[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5413488B2 - Phenol novolac resin, method for producing the same, epoxy resin composition and cured product using the same - Google Patents

Phenol novolac resin, method for producing the same, epoxy resin composition and cured product using the same Download PDF

Info

Publication number
JP5413488B2
JP5413488B2 JP2012135370A JP2012135370A JP5413488B2 JP 5413488 B2 JP5413488 B2 JP 5413488B2 JP 2012135370 A JP2012135370 A JP 2012135370A JP 2012135370 A JP2012135370 A JP 2012135370A JP 5413488 B2 JP5413488 B2 JP 5413488B2
Authority
JP
Japan
Prior art keywords
general formula
following general
group
resin
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012135370A
Other languages
Japanese (ja)
Other versions
JP2012167289A (en
Inventor
誠一郎 高林
久未 光本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2012135370A priority Critical patent/JP5413488B2/en
Publication of JP2012167289A publication Critical patent/JP2012167289A/en
Application granted granted Critical
Publication of JP5413488B2 publication Critical patent/JP5413488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G14/00Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00
    • C08G14/02Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes
    • C08G14/04Condensation polymers of aldehydes or ketones with two or more other monomers covered by at least two of the groups C08G8/00 - C08G12/00 of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/10Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with phenol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、各種バインダー、コーティング材、積層材、成形材料等に有用なフェノールノボラック樹脂、その製造方法、それを用いたエポキシ樹脂組成物および硬化物に関する。特に半導体封止用、プリント基板絶縁用などのエポキシ樹脂の硬化剤に好適な、低溶融粘度、高ガラス転移温度、低吸湿性、高密着性、耐熱性、及び難燃性を兼ね備えたフェノールノボラック樹脂、その製造方法、それを用いたエポキシ樹脂組成物および硬化物に関する。   The present invention relates to a phenol novolak resin useful for various binders, coating materials, laminated materials, molding materials, and the like, a production method thereof, an epoxy resin composition using the same, and a cured product. Phenol novolac that combines low melt viscosity, high glass transition temperature, low moisture absorption, high adhesion, heat resistance, and flame retardancy, especially suitable for epoxy resin curing agents for semiconductor encapsulation, printed circuit board insulation, etc. The present invention relates to a resin, a production method thereof, an epoxy resin composition using the resin, and a cured product.

電子材料、特に半導体封止用、プリント基板絶縁用などのエポキシ樹脂硬化剤として、各種のフェノール系重合体、例えばフェノールノボラック型樹脂、フェノールアラルキル樹脂等が使用されている。しかし近年、半導体パッケージの小型・薄型化、多ピン化、高密度実装化に伴い、より高性能な樹脂が求められている。   Various phenolic polymers, such as phenol novolac resins and phenol aralkyl resins, are used as an epoxy resin curing agent for electronic materials, particularly for semiconductor encapsulation and printed circuit board insulation. However, in recent years, with the miniaturization and thinning of semiconductor packages, the increase in the number of pins, and the high density mounting, higher performance resins are required.

BGA(Ball Grid Array)などの片面封止パッケージに用いた場合、パッケージの反りが小さいという優れた性能を有する。しかし最近の半導体パッケージでは、例えばBGAの場合、さらなるファインピッチ化や一括封止タイプになり、反りが小さいことの他に流動性が高いこと、基板表面との密着性が良いことなどが求められている。また低溶融粘度であれば流動性や密着性が向上し、フィラーも多く配合できるので半田耐熱性や耐水性の面でも有利になる。即ちこれら封止材への要求特性を満たすために、低溶融粘度、高ガラス転移温度、低吸湿性、高密着性、耐熱性、及び難燃性を兼ね備えた低軟化点フェノールノボラック樹脂の出現が強く望まれている。   When used in a single-side sealed package such as BGA (Ball Grid Array), it has excellent performance that the warpage of the package is small. However, in recent semiconductor packages, for example, in the case of BGA, it becomes a finer pitch or a batch sealing type, and it is required that the fluidity is high in addition to the small warpage and the adhesiveness with the substrate surface is good. ing. Further, if the melt viscosity is low, the fluidity and adhesion are improved, and a large amount of filler can be added, which is advantageous in terms of solder heat resistance and water resistance. That is, in order to satisfy the required properties for these encapsulants, the appearance of a low softening point phenol novolac resin that combines low melt viscosity, high glass transition temperature, low hygroscopicity, high adhesion, heat resistance, and flame resistance. It is strongly desired.

またビルドアップ基板の層間絶縁材にも、耐水性に優れ、高ガラス転移温度で接着性のよいエポキシ樹脂組成物が望まれており、これを達成するために、元々耐水性や保存安定性に優れたフェノール系硬化剤で、低溶融粘度、高ガラス転移温度、低吸湿性、高密着性、耐熱性、及び難燃性を兼ね備えたものが望まれている。   In addition, epoxy resin compositions with excellent water resistance and high adhesiveness at high glass transition temperatures are also desired for interlayer insulation materials for build-up substrates. To achieve this, water resistance and storage stability are inherently improved. An excellent phenolic curing agent having low melt viscosity, high glass transition temperature, low hygroscopicity, high adhesion, heat resistance, and flame retardancy is desired.

電子材料用樹脂材料にはエポキシ樹脂が多く用いられ、そのエポキシ樹脂の硬化剤としては各種のフェノ−ルノボラック縮合体、アミン類、酸無水物が使用される。特に半導体(IC)封止用エポキシ樹脂の硬化剤としては、耐熱性、信頼性の面からフェノ−ル性ノボラック縮合体が主に用いられる。近年、ICの高集積化、パッケ−ジの小型、薄型化、また表面実装方式の適用が進み、その封止用材料には耐熱衝撃性および表面実装作業時のソルダリング耐熱性を一層向上させることが要求されている。ソルダリング耐熱性を左右する大きな要因として、封止用樹脂材料の吸湿性が挙げられる。すなわち、吸湿した封止用材料は表面実装作業時の高温下で水分の気化による内圧が発生し、内部剥離やパッケ−ジクラックが発生してソルダリング耐熱性が劣る。したがって、エポキシ樹脂硬化剤として使用されるフェノ−ル性ノボラック縮合体は低吸湿性であることが特に要求される。   Epoxy resins are often used as resin materials for electronic materials, and various phenol novolac condensates, amines, and acid anhydrides are used as curing agents for the epoxy resins. In particular, as a curing agent for epoxy resin for semiconductor (IC) sealing, phenolic novolak condensates are mainly used in terms of heat resistance and reliability. In recent years, ICs have been highly integrated, packages have become smaller and thinner, and surface mounting methods have been applied, and the sealing material has further improved thermal shock resistance and soldering heat resistance during surface mounting operations. It is requested. A major factor affecting the soldering heat resistance is the hygroscopicity of the sealing resin material. That is, the moisture-absorbing sealing material generates an internal pressure due to vaporization of water at a high temperature during the surface mounting operation, causes internal peeling and package cracks, and has poor soldering heat resistance. Therefore, the phenolic novolak condensate used as an epoxy resin curing agent is particularly required to have low hygroscopicity.

封止用材料の吸湿性を低下する方法として、充填材として封止用樹脂材料に充填される非吸湿性のシリカなどの充填材を増量する方法がある。この場合、ベ−スの樹脂材料の粘度が高いと充填材の高充填性が損なわれるので、硬化剤として用いるフェノール性ノボラック縮合体の粘度が低いことが望まれる。また、封止用材料には耐熱性、高強度、強靭性、難燃性、接着強さなどが求められる。封止用エポキシ樹脂の硬化剤としてフェノ−ルノボラック縮合体を用いた従来の封止用樹脂材料では、吸湿性が比較的高く、また他の物性の面からも十分に満足できるものではなかった。   As a method of reducing the hygroscopicity of the sealing material, there is a method of increasing the amount of filler such as non-hygroscopic silica filled in the sealing resin material as the filler. In this case, if the viscosity of the base resin material is high, the high filling property of the filler is impaired. Therefore, it is desired that the phenolic novolak condensate used as the curing agent has a low viscosity. Further, the sealing material is required to have heat resistance, high strength, toughness, flame retardancy, adhesive strength, and the like. Conventional sealing resin materials using a phenol novolak condensate as a curing agent for the sealing epoxy resin have a relatively high hygroscopicity and are not sufficiently satisfactory from the viewpoint of other physical properties.

そこで、吸湿性、耐熱性、接着性、難燃性などを向上させるために各種のフェノ−ルノボラック縮合体が提案されている。例えば、o−クレゾ−ルなどのアルキルフェノ−ル類を用いたノボラック縮合体、また、1−ナフト−ルなどのナフト−ル類を用いたノボラック縮合体がある(例えば、特許文献1から3参照)。また、フェノ−ルの縮合剤としてジ(ヒドロキシプロピル)ビフェニルを用いたフェノ−ル性化合物が開示されており(特許文献4参照)、ビス(メトキシメチル)ビフェニル混合物を用いたフェノ−ルノボラック縮合体を提案している(特許文献5参照)。さらに、ホルムアルデヒドを有効に利用した電子部品封止用エポキシ樹脂成型材料(特許文献6参照)が開示されている。
しかし、さらに一層の吸湿性、耐熱性、接着特性、難燃性などが向上した材料が望まれている。
Therefore, various phenol novolak condensates have been proposed in order to improve hygroscopicity, heat resistance, adhesion, flame retardancy, and the like. For example, there are novolak condensates using alkylphenols such as o-cresol and novolak condensates using naphthols such as 1-naphthol (for example, Patent Documents 1 to 3). reference). Further, a phenolic compound using di (hydroxypropyl) biphenyl as a phenol condensing agent is disclosed (see Patent Document 4), and a phenol novolak condensate using a bis (methoxymethyl) biphenyl mixture. (Refer to Patent Document 5). Furthermore, an epoxy resin molding material for electronic component sealing (see Patent Document 6) that effectively uses formaldehyde is disclosed.
However, a material having further improved hygroscopicity, heat resistance, adhesive properties, flame retardancy, and the like is desired.

