[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5416692B2 - 電気的分析方法 - Google Patents

電気的分析方法 Download PDF

Info

Publication number
JP5416692B2
JP5416692B2 JP2010503884A JP2010503884A JP5416692B2 JP 5416692 B2 JP5416692 B2 JP 5416692B2 JP 2010503884 A JP2010503884 A JP 2010503884A JP 2010503884 A JP2010503884 A JP 2010503884A JP 5416692 B2 JP5416692 B2 JP 5416692B2
Authority
JP
Japan
Prior art keywords
analysis method
reaction
substance
electrode
sensing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010503884A
Other languages
English (en)
Other versions
JPWO2009116534A1 (ja
Inventor
康夫 井福
長元 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LSI Medience Corp
Original Assignee
LSI Medience Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LSI Medience Corp filed Critical LSI Medience Corp
Priority to JP2010503884A priority Critical patent/JP5416692B2/ja
Publication of JPWO2009116534A1 publication Critical patent/JPWO2009116534A1/ja
Application granted granted Critical
Publication of JP5416692B2 publication Critical patent/JP5416692B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/581Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with enzyme label (including co-enzymes, co-factors, enzyme inhibitors or substrates)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/01DNA viruses
    • G01N2333/02Hepadnaviridae, e.g. hepatitis B virus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、電気的分析方法に関する。なお、本明細書における「分析」には、分析対象物質の存在の有無を判定する「検出」と、分析対象物質の量を定量的又は半定量的に決定する「測定」とが含まれる。
臨床検査のような生体試料の分析においては、微量成分を測定する場合が多いため、検出感度や精度の高い分析方法が求められている。このような分析方法としては、特異的な相互作用、例えば、抗原抗体反応や酵素−基質反応を利用することに加え、更に、電気的分析手段を組み合わせることにより高い検出感度を達成することが試みられている。
例えば、特許文献1には、イムノクロマト法と電流検出型アンペロメトリック測定法との組合せが開示されており、特許文献2には、電界効果トランジスタ又は単電子トランジスタのゲート部分にタンパク質又は酵素を付加したバイオセンサーが開示されている。これらの従来技術では、特異的相互作用により、電極又はゲート部分で形成される複合体を、直接検出することを特徴としている。
一方、特異的相互作用の代わりに、化学反応により生じる感知部への析出又は吸着を利用する方法が、非特許文献1、特許文献3、特許文献4に開示されている。
非特許文献1には、反応液中に溶解する銀イオンを還元することにより、感知部に銀を沈着させた後、それを再酸化して銀イオンが生じるときの電気化学的変化を電流の変化として検出する方法が開示されている。
特許文献3には、標識酵素としてコリンエステラーゼを結合させた標識抗体を使用し、試料中の被検物質の濃度又は量を、コリンエステラーゼの活性を測定することにより計測する方法において、前記酵素活性を、前記酵素分解物であるチオコリンを貴金属電極に吸着、濃縮し、このチオコリンの電極における還元脱離により発生する電流信号を増幅して検出する方法が開示されている。
特許文献4には、酵素標識抗体のサイクリック反応の生成物であるチオール化合物量又は生成速度を絶縁ゲート電界効果トランジスタ上に形成された金電極への吸着速度として測定する装置及び方法が開示されている。
これらの従来技術では、化学反応及び電気的検出を非流動条件で実施している。
更に、特許文献5には、生体分子の特異的結合に関与する分子を検出するバイオセンサーであって、(i)a)特異的結合反応と、b)酵素反応とを行う反応部と、(ii)反応a)およびb)によって生じた酸化還元性反応生成物と酸化還元物質膜が反応する検出部と、(iii)酸化還元反応生成物との反応による酸化還元物質膜の状態の変化を測定し、誘電率の変化を求める測定部とを含むことを特徴とするバイオセンサーが開示されている。
この従来技術は、先述の特許文献1又は2に記載の従来技術と同様に、感知部上に沈殿を生じさせるものではない。
特開2001−153838号公報 特開平10−260156号公報 特開2004−257996号公報 特開2007−263914号公報 特開2005−24483号公報 「アナリティカル・ケミストリー(Analytical chemistry)」,(米国),2005年,77巻,579-584頁
これらの従来技術が公知であるにもかかわらず、微量成分を測定するには、更に高い検出感度や精度が要求されている。本発明者は、電気的分析法における化学反応により生じる感知部への沈殿、析出、又は吸着を利用する前記の各種従来技術において、沈殿等を促進するために非流動条件で行うことが常識であった状況下において、その技術常識に反して流動条件で実施することにより、検出感度や精度を飛躍的に向上させることができることを見出した。
従って、本発明の課題は、従来公知の分析方法よりも検出感度や精度の高い分析方法を提供することにある。
本発明は、
[1](a)少なくとも、分析対象物質と、前記分析対象物質と選択的相互作用を示す特異的パートナーとを反応させ、被検試料中の分析対象物質の存在量に相関させて、不溶化反応を実施することによって、可溶性物質を不溶性物質に変換し、感知部に沈殿させる工程、
(b)前記感知部に沈殿させた不溶性物質を電気的に分析する工程
を含み、
前記工程(a)又は工程(b)の少なくとも1つの工程を流動的条件下で実施する
ことを特徴とする、分析方法、
[2]前記特異的パートナーが酵素である、[1]の分析方法、
[3]前記工程(a)が、
(1)披検試料中の分析対象物質の存在量に相関させて、分析対象物質と、前記分析対象物質と選択的相互作用を示す特異的パートナーと、標識物質とを含む複合体を形成させる工程、及び
(2)形成された前記複合体に含まれる標識物質により直接的又は間接的に引き起こされる不溶化反応によって、可溶性物質を不溶性物質に変換し、感知部に沈殿させる工程
を含み、
前記工程(2)又は工程(b)の少なくとも1つの工程を流動的条件下で実施する、[1]の分析方法、
[4]前記標識物質が加水分解酵素である、[3]の分析方法、
[5]前記加水分解酵素がアルカリフォスファターゼである、[4]の分析方法、
[6]前記不溶化反応が酸化還元反応である、[1]〜[5]の分析方法、
[7]前記可溶性物質が、無機イオン、有機イオン、酵素基質又はその反応生成物、色素から選ばれる、[1]〜[6]の分析方法、
[8]前記可溶性物質が金属イオンである、[7]の分析方法、
[9]前記金属イオンが銀イオンである、[8]の分析方法、
[10]前記感知部が、金属、高分子、カーボン、ナノチューブ状構造体、グラファイト、無機物質を単独もしくは組み合わせで構成される、[1]〜[9]の分析方法、
[11]前記感知部が少なくとも一つ以上の鋭角状の立体構造を有する、[1]〜[10]の分析方法、
[12]前記感知部に前記特異的パートナーが固定されている、[1]〜[11]の分析方法、
[13]前記流動条件が、強制的流動もしくは自発的流動である、[1]〜[12]の分析方法、
[14]前記電気的に分析する工程を含む分析方法が、アンペロメトリック型分析法である、[1]〜[13]の分析方法、
[15][1]〜[14]の分析方法に用いる感知部であって、少なくとも一つ以上の鋭角状の立体構造を有する感知部、
[16]前記分析方法に用いることを特徴とする、分析対象物を測定するための試薬及びキットであって、前記分析対象物と選択的相互作用を示す特異的パートナー、及び、不溶化反応により不溶性物質に変換される可溶性物質、少なくとも一つの前記感知部を含む試薬及びキット、
[17]前記感知部を、感知部を有する分析用カートリッジとして含む、[16]の試薬及びキット
に関する。
本発明によれば、従来公知の分析方法よりも検出感度や精度の高い分析を実施することができる。
本発明の分析方法の一態様で利用する一連の反応を模式的に示す説明図である。 実施例1で作製した電極部を模式的に示す平面図である。 図2に示す電極部の作製に使用したマスクパターンを模式的に示す平面図である。 実施例1で作製したバイオセンサユニットを模式的に示す斜視図である。 図4に示すバイオセンサユニットの製造手順を模式的に示す説明図である。 図4に示すバイオセンサユニットを模式的に示す断面図である。 図4に示すバイオセンサユニットの内部構造を模式的に示す平面図である。 図4に示すバイオセンサユニットを、流動条件制御装置と電気化学アナライザーとに接続した状態を模式的に示す斜視図である。 HBs抗原(抗原濃度=0U/mL)のCV測定の結果を示すグラフである。 HBs抗原(抗原濃度=48U/mL)のCV測定の結果を示すグラフである。 銀イオン不在下において、HBs抗原(抗原濃度=48U/mL)のCV測定の結果を示すグラフである。 各種濃度(抗原濃度=0、24、48U/mL)のHBs抗原のCV測定における、電位+0.138Vでの酸化電流値を示すグラフである。 各種濃度(グルコース濃度=0、100、200mg/dL)のグルコースのCV測定における、電位+0.086Vでの酸化電流値を示すグラフである。 グルコース(グルコース濃度=0mg/dL)のCV測定の結果を示すグラフである。 グルコース(グルコース濃度=200mg/dL)のCV測定の結果を示すグラフである。 非流動条件において、グルコース(グルコース濃度=0mg/dL)のCV測定の結果を示すグラフである。 非流動条件において、グルコース(グルコース濃度=200mg/dL)のCV測定の結果を示すグラフである。 作用極にGODが固定化されていない電極を用いた場合の、グルコース(グルコース濃度=200mg/dL)のCV測定の結果を示すグラフである。 実施例3における条件1(工程A/工程B=流動/流動)において、HBs抗原のCV測定の結果を示すグラフである。 実施例3における条件2(工程A/工程B=動/非流動)において、HBs抗原のCV測定の結果を示すグラフである。 実施例3における条件3(工程A/工程B=非流動/非流動)において、HBs抗原のCV測定の結果を示すグラフである。 実施例4で作製した電極部保持イムノクロマトグラフストリップの構造を模式的に示す説明図である。 図22に示す電極部保持イムノクロマトグラフストリップの模式的平面図である。 図22に示す電極部保持イムノクロマトグラフストリップを構成する試薬添加プールを模式的に示す斜視図(単位:mm)である。 