の上部に送られ、メタンに富む液体が最終製品として前記CO/CH4分離塔(33)の下部で引き抜かれ、分離エネルギーの少なくとも一部は循環流体としての窒素、メタン、酸素、アルゴン、ヘリウムまたは水素を用いる閉サイクル(65,67,79,81,91,93,95,101,103,105,107,113,117,167,169,171,175,177,179,183,185,189,190,194,201,203)によって供される方法。 A process for separating a mixture of hydrogen, carbon monoxide and methane by cryogenic distillation, said mixture being cooled in an exchange line (3) and at least partly sent to a liquid CO scrubber tower (5), where gas (7 ) Is removed at the top of the scrubber tower, the lower liquid (11) exiting the scrubber tower is then purified and sent to the CO / CH 4 separation tower (33), and the CO rich liquid (47) is CO / CH 4 Pulled at the top of the separation tower, at least partially pressurized with a pump, and at least a portion of the pressurized liquid is not warmed in the exchange line and sent to the top of the scrubber tower without cooling. is, liquid rich in methane is withdrawn at the bottom of the as a final product CO / CH 4 separation column (33), at least part of the separation energy nitrogen as the circulating fluid, methane, oxygen Closed cycle (65, 67, 79, 81, 91, 93, 95, 101, 103, 105, 107, 113, 117, 167, 169, 171, 175, 177, 179, 183 using argon, helium or hydrogen 185, 189, 190, 194, 201, 203). 前記スクラバー塔(5)の上部で取り出されるガス(7)はH2の混合物および1モル%未満のCH4を含むCOの混合物である請求項1記載の方法。 The method of claim 1, wherein the gas (7) is a mixture of CO containing CH 4 mixtures and less than 1 mole% H 2 withdrawn at the top of the scrubbing column (5). 前記閉サイクル(65,67,79,81,91,93,95,101,103,105,107,113,117,167,169,171,175,177,179,183,185,189,190,194,201,203)は前記CO/CH4塔の頂部ガスを凝縮するために用いられる請求項1または2記載の方法。 The closed cycle (65, 67, 79, 81, 91, 93, 95, 101, 103, 105, 107, 113, 117, 167, 169, 171, 175, 177, 179, 183, 185, 189, 190, 194,201,203) of claim 1 or 2 the method described is used to condense the top gas of the CO / CH 4 column. 前記閉サイクル(65,67,79,81,91,93,95,101,103,105,107,113,117,167,169,171,175,177,179,183,185,189,190,194,201,203)は前記CO/CH4塔および/またはストリッピング塔の下部液体を再沸騰するために用いられる請求項1,2または3記載の方法。 The closed cycle (65, 67, 79, 81, 91, 93, 95, 101, 103, 105, 107, 113, 117, 167, 169, 171, 175, 177, 179, 183, 185, 189, 190, 194,201,203) of claim 1, 2 or 3 the method described is used to reboil the lower liquid of the CO / CH 4 column and / or stripping column. 前記閉サイクル(65,67,79,81,91,93,95,101,103,105,107,113,117,167,169,171,175,177,179,183,185,189,190,194,201,203)は前記CH4を液化するために用いられるエネルギーの少なくとも一部を提供する請求項1から4のいずれか1項記載の方法。 The closed cycle (65, 67, 79, 81, 91, 93, 95, 101, 103, 105, 107, 113, 117, 167, 169, 171, 175, 177, 179, 183, 185, 189, 190, 194,201,203) the method of any one of claims 1 to 4 to provide at least a portion of the energy used to liquefy the CH 4. 前記閉サイクル(65,67,79,81,91,93,95,101,103,105,107,113,117,167,169,171,175,177,179,183,185,189,190,194,201,203)中には、分岐点および合流点が設けられ、前記閉サイクルの前記分岐点で分岐された少なくとも2つの液体(77,81,179,186)は分岐されてから合流される間に、前記交換ラインにて互いに異なる圧力で気化される請求項1から5のいずれか1項記載の方法。 The closed cycle (65, 67, 79, 81, 91, 93, 95, 101, 103, 105, 107, 113, 117, 167, 169, 171, 175, 177, 179, 183, 185, 189, 190, during 194,201,203), the branch point and merging point is provided, wherein at least two liquids are branched at the branch point of the closed cycle (77,81,179,186) are merged since the branch that between, any one method according to claims 1-5 that will be vaporized at different pressures in the exchange line. 次のリストの少なくとも2つの温度は多くとも5℃だけ異なる:
− 前記混合物が前記スクラバー塔(7)に入る入口温度
− 前記CO/CH4塔からのCOに富む液体(47,51)の温度
前記CO/CH 4 分離塔(33)の下部で引き抜かれた前記メタンに富む液体を冷却することによって形成される液体メタン(45)の温度
請求項1から6のいずれか1項記載の方法。
At least two temperatures in the following list differ by at most 5 ° C:
- withdrawn at the bottom of the CO / CH 4 separation column (33) - wherein the mixture inlet temperature enters the scrubbing column (7) - the temperature of the liquid (47, 51) rich CO from the CO / CH 4 column 7. The process as claimed in claim 1, wherein the temperature of liquid methane (45) formed by cooling the methane-rich liquid .