特開昭59−230017号公報JP 59-230017 特開平05−078437号公報Japanese Patent Laid-Open No. 05-078337 特開平05−086156号公報JP 05-086156 A 特開平05−117350号公報JP 05-117350 A 特開平08−143648号公報Japanese Patent Laid-Open No. 08-143648 特開昭63−022824号公報JP-A-63-022824

D.W.van Krevelen,Polymer,16,615(1975)D. W. van Krevelen, Polymer, 16, 615 (1975)

本発明の課題は、低溶融粘度、高ガラス転移温度、低吸湿性、高密着性、耐熱性、及び難燃性などに優れ、特に電気および電子産業用、電子部品の封止用、積層板材料用のエポキシ樹脂用として好適に用いられる新規なフェノールノボラック樹脂およびこのフェノールノボラック樹脂をエポキシ化したエポキシ化フェノールノボラック縮合体およびそれをエポキシ樹脂用硬化剤と反応して得られたエポキシ樹脂硬化物を提供することにある。   The object of the present invention is excellent in low melt viscosity, high glass transition temperature, low hygroscopicity, high adhesion, heat resistance, flame retardancy, etc., especially for electrical and electronic industries, for sealing electronic components, and laminate Novel phenol novolak resin suitably used for epoxy resin for materials, epoxidized phenol novolak condensate obtained by epoxidizing this phenol novolak resin, and cured epoxy resin obtained by reacting it with curing agent for epoxy resin Is to provide.

しかし、低吸湿化のためOH当量を上げるために、ビフェニル基の導入率を上げると、溶融粘度が上昇する。その結果、溶融粘度の上昇により流動性が悪く、そのため成形上のトラブルを引き起こす。溶融粘度を下げるために分子量を小さくしたりすると、ガラス転移温度が下がるとともに成形時の硬化性が低下する。すなわち、低吸湿性、低溶融粘度、硬化性と高ガラス転移温度の両立は原理的に難しいとされている。   However, if the introduction rate of the biphenyl group is increased in order to increase the OH equivalent to reduce moisture absorption, the melt viscosity increases. As a result, the fluidity is poor due to an increase in melt viscosity, which causes a molding trouble. When the molecular weight is decreased to lower the melt viscosity, the glass transition temperature is lowered and the curability at the time of molding is lowered. That is, it is considered that it is difficult in principle to achieve both low hygroscopicity, low melt viscosity, curability and high glass transition temperature.

本発明者らは、上記アリール基含有架橋基を持つフェノールノボラック樹脂の低吸湿性、高密着性、耐熱性物性を生かし、かつ溶融粘度が低いフェノール系硬化剤を得るために鋭意検討した結果、分子内の架橋基にアルキレン型重合体単位と、フェノール・ホルムアルデヒド重合体単位を共に有し、両者の重合度の比を特定範囲にすることにより、低溶融粘度で低吸湿性、高密着性、耐熱性の優れた低軟化点フェノールノボラック樹脂が得られることを見出し本発明を完成した。   As a result of intensive studies to obtain a phenol-based curing agent having low moisture absorption, high adhesion, and heat-resistant physical properties of the phenol novolak resin having the aryl group-containing crosslinking group, and having a low melt viscosity, By having both an alkylene type polymer unit and a phenol / formaldehyde polymer unit in the cross-linking group in the molecule, and by setting the ratio of the degree of polymerization of both to a specific range, low melt viscosity, low hygroscopicity, high adhesion, The present invention was completed by finding that a low softening point phenol novolac resin excellent in heat resistance was obtained.

すなわち本発明は、下記一般式(1):   That is, the present invention provides the following general formula (1):

Figure 0005413488
式中、Rは下記一般式(2−1):
Figure 0005413488
[ Wherein, R represents the following general formula (2 -1 ):

Figure 0005413488
で示される基であり、更に下記一般式(2−2):
Figure 0005413488
In a group represented further by the following general formula (2-2):

Figure 0005413488
で示される基、及び/又は下記一般式(3):
Figure 0005413488
And / or the following general formula (3):

Figure 0005413488
式中、Rは、ヒドロキシル基又は炭素原子数1〜6のアルキル基である
で示される基を含んでいてもよく、m及びnは、m/nが0.04〜20を満たす数であり、また、R、R及びRは、同一でも異なっていてもよく、それぞれ、ヒドロキシル基又は炭素原子数1から6個のアルキル基であり、p、q及びrは、それぞれ、0〜2の整数である。]
で示される構成単位を有することを特徴とするフェノールノボラック樹脂に関する。
Figure 0005413488
( Wherein R 4 is a hydroxyl group or an alkyl group having 1 to 6 carbon atoms )
And m and n are numbers satisfying m / n of 0.04 to 20, and R 1 , R 2 and R 3 may be the same or different. Are each a hydroxyl group or an alkyl group having 1 to 6 carbon atoms, and p, q and r are each an integer of 0 to 2 . ]
In about a phenolic novolak resin characterized by it has a structural unit represented.

また、本発明は、前記一般式(2−1)で示される基が、4,4’−体を含有する前記フェノールノボラック樹脂に関する。The present invention also relates to the phenol novolac resin in which the group represented by the general formula (2-1) contains a 4,4′-form.
また、本発明は、前記一般式(2−1)で示される基が、各異性体の混合物である前記フェノールノボラック樹脂に関する。  Moreover, this invention relates to the said phenol novolak resin whose group shown by the said General formula (2-1) is a mixture of each isomer.
また、本発明は、前記m/nが0.05〜9を満たす数である前記フェノールノボラック樹脂に関する。  The present invention also relates to the phenol novolac resin, wherein the m / n is a number satisfying 0.05 to 9.

また、本発明は、フェノール類、下記一般式(4−1): The present invention also includes phenols, the following general formula (4 -1 ):

Figure 0005413488
式中、Xはハロゲン原子、ヒドロキシル基又は炭素原子数1〜6のアルコキシル基を表す
で示される化合物、[但し、更に下記一般式(4−2):
Figure 0005413488
( Wherein X represents a halogen atom, a hydroxyl group or an alkoxyl group having 1 to 6 carbon atoms )
[In addition, the following general formula (4-2):

Figure 0005413488
Figure 0005413488
(式中、Xは、前記と同義である)(Wherein X is as defined above)
で示される化合物、及び/又は下記一般式(5):And / or the following general formula (5):

Figure 0005413488
(式中、R は、前記と同義である)
で示されるベンズアルデヒド化合物も含んでよい。]
及びホルムアルデヒドを、酸触媒の存在下で縮合させることを特徴とする前記フェノールノボラック樹脂の製造方法。
Figure 0005413488
(Wherein R 4 has the same meaning as above).
The benzaldehyde compound shown by these may also be included. ]
And the method for producing the phenol novolac resin, wherein the formaldehyde is condensed in the presence of an acid catalyst.

また、本発明は、少なくとも前記フェノールノボラック樹脂を含有するエポキシ樹脂組成物に関する。The present invention also relates to an epoxy resin composition containing at least the phenol novolac resin.

さらに本発明は、少なくとも前記フェノールノボラック樹脂成分を含有する硬化物、及び、前記硬化物がエポキシ樹脂と反応させて得られるエポキシ樹脂硬化物に関する。 Furthermore, the present invention provides a cured product which contains at least the phenolic novolak resin component, and to a cured epoxy resin, wherein the cured product obtained by reacting an epoxy resin.

本発明のフェノールノボラック樹脂は、分子内にアリール基含有架橋基型樹脂及びメチレン基架橋フェノールノボラック樹脂の重合単位を共に有し、両者の重合度及び両者の重合度の比が特定の範囲である構造とすることにより、エポキシ樹脂硬化剤に好適な、低溶融粘度、高ガラス転移温度、低吸湿性、高密着性、耐熱性、及び難燃性を兼ね備えた樹脂である。これによりBGA等、最新の半導体封止材料に対応でき、エポキシ樹脂硬化剤として利用できる。 Full E Nord novolak resin of the present invention, both have polymerized units of an aryl group-containing bridging group resin and a methylene group bridge phenol novolac resin in its molecule, the ratio of both the polymerization degree and both the degree of polymerization at a particular range By having a certain structure, the resin is suitable for an epoxy resin curing agent and has a low melt viscosity, a high glass transition temperature, a low hygroscopic property, a high adhesion property, heat resistance, and flame retardancy. Thereby, it can respond to the latest semiconductor sealing materials such as BGA and can be used as an epoxy resin curing agent.

本発明のフェノールノボラック樹脂は、上記一般式(1)で示されるアリール架橋基含有フェノールノボラック樹脂の重合単位のトータルをn個、メチレン架橋基を含有するフェノールノボラック樹脂の重合単位のトータルをm個有する共重合タイプの低軟化点フェノールノボラック樹脂であり、ブロック共重合体あるいはランダム共重合体であっても何ら問題はなく、一般式(1)において各重合単位の重合度のm/nの値が0.04〜20、好ましくは0.05〜9、更に好ましくは0.09〜6、最も好ましくは0.1〜2の樹脂である。また、上記構成単位(3)を含まない場合にも、各重合単位の重合度のm/nの値が0.04〜20、好ましくは0.05〜9、更に好ましくは0.09〜6、最も好ましくは0.1〜2の樹脂である。 The phenol novolac resin of the present invention has a total of n polymerization units of the aryl crosslinking group-containing phenol novolak resin represented by the general formula (1), and a total of m polymerization units of the phenol novolak resin containing a methylene crosslinking group. It is a copolymer type low softening point phenol novolac resin, and there is no problem even if it is a block copolymer or a random copolymer. The value of m / n of the polymerization degree of each polymer unit in the general formula (1) Of 0.04 to 20, preferably 0.05 to 9, more preferably 0.09 to 6, and most preferably 0.1 to 2 . Also, even if they do not contain the constituent unit (3), the value of m / n of the polymerization degree of each polymerization unit is from 0.04 to 20, preferably from 0.05 to 9, more preferably 0.09 to 6, most preferably 0.1 to 2 resins.

本発明のフェノールノボラック樹脂においては、m/nが20を超えるとガラス転移温度が低くなり、さらに難燃性が低下する傾向が認められ好ましくない。一方、m/nが0.04未満では溶融粘度が上昇し流動性が悪くなり好ましくない。 In full E Nord novolak resin of the present invention, the glass transition temperature is lowered when m / n is more than 20, tended to further flame retardant is undesirably reduced. On the other hand, if m / n is less than 0.04, the melt viscosity increases and the fluidity deteriorates.

本発明で使用するフェノール類は、一般式(1)で記載のとおり、ベンゼン環にヒドロキシル基を少なくとも1個有し、R、RまたはRで置換されていてもよいフェノール類である。ここで、R、R及びRは、同一でも異なっていてもよく、複数のR、R及びRは、それぞれ、同一でも異なっていてもよく、それぞれ、ヒドロキシル基または炭素原子数1から6個のアルキル基であり、p、q及びrは、それぞれ、0〜2の整数からなる置換基群である。アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の直鎖又は分岐の炭素原子数1〜6のアルキル基が挙げられ、これらは各種異性体をも含む。
これらのフェノール類は、単独でも2種以上を混合して用いても何ら問題はない。
具体的なフェノール類としては、例えばフェノール、クレゾール、エチルフェノール、プロピルフェノール、ブチルフェノール、ヘキシルフェノール、キシレノール、ブチルメチルフェノール等の0〜2個の炭素原子数1〜6のアルキル基で置換された1価フェノールの他、カテコール、レゾルシン、ハイドロキノン等の2個のヒドロキシル基で置換された2価フェノールも挙げられるが、特にフェノールが好ましい。
The phenols used in the present invention are phenols having at least one hydroxyl group on the benzene ring and optionally substituted with R 1 , R 2 or R 3 as described in the general formula (1). . Here, R 1 , R 2 and R 3 may be the same or different, and a plurality of R 1 , R 2 and R 3 may be the same or different, and each is a hydroxyl group or a carbon atom. 1 to 6 alkyl groups, and each of p, q, and r is a substituent group consisting of integers of 0 to 2. Examples of the alkyl group include linear or branched alkyl groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group, and these include various isomers. Including.
There is no problem even if these phenols are used alone or in combination of two or more.
Specific phenols include, for example, 1 substituted with an alkyl group having 1 to 6 carbon atoms such as phenol, cresol, ethylphenol, propylphenol, butylphenol, hexylphenol, xylenol, and butylmethylphenol. In addition to dihydric phenols, dihydric phenols substituted with two hydroxyl groups such as catechol, resorcin, hydroquinone and the like can be mentioned, and phenol is particularly preferred.

本発明でメチレン架橋基を形成する化合物としては、ホルムアルデヒドが好適に挙げられる。さらにホルムアルデヒドの形態としては、特に制限はないが、ホルムアルデヒド水溶液、及びパラホルムアルデヒド、トリオキサンなど酸存在下で分解してホルムアルデヒドとなる重合物を用いることもできる。
好ましくは、取り扱いの容易なホルムアルデヒド水溶液であり、市販品の42%ホルムアルデヒド水溶液をそのまま使用することもできる。
As the compound that forms a methylene crosslinking group in the present invention, formaldehyde is preferably exemplified. Furthermore, the form of formaldehyde is not particularly limited, but a formaldehyde aqueous solution and a polymer that decomposes in the presence of an acid such as paraformaldehyde and trioxane to formaldehyde can also be used.
A formaldehyde aqueous solution that is easy to handle is preferable, and a commercially available 42% formaldehyde aqueous solution can also be used as it is.

本発明で使用するアリール基含有架橋基Rは、前記一般式(2−1)(2―2)及び(3)で示される2価のアリーレン基が挙げられる。
このような2価のアリーレン基としては、例えば、4,4’−ビフェニリレン基、3,3’−ビフェニリレン基、2,2’−ビフェニリレン基、2,4’−ビフェニリレン基、1,4−キシリレン基、1,3−キシリレン基、1,2−キシリレン基等が挙げられる。
これらの中でも、本発明においては、特に、4,4’−ビフェニリレン基、1,4−キシリレン基が好ましい。
上記置換基に導くための具体的なアリール基含有架橋基形成用化合物としては、例えば、前記一般式(4−1)(4−2)及び(5)で示される化合物が挙げられる。
前記一般式(4−1)(4−2)及び(5)において、Xはハロゲン原子、ヒドロキシル基または炭素原子数1から6のアルコキシル基であり、Rはヒドロキシル基または炭素原子数1から6個のアルキル基である。ここで、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられるが、塩素原子が好ましい。アルコキシル基としては、例えば、メトキシル基、エトキシル基、プロポキシル基、ブトキシル基、ペンチルオキシル基、ヘキシルオキシル基等の直鎖又は分岐の炭素原子数1〜6のアルコキシル基が挙げられ、これらは各種異性体をも含む。アルキル基としては、前記したものが挙げられる。
上記置換基に導くための具体的な化合物としては、例えば、4,4’−ジ(メトキシメチル)ビフェニル、2,2’−ジ(メトキシメチル)ビフェニル、2,4’−ジ(メトキシメチル)ビフェニル等のジ(アルコキシメチル)ビフェニル化合物、4.4’−ジ(クロロメチル)ビフェニル、2,2’−ジ(クロロメチル)ビフェニル、2,4’−ジ(クロロメチル)ビフェニル等のジ(ハロゲノメチル)ビフェニル化合物、4,4’−ジ(ヒドロキシメチル)ビフェニル、2,2’−ジ(ヒドロキシメチル)ビフェニル、2,4’−ジ(ヒドロキシメチル)ビフェニル等のジ(ヒドロキシメチル)ビフェニル化合物、1,4−ジ(メトキシメチル)ベンゼン、1,3−ジ(メトキシメチル)ベンゼン、1,2−ジ(メトキシメチル)ベンゼン等のジ(アルコキシメチル)ベンゼン化合物、1,4−ジ(クロロメチル)ベンゼン、1,3−ジ(クロロメチル)ベンゼン、1,2−ジ(クロロメチル)ベンゼン等のジ(ハロゲノメチル)ベンゼン化合物、1,4−ジ(ヒドロキシメチル)ベンゼン、1,3−ジ(ヒドロキシメチル)ベンゼン、1,2−ジ(ヒドロキシメチル)ベンゼン等のジ(ヒドロキシメチル)ベンゼン化合物、ベンズアルデヒド、2−ヒドロキシベンズアルデヒド、3−ヒドロキシベンズアルデヒド、4−ヒドロキシベンズアルデヒド等のヒドロキシベンズアルデヒド化合物、2−メチルベンズアルデヒド、3−メチルベンズアルデヒド、4−メチルベンズアルデヒド等のアルキルベンズアルデヒド化合物等が挙げられる。
これら異性体においては、単独でも混合して使用することもできるが、好ましくは異性体の混合物として使用した場合である。
さらに好ましくは、ビフェニリレン化合物および/またはキシリレン化合物の異性体混合物である。
ビフェニリレン化合物および/またはキシリレン化合物の異性体混合では、1,4−体と4,4’−体が、少なくとも50モル%以上含む場合が、最も好ましい。
しかし、混合して使用する場合では、その混合比率は、4,4’−ビフェニリレン基1モルに対して20〜50モル%で1,4−キシリレン基を使用するのが好ましい。
Examples of the aryl group-containing bridging group R used in the present invention include divalent arylene groups represented by the general formulas (2-1) (2-2) and (3).
Examples of such a divalent arylene group include, for example, 4,4′-biphenylylene group, 3,3′-biphenylylene group, 2,2′-biphenylylene group, 2,4′-biphenylylene group, 1,4-xylylene group. Group, 1,3-xylylene group, 1,2-xylylene group and the like.
Among these, 4,4′-biphenylylene group and 1,4-xylylene group are particularly preferable in the present invention.
Specific examples of the aryl group-containing crosslinking group-forming compound for leading to the substituent include compounds represented by the general formulas ( 4-1), (4-2), and (5).
In the general formulas ( 4-1), (4-2), and (5), X is a halogen atom, a hydroxyl group, or an alkoxyl group having 1 to 6 carbon atoms, and R 4 is a hydroxyl group or having 1 carbon atom. 6 alkyl groups. Here, as a halogen atom, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned, for example, A chlorine atom is preferable. Examples of the alkoxyl group include linear or branched alkoxyl groups having 1 to 6 carbon atoms such as methoxyl group, ethoxyl group, propoxyl group, butoxyl group, pentyloxyl group, hexyloxyl group, and the like. Also includes isomers. Examples of the alkyl group include those described above.
Specific examples of the compound for leading to the substituent include 4,4′-di (methoxymethyl) biphenyl, 2,2′-di (methoxymethyl) biphenyl, and 2,4′-di (methoxymethyl). Di (alkoxymethyl) biphenyl compounds such as biphenyl, di (such as 4.4′-di (chloromethyl) biphenyl, 2,2′-di (chloromethyl) biphenyl, 2,4′-di (chloromethyl) biphenyl) Di (hydroxymethyl) biphenyl compounds such as halogenomethyl) biphenyl compounds, 4,4′-di (hydroxymethyl) biphenyl, 2,2′-di (hydroxymethyl) biphenyl, 2,4′-di (hydroxymethyl) biphenyl, etc. 1,4-di (methoxymethyl) benzene, 1,3-di (methoxymethyl) benzene, 1,2-di (methoxymethyl) benzene, etc. Di (halogenomethyl) benzene compounds such as 1,4-di (chloromethyl) benzene, 1,3-di (chloromethyl) benzene, 1,2-di (chloromethyl) benzene, 1,4 Di (hydroxymethyl) benzene compounds such as di (hydroxymethyl) benzene, 1,3-di (hydroxymethyl) benzene, 1,2-di (hydroxymethyl) benzene, benzaldehyde, 2-hydroxybenzaldehyde, 3-hydroxybenzaldehyde And hydroxybenzaldehyde compounds such as 4-hydroxybenzaldehyde, and alkylbenzaldehyde compounds such as 2-methylbenzaldehyde, 3-methylbenzaldehyde, and 4-methylbenzaldehyde.
These isomers can be used alone or in combination, but it is preferable to use them as a mixture of isomers.
More preferably, it is an isomer mixture of a biphenylylene compound and / or a xylylene compound.
In the isomer mixture of the biphenylylene compound and / or the xylylene compound, it is most preferable that the 1,4-isomer and the 4,4′-isomer contain at least 50 mol% or more.
However, in the case of using a mixture, it is preferable to use 1,4-xylylene groups at a mixing ratio of 20 to 50 mol% with respect to 1 mol of 4,4′-biphenylylene groups.