図24に示す試薬添加プールを模式的に示す平面図(単位:mm)である。 HBs抗原(抗原濃度=0U/mL)のCV測定の結果を示すグラフである。 HBs抗原(抗原濃度=18U/mL)のCV測定の結果を示すグラフである。 HBs抗原(抗原濃度=36U/mL)のCV測定の結果を示すグラフである。 各種濃度(抗原濃度=0、24、48U/mL)のHBs抗原のCV測定における、電位+0.132Vでの酸化電流値を示すグラフである。 実施例5で作製した電極部保持キャピラリー流路の構造を模式的に示す斜視図である。 図30に示すカーボン電極部保持キャピラリー流路を構成する試薬添加プールを模式的に示す斜視図(単位:mm)である。 図30に示す試薬添加プールを模式的に示す平面図(単位:mm)である。 カーボン電極保持キャピラリー流路での、HBs抗原(抗原濃度=0U/mL)のDPV測定の結果を示すグラフである。 カーボン電極保持キャピラリー流路での、HBs抗原(抗原濃度=0.25U/mL)のDPV測定の結果を示すグラフである。 カーボン電極保持キャピラリー流路での、HBs抗原(抗原濃度=2.5U/mL)のDPV測定の結果を示すグラフである。 各種濃度(抗原濃度=0、0.25、2.5U/mL)のHBs抗原のDPV測定における、電位+0.165Vでの酸化電流値を示すグラフである。 NaCl濃度0mmol/Lにおけるカーボン電極でのHBs抗原(抗原濃度=0U/mL)のDPV測定の結果を示すグラフである。 NaCl濃度0.5mmol/Lにおけるカーボン電極でのHBs抗原(抗原濃度=0U/mL)のDPV測定の結果を示すグラフである。 NaCl濃度1mmol/Lにおけるカーボン電極でのHBs抗原(抗原濃度=0U/mL)のDPV測定の結果を示すグラフである。 NaCl濃度2mmol/Lにおけるカーボン電極でのHBs抗原(抗原濃度=0U/mL)のDPV測定の結果を示すグラフである。 NaCl濃度0mmol/Lにおけるカーボン電極でのHBs抗原(抗原濃度=45U/mL)のDPV測定の結果を示すグラフである。 NaCl濃度0.5mmol/Lにおけるカーボン電極でのHBs抗原(抗原濃度=45U/mL)のDPV測定の結果を示すグラフである。 NaCl濃度1mmol/Lにおけるカーボン電極でのHBs抗原(抗原濃度=45U/mL)のDPV測定の結果を示すグラフである。 NaCl濃度2mmol/Lにおけるカーボン電極でのHBs抗原(抗原濃度=45U/mL)のDPV測定の結果を示すグラフである。 実施例7で作製した電極部を模式的に示す平面図である。 図45に示す電極の光学顕微鏡像である。 図45に示す電極の電子顕微鏡像である。 立体構造化電極において、HBs抗原(抗原濃度=0U/mL)のDPV測定の結果を示すグラフである。 立体構造化電極において、HBs抗原(抗原濃度=0.7U/mL)のDPV測定の結果を示すグラフである。 平面電極において、HBs抗原(抗原濃度=0U/mL)のDPV測定の結果を示すグラフである。 平面電極において、HBs抗原(抗原濃度=0.7U/mL)のDPV測定の結果を示すグラフである。
本発明は、選択的相互作用(例えば、抗原抗体反応、酵素−基質反応)と不溶化反応(好ましくは酸化還元反応)とを組み合わせて利用する分析方法において、前記不溶化反応によって最終的に産生された不溶性生成物質を感知部表面に沈殿(沈着、不溶化、析出)させ、この沈殿した不溶性物質を電気的に分析(検出又は測定)する方法であって、前記不溶化反応又は電気的分析の少なくとも1つの工程を流動的条件で実施することを特徴とする。
本発明の分析方法には、利用する選択的相互作用や不溶化反応に応じて、例えば、
(1)選択的相互作用に関与する一方のパートナーに、直接的または間接的に標識可能な標識物質により、不溶化反応が直接的又は間接的に引き起こされる方法(以下、複合体形成型分析方法と称する)、
(2)選択的相互作用それ自体により、不溶化反応が直接的又は間接的に引き起こされる方法(以下、酵素利用型分析方法と称する)
などが含まれる。なお、前記区分は、選択的相互作用により複合体を形成するか否かに基づいて大別するものであり、例えば、標識物質として酵素を用いる方法は、複合体形成型分析方法に含まれる。
本明細書において、「不溶化反応が直接的に引き起こされる」とは、標識物質又は選択的相互作用が関与する反応自体が不溶化反応であって、前記反応により不溶性物質が生じることを意味する。また、「不溶化反応が間接的に引き起こされる」とは、標識物質又は選択的相互作用が関与する反応により生成された物質がトリガーとなって、最終的に不溶化反応により不溶性物質が生じることを意味する。
以下、本発明の複合体形成型分析方法の具体的な一態様を示す図1に示す反応模式図に基づいて、本発明の概略を説明した後、本発明について更に詳細に説明する。
図1に示す分析系では、抗原3を分析対象物質とし、選択的相互作用として抗原抗体反応(サンドイッチ法)を利用し、試薬の1つとして、前記抗原に特異的に反応する抗体を酵素[例えば、アルカリホスファターゼ(ALP)]で標識したALP標識抗体4を使用する。
また、この分析系では、標識酵素による酵素反応として、以下に示す反応式1を利用し、不溶化反応として、反応式2を利用する。なお、図1において、pAPPはp−アミノフェニルホスフェート、pAPはp−アミノフェノールを、pQIはp−キノンイミンを、それぞれ、意味し、pAPPはALPの基質である。また、反応式1における「(ALP)」は、ALPが反応式1の触媒として関与することを示す。
更に、電気的分析法として、作用極1、対極、及び参照極を備えた電極部を用いるアンペロメトリック型分析法を使用する。
p−アミノフェニルホスフェート→p−アミノフェノール (ALP) (反応式1)
p−アミノフェノール+2Ag→p−キノンイミン+2H+2Ag↓ (反応式2)
Ag→Ag+e (反応式3)
図1に示す分析系では、アンペロメトリック型電極部を構成する作用極1に、分析対象物質(抗原)に対する抗体2が予め固定化されており、前記作用極が感知部として機能する。分析対象物質(抗原3)が含まれる被検試料と、ALP標識抗体4とを、矢印Aで示す流れ方向に沿って、前記感知部の上流から分析系に供給すると、感知部上において、固定化抗体/抗原/ALP標識抗体の複合体が形成される。前記複合体の形成量は、披検試料中の分析対象物質の存在量に相関する。前記複合体が形成された後、あるいは、形成と同時に、標識酵素ALPの基質であるp−アミノフェニルホスフェート(pAPP)を、前記感知部の上流から分析系に供給すると、p−アミノフェノール(pAP)に変換され(反応式1)、このとき、銀イオン(Ag、水溶性)を共存させておくと、銀(Ag、水不溶性)が析出し(反応式2)、感知部上に沈殿する。感知部(作用極)上に沈殿した銀の量は、感知部上で再酸化することにより、作用極から対極へ電流が流れる(反応式3)ため、その酸化電流を測定することにより決定することができる。具体的には、作用極、対極、参照極をポテンショスタットに接続し、参照極電位に対し、作用極電位を掃引し、銀の再酸化に伴い発生する酸化電流を測定する。
本発明で利用することのできる選択的相互作用は、一方が分析対象物質となることができる相互作用であって、被検試料中の分析対象存在量に相関して、直接的又は間接的に不溶化反応を実施することができるか、あるいは、複合体を形成することができる限り、特に限定されるものではなく、代表的なものとしては、例えば、抗原抗体反応、核酸間ハイブリダイゼーション反応、酵素−基質反応、核酸−タンパク質間相互作用、レセプタ−リガンド間相互作用、タンパク質間相互作用(例えば、IgGとプロテインAとの反応)、低分子−タンパク質間相互作用(例えば、ビオチンとアビジンとの反応)を挙げることができる。これらの選択相互作用の多くは、複合体(例えば、免疫複合体)を形成することのできる選択的相互作用であるが、前記酵素−基質反応では、被検試料中の分析対象存在量に相関した不溶化反応、あるいは、不溶化反応のトリガーとなる反応が可能である。
また、前記相互作用以外にも、選択的相互作用を示す特異的パートナーが存在する種々の物質が公知であり、分析対象物質としては、例えば、タンパク質(酵素、抗原/抗体、レクチン等)、ペプチド、脂質、ホルモン(アミン、アミノ酸誘導体、ペプチド、タンパク質等からなる含窒素ホルモン、及びステロイドホルモン)、核酸、糖鎖(例えば、糖、オリゴ糖、多糖等)、薬物、色素、低分子化合物、有機物質、無機物質、若しくはこれらの融合体、又は、ウィルス若しくは細胞を構成する分子、血球などが挙げられる。
例えば、選択的相互作用として抗原抗体反応を利用する場合には、分析対象物質とその特異的パートナーとの組合せは、抗原(分析対象物質)と抗体(特異的パートナー)との組合せ、あるいは、抗体(分析対象物質)と抗原(特異的パートナー)との組合せとなる。また、選択的相互作用として酵素−基質反応を利用する場合には、分析対象物質とその特異的パートナーとの組合せは、基質(分析対象物質)と酵素(特異的パートナー)との組合せ、あるいは、酵素(分析対象物質)と基質(特異的パートナー)との組合せとなる。
前記分析対象物質を含有する被検材料としては、血液(全血、血漿、血清)、リンパ液、唾液、尿、大便、汗、粘液、涙、随液、鼻汁、頸部又は膣の分泌液、精液、胸膜液、羊水、腹水、中耳液、関節液、胃吸引液、組織・細胞等の抽出液や破砕液等の生体液の他、食品、土壌、植物の抽出液や破砕液等の溶液や、河水、温泉水、飲料水、汚染水等を含むほとんど全ての液体試料が用いられる。
標識化を含めた試薬構成は、その利用する選択的相互作用に基づいて、適宜選択することができ、例えば、抗原抗体反応を利用する場合には、各種公知方法、例えば、サンドイッチ法、二段階法、競合法、阻害法等を利用することができる。サンドイッチ法の場合には、図1に示すように、固定化パートナーと標識パートナーの組合せを用いることができる。二段階法の場合には、固定化パートナー、未標識パートナー、前記未標識パートナーにのみ特異的に反応する物質の標識化物の組合せ、具体的には、一次抗体/標識化二次抗体を用いる方法、ビオチン化抗体/標識化アビジンを用いる方法などを用いることができる。競合法の場合には、分析対象物質(標準物質)の標識化物(既知量)と固定化パートナーの組合せを用いることができる。
本発明で用いる可溶性物質は、不溶化反応を受ける前には分析系に使用する溶媒において可溶性を示し、前記不溶化反応を受けることにより前記溶媒において不溶性を示す物質に変換される物質であって、更に、前記不溶化反応により生成された前記不溶性物質が電気的に分析可能である限り、特に限定されるものではない。なお、本明細書において「不溶化反応」とは、可溶性物質から「不溶化反応」により、溶解度の低い物質を生成する反応を含む。また、本明細書において「可溶性」及び「不溶性」とは、分析系に使用する溶媒系によって適宜定義可能な用語であって、例えば、水系溶媒を用いる場合には「水溶性」及び「水不溶性」を意味し、有機溶媒を用いる場合には「有機溶媒可溶性」及び「有機溶媒不溶性」を意味する。以下、水系溶媒を用いる場合(すなわち、不溶化反応により、水溶性物質を水不溶性物質に変換する系を利用する場合)を例にとって主に説明するが、水以外の溶媒を用いる場合も、当業者であれば、適宜必要な変更を行うことによって、本発明を実施可能である。
本発明で用いる水溶性物質としては、不溶化反応を受ける前には分析系に使用する水系溶媒において可溶性を示し、前記不溶化反応を受けることにより前記水系溶媒において不溶性を示す物質に変換される物質である限り、特に限定されるものではなく、例えば、無機イオン(好ましくは金属イオン)、有機イオン、酵素基質又はその反応生成物、色素などを挙げることができる。
前記金属イオンとしては、例えば、アンチモンイオン、ビスマスイオン、銅イオン、水銀イオン、銀イオン、パラジウムイオン、白金イオン、金イオンを挙げることができる。これらの金属イオンは、水性溶媒において水溶性であり、金属錯体(好ましくは金属錯イオン)状態でも良く、不溶化反応により、金属として析出する。
また、金属イオンとして、2価陽イオン(例えば、銅イオン、ニッケルイオン、鉄イオン)を用いることができる。これらの2価陽イオンは、水性溶媒において水溶性であり、[Fe(CN)3−イオン(例えば、[Fe(CN)4−イオンの酸化により生じる[Fe(CN)3−イオン)と結合すると、金属複合体MH[Fe(CN)](M:2価陽イオン)として析出する。