前記循環流体がメタンである請求項1から7のいずれか1項記載の方法。   The method according to claim 1, wherein the circulating fluid is methane. 前記循環流体が窒素である請求項1から7のいずれか1項記載の方法。   The method according to claim 1, wherein the circulating fluid is nitrogen. 水素、一酸化炭素およびメタンを低温蒸留によって分離する装置であって、液体COスクラバー塔(5)、CO/CH4分離塔(33)、前記混合物が冷却される交換ライン(3)、冷却混合物の少なくとも一部を前記スクラバー塔に送るための手段、前記スクラバー塔の上部でガスを取り出すための手段、前記スクラバー塔から出た下部液体を精製し、CO/CH4分離塔に送るための手段、CO/CH4分離塔からCOに富む液体を引き抜くための手段、引き抜いた液体の少なくとも一部を加圧するための手段(49)、加圧液体の少なくとも一部をスクラバー塔の上部に送るための手段およびメタンに富む液体を最終製品としてCO/CH4分離塔の下部で引き抜くための手段、分離エネルギーの少なくとも一部を供するために循環流体として窒素、メタン、酸素、アルゴン、ヘリウムまたは水素を用いる閉サイクル(65,67,79,81,91,93,95,101,103,105,107,113,117,167,169,171,175,177,179,183,185,189,190,194,201,203)を備え、
前記COに富む液体を引き抜くための手段は、前記交換ラインを経由することなく前記液体の少なくとも一部を加圧するための前記手段に接続され、かつ前記液体の少なくとも一部を加圧するための前記手段は前記交換ラインを経由することなく前記スクラバー塔に接続される装置。
An apparatus for separating hydrogen, carbon monoxide and methane by low-temperature distillation, including a liquid CO scrubber tower (5), a CO / CH 4 separation tower (33), an exchange line (3) for cooling the mixture, and a cooling mixture Means for sending at least a portion of the scrubber tower to the scrubber tower, means for removing gas at the top of the scrubber tower, means for purifying the lower liquid exiting the scrubber tower and sending it to the CO / CH 4 separation tower Means for withdrawing CO rich liquid from the CO / CH 4 separation column, means for pressurizing at least part of the withdrawn liquid (49), for sending at least part of the pressurized liquid to the top of the scrubber tower It means for withdrawing a liquid rich in the means and methane at the bottom of the CO / CH 4 separation column as a final product, the circulating fluid in order to provide at least a portion of the separation energy Closed cycle using nitrogen, methane, oxygen, argon, helium or hydrogen (65, 67, 79, 81, 91, 93, 95, 101, 103, 105, 107, 113, 117, 167, 169, 171, 175, 177, 179, 183, 185, 189, 190, 194, 201, 203)
The means for withdrawing the CO-rich liquid is connected to the means for pressurizing at least part of the liquid without going through the exchange line, and the means for pressurizing at least part of the liquid The means is a device connected to the scrubber tower without going through the exchange line.
CO/CH4塔の上部およびスクラバー塔の上部に接続されるポンプを備える請求項10記載の装置。 The apparatus of claim 10, further comprising a CO / CH 4 pump connected on the upper and scrubbing column tower. 前記閉サイクル(65,67,79,81,91,93,95,101,103,105,107,113,117,167,169,171,175,177,179,183,185,189,190,194,201,203)はこのCH4を液化するために用いられるエネルギーの少なくとも一部を供する請求項10または11記載の装置。 The closed cycle (65, 67, 79, 81, 91, 93, 95, 101, 103, 105, 107, 113, 117, 167, 169, 171, 175, 177, 179, 183, 185, 189, 190, 194,201,203) is at least partially subjected claim 10 or 11 apparatus according energy used to liquefy the CH 4. 前記CO/CH4分離塔(33)の上流スクラバー塔(5)の下部液体を洗浄するためのストリッピング塔(13)を備える請求項10から12のいずれか1項記載の装置。 The apparatus of any one of claims stripping column (13) from claim 10 with a 12 for cleaning the lower liquid upstream scrubbing column (5) of the CO / CH 4 separation column (33).
JP2010504804A 2007-05-04 2008-04-23 Method and apparatus for separating a mixture of hydrogen, methane and carbon monoxide by cryogenic distillation Expired - Fee Related JP5551063B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0754859 2007-05-04
FR0754859A FR2915791B1 (en) 2007-05-04 2007-05-04 METHOD AND APPARATUS FOR SEPARATING A MIXTURE OF HYDROGEN, METHANE AND CARBON MONOXIDE BY CRYOGENIC DISTILLATION
PCT/FR2008/050742 WO2008148971A2 (en) 2007-05-04 2008-04-23 Method and device for separating a mixture of hydrogen, methane and carbon monoxide by cryogenic distillation