[低軟化点フェノールノボラック樹脂の製造方法] [Production Method of Low Softening Point Phenol Novolak Resin]

Figure 0005413488
Figure 0005413488

一般式(1)で示される低軟化点フェノールノボラック樹脂の製造方法は、酸触媒存在下、一定量のフェノール類に対して、n倍モルのR、即ち、アリール基含有架橋基形成用化合物と、m倍モルのホルムアルデヒドを同時に添加して1段の縮合反応で行うことができる。
この場合は、アリール基含有架橋基形成用化合物及びホルムアルデヒドの合計1モルに対し、好ましくはフェノール類を2〜10倍モル、より好ましくは3〜6倍モル、更に好ましくは4モル以上で使用すると共に、反応温度を低温(例えば、100℃前後)にてフェノール類とホルムアルデヒドの反応を優先的に行ない、主として低分子量のメチレン架橋基含有のフェノールノボラック樹脂を形成させ、次いで昇温または触媒を増量してメチレン架橋基含有フェノールノボラック樹脂、アリール基含有架橋基形成用化合物及びフェノール類を反応させる方式を採用するのが好ましい。
用いる酸触媒としては、特に限定はなく、塩酸、蓚酸、硫酸、リン酸等の無機酸、パラトルエンスルホン酸等の有機酸など、公知のものを単独であるいは2種以上併用して使用することができるが、硫酸、蓚酸又はパラトルエンスルホン酸が特に好ましい。
縮合反応の温度は、低温条件としては50〜120℃、好ましくは80〜110℃であり、昇温時での反応温度は130〜230℃、好ましくは150〜200℃である。
縮合反応の時間は、反応温度や使用する触媒の種類および量により変動するが、1〜24時間程度である。
反応圧力は、通常、常圧下にて行うが、若干の加圧下あるいは減圧下にて実施しても何ら問題はない。
アリール基含有架橋基形成用化合物とホルムアルデヒドの合計1モルに対しフェノール類の使用量を2モル未満にするなど、上述の反応条件から大きく逸脱した場合には高分子量で溶融粘度の高いフェノールノボラック樹脂しか得られない場合があり好ましくない。
The method for producing a low softening point phenol novolak resin represented by the general formula (1) comprises n-fold mole of R, that is, an aryl group-containing crosslinking group-forming compound with respect to a certain amount of phenol in the presence of an acid catalyst. , M-fold moles of formaldehyde can be added simultaneously to carry out the condensation reaction in one stage.
In this case, the phenol is preferably used in an amount of 2 to 10 times mol, more preferably 3 to 6 times mol, and still more preferably 4 mols or more relative to a total of 1 mol of the aryl group-containing crosslinking group-forming compound and formaldehyde. At the same time, the reaction between phenols and formaldehyde is preferentially carried out at a low reaction temperature (for example, around 100 ° C.) to form a phenol novolac resin mainly containing low molecular weight methylene crosslinking groups, and then the temperature is increased or the catalyst is increased. Thus, it is preferable to employ a system in which a methylene crosslinking group-containing phenol novolak resin, an aryl group-containing crosslinking group-forming compound and phenols are reacted.
The acid catalyst to be used is not particularly limited, and known acids such as hydrochloric acid, oxalic acid, sulfuric acid, phosphoric acid and other inorganic acids, paratoluenesulfonic acid and other organic acids may be used alone or in combination of two or more. Of these, sulfuric acid, succinic acid or paratoluenesulfonic acid is particularly preferred.
The temperature of the condensation reaction is 50 to 120 ° C., preferably 80 to 110 ° C. as a low temperature condition, and the reaction temperature at the time of temperature rise is 130 to 230 ° C., preferably 150 to 200 ° C.
The time for the condensation reaction varies depending on the reaction temperature and the type and amount of the catalyst used, but is about 1 to 24 hours.
The reaction pressure is usually carried out under normal pressure, but there is no problem even if it is carried out under slight pressure or reduced pressure.
A phenol novolak resin having a high molecular weight and a high melt viscosity when the amount of phenols used is less than 2 moles relative to 1 mole of the total of the aryl group-containing crosslinking group-forming compound and formaldehyde. However, there are cases where it can only be obtained, which is not preferable.

そのため、本発明の低軟化点フェノールノボラック樹脂は、酸触媒の存在下で予めフェノール類とホルムアルデヒドを縮合させ、次いでRのアリール基含有架橋基形成用化合物を添加して縮合させる2段の縮合反応で製造することもできる。このような2段の縮合反応では、2段目の反応において新たにフェノール類を添加することができる.この場合も1段反応の場合と同様にフェノール類を過剰に使用することが好ましい。例えば、1段目の反応においてホルムアルデヒド1モルに対してフェノール類を2.5モル以上、より好ましくは3.3〜10モル存在させ、2段目の反応において追加するアリール基含有架橋基形成用化合物及びフェノール類は、1〜2段反応のトータルで仕込むアリール基含有架橋基形成用化合物とホルムアルデヒドの合計1モルに対して、1〜2段のトータルで仕込むフェノール類が3モル以上、より好ましくは3.3〜10モルの範囲で使用することが重要である。
このような2段の縮合反応で行うと、アリール基含有架橋基型フェノールノボラック樹脂及びメチレン架橋基含有フェノールノボラック樹脂の各重合単位の重合度、すなわちn及びmの分布が狭くなり、分子量のコントロールが容易となり、所望の溶融粘度の重合体が得やすいので、本発明の目的のためには好ましい。
2段階の縮合反応の一例を次の反応式に示す。
Therefore, the low softening point phenol novolak resin of the present invention is a two-stage condensation reaction in which phenols and formaldehyde are condensed in advance in the presence of an acid catalyst, and then an aryl group-containing crosslinking group-forming compound of R is added and condensed. Can also be manufactured. In such a two-stage condensation reaction, phenols can be newly added in the second-stage reaction. In this case as well, it is preferable to use an excess of phenols as in the case of the one-stage reaction. For example, in the first stage reaction, phenols are present in an amount of 2.5 moles or more, more preferably 3.3 to 10 moles per mole of formaldehyde, and an aryl group-containing crosslinking group is added in the second stage reaction. More preferably, the compound and the phenols are prepared in a total of 1 to 2 stages of the aryl group-containing crosslinking group-forming compound and formaldehyde in a total amount of 1 mole, and the phenols to be charged in a total of 1 to 2 stages are 3 moles or more. It is important to use in the range of 3.3 to 10 mol.
When such a two-stage condensation reaction is carried out, the degree of polymerization of each polymer unit of the aryl group-containing cross-linking group type phenol novolak resin and the methylene cross-linking group-containing phenol novolak resin, that is, the distribution of n and m becomes narrow, and the molecular weight is controlled. Is easy for the purpose of the present invention, and a polymer having a desired melt viscosity is easily obtained.
An example of a two-stage condensation reaction is shown in the following reaction formula.

Figure 0005413488
Figure 0005413488

Figure 0005413488
Figure 0005413488

2段階の縮合反応は、1段の縮合反応条件に準じて実施することができる。
前記1段縮合反応及び2段縮合反応における酸触媒の使用量は、その種類によっても異なるが、使用するフェノール類に対して、蓚酸の場合は0.1〜2.0質量%程度、硫酸の場合は0.05〜0.5質量%程度、またパラトルエンスルホン酸の場合は0.02〜0.1質量%程度使用するのがよい。とくに2段縮合反応を行なう場合では、2段目のアリール基含有架橋基をフェノール類及びメチレン架橋基フェノールノボラック樹脂と反応させる際には、硫酸又はパラトルエンスルホン酸を使用することが好ましい。また、反応温度はとくに限定はないが、60〜160℃程度の範囲に設定するのが好ましい。より好ましくは、80〜140℃である。
The two-stage condensation reaction can be carried out according to the one-stage condensation reaction conditions.
The amount of the acid catalyst used in the one-stage condensation reaction and the two-stage condensation reaction varies depending on the type of the acid catalyst, but in the case of oxalic acid, about 0.1 to 2.0% by mass of sulfuric acid, In the case of para-toluenesulfonic acid, about 0.02 to 0.1% by mass should be used. In particular, when a two-stage condensation reaction is performed, it is preferable to use sulfuric acid or paratoluenesulfonic acid when the second-stage aryl group-containing crosslinking group is reacted with phenols and a methylene crosslinking group phenol novolac resin. The reaction temperature is not particularly limited, but is preferably set in the range of about 60 to 160 ° C. More preferably, it is 80-140 degreeC.

酸触媒の存在下で縮合反応させた後、未反応のフェノール類及び酸触媒を除去することにより、本発明の低軟化点フェノールノボラック樹脂を得ることができる。
フェノール類の除去方法は、減圧下あるいは不活性ガスを吹き込みながら熱をかけ、フェノール類を蒸留し系外へ除去する方法が一般的である。酸触媒の除去は、水洗などの洗浄による方法が挙げられる。
After the condensation reaction in the presence of an acid catalyst, the unreacted phenols and the acid catalyst are removed, whereby the low softening point phenol novolak resin of the present invention can be obtained.
As a method for removing phenols, a method is generally used in which heat is applied under reduced pressure or while blowing an inert gas to distill the phenols out of the system. The removal of the acid catalyst includes a method such as washing with water.

本発明の低軟化点フェノールノボラック樹脂の製造方法において、原料のフェノール類、アリール基含有架橋基形成用化合物及びホルムアルデヒドの使用量をコントロールするとともに、上記のように反応条件を設定することにより、所望の150℃における溶融粘度を有する樹脂を得ることができる。   In the production method of the low softening point phenol novolak resin of the present invention, the amount of the starting phenols, the aryl group-containing cross-linking group forming compound and formaldehyde is controlled, and the reaction conditions are set as described above to obtain the desired A resin having a melt viscosity at 150 ° C. can be obtained.

本発明の低軟化点フェノールノボラック樹脂は、分子内にアリール基架橋型のフェノールノボラック樹脂及びメチレン架橋型のフェノールノボラック樹脂の重合単位を特定の割合で共に有する構造であり、低溶融粘度、高ガラス転移温度、低吸湿性、高密着性、耐熱性、及び難燃性を兼ね備えたエポキシ樹脂用の原料に適している。   The low softening point phenol novolak resin of the present invention has a structure in which a polymer unit of an aryl group cross-linked phenol novolak resin and a methylene cross-linked phenol novolak resin is present in a specific ratio in the molecule, and has a low melt viscosity and a high glass It is suitable as a raw material for epoxy resins having a transition temperature, low moisture absorption, high adhesion, heat resistance, and flame retardancy.

さらに、本発明の低軟化点フェノールノボラック樹脂は、バインダー、コーティング材、積層材、成形材料等の用途に広く使用できるが、特に低溶融粘度で、しかも高ガラス転移温度、低吸湿性、高密着性、耐熱性、及び難燃性を有するところから、特に、半導体封止用、プリント基板絶縁用などのエポキシ用硬化剤に好適である。   Furthermore, the low softening point phenol novolac resin of the present invention can be widely used for applications such as binders, coating materials, laminates, molding materials, etc., but particularly has a low melt viscosity and a high glass transition temperature, low moisture absorption, and high adhesion. In particular, it is suitable for epoxy curing agents for semiconductor encapsulation, printed circuit board insulation, and the like because it has heat resistance, heat resistance, and flame retardancy.

[エポキシ樹脂硬化物]
本発明の低軟化点フェノールノボラック樹脂は、一例としてエポキシ樹脂用硬化剤として用いることができる。エポキシ樹脂硬化物はフェノール系重合体とエポキシ樹脂及び硬化促進剤を混合し、100〜250℃の温度範囲で硬化させることにより得られる。
[Hardened epoxy resin]
The low softening point phenol novolac resin of the present invention can be used as an example of a curing agent for epoxy resin. The cured epoxy resin can be obtained by mixing a phenolic polymer, an epoxy resin and a curing accelerator and curing them in a temperature range of 100 to 250 ° C.

エポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂などのグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ハロゲン化エポキシ樹脂など、分子中にエポキシ基を二個以上有するエポキシ樹脂が挙げられる。これらエポキシ樹脂は単独で使用しても、2種類以上を併用してもよい。   Examples of the epoxy resin include glycidyl ether type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, triphenolmethane type epoxy resin, biphenyl type epoxy resin, and glycidyl. Examples thereof include an epoxy resin having two or more epoxy groups in the molecule, such as an ester type epoxy resin, a glycidylamine type epoxy resin, and a halogenated epoxy resin. These epoxy resins may be used alone or in combination of two or more.

(硬化促進剤)
硬化促進剤としては、エポキシ樹脂をフェノール系硬化剤で硬化させるための公知の硬化促進剤を用いることが出来る。このような硬化促進剤としては例えば有機ホスフィン化合物およびそのボロン塩、3級アミン、4級アンモニウム塩、イミダゾール類及びそのテトラフェニルボロン塩などを挙げることができるが、この中でも、硬化性や耐湿性の点から、トリフェニルホスフィン及び1,8−ジアザビシクロ(5.4.0)ウンデセン−7(DBU)が好ましい。また、より高流動性にするためには、加熱により活性が発現する熱潜在性の硬化促進剤がより好ましく、テトラフェニルホスフォニウム・テトラフェニルボレートなどのテトラフェニルホスフォニウム誘導体が好ましい。
(Curing accelerator)
As a hardening accelerator, the well-known hardening accelerator for hardening an epoxy resin with a phenol type hardening | curing agent can be used. Examples of such curing accelerators include organic phosphine compounds and their boron salts, tertiary amines, quaternary ammonium salts, imidazoles and their tetraphenylboron salts, and among them, curability and moisture resistance. From this point, triphenylphosphine and 1,8-diazabicyclo (5.4.0) undecene-7 (DBU) are preferable. In order to achieve higher fluidity, a heat-latent curing accelerator that exhibits activity by heating is more preferable, and tetraphenylphosphonium derivatives such as tetraphenylphosphonium and tetraphenylborate are preferable.

(その他添加剤)
本発明のエポキシ樹脂組成物には、必要に応じて、無機充填剤、離型剤、着色剤、難燃剤、低応力剤等を、添加または予め反応して用いることができる。とくに半導体封止用に使用する場合は、無機充填剤の添加は必須である.このような無機充填剤の例として、非晶性シリカ、結晶性シリカ、アルミナ、ガラス、珪酸カルシウム、石膏、炭酸カルシウム、マグネサイト、クレー、タルク、マイカ、マグネシア、硫酸バリウムなどを挙げることができるが、とくに非晶性シリカ、結晶性シリカなどが好ましい.これら添加剤の使用量は、従来の半導体封止用エポキシ樹脂組成物における使用量と同様でよい。
(Other additives)
In the epoxy resin composition of the present invention, an inorganic filler, a release agent, a colorant, a flame retardant, a low stress agent, or the like can be added or reacted in advance as necessary. Especially when used for semiconductor encapsulation, the addition of inorganic fillers is essential. Examples of such inorganic fillers include amorphous silica, crystalline silica, alumina, glass, calcium silicate, gypsum, calcium carbonate, magnesite, clay, talc, mica, magnesia, barium sulfate and the like. However, amorphous silica, crystalline silica and the like are particularly preferable. The usage-amount of these additives may be the same as the usage-amount in the conventional epoxy resin composition for semiconductor sealing.

本発明のアルキル型樹脂は適当量のフェノールノボラック樹脂単位を有し、エポキシ樹脂硬化剤として用いた場合、高ガラス転移温度、低吸湿性、高密着性、耐熱性、及び難燃性を維持し、しかも低粘度化を実現させることができる。   The alkyl type resin of the present invention has an appropriate amount of phenol novolak resin unit, and when used as an epoxy resin curing agent, maintains a high glass transition temperature, low moisture absorption, high adhesion, heat resistance, and flame retardancy. In addition, a low viscosity can be realized.

以下に実施例を挙げて、本発明を具体的に説明する。なお本発明で得られたフェノールノボラック樹脂の評価方法を示す。   The present invention will be specifically described below with reference to examples. In addition, the evaluation method of the phenol novolak resin obtained by this invention is shown.

(1)ICI粘度の測定
ICIコーンプレート粘度計:TOA工業(株)MODEL CV−1Sを使用した。
ICI粘度計のプレート温度を150℃に設定し、試料を約0.04g秤量する。
プレート部に秤量した樹脂を置き、上部よりコーンで押えつけ、90sec放置する。
コーンを回転させて、そのトルク値をICI粘度として読み取る。
(2)ゲルタイムの測定
エポキシ樹脂とフェノール樹脂を1:1の当量になるように試験管に仕込み、さらにTPPをエポキシに対して0.1wt%になるよう計量し、試験管に仕込む。
油温を150℃に設定したゲルタイマー(東芝時間計 SFO−304M)に試験管を設置し、SUS攪拌棒を使い、1秒間に1回転で攪拌する。
はじめは粘度が低く液状であるが、一定時間経過すると、樹脂の粘度が急激に上昇し、ゲル状となる。この間にかかった時間をゲルタイムとする。
この時間が短いほど、硬化性が良好という指標になる。
(1) Measurement of ICI viscosity ICI cone plate viscometer: TOA Kogyo Co., Ltd. MODEL CV-1S was used.
Set the plate temperature of the ICI viscometer to 150 ° C. and weigh about 0.04 g of sample.
Place the weighed resin on the plate, press it with the cone from the top, and leave it for 90 seconds.
The cone is rotated and its torque value is read as ICI viscosity.
(2) Measurement of gel time An epoxy resin and a phenol resin are charged into a test tube so as to have an equivalent of 1: 1, and TPP is weighed so as to be 0.1 wt% with respect to the epoxy, and then charged into a test tube.
A test tube is installed in a gel timer (Toshiba hour meter SFO-304M) in which the oil temperature is set to 150 ° C., and a SUS stir bar is used to stir at one rotation per second.
Initially, the viscosity is low and liquid, but after a certain period of time, the viscosity of the resin rapidly increases and becomes a gel. The time taken during this period is defined as gel time.
The shorter this time, the better the curability.

表1に示した条件で合成したフェノールノボラック樹脂(実施例および比較例)を硬化剤として使用した場合、対するエポキシ樹脂は、日本化薬(株)製NC−3000(軟化点60℃、エポキシ等量270g/eq)のエポキシ化ビフェニルノボラック樹脂であり、硬化促進剤としてトリフェニルホスフィン(TPPと略記することもある。)を使用した。
本発明の低軟化点フェノールノボラック樹脂および上記エポキシ樹脂を、フェノール水酸基当量とエポキシ当量比が1:1となるように配合し、TPP触媒は、該配合のエポキシ樹脂重量に対して1wt%仕込んだ。これらを、150℃に加熱して溶融混合し、真空脱泡した後に150℃の金型(厚さ4mm)に注型し、150℃、3時間で硬化させた後、さらに180℃、5時間かけて硬化して成形体を試作した。
得られた成形体(硬化物)の各種物性の試験方法は次の通り。
(3)Tg:TMA法(Thermal Mechanical Analysis、熱機械分析法)(昇温速度5℃/分)
(4)吸水率:24時間煮沸法、
(5)残炭率
残炭素と酸素指数とは比例関係にあり、一般的に難燃性の高い樹脂は、残炭率が高いと言われている(非特許文献1参照)。よって、難燃性の指標として測定した。
(測定方法)
上記の配合で硬化させた成形体を1.5cm角に切断し、重量を測定する。
切断したサンプルをルツボに入れ、800℃の電気炉で60分還元焼成する。
冷却後、サンプルの重量を測定する。
さらに800℃の電気炉で2時間かけ灰化させ、その重量を測定する。
下記式より残炭率(%)を求める。
残炭率(%)=(焼成後の重量−灰化後の重量)/試料の重量×100
When phenol novolac resins (Examples and Comparative Examples) synthesized under the conditions shown in Table 1 are used as curing agents, the corresponding epoxy resin is NC-3000 (softening point 60 ° C., epoxy, etc.) manufactured by Nippon Kayaku Co., Ltd. 270 g / eq) of epoxidized biphenyl novolac resin, and triphenylphosphine (sometimes abbreviated as TPP) was used as a curing accelerator.
The low softening point phenol novolac resin of the present invention and the above epoxy resin were blended so that the phenol hydroxyl equivalent weight and the epoxy equivalent ratio were 1: 1, and the TPP catalyst was charged at 1 wt% with respect to the weight of the epoxy resin in the blend. . These were heated to 150 ° C., melted and mixed, vacuum degassed, cast into a 150 ° C. mold (thickness 4 mm), cured at 150 ° C. for 3 hours, and then further 180 ° C. for 5 hours. A molded product was produced by curing.
Test methods for various physical properties of the obtained molded body (cured product) are as follows.
(3) Tg: TMA method (Thermal Mechanical Analysis, thermomechanical analysis method) (heating rate 5 ° C./min)
(4) Water absorption rate: 24 hours boiling method,
(5) Residual carbon ratio Residual carbon and oxygen index are in a proportional relationship, and it is generally said that a resin with high flame retardancy has a high residual carbon ratio (see Non-Patent Document 1). Therefore, it was measured as an index of flame retardancy.
(Measuring method)
The molded body cured with the above composition is cut into 1.5 cm squares, and the weight is measured.
The cut sample is put in a crucible and reduced and fired in an electric furnace at 800 ° C. for 60 minutes.
After cooling, the sample is weighed.
Further, ashing is performed in an electric furnace at 800 ° C. for 2 hours, and the weight is measured.
Obtain the remaining charcoal rate (%) from the following formula.
Residual carbon ratio (%) = (weight after calcination−weight after ashing) / weight of sample × 100

実施例1
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール376g(4.0モル)、4,4’−ジメトキシメチルビフェニル(4,4’−BMMBと略記する。)226g(0.95)、42%ホルマリン水溶液3.6g(0.05モル)、50%硫酸水溶液0.22gを仕込み、100℃で1時間反応させた。
その後、反応温度を165℃に保ちながら3.5時間反応させた。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより340gのフェノールノボラック樹脂(150℃溶融粘度:90mPa・s)を得た。
得られたフェノールノボラック樹脂を用いて、上記の方法で成形体にした物性を表1示す。
Example 1
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, 376 g (4.0 mol) of phenol, 226 g of 4,4′-dimethoxymethylbiphenyl (abbreviated as 4,4′-BMMB) ( 0.95), 3.6 g (0.05 mol) of 42% formalin aqueous solution, and 0.22 g of 50% sulfuric acid aqueous solution were charged and reacted at 100 ° C. for 1 hour.
Then, it was made to react for 3.5 hours, keeping reaction temperature at 165 degreeC. Meanwhile, the methanol produced was distilled off. After completion of the reaction, the obtained reaction solution was cooled and washed with water three times. The oil layer was separated, and unreacted phenol was distilled off by distillation under reduced pressure to obtain 340 g of a phenol novolak resin (150 ° C. melt viscosity: 90 mPa · s).
Table 1 shows the physical properties of the obtained phenol novolac resin, which were formed into the molded body by the above method.

実施例2〜12および比較例1〜5
表1のモノマー組成にて使用した他は、実施例1記載の方法に準じてフェノールノボラック樹脂を得た。また、それぞれの硬化物の物性を表1に併せて示す。
Examples 2-12 and Comparative Examples 1-5
A phenol novolac resin was obtained according to the method described in Example 1 except that the monomer composition shown in Table 1 was used. The physical properties of each cured product are also shown in Table 1.

Figure 0005413488
Figure 0005413488

(1)ICI粘度の測定
ICIコーンプレート粘度計:TOA工業(株)MODEL CV−1Sを使用した。
ICI粘度計のプレート温度を150℃に設定し、試料を約0.04g秤量する。
プレート部に秤量した樹脂を置き、上部よりコーンで押えつけ、90sec放置する。
コーンを回転させて、そのトルク値をICI粘度として読み取る。
(1) Measurement of ICI viscosity ICI cone plate viscometer: TOA Kogyo Co., Ltd. MODEL CV-1S was used.
Set the plate temperature of the ICI viscometer to 150 ° C. and weigh about 0.04 g of sample.
Place the weighed resin on the plate, press it with the cone from the top, and leave it for 90 seconds.
The cone is rotated and its torque value is read as ICI viscosity.

表2に示した条件で合成したフェノールノボラック樹脂(実施例および比較例)を硬化剤として使用した場合、対するエポキシ樹脂は、日本化薬(株)製NC−3000(軟化点60℃、エポキシ等量270g/eq)のエポキシ化ビフェニルノボラック樹脂であり、硬化促進剤としてトリフェニルホスフィン(TPPと略記することもある。)を使用した。
本発明の低軟化点フェノール樹脂および上記エポキシノボラック樹脂を、フェノール水酸基当量とエポキシ当量比が1:1となるように配合し、TPP触媒は、該配合のエポキシ樹脂重量に対して1wt%仕込んだ。これらを、150℃に加熱して溶融混合し、真空脱泡した後に150℃の金型(厚さ4mm)に注型し、150℃、3時間で硬化させた後、さらに180℃、5時間かけて硬化して成形体を試作した。
得られた成形体(硬化物)の各種物性の試験方法は次の通り。
(2)Tg:TMA法(Thermal Mechanical Analysis、熱機械分析法)(昇温速度5℃/分)
(3)吸水率:24時間煮沸法、
When phenol novolac resins (Examples and Comparative Examples) synthesized under the conditions shown in Table 2 were used as curing agents, the epoxy resin for them was NC-3000 (softening point 60 ° C., epoxy, etc.) manufactured by Nippon Kayaku Co., Ltd. 270 g / eq) of epoxidized biphenyl novolac resin, and triphenylphosphine (sometimes abbreviated as TPP) was used as a curing accelerator.
The low softening point phenol resin of the present invention and the above epoxy novolac resin were blended so that the phenol hydroxyl group equivalent and the epoxy equivalent ratio were 1: 1, and the TPP catalyst was charged at 1 wt% with respect to the weight of the epoxy resin of the blend. . These were heated to 150 ° C., melted and mixed, vacuum degassed, cast into a 150 ° C. mold (thickness 4 mm), cured at 150 ° C. for 3 hours, and then further 180 ° C. for 5 hours. A molded product was produced by curing.
Test methods for various physical properties of the obtained molded body (cured product) are as follows.
(2) Tg: TMA method (Thermal Mechanical Analysis, thermomechanical analysis method) (heating rate 5 ° C./min)
(3) Water absorption rate: 24 hours boiling method,

実施例13
撹拌装置、コンデンサー、及び窒素ガス導入管を備えたガラス製反応釜に、フェノール376g(4.0モル)、4,4’−ジ(メトキシメチル)ビフェニル(以下4,4’−BMMBと略記する。)143g(0.60モル)、2,4’−ジ(メトキシメチル)ビフェニル(2,4’−BMMBと略記する。)36g(0.15モル)、2.2’−ジ(メトキシメチル)ビフェニル(2,2’−BMMBと略記する。)48g(0.20モル)、42%ホルマリン水溶液3.6g(0.05モル)、50%硫酸水溶液0.22gを仕込み、100℃で1時間反応させた。
その後、反応温度を165℃に保ちながら、さらに3.5時間反応させた。その間、生成するメタノールを留去した。反応終了後、得られた反応溶液を冷却し、水洗を3回行った。油層を分離し、減圧蒸留により未反応フェノールを留去することにより335gのフェノールノボラック樹脂(150℃溶融粘度:29mPa・s)を得た。
得られたフェノールノボラック樹脂を用いて、上記の方法で成形体にした硬化物の物性を表1示す。
Example 13
In a glass reaction kettle equipped with a stirrer, a condenser, and a nitrogen gas inlet tube, 376 g (4.0 mol) of phenol, 4,4′-di (methoxymethyl) biphenyl (hereinafter abbreviated as 4,4′-BMMB). ) 143 g (0.60 mol), 2,4′-di (methoxymethyl) biphenyl (abbreviated as 2,4′-BMMB) 36 g (0.15 mol), 2.2′-di (methoxymethyl) ) Biphenyl (abbreviated as 2,2′-BMMB) 48 g (0.20 mol), 42% formalin aqueous solution 3.6 g (0.05 mol), 50% sulfuric acid aqueous solution 0.22 g were charged at 100 ° C. Reacted for hours.
Thereafter, the reaction was further continued for 3.5 hours while maintaining the reaction temperature at 165 ° C. Meanwhile, the methanol produced was distilled off. After completion of the reaction, the obtained reaction solution was cooled and washed with water three times. The oil layer was separated, and unreacted phenol was removed by distillation under reduced pressure to obtain 335 g of a phenol novolac resin (150 ° C. melt viscosity: 29 mPa · s).
Table 1 shows the physical properties of the cured product obtained by the above method using the obtained phenol novolac resin.

実施例14〜18および比較例6〜9
表2の成分割合にて各モノマーを使用した他は、実施例13記載の方法に準じてフェノールノボラック樹脂を合成した。さらにエポキシ樹脂硬化物を得た。各物性を表2に併記して示す。
Examples 14-18 and Comparative Examples 6-9
A phenol novolac resin was synthesized according to the method described in Example 13, except that each monomer was used in the component ratio of Table 2. Furthermore, a cured epoxy resin was obtained. Each physical property is shown together in Table 2.

Figure 0005413488
Figure 0005413488

表2から明らかなように、実施例13〜18で得られたフェノールノボラック樹脂および該樹脂を含む硬化物は、低溶融粘度、高ガラス転移温度、低吸湿性の全てをバランス良く兼ね備えているが、比較例6〜9ではいずれかの物性値が低下している。   As is clear from Table 2, the phenol novolak resins obtained in Examples 13 to 18 and the cured products containing the resins have all of low melt viscosity, high glass transition temperature, and low hygroscopicity in a well-balanced manner. In Comparative Examples 6 to 9, any physical property value is decreased.

本発明によれば、低溶融粘度、高ガラス転移温度、低吸湿性、高密着性、耐熱性、及び難燃性などに優れ、特に電気および電子産業用、電子部品の封止用、積層板材料用のエポキシ樹脂用として好適に用いられる新規なフェノールノボラック樹脂およびこのフェノールノボラック樹脂をエポキシ化したエポキシ化フェノールノボラック縮合体およびそれをエポキシ樹脂用硬化剤と反応して得られたエポキシ樹脂硬化物を提供することができる。
また、ビフェニリレン基を含有するフェノールノボラック樹脂は難燃剤としても使用できる。
According to the present invention, it is excellent in low melt viscosity, high glass transition temperature, low hygroscopicity, high adhesion, heat resistance, flame retardancy, etc., especially for electrical and electronic industries, for sealing electronic components, and laminates Novel phenol novolak resin suitably used for epoxy resin for materials, epoxidized phenol novolak condensate obtained by epoxidizing this phenol novolak resin, and cured epoxy resin obtained by reacting it with curing agent for epoxy resin Can be provided.
Moreover, the phenol novolak resin containing a biphenylylene group can also be used as a flame retardant.

Claims (10)

下記一般式(1−1):
Figure 0005413488
[式中、Rは下記一般式(2−1):
Figure 0005413488
で示される基であり、更に下記一般式(2−2):
Figure 0005413488
で示される基、及び/又は下記一般式(3):
Figure 0005413488
(式中、Rは、ヒドロキシル基又は炭素原子数1〜6のアルキル基である)
で示される基を含んでいてもよく、m及びnは、m/nが0.04〜を満たす数であり、また、R、R及びRは、同一でも異なっていてもよく、それぞれ、ヒドロキシル基又は炭素原子数1から6個のアルキル基であり、p、q及びrは、それぞれ、0〜2の整数である。]
で示される構成単位を有することを特徴とするフェノールノボラック樹脂。
The following general formula ( 1-1 ):
Figure 0005413488
[Wherein, R represents the following general formula (2-1):
Figure 0005413488
In addition, the following general formula (2-2):
Figure 0005413488
And / or the following general formula (3):
Figure 0005413488
(Wherein R 4 is a hydroxyl group or an alkyl group having 1 to 6 carbon atoms)
And m and n are numbers satisfying m / n of 0.04 to 6 , and R 1 , R 2 and R 3 may be the same or different. Are each a hydroxyl group or an alkyl group having 1 to 6 carbon atoms, and p, q and r are each an integer of 0 to 2. ]
A phenol novolac resin having a structural unit represented by:
下記一般式(1−2):
Figure 0005413488
[式中、Rは下記一般式(2−1):
Figure 0005413488
で示される基であり、更に下記一般式(3):
Figure 0005413488
(式中、Rは、ヒドロキシル基又は炭素原子数1〜6のアルキル基である)
で示される基を含んでいてもよく、m及びnは、m/nが0.04〜を満たす数であり、また、R、R及びRは、同一でも異なっていてもよく、それぞれ、ヒドロキシル基又は炭素原子数1から6個のアルキル基であり、p、q及びrは、それぞれ、0〜2の整数である。]
で示される構成単位を有することを特徴とするフェノールノボラック樹脂。
The following general formula (1 -2):
Figure 0005413488
[Wherein, R represents the following general formula (2-1):
Figure 0005413488
In addition, the following general formula (3):
Figure 0005413488
(Wherein R 4 is a hydroxyl group or an alkyl group having 1 to 6 carbon atoms)
And m and n are numbers satisfying m / n of 0.04 to 9 , and R 1 , R 2 and R 3 may be the same or different. Are each a hydroxyl group or an alkyl group having 1 to 6 carbon atoms, and p, q and r are each an integer of 0 to 2. ]
A phenol novolac resin having a structural unit represented by:
一般式(2−1)で示される基が、4,4’−体を含有する請求の範囲第1項又は第2項に記載のフェノールノボラック樹脂。 The phenol novolak resin according to claim 1 or 2 , wherein the group represented by the general formula (2-1) contains a 4,4'-form. 一般式(2−1)で示される基が、各異性体の混合物である請求の範囲第項に記載のフェノールノボラック樹脂。 The phenol novolak resin according to claim 3 , wherein the group represented by formula (2-1) is a mixture of isomers. 下記一般式(1−3):The following general formula (1-3):
Figure 0005413488
Figure 0005413488
[式中、Rは下記一般式(2−1):[Wherein, R represents the following general formula (2-1):
Figure 0005413488
Figure 0005413488
で示される基であり、更に下記一般式(2−2):In addition, the following general formula (2-2):
Figure 0005413488
Figure 0005413488
で示される基、及び/又は下記一般式(3):And / or the following general formula (3):
Figure 0005413488
Figure 0005413488
(式中、R(Wherein R 4 は、ヒドロキシル基又は炭素原子数1〜6のアルキル基である)Is a hydroxyl group or an alkyl group having 1 to 6 carbon atoms)
で示される基を含んでいてもよく、m及びnは、m/nが0.04〜20を満たす数であり、また、RIn which m / n is a number satisfying m / n of 0.04 to 20, and R 1 、R, R 2 及びRAnd R 3 は、同一でも異なっていてもよく、それぞれ、ヒドロキシル基又は炭素原子数1から6個のアルキル基であり、p、q及びrは、それぞれ、0〜2の整数である。]May be the same or different and are each a hydroxyl group or an alkyl group having 1 to 6 carbon atoms, and p, q and r are each an integer of 0 to 2. ]
で示される構成単位を有し、一般式(2−1)で示される基が、4,4’−体を含有する各異性体の混合物であることを特徴とするフェノールノボラック樹脂。A phenol novolak resin, wherein the group represented by formula (2-1) is a mixture of isomers including a 4,4'-isomer.
フェノール類、下記一般式(4−1):
Figure 0005413488
(式中、Xはハロゲン原子、ヒドロキシル基又は炭素原子数1〜6のアルコキシル基を表す)
で示される化合物、[但し、更に下記一般式(4−2):
Figure 0005413488
(式中、Xは、前記と同義である)
で示される化合物、及び/又は下記一般式(5):
Figure 0005413488
(式中、Rは、前記と同義である)
で示されるベンズアルデヒド化合物も含んでよい。]
及びホルムアルデヒドを、酸触媒の存在下で縮合させることを特徴とする請求の範囲第1〜項のいずれかに記載のフェノールノボラック樹脂の製造方法。
Phenols, the following general formula (4-1):
Figure 0005413488
(Wherein X represents a halogen atom, a hydroxyl group or an alkoxyl group having 1 to 6 carbon atoms)
A compound represented by the formula: [However, the following general formula (4-2):
Figure 0005413488
(Wherein X is as defined above)
And / or the following general formula (5):
Figure 0005413488
(Wherein R 4 has the same meaning as above).
The benzaldehyde compound shown by these may also be included. ]
The method for producing a phenol novolac resin according to any one of claims 1 to 5 , wherein the formaldehyde and the formaldehyde are condensed in the presence of an acid catalyst.
下記一般式(1−3):
Figure 0005413488
[式中、Rは下記一般式(2−1):
Figure 0005413488
で示される基であり、更に下記一般式(2−2):
Figure 0005413488
で示される基、及び/又は下記一般式(3):
Figure 0005413488
(式中、R は、ヒドロキシル基又は炭素原子数1〜6のアルキル基である)
で示される基を含んでいてもよく、m及びnは、m/nが0.04〜20を満たす数であり、また、R 、R 及びR は、同一でも異なっていてもよく、それぞれ、ヒドロキシル基又は炭素原子数1から6個のアルキル基であり、p、q及びrは、それぞれ、0〜2の整数である。]
で示される構成単位を有することを特徴とするフェノールノボラック樹脂を含有するエポキシ樹脂組成物。
The following general formula (1-3):
Figure 0005413488
[Wherein, R represents the following general formula (2-1):
Figure 0005413488
In addition, the following general formula (2-2):
Figure 0005413488
And / or the following general formula (3):
Figure 0005413488
(Wherein R 4 is a hydroxyl group or an alkyl group having 1 to 6 carbon atoms)
And m and n are numbers satisfying m / n of 0.04 to 20, and R 1 , R 2 and R 3 may be the same or different. Are each a hydroxyl group or an alkyl group having 1 to 6 carbon atoms, and p, q and r are each an integer of 0 to 2. ]
An epoxy resin composition containing a phenol novolac resin , comprising a structural unit represented by:
請求の範囲第1〜項のいずれか1項に記載のフェノールノボラック樹脂からなる群より選ばれる少なくとも1樹脂成分を含有する硬化物。 Hardened | cured material containing the at least 1 resin component chosen from the group which consists of a phenol novolak resin of any one of Claims 1-5 . 請求の範囲第項に記載の硬化物がエポキシ樹脂と反応させて得られるエポキシ樹脂硬化物。 A cured epoxy resin obtained by reacting the cured product according to claim 8 with an epoxy resin. 請求の範囲第1〜5項のいずれか1項に記載のフェノールノボラック樹脂をエポキシ化したエポキシ化フェノールノボラック縮合体。An epoxidized phenol novolak condensate obtained by epoxidizing the phenol novolak resin according to any one of claims 1 to 5.
JP2012135370A 2005-08-31 2012-06-15 Phenol novolac resin, method for producing the same, epoxy resin composition and cured product using the same Active JP5413488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012135370A JP5413488B2 (en) 2005-08-31 2012-06-15 Phenol novolac resin, method for producing the same, epoxy resin composition and cured product using the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005250906 2005-08-31
JP2005250905 2005-08-31
JP2005250905 2005-08-31
JP2005250906 2005-08-31
JP2012135370A JP5413488B2 (en) 2005-08-31 2012-06-15 Phenol novolac resin, method for producing the same, epoxy resin composition and cured product using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007533179A Division JP5136055B2 (en) 2005-08-31 2006-08-18 Low softening point phenol novolac resin, process for producing the same, and cured epoxy resin using the same