なお、金属イオンが、還元され不溶化(析出)する反応は、それぞれの物質のもつ酸化還元電位の大小に依存する。所謂、イオン化傾向が小さいほど、金属として析出しやすくなるため、前記反応に限定されるものではない。また、析出のしやすさはイオンの溶液中での電気化学活量など、他の因子(温度、pH、イオン強度、反応液組成など)にも大きく影響されるため、本明細書で言う析出される金属とは最も広義に解釈すべきであり、いずれの意味においても限定的に解釈してはならない。例えば、金属イオンと不溶性塩を形成するイオンを不溶化反応時に共存させることにより、不溶化の度合いをコントロールすることもできる。また、不溶性塩を形成するイオンを不溶化反応時に共存させず、金属として不溶化させて析出させた方が、好ましい場合もある。不溶化反応時の不溶性塩を形成するイオンの存在量は、当業者であれば適宜好適な条件を決定することができる。好適な条件は、0〜5mmol/L以下、好ましくは0〜2mmol/L、より好ましくは0〜1mmol/L、さらに好ましくは0〜0.5mmol/Lの範囲で決定することができる。更に、析出させる物質としては、金属イオンに限らず、上記の条件を満たす物質であれば、好適に用いることができる。
水溶性物質として使用することのできる色素としては、例えば、シッフ(Schiff)試薬、アニリンを挙げることができる。シッフ試薬は、水性溶媒において水溶性であり、2分子のアルデヒド基(例えば、カルボキシル基の還元により生じるアルデヒド基)がシッフ試薬1分子と結合して、還元反応により、赤紫色の化合物として析出する。また、アニリンは、水性溶媒において水溶性であり、酸化反応により、ポリアニリンとして析出する。
また、前記水溶性色素として、例えば、5−ブロモ−4クロロ−3−ヒドロキシインドール(5-bromo-4-chloro-3-hydroxyindole)(BCI)、ニトロブルーテトラゾリウムクロライド(Nitro Blue Tetrazolium chloride)(NBT)、インドールを挙げることができ、還元反応により、不溶性物質である、5,5’−ジブロモ−4,4’ジクロロ−インディゴ(5,5'-dibromo-4,4'-dichloro-indigo)(2BCI)、BCI/ニトロブルーテトラゾリウムジホルマザン(NBT Diformazan)、インディゴとして析出する。前記色素は、例えば、標識酵素(例えば、アルカリホスファターゼ;ALP)による酵素反応により、適当な酵素基質、例えば、5−ブロモ−4クロロ−3−インドリルホスフェート(5-bromo-4-chloro-3-indolyl phosphate)(BCIP)、3−インドキシルホスフェートから生成させることができる。従って、前記のBCI、インドールは、酵素基質の反応生成物でもある。
例えば、酵素基質BCIPを用いる場合には、ALPが関与する酵素反応によりBCIが形成され、還元反応により2BCIが析出する。また、酵素基質BCIPと色素NBTとの混合物を用いる場合には、ALPの酵素反応により2BCIが生じると共に、還元反応によりNBTジホルマザンが生じ、その複合体である2BCI/NBTジホルマザンが析出する。また、酵素基質3−インドキシルホスフェートを用いる場合には、ALPの酵素反応によりインドールが形成され、還元反応によりインディゴとして析出する。
これらの例では、標識物質として使用するALPが関与する酵素反応によって、それに続く不溶化反応が引き起こされ、その結果、水溶性物質が水不溶性物質に変換される。本発明には、標識物質が引き金となって間接的に不溶化反応が引き起こされる態様と、標識物質により直接的に不溶化反応が引き起こされる態様とが含まれる。
水溶性物質として使用することのできる酵素基質としては、先述のpAPP(又はその誘導体)に加え、チオコリンのエステル誘導体、例えば、アセチルチオコリン、プロピオニルチオコリン、スクシニルビスチオコリン、ブチリルチオコリンが挙げられる。チオコリンのエステル誘導体を前記金属イオン(例えば、金、銀等)と併用すると、適当な標識酵素(例えば、コリンエステラーゼ、より具体的には、アセチルコリンエステラーゼ、アシルコリンエステラーゼ等)による酵素反応により、金属イオンが還元されて金属として析出する。また、前記酵素反応によりチオコリンが生成し、析出した前記金属の一部に、チオコリンのチオール基が結合することにより、金属−チオコリン複合体としても析出する。更に、生成したチオコリンは、基板又は電極を形成する金属(例えば、金基板又は金電極)に対しても、チオール基を介して結合することにより析出する。酵素基質アセチルチオコリン又はプロピオニルチオコリンに対しては、標識酵素アセチルコリンエステラーゼを、酵素基質スクシニルビスチオコリン又はブチリルチオコリンに対しては、標識酵素アシルコリンエステラーゼを用いることができる。
また、水溶性物質として、アリールジアゾニウム塩、例えば、R−Ph−NBF等を使用することができる。アリールジアゾニウム塩を使用する場合、還元反応により、化学的活性に富んだ活性ラジカルが生じ、種々の感知部、好ましくは、カーボン、グラファイト、カーボンナノチューブを用いた検知部に共有結合にて結合させることができる。
以上、本発明の分析方法(複合体形成型分析方法と酵素利用型分析方法の両方を含む)で用いることのできる可溶性物質(特に水溶性物質)について説明したが、本発明の複合体形成型分析方法では、用いる可溶性物質、反応系に応じて、標識物質を適宜選択することができる。例えば、先述したALP又はコリンエステラーゼ等の加水分解酵素に加え、転移酵素、リアーゼ、リガーゼ、イソメラーゼ、酸化還元酵素等が用いられ、酸化還元酵素としては、例えば、グルコースオキシダーゼ(GOD)、ペルオキシダーゼ、キサンチンオキシダーゼ、アミノ酸オキシダーゼ、アスコルビン酸オキシダーゼ、アシル−CoAオキシダーゼ、コレステロールオキシダーゼ、ガラクトースオキシダーゼ、シュウ酸オキシダーゼ、ザルコシンオキシダーゼ等を用いることができる。これらの酵素は、直接的又は間接的に不溶化反応[例えば、酸化反応、還元反応、加水分解反応、脱水反応、付加重合、縮合重合(縮重合)、中和反応]を引き起こすことができ、前記不溶化反応により、可溶性物質を不溶性物質に変換し、固体表面へ析出、結合、沈着等により吸着・沈積する反応を引き起こす酵素である限り、特に限定されるものではなく、1種類の酵素を単独で、あるいは、2種類以上の酵素を組み合わせて用いることができる。
また、これらの酵素以外にも、各種還元剤又は酸化剤を用いることもできる。
一方、本発明の酵素利用型分析方法で用いることのできる酵素としては、酵素又は酵素基質のいずれか一方が分析対象物質である酵素を用いることができ、例えば、複合体形成型分析方法において使用可能な上記酵素から1つ以上を選択することができる。
本発明で用いる電気的分析方法は、感知部表面に沈殿した不溶性物質を電気的に分析する限り、特に限定されるものではない。本明細書において「電気的に分析する」とは、感知部表面における電荷の変化を電流の変化として捉える分析、感知部表面における電荷の変化を電圧(電位)の変化として捉える分析、感知部表面の電気的抵抗(又はインピーダンス)の変化として捉える分析などが含まれる。本発明で用いる電気的分析方法としては、例えば、作用極と対極とを少なくとも備えた電極を利用するアンペロメトリック型分析法、トランジスタを利用するボルタノメトリック型測定法を挙げることができる。
前記アンペロメトリック型分析法では、感知部表面での電荷の変化を電流の変化として捉える。アンペロメトリック型電極は、基板上に少なくとも作用極と対極を有し、必要に応じて参照極を含む。アンペロメトリック型分析法は、電極部近傍で発生した電極活性物質又は抵抗性物質(絶縁性物質)を作用極と対極間に所定電圧を印加することにより、両極間に流れる前記電極活性物質又は抵抗性物質(絶縁性物質)の量に対応した電流信号を測定したり、電極部近傍で発生した電極活性物質又は抵抗性物質(絶縁性物質)の違いを作用極と対極間の印加電圧値で区別する方法である。
例えば、水溶性物質として金属イオンを使用する場合、金属が沈殿した感知部に、参照極に対して電圧を印加することにより、感知部に沈着させた金属を金属イオンに再酸化し、感知部における電気化学的変化を電流の変化として検出することができる。
また、電流の変化を捉える方法としては、電流測定の他、サイクリックボルタノメトリー、微分パルスボルタノメトリー、クロノアンペロメトリー、微分パルスアンペロメトリー等、広く知られた方法を用いることができる。
前記ボルタノメトリック型分析法では、感知部表面での電荷の変化を電圧(電位)変化として捉える。ボルタノメトリック型分析法に利用されるトランジスタは、ゲートに入力される電圧信号を、ソース電極あるいはドレイン電極から出力される電流信号に変換する素子であり、ソース電極とドレイン電極との間に電圧を加えると、両者の間に形成されたチャネルに存在する荷電粒子がソース電極とドレイン電極との間を電界方向に沿って移動し、ソース電極あるいはドレイン電極から電流信号として出力される。この際、出力される電流信号の強さは荷電粒子の密度に比例する。絶縁体を介してチャネルの上方、側面、あるいは下方などに設置したゲートに電圧を加えると、チャネルに存在する荷電粒子の密度が変化するため、これを利用して、ゲート電圧を変化させることにより電流信号を変化させることができる。
例えば、水溶性物質としてアセチルチオコリンを使用する場合は、アセチルコリンエステラーゼにより感知部に沈着させたチオコリンによる感知部における電荷の変化を、電圧(電位)変化として検出することができる。
感知部の好ましい態様としては、前記感知部が導電性の場合、導電性物質であれば良く、金、銀、白金、ロジウム、ルテニウム、イリジウム、水銀、パラジウム等の金属やオスミウムポリマー等の高分子、カーボン、ナノチューブ状構造体(カーボンナノチューブ)、グラファイト、無機物質を単独もしくは組み合わせて用いても良い。また、前記物質で構成される物質の形状は、反応を阻害しない限り何でも良く、平面・凹凸・粒子(金コロイド等)状物質等を含んでも良い。
前記ナノチューブ状構造体の好ましい態様としては、カーボンナノチューブ、ボロンナイトライドナノチューブ、チタニアナノチューブよりなる群から選ばれる構造体である。
また、感知部が導電性を有しているかぎり、感知部の構成に、上記導電性物質と共に非導電性物質を加えても良い。非導電性物質としては、ポリエステル系樹脂等の不溶性担体等が挙げられる。
感知部の好ましい別の態様としては、感知部がナノチューブ状構造体(カーボンナノチューブ)を用いた電界効果トランジスタ若しくは単電子トランジスタのゲート電極であることが好ましく、ナノチューブ状構造体がカーボンナノチューブ、ボロンナイトライドナノチューブ、チタニアナノチューブよりなる群から選ばれる構造体であることが好ましい。
感知部の別の好ましい態様としては、感知部の表面積を増大させるため、イムノクロマト等に使用されるニトロセルロース膜のような多孔質担体や国際公開第WO2006/038456号パンフレット記載の高分子ポリマーやラテックス担体等の不溶性担体(あるいは不溶性粒子)を使用しても良く、更に、これらと共に導電性ポリマーや導電性担体等の導電性物質を用いて3次元体を感知部の表面に形成させても良い。これら感知部表面が3次元体を形成することにより、感知部の表面積が著しく増大し、検出感度を高めることができる。
また、前記感知部の別の好ましい形状としては、流動的条件下における感知部での生成物質の沈殿(沈着、不溶化、析出)効率を向上させるために、感知部をウエル状、凹凸、凸状、仕切り等を設けることにより、流動的条件下での沈着(不溶化、析出、堆積)した生成物質の流れ方向(例えば、下流)への流出を防ぐこともできる。また、これらの構造物を設けることにより、沈殿された生成物質の反応性を高める効果も期待できる。前記構造物は、感知部のみに形成されても良いし、あるいは、電極部やバイオセンサユニットに形成され、その一部が感知部に存在するように形成されても良い。
具体的には、鋭角な立体構造を有する形状が好ましく、多面体・多角柱・球・円柱・錐体等が挙げられ、特に、錐状が好ましい。感知部に、少なくとも一つ以上の鋭角な部位若しくは突起を含む立体構造が形成されていれば良いが、複数の立体構造が形成されている方が好ましい。立体構造の個数や大きさ、あるいは鋭角形状の個数、およびそれらの形状や配置は、測定条件に合わせて好適なものを選択することができる。鋭角であるとは、感知部に形成される立体構造の一部又は全体が、端部効果(端効果、縁端効果)を示す構造であれば良い。端部効果とは電気めっき等の分野で広く知られた効果であり、鋭角端において、電荷が集中する効果であり、本効果により、例えば生成物質(不溶性物質)である銀等の金属が、再度、積極的に金属イオン化され、検出感度を高めることができると推測される。
分析対象物質と特異的パートナーとの選択的相互作用反応は、特異的パートナーが固定化されている場所で行われる。前記特異的バートナーが固定化されている場所は、選択的相互作用が行われ、その後、電気的測定を行うことができれば制限はないが、好ましくは、感知部表面であると良い。
また、前記特異的パートナーの固定化法は、直接的に固定するもの、あるいは間接的に固定するものなどの制限は無く、選択的相互作用反応の性質に合わせて、任意の方法を使用することができる。例えば、基板に直接的に物理吸着や共有結合で結合させても良いし、あらかじめ基板にアンカー部を有するフレキシブルスペーサーを解して間接的に結合させても良い。また、例えば、基板に金等の貴金属を用いた場合、自己組織化膜を介して、結合させても良い。
また、該特異的パートナーを固定化した後、牛血清アルブミン、ポリエチレンオキシドまたは他の不活性分子により表面を処理したり、特定物質の固定化層の上に付着層で被覆することにより非特異的反応を抑制したり、透過することのできる物質を選択したり、制御したりすることもできる。
本発明の酵素利用型分析方法では、選択的相互作用に基づく不溶化反応工程(a)、及び電気的分析工程(b)を実施する。また、本発明の複合体形成型分析方法では、選択的相互作用に基づく複合体の形成工程(a1)、前記複合体に含まれる標識物質に基づく不溶化反応工程(a2)、及び電気的分析工程(b)を実施する。これらの工程の実施順序は、通常、この順に実施することが一般的であるが、披検試料中の分析対象物質の存在量に相関する電気的信号を得ることができる限り、隣接する工程(またはその一部)を同時に実施することもできる。また、本発明では、前記工程の内、不溶化反応工程又は電気的分析工程の少なくとも1つの工程を流動的条件下で実施する。
本明細書において「流動的条件下」とは、所望の反応部の界面への新鮮な反応用液の反応系への供給と、反応後の反応液の排出とを、同時に、且つ、連続的又は断続的に、当該工程の全期間に亘って継続的に実施することを意味する。好ましくは、「流動的条件下」にある該反応部が、工程(a)又は工程(a2)が行われる不溶化反応部、又は/及び、工程(b)が行われる感知部であれば良い。また、流動する方向は一方向に限らず、さらに、所望の反応を進めるため、所望の工程において、往復や振動あるいは対流を生じさせることもできる。
例えば、バッチ法では、反応用液の所望の量を一度に供給した後、所望の反応を所定時間行い、反応終了後、反応液を排出するが、本発明方法では、反応用液の供給と反応液の排出とが同時に進行する。なお、本発明方法では、所望工程の全期間に亘って、連続的に前記供給及び排出を同時実施することが一般的であるが、本発明の効果が充分に得られる限り、前記供給及び排出の同時実施を断続的に行う(すなわち、供給及び排出の一時停止を伴う)こともできる。
前記流動には、強制的流動と自発的流動の両方が含まれ、強制的流動の例としては、機械的、電気的、手動的な方法による、ポンプ、遠心、攪拌、ソニック、磁気等あるいは、押圧による、加圧や吸引や振動を利用する流動を挙げることができ、自発的流動の例としては、毛細管作用や自然落下などの自発的な流動を挙げることができる。これらは、マイクロ加工されたフローやラテラルフローやキャピラリーフロー又はフロースルーの流路においても使用できるし、イムノクロマト法等のメンブレンストリップにおいても使用することができる。
本発明における流動的条件下における流速は、生成した不溶性物質が感知部上に沈殿することができる速度であって、且つ、流動的(静置状態以外)であれば、特に限定されるものではない。前記流速は、各種条件、例えば、利用する選択的相互作用若しくは不溶化反応、使用する標識物質、可溶性物質、若しくは酸化還元性物質、流路サイズ、使用する電気的分析方法などによって変動するが、当業者であれば、例えば、後述の実施例に記載した手順に従って、簡単な予備実験を行うことにより、過度の試行錯誤を必要とすることなく、適宜決定することができる。
[発明が解決しようとする課題]欄で先述したとおり、化学反応により生じる感知部への沈殿、析出、又は吸着を利用する各種従来技術において、非流動条件で行うことは、沈殿等を促進する観点から、本願出願時の技術常識であった。その技術常識に反して、本発明において、流動的条件下で実施することにより、非流動的条件下と比較して、検出感度や精度を飛躍的に高めることができる理由は、現時点では必ずしも判明していないが、本発明者は以下の機構を推測している。なお、本発明は、以下の推測に限定されるものではない。
例えば、図1に示す反応のように、水溶性物質として銀イオンを利用した場合、酵素基質及び銀イオンが酸化還元反応時に消費される。非流動的条件下に比べ、流動的条件下では、新たな酵素基質及び銀イオンが供給されるため、感度が上昇すると推測される。また、析出した銀を銀イオンに再酸化する際、感知部付近に発生した銀イオンを流動的条件下で感知部付近から取り除くことにより、銀の再酸化反応速度を上昇させ、感度を上昇させていると推測される。更に、この2つの反応が同時に起こることにより、相乗的に感度が上昇すると推測される。
以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。
《実施例1:金電極を用いたB型肝炎表面抗原(HBs抗原)の測定》
1−1.電極部及び感知部の作製
図2に示すパターンからなる電極部を、図3に示すマスクパターンを用いて、スパッタ法とリフトオフ法により作製した。まず、ポリエチレンテレフタレート(PET)からなる絶縁性の基板11上に、金薄膜(膜厚:50nm)を形成した後、一部に銀・塩化銀インク(BAS社製)を塗布することにより、参照極16を作製した。次に、電極部12とリード部13間を仕切るため、絶縁膜17にてリード部の一部を覆うことにより、作用極14、対極15、参照極16を備えた電極部を作製した。作用極、対極、参照極の反対側の端部は、接続用コネクター18として機能する。電極部中の前記作用極は、感知部として機能する。
1−2.相互作用反応部及び不溶性反応部の作製
次に、前記電極部の作用極上に、B型肝炎表面抗原(HBs抗原)に対する抗体である抗HBsモノクローナル抗体(IgG:自社製)を含む水溶液2μLを適下し、37℃、飽和水蒸気圧下で30分間固定化させた。なお、前記抗体水溶液は、0.15mol/L NaClを含む0.1mol/Lリン酸緩衝液(pH7.4)(以下、緩衝液Aと称する)中に抗体濃度が1mg/mLとなるように調製した。その後、25℃、湿度40%の条件下で1時間乾燥させ、更に、真空デシケーター内で室温にて2時間乾燥させた後、1%カゼイン(和光純薬製)含有0.15mol/L NaClを含む0.1mol/Lトリス緩衝液(pH8.0)中に30分間振とう下、浸漬させて、未反応部をブロッキングし、更に、脱塩水を用いて基板を洗浄後、乾燥した。このようにして、特定物質として抗HBsモノクローナル抗体を作用極(感知部)上に固定化することにより、相互作用反応部かつ不溶性反応部(酸化還元反応部)を作用極上に作製した。
1−3.アルカリホスファターゼ(ALP)標識抗HBsウサギポリクローナル抗体(Fab’)溶液の作製
抗HBsウサギポリクローナル抗体(自社製)、ALP(ロシュ社製)、架橋試薬(Succinimidyl 4-[N-maleimidomethyl]-cyclohexane-1-carboxylate:PIERCE社製)を用いて、「高感度酵素免疫測定法(石川栄治:学会出版センター、1993)」記載のマレイミド・ヒンジ法に基づき、ALP標識抗HBsウサギポリクローナル抗体(Fab’)を作製した。得られた酵素標識抗体[ALP標識抗HBsウサギポリクローナル抗体(Fab’)]を緩衝液Aにて所定の濃度に調整した溶液を、ALP標識抗HBs抗体溶液とした。
1−4.銀イオン含有基質溶液の作製
2mmol/L p−アミノフェニルホスフェート(pAPP:LKT Laboratories社製)、0.125mmol/L AgNO、0.5mmol/L MgSO、0.25mmol/L MgCl、0.075mol/L NaClを含む0.05mol/Lジエタノールアミン溶液(pH9.4)を作製し、銀イオン含有基質溶液とした。
1−5.銀イオン不含基質溶液(pAPP基質溶液)の作製(対照実験用)
2mmol/L pAPP、0.5mmol/L MgSO、0.25mmol/L MgCl、0.075mol/L NaClを含む0.05mol/Lジエタノールアミン溶液(pH9.4)を作製し、pAPP基質溶液とした。
1−6.流路の作製と流動条件制御装置の構築
図4〜図7に示すバイオセンサユニットを作製した。図4〜図7に示すように、反応溶液の液入口22、液出口23としてガラス板の2ヶ所に穴(開口部)を開けたウインドー(window)21と、先に作製した抗HBsモノクローナル抗体28が固定化された電極部27を備えた基板26とを用いて、両面テープ(厚み0.64mm:3M社製)を縦長の流路の形状に切り抜くことにより作製したガスケット24を上下から挟むことにより、中空状態の流路25の作製を行い、流路内に電極部を保持させ、バイオセンサユニット31とした。
次に、バイオセンサユニット31の流路入口に、図8に示すように、溶液(試薬)サーバー34〜38、切換バルブ(EV100−105:GLサイエンス社製)32、ポンプ(PERISTALTIC PUMP P-1:旧ファルマシア社製)33をチューブにより接続し、流路出口に廃液サーバー39を接続した。これにより、流路内に試薬サーバーから各溶液(検体、試薬、緩衝液)を所定流速にて入口から出口方向へ流すことができる。
1−7.電気化学アナライザーによるHBs抗原の測定
構築したバイオセンサユニット及び流動条件制御装置を用いて、HBs抗原の測定を行った。まず、緩衝液A(試薬サーバー1)を流路に2分間送液した後、バルブを切換えることにより、HBs抗原溶液[HBs抗原(組換え品、サブタイプadw:自社製)を緩衝液Aにて所定濃度に調整した溶液](試薬サーバー2)を流路に30分間送液した。続いて、バルブを切換えることにより、ALP標識抗HBs抗体溶液(2μg/mL)(試薬サーバー3)を流路に30分間送液した後、更にバルブを切換えることにより、銀イオン含有基質溶液(試薬サーバー4)又はpAPP基質溶液(試薬サーバー5)を流路に送液し、4分後にその送液状態を維持したまま、電気化学的測定を行った。
電気化学的測定は、図8に示すように、作用極、参照極、対極の各接続用コネクター40を電気化学アナライザー(モデル832A:ALS社製)41にそれぞれ接続し、サイクリックボルタノメトリー(CV)により、銀イオン含有基質溶液又はpAPP基質溶液を送液状態のままで、参照極に対して−0.15Vと0.6Vとの間で電位を変化させることにより、電気化学的応答を測定した。
1−8.測定結果
(1)HBs抗原(測定対象化合物)の存在に基づく酸化電流の検出
HBs抗原濃度0U/mLの場合のCV測定結果を図9に、HBs抗原濃度48U/mLの場合のCV測定結果を図10に、それぞれ、示す。なお、流路への送液(すなわち、流動条件)は、全操作工程(2分間の緩衝液Aの送液から電気化学的測定まで)を通して、流速360μL/minで行った。
HBs抗原濃度が48U/mLの場合(図10)、参照極に対して+0.138Vの電位(酸化電位)にて、析出した銀の酸化反応に伴う酸化電流として、5.44μAの酸化電流が検出されたのに対し、HBs抗原濃度が0U/mLの場合(図9)、同様の酸化電流は検出されなかった。
(2)銀イオンの有無と酸化電流の検出との関係
次に、銀イオンの有無による銀の析出の効果を調べた。図11は、銀イオン含有基質溶液の代わりにpAPP基質溶液(すなわち、銀イオン不含)を用いたこと以外は、図10と同じ条件で実施したCV測定結果を示す(HBs抗原濃度48U/mL、流速360μL/min)。
図10及び図11の結果を比較すると、銀イオン含有基質溶液を用いた場合(図10)、参照極に対して+0.138Vの電位(酸化電位)にて、析出した銀の酸化反応に伴う酸化電流として、5.44μAの酸化電流が検出されるのに対し、pAPP基質溶液を用いた場合(図11)、生成物であるp−アミノフェノール(pAP)由来の酸化電流は明白には検出されなかった。このことから、流動的条件下では、生成物として銀等による析出を行うことにより、HBs抗原検出感度が著しく高めることが分かった。
(3)酸化電流に与える流速の影響
次に、流動条件(流速)の影響効果を調べるため、流速を0、200、360、1260μL/minと変化させたときの、各流速条件における、参照極に対して+0.138Vの電位での酸化電流を調べた。測定は、流速を除き、図8と同じ条件で実施した(HBs抗原濃度48U/mL)。
結果を表1に示す。表1から明らかなとおり、流速0μL/min(非流動的条件)に比べて、流動的条件下で反応性が著しく高くなることが判明した。
(4)定量性の確認
次に、HBs抗原測定における定量性を評価するために、HBs抗原濃度を0、24、48U/mLに変化させ、そのときの、参照極に対して+0.138Vの電位での酸化電流を調べた。測定は、HBs抗原濃度を除き、図10と同じ条件で実施した(流速360μL/min)。
結果を図12に示す。図12から明らかなように、酸化電流値がHBs抗原の濃度に依存して増加したことから、定量性があることが確認された。
《実施例2:グルコースオキシダーゼ(GOD)によるグルコースの測定》
2−1.電極部及び感知部の作製
実施例1の項目1−1に記載の手順に従って、電極部を作製した。電極部中の作用極は、感知部として機能する。
2−2.相互作用反応部、不溶性反応部の作製
次に、前記電極部の作用極上に、緩衝液A中に2000U/mLのGOD(ロシュ社)を含む水溶液2μLを適下し、37℃、飽和水蒸気圧下で30分間固定化させた。その後、溶媒を除去するために、25℃、湿度40%の条件下で1時間乾燥させ、更に、真空デシケーター内で室温にて2時間乾燥させた後、1%カゼイン(和光純薬製)含有0.15mol/L NaClを含む0.1mol/Lトリス緩衝液(pH8.0)中に30分間振とう下、浸漬させて、未反応部をブロッキングし、更に、脱塩水を用いて基板を洗浄後、乾燥した。このようにして、特定物質としてGODを作用極(感知部)上に固定化することにより、相互作用反応部かつ不溶性反応部を作用極上に作製した。
2−3.銀イオン含有溶液の作製
0.25mmol/L AgNO、1mmol/L MgSOを含む水溶液(pH9.0)を作製し、銀イオン含有溶液とした。
2−4.グルコース溶液の作製
0.5mmol/L MgCl、0.15mol/L NaClを含む0.1mol/Lジエタノールアミン溶液(pH9.8)に所定濃度のグルコースを含む水溶液を作製し、グルコース溶液とした。
2−5.流路の作製と流動条件制御装置の構築
抗HBsモノクローナル抗体が固定化された電極部に代えて、前記項目2−2記載のGODが固定化された電極部を備えた基板を使用すること以外は、実施例1の項目1−6に記載の手順に従って、流路の作製と流動条件制御装置の構築を行った。
2−6.電気化学アナライザーによるグルコースの測定
構築したバイオセンサユニット及び流動条件制御装置を用いて、グルコースの測定を行った。まず、緩衝液A(試薬サーバー1)を流路に2分間送液した後、バルブを切換えることにより、銀イオン含有溶液/グルコース溶液の混合溶液(試薬サーバー2)を流路に流速1.26mL/minで送液し、5分後にその送液状態を維持したまま、電気化学測定を行った。なお、前記混合溶液は、バルブ切換え直前に、銀イオン含有溶液と所定濃度に調整されたグルコース溶液とを1:1に混合することにより調製したものを使用した。
電気化学的測定は、作用極、参照極、対極の各接続用コネクターを電気化学アナライザー(モデル832A:ALS社製)にそれぞれ接続し、サイクリックボルタノメトリー(CV)により、混合溶液を送液状態のままで、参照極に対して−0.15Vと0.6Vとの間で電位を変化させることにより、電気化学的応答を測定した。
2−7.測定結果
(1)グルコース濃度に依存する酸化電流の検出
混合溶液中に含有されるグルコース濃度を0、100、200mg/dLに変化させ、CV測定を実施した。参照極に対して+0.086Vの電位での、析出した銀の酸化反応に伴う酸化電流を図13に示す。また、その結果の内、混合溶液中に含有されるグルコース濃度が0mg/dL(すなわち、グルコース不含)の場合のCV測定結果を図14に、グルコース濃度200mg/dLの場合のCV測定結果を図15に、それぞれ、示す。
図14及び図15を比較すると、グルコース濃度が200mg/dLの場合(図15)、参照極に対して+0.086Vの電位(酸化電位)にて、析出した銀の酸化反応に伴う酸化電流として、4.24μAの酸化電流が検出されるのに対し、グルコース濃度が0mg/dLの場合(図14)、同様の酸化電流は検出されなかった。また、図13に示すとおり、定量性があることが確認された。
(2)酸化電流に与える流速の影響
次に、流動的条件(流速)の影響や効果を調べるため、流速が0mL/min(静置:非流動条件)で、混合溶液中に含有されるグルコース濃度が0mg/dL及び200mg/dLにおける酸化電流を測定した。参照極に対して−0.15Vと0.4Vとの間で電位を変化させることにより、CV測定を実施した。混合溶液中に含有されるグルコース濃度が0mg/dL(グルコース不含)の場合のCV測定結果を図16に、グルコース濃度200mg/dLの場合のCV測定結果を図17に示す。図16と図17との間には、グルコース濃度が変化したことによる酸化電流の変化は検出されなかった。この結果から、図15に示したように、流動的条件下では、グルコース濃度200mg/dLの場合、酸化電流が検出されたのに対し、流速を0mL/min(静置:非流動条件)の場合(図16及び図17)は、同様の酸化電流は検出されなかったことから、流動的条件下において、銀等による生成物として析出を行うことにより、グルコース測定感度が著しく高められることがわかった。
(3)非特異的還元反応の影響の確認
次に、流動的条件下における銀イオンのグルコースによる非特異的な還元反応の影響を調べるため、作用極にGODが固定化されていない電極を用いたバイオセンサユニットを用いて、前記と同様の条件で、混合溶液中に含有されるグルコース濃度が200mg/dLにおける酸化電流を測定した。CV測定結果を図18に示す。図18から明らかなとおり、本実施例で用いた流速では、銀の非特異的な析出に由来する酸化電流は検出されなかった。
《実施例3:各工程における流動的条件の影響と効果》
(1)酸化電流に与える流動的条件の影響
(A)不溶性反応(酸化還元反応)によって、可溶性物質を不溶性物質に変換し、感知部に沈殿させる工程、あるいは、(B)前記感知部に沈殿させた不溶性物質を電気的に分析する工程において、流動的条件で影響や効果を調べた。実施例1において構築したバイオセンサユニット及び流動条件制御装置を用いて、以下の3つの流動的条件における、HBs抗原の測定を行った。
まず、緩衝液A(試薬サーバー1)を流路に2分間送液した後、バルブを切換えることにより、HBs抗原溶液(HBs抗原濃度48U/mL)(試薬サーバー2)を流路に30分間送液した。続いて、バルブを切換えることにより、ALP標識抗HBs抗体溶液(2μg/mL)(試薬サーバー3)を流路に30分間送液して、HBs抗原とALP標識抗HBs抗体の複合体を形成させた。その後、更にバルブを切換えることにより、銀イオン含有基質溶液(試薬サーバー4)を流路に送液し、条件1として、流速を360μL/minで維持した後(工程A:流動)、4分後にその送液状態を維持したまま、電気化学的測定を行った(工程B:流動)。条件2として、流速を360μL/minで維持した後(工程A:流動)、4分後に流速を0μL/min(停止)して、電気化学的測定を行った(工程B:非流動)。条件3として、流速を0μL/min(停止)で維持した後(工程A:非流動)、4分後に流速を0μL/min(停止)を維持したまま、電気化学的測定を行った(工程B:非流動)。なお、電気化学的測定は上述同様、参照極に対して−0.15Vと0.4Vとの間で電位を変化させることにより測定した。これら条件1〜条件3のCV測定結果をそれぞれ図19〜図21に示す。
その結果、条件3(非流動/非流動:図21)では、酸化電流は検出されず、条件2(流動/非流動:図20)では、参照極に対して+0.137Vの電位において0.78μAの酸化電流が検出され、条件1(流動/流動:図19)では、5.08μAの酸化電流が検出された。これらの結果から、各工程の少なくとも1つ以上の工程を流動的条件下で実施する必要があり、条件3(図21)と条件2(図20)の比較から、工程Aの反応生成物を感知部に沈殿させる工程が流動的条件であることにより、HBs抗原を検出することができ、更に、条件1(図19)と条件2(図20)の比較から、工程Bの電気化学的測定時が流動的条件であることにより、HBs抗原の検出感度が著しく高くなることが分かった。
《実施例4:クロマトグラフィー(自発的流動法)によるHBs抗原の測定》
4−1.電極部及び感知部の作製
実施例1の項目1−1に記載の手順に従って、電極部を作製した。電極部中の作用極は、感知部として機能する。
4−2.相互作用反応部及び不溶性反応部の作製
実施例1の項目1−2に記載の手順に従って、相互作用反応部かつ不溶性反応部を作用極上に作製した。
4−3.各試薬溶液の作製
実施例1の項目1−3及び1−4に記載の手順に従って、各試薬溶液を作製した。
4−4.イムノクロマトグラフィーの構築
(1)ALP標識抗HBsウサギポリクローナル抗体−HBs抗原−抗HBsモノクローナル抗体複合体(ALP標識HBs複合体)固定化電極部の作製
上記項目4−2で作成した抗HBsモノクローナル抗体固定化電極部をHBs抗原溶液[HBs抗原(組換え品、サブタイプadw:自社製)を緩衝液Aにて所定濃度に調整した溶液]中に振とう下、浸漬させて、30分間反応させた後、脱塩水を用いて、電極を洗浄・風乾した。続いて、ALP標識抗HBs抗体溶液(2μg/mL)中に振とう下、浸漬させて、30分間反応させた後、脱塩水を用いて、電極を洗浄・風乾して、ALP標識HBs複合体固定化電極とした。
(2)電極部保持イムノクロマトグラフィーの構築
電極部を保持したイムノクロマトグラフストリップは、以下のように作成した。図22、図23に示すように、ニトロセルロースメンブレン(Hi-Flow 180 Unbacked:MILLIPORE社製)51を5mm×40mmのサイズに切断し、そのニトロセルロースメンブレンの一端(A端)上部に、図24、図25に示したサイズにシリコンラバーシート(厚み:5mm、SR板 SR-50:タイガースポリマー社製)を切り抜いた試薬添加プール52を配置した。また、そのニトロセルロースメンブレンの他の一端(B端)上部に、吸収パット53としてセルロースパット(CELLULOSE FIBER SAMPLE PADS:MILLIPORE社製)を10mm×30mmに切断したものを、そのニトロセルロースメンブレンと10mm重ね合わせて貼付した。続いて、ニトロセルロースメンブレンのB端からA端方向に10mm内側の位置で、メンブレンの下部に、上記項目(1)にて作製したALP標識HBs複合体固定化電極54(電極部55にALP標識HBs複合体56を固定化したもの)を電極部側がニトロセルロースメンブレンと接触するように配置し、電極部保持イムノクロマトグラフストリップの構築を行った。この電極部保持イムノクロマトグラフストリップにより、ニトロセルロースメンブレンによる毛細管現象を利用した自発的流動下での反応を電気的に測定することを可能にした。
4−5.電気化学アナライザーによるHBs抗原の測定
HBs抗原濃度を0、18、36U/mLと変化させて作製した各電極部保持イムノクロマトグラフストリップを用いて、HBs抗原の測定を行った。各電極部保持イムノクロマトグラフストリップの試薬添加プールにそれぞれ銀イオン含有基質溶液150μLを添加し、毛細管現象によりこの溶液をB端側に移動させ、6分後にその状態にて電気化学的測定を行った。
電気化学的測定は、作用極、参照極、対極の各接続用コネクターを電気化学アナライザー(モデル832A:ALS社製)にそれぞれ接続し、サイクリックボルタノメトリー(CV)により、参照極に対して−0.15Vと0.4Vとの間で電位を変化させることにより、電気化学的応答を測定した。
4−6.測定結果
(1)HBs抗原の存在に基づく酸化電流の検出
HBs抗原濃度が0、18、36U/mLの場合のCV測定結果を図26〜図28に、それぞれ示した。HBs抗原濃度が0U/mLの場合は、シグナルが検出されず、18U/mLの場合は、参照極に対して+0.132Vの電位での酸化電流値は4.27μAであり、36U/mLの場合は、参照極に対して+0.124Vの電位での酸化電流値は11.2μAであった。更に、参照極に対して+0.132Vの電位での酸化電流の測定結果を図29に示す。図29から明らかなように、酸化電流値がHBs抗原の濃度に依存して増加したことから、定量的に測定可能であることが確認された。
《実施例5:カーボン電極を用いたB型肝炎表面抗原(HBs抗原)の測定》
5−1.電極部及び感知部の作製
図2に示すパターンからなる電極部を、図3に示すステンレス鋼製マスクパターンを用いて、印刷法より作製した。まず、ポリエチレンテレフタレート(PET)からなる絶縁性の基板11上に、導電性カーボンペースト(アサヒ化学研究所FTU−20)にて電極構造を印刷形成した後、一部に銀・塩化銀インク(BAS社製)を塗布し、120℃にて10分間加熱することすることにより、電極部12および参照極16を作製した(以下、カーボン電極と称することがある)。作用極、対極、参照極の反対側の端部は、接続用コネクター18として機能する。電極部中の前記作用極は、感知部として機能する。
5−2.相互作用反応部及び不溶性反応部の作製
実施例1−2に記載の手順に従い、相互作用反応部および不溶性反応部を作製した。
5−3.アルカリホスファターゼ(ALP)標識抗HBsウサギポリクローナル抗体(Fab’)溶液の作製
実施例1−3記載の手順に従い、アルカリホスファターゼ(ALP)標識抗HBsウサギポリクローナル抗体(Fab’)溶液を作製した。
5−4.銀イオン含有基質溶液の作製
2mmol/L p−アミノフェニルホスフェート(pAPP:Universal sensors社製)、0.125mmol/L AgNO、1mmol/L MgSOを含む0.04mol/Lジエタノールアミン溶液(pH9.4)を作製し、銀イオン含有基質溶液とした。
5−5.洗浄液の作製
1mmol/L MgSOを含む0.04mol/Lジエタノールアミン溶液(pH9.4)を作製し、洗浄液とした。
5−6.カーボン電極部保持キャピラリー流路の構築
図30に示すように電極部を保持したキャピラリーフローユニットを作製した。
図30に示すようにカーボン電極を形成したPET基板11上に、平行に配置した両面テープ62(3M社製 ScotchST416)によりPET基板63を貼り付けて流路を作製した。さらに流路の一端(A)に形成した開口部64a上に、図31及び図32に示す構造のシリコンラバーシート(厚み5mm、SR板:SR-50:タイガースポリマー社製)製の試薬添加プール64を配置した。また、他の一端(B)には吸収パット65として、セルロースパット(CELLULOSE FIBER SAMPLE PADS:MILLIPORE社製)を10mmx150mmに切断したものを、流路開口部と密着するように配置し、カーボン電極部保持キャピラリー流路の構築を行った。
5−7.電気化学アナライザーによるHBs抗原の測定
構築したカーボン電極部保持キャピラリー流路を用いてHBs抗原の測定を行った。抗原溶液49.17μL[HBs抗原をヒト血清で所定濃度に調整した溶液]にALP標識抗HBs抗体溶液(120μg/mL)0.83μLを添加してA端側(試薬添加プール側)より流路に注入した。続いて洗浄液750μLを試薬添加プールに添加し、毛細管現象によりB端側に移動させた。洗浄液の全量が試薬プールから流路に流入した時点で銀イオン含有基質溶液500μLを試薬プールに添加し、毛細管現象によりB端側に移動させ、2分後にその状態にて電気化学的測定を行った。
電気化学的測定は、作用極、参照極、対極の各接続用コネクターを電気化学アナライザー(モデル832A:ALS社製)にそれぞれ接続し、微分パルスボルタノメトリー(DPV)により、参照極に対して−0.4Vと0.4Vとの間で、電位増加分0.005V、振幅0.05V、パルス幅0.1秒、パルス期間0.2秒にて電位を変化させることにより、電気化学的応答を測定した。
5−8.測定結果
(1)HBs抗原の存在に基づく酸化電流の検出
HBs抗原濃度が0、0.25、2.5U/mLの場合のDPV測定結果を図33〜図35に、それぞれ示した。参照極に対して+0.165Vの電位での酸化電流値は、HBs抗原濃度が0U/mLの場合は13.74nAであり、0.25U/mLの場合は38.10nAであり、2.5U/mLの場合は218.5nAであった。またグラフ(図36)から明らかなように、酸化電流値がHBs抗原の濃度の濃度に依存して増加したことから、定量的に測定可能であることが確認された。
《実施例6:B型肝炎表面抗原(HBs抗原)の測定(NaCl添加の影響)》
6−1.電極部及び感知部の作製
実施例5の項目5−1に記載の手順に従って、電極部を作製した。電極部中の作用極は、感知部として機能する。
6−2.相互作用反応部及び不溶性反応部の作製
実施例1の項目1−2に記載の手順に従って、相互作用反応部かつ不溶性反応部を作用極上に作製した。
6−3.アルカリホスファターゼ(ALP)標識抗HBsウサギポリクローナル抗体(Fab’)溶液の作製
実施例1の項目1−3の記載に従って、試薬溶液を作製した。
6−4.銀イオン含有基質溶液の作製
2mmol/L p−アミノフェニルホスフェート(pAPP:Universal Sensors社製)、0.125mmol/L AgNO、1mmol/L MgSO、0.04mol/Lジエタノールアミン、および所定濃度(0、0.5、1、2mmol/L)のNaClを含む溶液(pH9.4)を作製し、銀イオン含有基質溶液とした。
6−5.洗浄液の作製
実施例5の項目5−5に記載の手順に従い洗浄液を作製した。
6−6.カーボン電極部保持キャピラリー流路の構築
実施例5の項目5−6に記載の手順に従って、カーボン電極部保持キャピラリー流路の構築を行った。
6−7.電気化学アナライザーによるHBs抗原の測定
構築したカーボン電極部保持キャピラリー流路を用いてHBs抗原の測定を行った。抗原溶液49.17μL[HBs抗原を0.1%BSA含有0.1mol/Lリン酸緩衝液で所定濃度に調整した溶液]にALP標識抗HBs抗体溶液(120μg/mL)0.83μLを添加してA端側(試薬添加プール側)より流路に注入した。続いて洗浄液750μLを試薬添加プールに添加し、毛細管現象によりB端側に移動させた。洗浄液の全量が試薬プールから流路に流入した時点で銀イオン含有基質溶液500μLを試薬プールに添加し、毛細管現象によりB端側に移動させ、2分後にその状態にて電気化学的測定を行った。電気化学的測定は、実施例5の項目5−7に記載の手順・条件に従って行った。
6−8.測定結果
HBs抗原濃度0U/mLの場合のDPV測定結果を図37〜図40に、HBs抗原濃度45U/mLの場合のDPV測定結果を図41〜図44に示す。
HBs抗原濃度45U/mLにおいてNaCl濃度を0mmol/L(図41)、0.5mmol/L(図42)、1mmol/L(図43)、2mmol/L(図44)として測定を行った場合、それぞれ参照極に対して+0.050V、−0.015V、+0.036V、+0.026Vの電位の酸化電流値は、0.5mmol/Lにおいて最も高く(1842nA)なった。一方、HBs抗原濃度0U/mLにおいては、NaCl濃度を0mmol/L(図37)、0.5mmol/L(図38)、1mmol/L(図39)、2mmol/L(図40)として測定を行った場合、それぞれ参照極に対して+0.030Vにて151.8nA、+0.055Vにて286.2nA、+0.010Vにて699.4nA、+0.020Vにて466.9nAであった。適当量のNaCl添加により、反応性が向上することが分かった。
《実施例7:電極表面形状変化の効果の確認[B型肝炎表面抗原(HBs抗原)の測定]》
7−1.電極部及び感知部の作製
図45〜図47に示す四角錐型の立体構造が多数形成された電極部を、ポリ乳酸基板に作製し(以下、立体構造基板)、電極部および感知部を図3に示すマスクパターンを用いて、スパッタ法とリフトオフ法により作製した。四角錐型の立体構造および立体構造基板は、電鋳法により作製した。図46及び図47に示す顕微鏡写真より、立体構造の大きさはおよそ、底面が135μmX135μmの正方形、高さが300μm、密度が12.3本/mmで規則的に配置されているのがわかった。
上記の電極部および感知部の作製手順を簡単に記載する。まず、立体構造基板上に、金薄膜(膜厚:50nm)を形成した後、一部に銀・塩化銀インク(BAS社製)を塗布することにより、参照極16を作製した。次に、電極部12とリード部13間を仕切るため、絶縁膜17にてリード部の一部を覆うことにより、作用極14、対極15、参照極16を備えた電極部を作製した。作用極、対極、参照極の反対側の端部は、接続用コネクター18として機能する。電極部中の前記作用極は、感知部として機能する(以下、立体構造化電極と称することがある)。
7−2.相互作用反応部及び不溶性反応部の作製
実施例1の項目1−2に記載の手順に従って、相互作用反応部かつ不溶性反応部を作用極上に作製した。
7−3.アルカリホスファターゼ(ALP)標識抗HBsウサギポリクローナル抗体(Fab’)溶液の作製
実施例1の項目1−3の記載に従って、試薬溶液を作製した。
7−4.銀イオン含有基質溶液の作製
2mmol/L p−アミノフェニルホスフェート(pAPP:Universal sensors社製)、0.0625mmol/L AgNO、1mmol/L MgSOを含む0.04mol/Lジエタノールアミン溶液(pH9.4)を作製し、銀イオン含有基質溶液とした
7−5.流路の作製と流動条件制御装置の構築
実施例1の項目1−6に記載の手順に従って、流路の作製および流動条件制御装置の構築を行った。
7−6.電気化学アナライザーによる立体構造化電極でのHBs抗原の測定
実施例1の項目1−7に記載の手順に従って、上記で作製した立体構造化電極を用いて、HBs抗原の測定を行った。なお、実施例1で作製した立体構造を有しない電極(平面電極と称することがある)を比較対照として使用した。ただし、電気化学的測定は、実施例5の項目5−7に記載の手順・条件に従って行った。
7−7.測定結果
(1)HBs抗原(測定対象化合物)の存在に基づく酸化電流の検出
HBs抗原濃度0U/mLの場合の立体構造化電極でのDPV測定結果を図48に、HBs抗原濃度0.7U/mLの場合のDPV測定結果を図49に、それぞれ示す。また対照実験として、立体構造を有しない電極(平面電極)でのHBs抗原濃度0U/mLの場合のDPV測定結果を図50に、HBs抗原濃度0.7U/mLの場合のDPV測定結果を図51に、それぞれ示す。なお、流路への送液(すなわち、流動条件)は、全操作工程(2分間の緩衝液Aの送液から電気化学的測定まで)を通して、流速360μL/minで行った。
HBs抗原濃度が0.7U/mLの場合(図49)、参照極に対して+0.145Vの電位(酸化電位)にて、析出した銀の酸化反応に伴う酸化電流として、800.7nAの酸化電流が検出されたのに対し、HBs抗原濃度が0U/mLの場合は同343nAであった(図48)。一方、平面電極では、実施例1においてHBs抗原濃度48U/mLの場合に酸化電流が観察されたが、本実施例では両濃度(0U/mL、0.7U/mL)とも、立体構造化電極と同様の酸化電流は検出されなかった(図50、図51)。以上の結果から、電極の立体構造化によりHBs抗原の検出感度が著しく高くなることが分かった。
本発明は、例えば、高感度に試料を分析し、臨床検査や診断や食品分野や環境分析の用途に適用することができる。
以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は本発明の範囲に含まれる。

Claims (17)

  1. (a)少なくとも、分析対象物質と、前記分析対象物質と選択的相互作用を示す特異的パートナーとを反応させ、被検試料中の分析対象物質の存在量に相関させて、不溶化反応を実施することによって、可溶性物質を不溶性物質に変換し、感知部に沈殿させる工程、
    (b)前記感知部に沈殿させた不溶性物質を電気的に分析する工程
    を含み、
    前記工程(a)又は工程(b)の少なくとも1つの工程を流動的条件下で実施する
    ことを特徴とする、分析方法であって、
    前記可溶性物質が
    (A)水性溶媒において水溶性であり、不溶化反応により金属として析出する金属イオン、あるいは、
    (B)シッフ試薬、アニリン、5−ブロモ−4クロロ−3−ヒドロキシインドール、ニトロブルーテトラゾリウムクロライド、インドール、5−ブロモ−4クロロ−3−インドリルホスフェート)、3−インドキシルホスフェートから選択される水溶性色素
    である、前記分析方法
  2. 前記特異的パートナーが酵素である、請求項1に記載の分析方法。
  3. 前記工程(a)が、
    (1)披検試料中の分析対象物質の存在量に相関させて、分析対象物質と、前記分析対象物質と選択的相互作用を示す特異的パートナーと、標識物質とを含む複合体を形成させる工程、及び
    (2)形成された前記複合体に含まれる標識物質により直接的又は間接的に引き起こされる不溶化反応によって、可溶性物質を不溶性物質に変換し、感知部に沈殿させる工程
    を含み、
    前記工程(2)又は工程(b)の少なくとも1つの工程を流動的条件下で実施する、請求項1に記載の分析方法。
  4. 前記標識物質が加水分解酵素である、請求項3に記載の分析方法。
  5. 前記加水分解酵素がアルカリフォスファターゼである、請求項4に記載の分析方法。
  6. 前記不溶化反応が酸化還元反応である、請求項1〜5のいずれか一項に記載の分析方法。
  7. 前記可溶性物質が金属イオンである、請求項1〜6のいずれか一項に記載の分析方法。
  8. 前記金属イオンが、アンチモンイオン、ビスマスイオン、銅イオン、水銀イオン、銀イオン、パラジウムイオン、白金イオン、又は金イオンである、請求項7に記載の分析方法
  9. 前記金属イオンが銀イオンである、請求項8に記載の分析方法。
  10. 前記感知部が、金属、高分子、カーボン、ナノチューブ状構造体、グラファイト、無機物質を単独もしくは組み合わせで構成される、請求項1〜9のいずれか一項に記載の分析方法。
  11. 前記感知部が少なくとも一つ以上の鋭角状の立体構造を有する、請求項1〜10のいずれか一項に記載の分析方法。
  12. 前記感知部に前記特異的パートナーが固定されている、請求項1〜11のいずれか一項に記載の分析方法。
  13. 前記流動的条件が、強制的流動もしくは自発的流動である、請求項1〜12のいずれか一項に記載の分析方法。
  14. 前記電気的に分析する工程を含む分析方法が、アンペロメトリック型分析法である、請求項1〜13に記載の分析方法。
  15. 請求項1〜14のいずれか一項に記載の分析方法に用いる感知部であって、少なくとも一つ以上の鋭角状の立体構造を有する感知部。
  16. 請求項1〜14のいずれか一項に記載の分析方法に用いることを特徴とする、分析対象物を測定するための試薬及びキットであって、前記分析対象物と選択的相互作用を示す特異的パートナー、及び、不溶化反応により不溶性物質に変換される可溶性物質、少なくとも一つの感知部を含む試薬及びキット。
  17. 前記感知部を、感知部を有する分析用カートリッジとして含む、請求項16に記載の試薬及びキット。
JP2010503884A 2008-03-17 2009-03-17 電気的分析方法 Active JP5416692B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010503884A JP5416692B2 (ja) 2008-03-17 2009-03-17 電気的分析方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008068257 2008-03-17
JP2008068257 2008-03-17
PCT/JP2009/055170 WO2009116534A1 (ja) 2008-03-17 2009-03-17 電気的分析方法
JP2010503884A JP5416692B2 (ja) 2008-03-17 2009-03-17 電気的分析方法

Publications (2)

Publication Number Publication Date
JPWO2009116534A1 JPWO2009116534A1 (ja) 2011-07-21
JP5416692B2 true JP5416692B2 (ja) 2014-02-12

Family

ID=41090935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010503884A Active JP5416692B2 (ja) 2008-03-17 2009-03-17 電気的分析方法

Country Status (6)

Country Link
US (1) US8785144B2 (ja)
EP (1) EP2261648B1 (ja)
JP (1) JP5416692B2 (ja)
CN (1) CN101978260B (ja)
ES (1) ES2484615T3 (ja)
WO (1) WO2009116534A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2803988B1 (en) 2008-09-02 2017-04-12 The Governing Council Of The University Of Toronto Nanostructured microelectrodes and biosensing devices incorporating the same
WO2012097081A2 (en) 2011-01-11 2012-07-19 The Governing Council Of The University Of Toronto Protein detection method
US8945370B2 (en) 2011-03-31 2015-02-03 Agricultural Research Development Agency Electrochemical detection of capsaicinoid compounds in a sample
JP5477341B2 (ja) * 2011-06-01 2014-04-23 株式会社島津製作所 マイクロチップ電気泳動方法及び装置
US20140342359A1 (en) * 2011-11-23 2014-11-20 The Governing Council Of The University Of Toronto Versatile and sensitive biosensor
JP5571705B2 (ja) * 2012-01-12 2014-08-13 株式会社Lsiメディエンス 電気的分析方法
JP5467539B2 (ja) * 2012-02-10 2014-04-09 横河電機株式会社 電極の評価装置および評価方法
WO2013136115A1 (en) * 2012-03-13 2013-09-19 Piramal Enterprises Limited Biosensor having nanostrucured electrodes
FI124531B (en) * 2012-03-19 2014-09-30 Marja Tiirola Method for measuring radioactivity
EP2948730B1 (en) 2013-01-24 2019-01-30 Paul Scherrer Institut A method for manufacturing a hall sensor assembly and a hall sensor assembly
CN103645185A (zh) * 2013-12-17 2014-03-19 武汉大学 一种可视化检测碱性磷酸酶的方法
CN103713134B (zh) * 2013-12-17 2015-09-02 武汉大学 一种可视化检测病毒的检测试剂盒及其检测方法
US10899099B2 (en) * 2014-10-23 2021-01-26 Furukawa Industrial Machinery Systems Co., Ltd. Device and method for evaluating operating conditions of briquetting machine, briquetting machine, method for manufacturing briquette, control device of briquetting machine, control method of briquetting machine, and program
JP6318125B2 (ja) * 2015-09-16 2018-04-25 株式会社Lsiメディエンス 電気的分析方法
US11432750B2 (en) * 2016-03-14 2022-09-06 Abbott Diabetes Care Inc. In vivo enzyme activity sensors and methods
US20190170683A1 (en) * 2016-12-26 2019-06-06 Panasonic Intellecutal Property Management Co., Ltd. Thin layer chromatography plate and sample analysis method using same
CN107356649B (zh) * 2017-06-14 2020-02-28 浙江大学 多路生物传感器及其制造方法
WO2019022142A1 (ja) * 2017-07-27 2019-01-31 国立研究開発法人産業技術総合研究所 生体分子濃度の電気化学的測定方法
JP6896685B2 (ja) * 2018-09-18 2021-06-30 株式会社東芝 液膜維持装置及びケミカルセンサ
US20210003528A1 (en) * 2019-04-18 2021-01-07 University Of Florida Research Foundation, Inc. HANDHELD SENSOR FOR RAPID, SENSITIVE DETECTION AND QUANTIFICATION OF SARS-CoV-2 FROM SALIVA
US20230333118A1 (en) * 2019-09-20 2023-10-19 Momm Diagnostics Gmbh Immunoassay analyzer, immunoassay kit and method for detecting analyte in liquid sample
CN113933364B (zh) * 2021-09-03 2022-11-08 中国科学院上海微系统与信息技术研究所 一种基于硅纳米线场效应生化传感器的靶标物浓度检测方法
CN115219569B (zh) * 2022-06-22 2024-03-12 郑州大学 人工酶检测肿瘤细胞的传感器及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480651A (ja) * 1990-07-23 1992-03-13 Kanzaki Paper Mfg Co Ltd 固定化酵素を用いるフロー型測定装置
JPH10260156A (ja) * 1997-03-18 1998-09-29 Hitachi Ltd センサー
JP2000097899A (ja) * 1998-09-24 2000-04-07 エヌ・ティ・ティ・アドバンステクノロジ株式会社 微少量オンラインバイオセンサー及びその製造方法
JP2001153838A (ja) * 1999-11-29 2001-06-08 Matsushita Electric Ind Co Ltd アレルゲン測定電極およびアレルゲン測定装置
JP2004219325A (ja) * 2003-01-16 2004-08-05 Ntt Advanced Technology Corp 電気化学オンライン型バイオセンサ及びその製造方法
JP2004257996A (ja) * 2003-02-27 2004-09-16 National Institute Of Advanced Industrial & Technology 酵素免疫測定法
JP2005024483A (ja) * 2003-07-01 2005-01-27 Nippon Telegr & Teleph Corp <Ntt> バイオセンサー
JP2007263914A (ja) * 2006-03-30 2007-10-11 Hitachi Ltd 測定装置及び分析用素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19530376C2 (de) * 1995-08-18 1999-09-02 Fresenius Ag Biosensor
US6344333B2 (en) * 1998-09-08 2002-02-05 Synectig Corporation Reagent-free immunoassay monitoring electrode assembly
US7470533B2 (en) * 2002-12-20 2008-12-30 Acea Biosciences Impedance based devices and methods for use in assays
AU2004272746B2 (en) * 2003-09-15 2009-12-03 Diagnoswiss S.A. Microfluidic flow monitoring device
GB0412659D0 (en) 2004-06-07 2004-07-07 Inverness Medical Switzerland Method
US8617907B2 (en) * 2004-06-07 2013-12-31 Alere Switzerland Gmbh Determining the presence or amount of a metal-labelled species
CN101019027B (zh) 2004-09-14 2012-09-26 三菱化学美迪恩斯株式会社 生物材料结构体、其制造方法及应用
WO2007120552A2 (en) * 2006-04-11 2007-10-25 Bayer Healthcare Llc Monitoring the laydown of a reagent like potassium ferricyanide using xrf spectrometry

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480651A (ja) * 1990-07-23 1992-03-13 Kanzaki Paper Mfg Co Ltd 固定化酵素を用いるフロー型測定装置
JPH10260156A (ja) * 1997-03-18 1998-09-29 Hitachi Ltd センサー
JP2000097899A (ja) * 1998-09-24 2000-04-07 エヌ・ティ・ティ・アドバンステクノロジ株式会社 微少量オンラインバイオセンサー及びその製造方法
JP2001153838A (ja) * 1999-11-29 2001-06-08 Matsushita Electric Ind Co Ltd アレルゲン測定電極およびアレルゲン測定装置
JP2004219325A (ja) * 2003-01-16 2004-08-05 Ntt Advanced Technology Corp 電気化学オンライン型バイオセンサ及びその製造方法
JP2004257996A (ja) * 2003-02-27 2004-09-16 National Institute Of Advanced Industrial & Technology 酵素免疫測定法
JP2005024483A (ja) * 2003-07-01 2005-01-27 Nippon Telegr & Teleph Corp <Ntt> バイオセンサー
JP2007263914A (ja) * 2006-03-30 2007-10-11 Hitachi Ltd 測定装置及び分析用素子

Also Published As

Publication number Publication date
US20110014633A1 (en) 2011-01-20
CN101978260A (zh) 2011-02-16
EP2261648B1 (en) 2014-05-21
WO2009116534A1 (ja) 2009-09-24
US8785144B2 (en) 2014-07-22
CN101978260B (zh) 2014-12-17
JPWO2009116534A1 (ja) 2011-07-21
ES2484615T3 (es) 2014-08-11
EP2261648A1 (en) 2010-12-15
EP2261648A4 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP5416692B2 (ja) 電気的分析方法
Beitollahi et al. Application of antibody–nanogold–ionic liquid–carbon paste electrode for sensitive electrochemical immunoassay of thyroid-stimulating hormone
Otieno et al. On-line protein capture on magnetic beads for ultrasensitive microfluidic immunoassays of cancer biomarkers
US6713308B1 (en) System for electrochemical quantitative analysis of analytes within a solid phase
Guo et al. Ultrasensitive multiplexed immunoassay for tumor biomarkers based on DNA hybridization chain reaction amplifying signal
EP1108213B1 (en) Method of electrochemical analysis of an analyte
US6100045A (en) Detection of analytes using electrochemistry
Díaz‐González et al. Recent advances in electrochemical enzyme immunoassays
Tang et al. Electrochemical immuno-bioanalysis for carcinoma antigen 125 based on thionine and gold nanoparticles-modified carbon paste interface
Boonyasit et al. A multiplexed three-dimensional paper-based electrochemical impedance device for simultaneous label-free affinity sensing of total and glycated haemoglobin: The potential of using a specific single-frequency value for analysis
Akanda et al. An interference-free and rapid electrochemical lateral-flow immunoassay for one-step ultrasensitive detection with serum
EP0859230A1 (en) Detection of analytes using electrochemistry
WO2007116811A1 (ja) 被検物質の測定方法
Xu et al. Ultrasensitive electrochemical sensing of Hg2+ based on thymine-Hg2+-thymine interaction and signal amplification of alkaline phosphatase catalyzed silver deposition
WO2009032901A1 (en) Biosensors and related methods
WO2005119238A1 (en) Biosensors having improved sample application and users thereof
Yu et al. An impedance array biosensor for detection of multiple antibody–antigen interactions
US20090270266A1 (en) Method for Electrocatalytic Protein Detection
Wu et al. A sensitive immunoassay based on electropolymerized films by capacitance measurements for direct detection of immunospecies
JP4892686B2 (ja) 酵素センサ、該酵素センサを使用した分析方法及びキット
Díaz‐González et al. Diagnostics using multiplexed electrochemical readout devices
JP5571705B2 (ja) 電気的分析方法
EP0859229A1 (en) Detection of analytes using electrochemistry
EP2633061B1 (en) Method for electrical detection of biomolecules by metal dissolution and assay kit therefor
Centi et al. Strategies for electrochemical detection in immunochemistry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131115

R150 Certificate of patent or registration of utility model

Ref document number: 5416692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250