Publications (2)

Publication Number Publication Date
JP2010526271A JP2010526271A (en) 2010-07-29
JP5551063B2 true JP5551063B2 (en) 2014-07-16

Family

ID=39057273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010504804A Expired - Fee Related JP5551063B2 (en) 2007-05-04 2008-04-23 Method and apparatus for separating a mixture of hydrogen, methane and carbon monoxide by cryogenic distillation

Country Status (6)

Country Link
US (1) US20100162754A1 (en)
EP (1) EP2147270B1 (en)
JP (1) JP5551063B2 (en)
CN (1) CN101688753B (en)
FR (1) FR2915791B1 (en)
WO (1) WO2008148971A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353233B (en) * 2011-08-03 2014-05-07 成都蜀远煤基能源科技有限公司 Process method and device for cryogenically separating and liquefying gas obtained after coal gas methanation
CN102288008B (en) * 2011-08-04 2013-06-12 成都蜀远煤基能源科技有限公司 Method and device for extracting carbonic oxide (CO) of coal gas feed gas
CN102674347A (en) * 2012-05-17 2012-09-19 四川亚连科技有限责任公司 Method for preparing carbon monoxide (CO) through low-temperature distillation
FR3018599B1 (en) 2014-03-17 2019-06-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF A SYNTHESIS GAS CONTAINING CARBON MONOXIDE, METHANE AND HYDROGEN
FR3052159B1 (en) * 2016-06-06 2018-05-18 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude PROCESS AND PLANT FOR THE COMBINED PRODUCTION OF A MIXTURE OF HYDROGEN AND NITROGEN AND CARBON MONOXIDE BY CRYOGENIC DISTILLATION AND WASH
FR3057056B1 (en) * 2016-10-03 2020-01-10 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD AND APPARATUS FOR RECOVERING ARGON IN A UNIT FOR SEPARATING A GAS FROM PURGE OF AMMONIA SYNTHESIS
CN107417495A (en) * 2017-05-27 2017-12-01 李大鹏 A kind of ammonia from coal, LNG, the Poly-generation method and device of liquid fuel
FR3084453B1 (en) 2018-07-25 2020-11-27 Air Liquide METHOD AND APPARATUS FOR THE CRYOGENIC SEPARATION OF A MIXTURE OF CARBON MONOXIDE, HYDROGEN AND METHANE FOR THE PRODUCTION OF CH4
FR3097951B1 (en) * 2019-06-26 2022-05-13 Air Liquide METHOD AND APPARATUS FOR THE CRYOGENIC SEPARATION OF SYNTHESIS GAS FOR THE PRODUCTION OF CH4