Publications (2)

Publication Number Publication Date
JP2012167289A JP2012167289A (en) 2012-09-06
JP5413488B2 true JP5413488B2 (en) 2014-02-12

Family

ID=37808652

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007533179A Active JP5136055B2 (en) 2005-08-31 2006-08-18 Low softening point phenol novolac resin, process for producing the same, and cured epoxy resin using the same
JP2012135370A Active JP5413488B2 (en) 2005-08-31 2012-06-15 Phenol novolac resin, method for producing the same, epoxy resin composition and cured product using the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007533179A Active JP5136055B2 (en) 2005-08-31 2006-08-18 Low softening point phenol novolac resin, process for producing the same, and cured epoxy resin using the same

Country Status (5)

Country Link
JP (2) JP5136055B2 (en)
KR (1) KR101285422B1 (en)
CN (1) CN101233165B (en)
TW (1) TWI399392B (en)
WO (1) WO2007026553A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5616234B2 (en) * 2009-01-30 2014-10-29 明和化成株式会社 Epoxy resin composition, method for producing the epoxy resin composition, and cured product thereof
JP5573343B2 (en) * 2009-09-16 2014-08-20 住友ベークライト株式会社 Semiconductor sealing resin composition and semiconductor device
JP5565081B2 (en) * 2009-09-16 2014-08-06 住友ベークライト株式会社 Semiconductor sealing resin composition and semiconductor device
JP5515583B2 (en) * 2009-10-02 2014-06-11 宇部興産株式会社 Phenolic resin, epoxy resin and cured epoxy resin
KR101249405B1 (en) * 2011-06-09 2013-04-09 강남화성 (주) Novolac resin and method for manufacturing the same
JP5854351B2 (en) * 2011-12-26 2016-02-09 明和化成株式会社 Photoresist composition
JP5859420B2 (en) * 2012-01-04 2016-02-10 信越化学工業株式会社 Resist underlayer film material, method for producing resist underlayer film material, and pattern forming method using the resist underlayer film material
CN105339402B (en) * 2013-06-18 2017-07-28 三菱瓦斯化学株式会社 Aromatic hydrocarbon formaldehyde resin, modified aromatic race hydrocarbon formaldehyde resin and epoxy resin and their manufacture method
WO2014203868A1 (en) * 2013-06-18 2014-12-24 三菱瓦斯化学株式会社 Aromatic hydrocarbon formaldehyde resin, modified aromatic hydrocarbon formaldehyde resin, and epoxy resin, and method for producing said resins
EP3121651B1 (en) 2014-03-20 2019-05-15 Zeon Corporation Radiation-sensitive resin composition and electronic component

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW350857B (en) * 1994-09-20 1999-01-21 Ube Industries Phenol novolak condensate and the uses thereof
JP3122834B2 (en) * 1994-09-20 2001-01-09 明和化成株式会社 New phenol novolak condensate
JP3587570B2 (en) * 1994-10-20 2004-11-10 三井化学株式会社 Benzylated polyphenols, their epoxy resins, their production methods and uses
JPH09124756A (en) * 1995-10-30 1997-05-13 Gun Ei Chem Ind Co Ltd Novolak phenol resin and production thereof
JP3636409B2 (en) * 1996-10-30 2005-04-06 日本化薬株式会社 Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof
JP3728373B2 (en) * 1997-08-29 2005-12-21 明和化成株式会社 Phenol novolac condensate
JPH11140148A (en) * 1997-11-07 1999-05-25 Meiwa Kasei Kk Biphenyl novolac condensate
JP3414340B2 (en) * 1998-12-15 2003-06-09 日本電気株式会社 Flame retardant resin material and flame retardant resin composition
JP2001064340A (en) * 1999-08-30 2001-03-13 Nippon Kayaku Co Ltd 4,4'-biphenydiyldimethylene-phenolic resin epoxy resin, epoxy resin composition, and its cured product
JP2002212271A (en) * 2001-01-19 2002-07-31 Japan Epoxy Resin Kk Curing agent for epoxy resin, and epoxy resin composition
JP2002226557A (en) * 2001-01-30 2002-08-14 Dainippon Ink & Chem Inc Flame-retardant epoxy resin composition
JP3978576B2 (en) 2001-10-16 2007-09-19 三菱瓦斯化学株式会社 Process for producing low-viscosity phenol-modified aromatic hydrocarbon formaldehyde resin
US7241833B2 (en) * 2001-11-16 2007-07-10 Asahi Organic Chemicals Industry Co.., Ltp Phenolic novolaks and process for production thereof
JP2005179383A (en) * 2003-12-16 2005-07-07 Sumitomo Bakelite Co Ltd Manufacturing method of aralkyl-modified phenolic resin
JP4385831B2 (en) * 2004-04-05 2009-12-16 宇部興産株式会社 Phenol resin mixture for rubber composition addition
JP4511231B2 (en) * 2004-04-05 2010-07-28 株式会社ブリヂストン Pneumatic tire
JP4618037B2 (en) * 2005-07-29 2011-01-26 宇部興産株式会社 Phenolic resin compositions having excellent curability and cured products thereof

Also Published As

Publication number Publication date
TWI399392B (en) 2013-06-21
KR20080050454A (en) 2008-06-05
JPWO2007026553A1 (en) 2009-03-05
CN101233165B (en) 2011-08-31
WO2007026553A1 (en) 2007-03-08
JP2012167289A (en) 2012-09-06
TW200720328A (en) 2007-06-01
KR101285422B1 (en) 2013-07-12
JP5136055B2 (en) 2013-02-06
CN101233165A (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP5413488B2 (en) Phenol novolac resin, method for producing the same, epoxy resin composition and cured product using the same
JP5228328B2 (en) Low melt viscosity phenol novolac resin, process for producing the same, and cured epoxy resin using the same
WO2007043684A9 (en) Phenol polymer, production method thereof and use thereof
JP5012003B2 (en) Low melt viscosity phenol novolac resin, its production method and its use
JP6469654B2 (en) Phenol resin, epoxy resin composition containing the phenol resin, cured product of the epoxy resin composition, and semiconductor device having the cured product
JP5476762B2 (en) Phenol resin, process for producing the resin, epoxy resin composition containing the resin, and cured product thereof
KR20180092934A (en) Epoxy resin composition, prepreg, epoxy resin composition molded article and cured product thereof
TWI478955B (en) Epoxy resin composition, manufacturing method for the same, and cured article thereof
JP6620981B2 (en) Thermosetting molding material, method for producing the same, and semiconductor sealing material
JP3833940B2 (en) Phenol polymer, process for producing the same, and epoxy resin curing agent using the same
JP5268404B2 (en) Phenol polymer, its production method and its use
JP5433294B2 (en) Dihydroxynaphthalene-based polymer, production method thereof and use thereof
TW201313769A (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP4956878B2 (en) Polyhydric phenol compound, curing agent for epoxy resin using the compound, and epoxy resin composition
JP5515583B2 (en) Phenolic resin, epoxy resin and cured epoxy resin
JP2010070471A (en) Phenolic polymer, method of producing the same, and use therefor
JP2019052258A (en) Polyhydric hydroxy resin, method for producing the same, curing agent for epoxy resin, epoxy resin, epoxy resin composition, cured product of the same, semiconductor sealing material and laminated plate
JP4979251B2 (en) Phenol polymer, its production method and its use
JP2001261785A (en) Epoxy resin composition and cured product thereof
JP2012097229A (en) Method for producing curing agent composition for epoxy resin, and method for producing thermosetting molding material
JP2000204131A (en) Phenol polymer composition
JP2010229203A (en) Phenolic resin composition, process for producing the resin composition and epoxy resin composition including the resin composition
JP2007262129A (en) Epoxy resin composition and curing agent thereof
JP2014062153A (en) Epoxy resin composition for electronic material and electronic component

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R150 Certificate of patent or registration of utility model

Ref document number: 5413488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250