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2030740B2 (en) * 1970-06-23 1978-05-11 Basf Ag, 6700 Ludwigshafen Process for the production of methane-free synthesis gas from the cracked gas of the immersion flame process
DE3247782A1 (en) * 1982-12-23 1984-06-28 Linde Ag, 6200 Wiesbaden METHOD FOR DISASSEMBLING A GAS MIXTURE TO BE USED IN A METHANOL SYNTHESIS GAS SYSTEM AT LOW TEMPERATURES
US4727723A (en) * 1987-06-24 1988-03-01 The M. W. Kellogg Company Method for sub-cooling a normally gaseous hydrocarbon mixture
FR2664263B1 (en) * 1990-07-04 1992-09-18 Air Liquide PROCESS AND PLANT FOR THE SIMULTANEOUS PRODUCTION OF METHANE AND CARBON MONOXIDE.
JP3044564B2 (en) * 1990-09-28 2000-05-22 日本酸素株式会社 Gas separation method and apparatus
FR2681131A1 (en) * 1991-09-11 1993-03-12 Air Liquide METHOD AND PLANT FOR PRODUCING CARBON MONOXIDE AND HYDROGEN
JP4139374B2 (en) * 1997-06-26 2008-08-27 富士通株式会社 Semiconductor memory device
FR2775276B1 (en) * 1998-02-20 2002-05-24 Air Liquide PROCESS AND PLANT FOR THE PRODUCTION OF CARBON MONOXIDE AND HYDROGEN
MY122625A (en) * 1999-12-17 2006-04-29 Exxonmobil Upstream Res Co Process for making pressurized liquefied natural gas from pressured natural gas using expansion cooling
CN101268324A (en) * 2005-07-28 2008-09-17 英尼奥斯美国有限责任公司 Recovery of CO-rich product from a mixed gas containing heavy hydrocarbons
DE102007013325A1 (en) * 2007-03-20 2008-09-25 Linde Ag Process and apparatus for recovering gas products and liquid methane from synthesis gas

Also Published As

Publication number Publication date
FR2915791A1 (en) 2008-11-07
EP2147270A2 (en) 2010-01-27
US20100162754A1 (en) 2010-07-01
WO2008148971A2 (en) 2008-12-11
EP2147270B1 (en) 2019-11-06
CN101688753B (en) 2013-08-14
WO2008148971A3 (en) 2010-01-07
CN101688753A (en) 2010-03-31
JP2010526271A (en) 2010-07-29
FR2915791B1 (en) 2009-08-21

Similar Documents

Publication Publication Date Title
JP5551063B2 (en) Method and apparatus for separating a mixture of hydrogen, methane and carbon monoxide by cryogenic distillation
JP3917198B2 (en) Carbon monoxide production method and production plant
SU1358794A3 (en) Method of obtaining carbon monoxide
US20110056239A1 (en) Method And Device For Cryogenically Separating A Mixture of Hydrogen And Carbon Monoxide
US5592831A (en) Process for recovering a pure carbon monoxide fraction
KR102217256B1 (en) Method and apparatus for producing carbon monoxide
US6178774B1 (en) Process and plant for the combined production of an ammonia synthesis mixture and carbon monoxide
JPH11314910A (en) Method for forming carbon monoxide and hydrogen and plant
US20140305162A1 (en) Thermally Integrated Process and Apparatus for Purification and Separation of Components of a Synthesis Gas
JPH02272289A (en) Method for separating air
WO2012097497A1 (en) Process and apparatus for production of ammonia synthesis gas and pure methane by cryogenic separation
FR3018599B1 (en) METHOD AND APPARATUS FOR CRYOGENIC SEPARATION OF A SYNTHESIS GAS CONTAINING CARBON MONOXIDE, METHANE AND HYDROGEN
CN111602020A (en) Process and plant for the cryogenic separation of synthesis gas comprising a nitrogen separation step
US20090293539A1 (en) Method And Apparatus For Producing Carbon Monoxide By Cryogenic Distillation
JP2013511697A (en) A method for separating nitrogen and carbon monoxide mixtures at cryogenic temperatures.
JP2005529222A (en) Plant unit and method for fractionating and purifying synthesis gas
CN108055839B (en) Method and apparatus for producing a mixture of carbon monoxide and hydrogen
RU2728146C2 (en) Method and apparatus for combined production of a mixture of hydrogen and nitrogen, as well as carbon monoxide using cryogenic distillation and cryogenic washing
WO2013078606A1 (en) Process and apparatus for the purification of hydrogen by cryogenic nitrogen wash and co-production of liquid methane
CN110779276B (en) For CH 4 Method and device for producing a mixture of carbon monoxide, hydrogen and methane by cryogenic separation
TW202219021A (en) Method and plant for preparing dimethyl ether
GB2464368A (en) A solvent regeneration process
CN112410081A (en) Method and device for producing carbon monoxide by partial condensation
RU2778187C2 (en) Method and device for cryogenic synthesis gas separation including separation stage
CN109952482B (en) Method and arrangement for cryogenic separation of a gas mixture by methane scrubbing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140521

R150 Certificate of patent or registration of utility model

Ref document number: 5551063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees