[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5404541B2 - Heat exchanger and hot water supply apparatus provided with the same - Google Patents

Heat exchanger and hot water supply apparatus provided with the same Download PDF

Info

Publication number
JP5404541B2
JP5404541B2 JP2010155160A JP2010155160A JP5404541B2 JP 5404541 B2 JP5404541 B2 JP 5404541B2 JP 2010155160 A JP2010155160 A JP 2010155160A JP 2010155160 A JP2010155160 A JP 2010155160A JP 5404541 B2 JP5404541 B2 JP 5404541B2
Authority
JP
Japan
Prior art keywords
hot water
flow path
heat
water supply
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010155160A
Other languages
Japanese (ja)
Other versions
JP2012017900A (en
Inventor
浩昭 中宗
寿守務 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010155160A priority Critical patent/JP5404541B2/en
Publication of JP2012017900A publication Critical patent/JP2012017900A/en
Application granted granted Critical
Publication of JP5404541B2 publication Critical patent/JP5404541B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • F28D7/0033Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Details Of Fluid Heaters (AREA)

Description

本発明は、熱交換器およびそれを備えた給湯装置に関するものである。   The present invention relates to a heat exchanger and a hot water supply apparatus including the heat exchanger.

ヒートポンプサイクルを熱源とする冷媒回路を循環する冷媒と、床暖房回路に循環される熱媒体と、給湯回路に供給される水との間で熱交換を行う熱交換器がある。
従来の熱交換器では、熱媒体の流量に応じて熱交換器配管の管径を変えていた。すなわち、床暖房回路に多量の温水が必要な場合には、給湯回路の配管径を小さくして給湯回路を流れる水の温度を床暖房回路に流れる熱媒体の温度より高くし、給湯回路から床暖房回路へ熱を伝熱させることで床暖房に必要な熱量を補っていた(例えば、特許文献1参照)。
There is a heat exchanger that performs heat exchange between a refrigerant that circulates in a refrigerant circuit that uses a heat pump cycle as a heat source, a heat medium that is circulated in a floor heating circuit, and water that is supplied to a hot water supply circuit.
In the conventional heat exchanger, the pipe diameter of the heat exchanger pipe is changed according to the flow rate of the heat medium. That is, when a large amount of hot water is required for the floor heating circuit, the pipe diameter of the hot water supply circuit is reduced so that the temperature of the water flowing through the hot water supply circuit is higher than the temperature of the heat medium flowing through the floor heating circuit. The amount of heat required for floor heating was compensated by transferring heat to the heating circuit (see, for example, Patent Document 1).

特開2009−243747号公報(段落[0004]、図3)JP 2009-243747 A (paragraph [0004], FIG. 3)

複数の熱媒体間での熱交換を行う熱交換器においては、熱媒体毎に熱交換量を調整できることが望まれている。   In a heat exchanger that performs heat exchange between a plurality of heat media, it is desired that the amount of heat exchange can be adjusted for each heat medium.

上記特許文献1に記載の熱交換器では、熱交換器配管の管径を変えることで一部の熱媒体の温度を高くしている。しかしながら、上記特許文献1のような熱交換器にあっては、床暖房回路の配管径が給湯回路および冷媒回路の配管径より大きいため、配管同士の伝熱部に係わる部分以外の表面積が大きくなる。このため、床暖房回路用の配管からの放熱ロスが多くなる、という問題点があった。   In the heat exchanger described in Patent Document 1, the temperature of a part of the heat medium is increased by changing the pipe diameter of the heat exchanger pipe. However, in the heat exchanger as described in Patent Document 1, since the pipe diameter of the floor heating circuit is larger than the pipe diameters of the hot water supply circuit and the refrigerant circuit, the surface area other than the portion related to the heat transfer portion between the pipes is large. Become. For this reason, there existed a problem that the thermal radiation loss from piping for floor heating circuits increased.

本発明は、上記のような課題を解決するためになされたもので、複数の熱媒体間で熱交換を行い、熱媒体毎に熱交換量を調整できる熱交換器およびそれを備えた給湯装置を得るものである。
また、熱交換器の配管による放熱ロスが少ない熱交換器およびそれを備えた給湯装置を得るものである。
The present invention has been made in order to solve the above-described problems. A heat exchanger capable of performing heat exchange between a plurality of heat media and adjusting a heat exchange amount for each heat medium, and a hot water supply apparatus including the heat exchanger Is what you get.
Moreover, the heat exchanger with little heat dissipation loss by piping of a heat exchanger and a hot water supply apparatus provided with the same are obtained.

本発明に係る熱交換器は、熱源となる第一の熱媒体が流通する第一の流路と、前記第一の流路と隣接して配置され、第二の熱媒体が流通する第二の流路と、前記第一の流路と隣接して配置され、第三の熱媒体が流通する第三の流路とを備え、前記第二の流路と前記第一の流路と前記第三の流路とが順をなして積層されて、前記第二の熱媒体および前記第三の熱媒体と前記第一の熱媒体とが熱交換を行う第一の積層部が複数積層され、前記第二の流路または第三の流路の何れか一方と前記第一の流路とが順をなして積層されて、前記第二の熱媒体または前記第三の熱媒体の何れか一方と前記第一の熱媒体とが熱交換を行う第二の積層部が前記第一の積層部に積層されたものである。   The heat exchanger according to the present invention includes a first flow path through which a first heat medium serving as a heat source flows, and a second flow path disposed adjacent to the first flow path and through which a second heat medium flows. And a third channel that is arranged adjacent to the first channel and through which a third heat medium flows, the second channel, the first channel, and the third channel The third flow path is stacked in order, and a plurality of first stacked portions that perform heat exchange between the second heat medium and the third heat medium and the first heat medium are stacked. Any one of the second flow path or the third flow path and the first flow path are laminated in order, and either the second heat medium or the third heat medium A second laminated part in which one side and the first heat medium exchange heat is laminated on the first laminated part.

本発明は、第二の流路と第一の流路と第三の流路とが順をなして積層されて、第二の熱媒体および第三の熱媒体と第一の熱媒体とが熱交換を行う第一の積層部が複数積層され、第二の流路または第三の流路の何れか一方と第一の流路とが順をなして積層されて、第二の熱媒体または第三の熱媒体の何れか一方と第一の熱媒体とが熱交換を行う第二の積層部が第一の積層部に積層されている。このため、複数の熱媒体間で熱交換を行い、熱媒体毎に熱交換量を調整できる。   In the present invention, the second flow path, the first flow path, and the third flow path are laminated in order, and the second heat medium, the third heat medium, and the first heat medium are A plurality of first laminated portions that perform heat exchange are laminated, and either the second flow path or the third flow path and the first flow path are laminated in order, and the second heat medium Alternatively, the second stacked portion in which any one of the third heat medium and the first heat medium exchange heat is stacked on the first stacked portion. For this reason, heat exchange can be performed between a plurality of heat media, and the amount of heat exchange can be adjusted for each heat medium.

本発明の実施の形態1による熱交換器を備えた給湯装置の主要部分を示す図である。It is a figure which shows the principal part of the hot water supply apparatus provided with the heat exchanger by Embodiment 1 of this invention. 本発明の実施の形態1による熱交換器の配管構成を模式的に示す図である。It is a figure which shows typically the piping structure of the heat exchanger by Embodiment 1 of this invention. 本発明の実施の形態1による熱交換器の配管断面を示す図である。It is a figure which shows the piping cross section of the heat exchanger by Embodiment 1 of this invention. 本発明の実施の形態1による熱交換器のヘッダーの一端部を示す図である。It is a figure which shows the one end part of the header of the heat exchanger by Embodiment 1 of this invention. 熱交換器の配管構成の他の例を模式的に示す図である。It is a figure which shows typically the other example of the piping structure of a heat exchanger. 本発明の実施の形態2による熱交換器の配管断面を示す図である。It is a figure which shows the piping cross section of the heat exchanger by Embodiment 2 of this invention. 本発明の実施の形態3による熱交換器を備えた給湯装置の動作図である。It is an operation | movement figure of the hot water supply apparatus provided with the heat exchanger by Embodiment 3 of this invention. 本発明の実施の形態3による熱交換器を備えた給湯装置の動作図である。It is an operation | movement figure of the hot water supply apparatus provided with the heat exchanger by Embodiment 3 of this invention. 本発明の実施の形態3による熱交換器を備えた給湯装置の動作図である。It is an operation | movement figure of the hot water supply apparatus provided with the heat exchanger by Embodiment 3 of this invention. 本発明の実施の形態3による熱交換器を備えた給湯装置の動作図である。It is an operation | movement figure of the hot water supply apparatus provided with the heat exchanger by Embodiment 3 of this invention. 本発明の実施の形態3による熱交換器を備えた給湯装置の動作図である。It is an operation | movement figure of the hot water supply apparatus provided with the heat exchanger by Embodiment 3 of this invention. 本発明の実施の形態3による熱交換器を備えた給湯装置の動作図である。It is an operation | movement figure of the hot water supply apparatus provided with the heat exchanger by Embodiment 3 of this invention. 本発明の実施の形態3による熱交換器を備えた給湯装置の動作図である。It is an operation | movement figure of the hot water supply apparatus provided with the heat exchanger by Embodiment 3 of this invention.

実施の形態1.
図1は本発明の実施の形態1による熱交換器を備えた給湯装置の主要部分を示す図である。
図1に示すように、給湯装置は、冷媒回路1、給湯回路9、および風呂回路12を備える。
冷媒回路1は、圧縮機2、凝縮器として動作する熱交換器3、膨張弁4、および蒸発器5を環状に接続し、冷媒を循環させる。圧縮機2は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものである。圧縮機2は、例えば容量制御可能なインバータ圧縮機等で構成すると良い。熱交換器3は、冷媒回路1を循環する冷媒と、給湯回路9を循環する給湯用の水(後述)および風呂回路12を循環する浴槽用の水(後述)の少なくとも一方とで熱交換を行うものである。また、熱交換器3は、凝縮器として機能し、冷媒を凝縮液化するものである。熱交換器3の詳細は後述する。膨張弁4は、冷媒を減圧して膨張させるものである。この膨張弁4は、開度が可変に制御可能なもの、例えば電子式膨張弁等で構成すると良い。蒸発器5は、ファン6から供給される空気と冷媒との間で熱交換を行い、冷媒を蒸発ガス化するものである。
なお、「冷媒回路1」は、本発明における「ヒートポンプサイクル」に相当する。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a main part of a hot water supply apparatus including a heat exchanger according to Embodiment 1 of the present invention.
As shown in FIG. 1, the hot water supply apparatus includes a refrigerant circuit 1, a hot water supply circuit 9, and a bath circuit 12.
The refrigerant circuit 1 connects the compressor 2, the heat exchanger 3 that operates as a condenser, the expansion valve 4, and the evaporator 5 in an annular manner to circulate the refrigerant. The compressor 2 sucks refrigerant and compresses the refrigerant to a high temperature and high pressure state. For example, the compressor 2 may be configured by an inverter compressor capable of capacity control. The heat exchanger 3 exchanges heat between the refrigerant circulating in the refrigerant circuit 1 and at least one of water for hot water (described later) circulating in the hot water supply circuit 9 and water for bathtub (described later) circulating in the bath circuit 12. Is what you do. The heat exchanger 3 functions as a condenser and condenses and liquefies the refrigerant. Details of the heat exchanger 3 will be described later. The expansion valve 4 decompresses the refrigerant to expand it. The expansion valve 4 is preferably constituted by a valve whose opening degree can be variably controlled, for example, an electronic expansion valve. The evaporator 5 exchanges heat between the air supplied from the fan 6 and the refrigerant to evaporate the refrigerant.
The “refrigerant circuit 1” corresponds to the “heat pump cycle” in the present invention.

給湯回路9は、給湯タンク7、熱交換器3、および給湯ポンプ8を環状に接続し、給湯用の水を循環させて給湯タンク7に貯留する。給湯タンク7は、給湯用の水を貯留するものである。給湯ポンプ8は、給湯回路9の配管を流通する水を循環させるものである。この給湯ポンプ8は、例えば容量制御可能なポンプ等で構成すると良い。
給湯回路9は、給湯タンク7の下部から流出した低温の水を給湯ポンプ8で循環させ、熱交換器3で吸熱して高温になった高温の水を給湯タンク7の上部から流入させて貯留する。また、給湯タンク7の下部には、例えば水道水などを供給する給水14が設けられている。さらに、熱交換器3を流通した水と給湯タンク7に貯留された給湯用の水とを混合して流出が可能な蛇口13が設けられている。また、蛇口13からの給湯用の水は、例えば水道水などを供給する給水14と混合して適温にした温水を流出する。蛇口13からの温水は浴槽10の湯はり等に給湯できる。
なお、「蛇口13」は、本発明における「給湯口」に相当する。
The hot water supply circuit 9 connects the hot water supply tank 7, the heat exchanger 3, and the hot water supply pump 8 in an annular shape, circulates water for hot water supply, and stores it in the hot water supply tank 7. The hot water supply tank 7 stores water for hot water supply. The hot water supply pump 8 circulates the water flowing through the piping of the hot water supply circuit 9. The hot water supply pump 8 is preferably constituted by a pump whose capacity can be controlled, for example.
The hot water supply circuit 9 circulates the low temperature water flowing out from the lower part of the hot water tank 7 by the hot water supply pump 8, and stores the high temperature water that has been absorbed by the heat exchanger 3 from the upper part of the hot water tank 7. To do. In addition, a water supply 14 for supplying, for example, tap water is provided below the hot water supply tank 7. Furthermore, a faucet 13 is provided that can flow out by mixing the water flowing through the heat exchanger 3 with the hot water stored in the hot water tank 7. Moreover, the hot water supplied from the faucet 13 is mixed with, for example, tap water 14 for supplying tap water, and flows out warm water having an appropriate temperature. Hot water from the faucet 13 can supply hot water to the hot water in the bathtub 10.
The “faucet 13” corresponds to the “hot water inlet” in the present invention.

風呂回路12は、熱交換器3、および風呂ポンプ11を環状に接続し、浴槽用の水を循環させる。風呂ポンプ11は、風呂回路12の配管を流通する水を循環させるものである。この風呂ポンプ11は、例えば容量制御可能なポンプ等で構成すると良い。風呂回路12では、浴槽10に貯められた湯(浴槽用の水)を浴槽10の下部から風呂ポンプ11で循環させ、熱交換器3で吸熱して高温になった浴槽用の水を再び浴槽10に戻すことで追い焚きが可能である。
なお、「風呂回路12」は、本発明における「温熱利用回路」に相当する。
なお、「風呂ポンプ11」は、本発明における「循環ポンプ」に相当する。
The bath circuit 12 connects the heat exchanger 3 and the bath pump 11 in a ring shape, and circulates water for the bathtub. The bath pump 11 circulates the water flowing through the piping of the bath circuit 12. The bath pump 11 is preferably constituted by a pump whose capacity can be controlled, for example. In the bath circuit 12, hot water (tub water) stored in the bathtub 10 is circulated from the lower part of the bathtub 10 by the bath pump 11, and the bathtub water that has been heated by the heat exchanger 3 is heated again. By returning to 10, it is possible to catch up.
The “bath circuit 12” corresponds to the “heat utilization circuit” in the present invention.
The “bath pump 11” corresponds to the “circulation pump” in the present invention.

熱交換器3は、冷媒回路1の冷媒が流通する冷媒配管1’と、給湯回路9の給湯用の水が流通する給湯配管9’と、風呂回路12の浴槽の水が流通する風呂配管12’とを備えている。この熱交換器3は、熱源となる冷媒と給湯用の水との熱交換、および、熱源となる冷媒と浴槽用の水との熱交換が可能である。
なお、「冷媒配管1’」は、本発明における「第一の流路」に相当する。
なお、「給湯配管9’」は、本発明における「第二の流路」に相当する。
なお、「風呂配管12’」は、本発明における「第三の流路」に相当する。
なお、「冷媒」は、本発明における「第一の熱媒体」に相当する。
なお、「給湯用の水」は、本発明における「第二の熱媒体」に相当する。
なお、「浴槽用の水」は、本発明における「第三の熱媒体」に相当する。
The heat exchanger 3 includes a refrigerant pipe 1 ′ through which the refrigerant of the refrigerant circuit 1 flows, a hot water supply pipe 9 ′ through which hot water for the hot water supply circuit 9 flows, and a bath pipe 12 through which the water in the bathtub of the bath circuit 12 flows. 'And features. The heat exchanger 3 is capable of heat exchange between the refrigerant serving as the heat source and the water for hot water supply and the heat exchange between the refrigerant serving as the heat source and the water for the bathtub.
The “refrigerant pipe 1 ′” corresponds to the “first flow path” in the present invention.
“Hot water supply pipe 9 ′” corresponds to “second flow path” in the present invention.
The “bath pipe 12 ′” corresponds to the “third flow path” in the present invention.
The “refrigerant” corresponds to the “first heat medium” in the present invention.
The “hot water supply water” corresponds to the “second heat medium” in the present invention.
The “tub water” corresponds to the “third heat medium” in the present invention.

図2は本発明の実施の形態1による熱交換器の配管構成を模式的に示す図である。
図3は本発明の実施の形態1による熱交換器の配管断面を示す図である。
図4は本発明の実施の形態1による熱交換器のヘッダーの一端部を示す図である。
図2〜図4に示すように、冷媒回路1の一端からヘッダー20を介して複数の冷媒配管1’が分岐されている。また、給湯回路9の一端からヘッダー20を介して複数の給湯配管9’が分岐されている。また、風呂回路12の一端からヘッダー20を介して複数の風呂配管12’が分岐されている。そして、各回路の反対の端部では分岐した各配管がヘッダー20に集合されている。
FIG. 2 is a diagram schematically showing the piping configuration of the heat exchanger according to Embodiment 1 of the present invention.
FIG. 3 is a diagram showing a pipe cross section of the heat exchanger according to Embodiment 1 of the present invention.
FIG. 4 is a view showing one end of the header of the heat exchanger according to Embodiment 1 of the present invention.
As shown in FIGS. 2 to 4, a plurality of refrigerant pipes 1 ′ are branched from one end of the refrigerant circuit 1 through a header 20. A plurality of hot water supply pipes 9 ′ are branched from one end of the hot water supply circuit 9 through the header 20. A plurality of bath pipes 12 ′ are branched from one end of the bath circuit 12 through the header 20. The branched pipes are gathered in the header 20 at the opposite end of each circuit.

図2(a)では給湯配管9’は冷媒配管1’と隣接して配置される。風呂配管12’は冷媒配管1’と隣接して配置される。給湯配管9’と冷媒配管1’と風呂配管12’とが順をなして積層されて、給湯用の水および浴槽用の水と冷媒とが熱交換を行う第一の積層部100が形成されている。つまり、第一の積層部100では、給湯回路9を構成する給湯配管9’、冷媒回路1を構成する冷媒配管1’、風呂回路12を構成する風呂配管12’が順次積層した構造となっている。また、互いに隣接する接合面は例えば密着接合されて熱的に結合されている。第一の積層部100では、冷媒回路1からの熱を冷媒配管1’に隣接して配置された給湯配管9’と風呂配管12’に放熱することで、冷媒と給湯用の水との熱交換、および冷媒と浴槽用の水との熱交換が行われる。   In FIG. 2A, the hot water supply pipe 9 'is arranged adjacent to the refrigerant pipe 1'. The bath pipe 12 'is arranged adjacent to the refrigerant pipe 1'. The hot water supply pipe 9 ′, the refrigerant pipe 1 ′, and the bath pipe 12 ′ are laminated in order, thereby forming the first laminated portion 100 in which the hot water and the water for the bathtub and the refrigerant exchange heat. ing. That is, the first stacking unit 100 has a structure in which a hot water supply pipe 9 ′ constituting the hot water supply circuit 9, a refrigerant pipe 1 ′ constituting the refrigerant circuit 1, and a bath pipe 12 ′ constituting the bath circuit 12 are sequentially laminated. Yes. Moreover, the bonding surfaces adjacent to each other are, for example, closely bonded and thermally bonded. In the 1st lamination | stacking part 100, the heat | fever of a refrigerant | coolant and the water for hot water supply is dissipated to the hot water supply pipe | tube 9 'arrange | positioned adjacent to refrigerant | coolant piping 1', and the bath piping 12 'in the 1st lamination | stacking part 100. Exchange and heat exchange between the refrigerant and the water for the bathtub are performed.

このような構成により、第一の積層部100の積層数(分岐した配管の本数)が多い場合、給湯用の水および浴槽用の水の熱交換量は多くなる。また、第一の積層部100の積層数(分岐した配管の本数)が少ない場合、給湯用の水および浴槽用の水の熱交換量は少なくなる。このため、第一の積層部100の積層数によって、給湯用の水および浴槽用の水の熱交換量を調整することができる。   With such a configuration, when the number of first stacked portions 100 is large (the number of branched pipes), the amount of heat exchanged between water for hot water supply and water for bathtubs increases. In addition, when the number of stacked layers of the first stacked unit 100 (the number of branched pipes) is small, the heat exchange amount of water for hot water supply and water for bathtubs is small. For this reason, the heat exchange amount of the water for hot-water supply and the water for bathtubs can be adjusted with the number of lamination | stacking of the 1st lamination | stacking part 100. FIG.

また、熱交換器3には、給湯配管9’または風呂配管12’の何れか一方と冷媒配管1’とが順をなして積層されて、給湯用の水または浴槽用の水の何れか一方と冷媒とが熱交換を行う第二の積層部200が形成されている。例えば図2および図3の紙面下側に示すように、第二の積層部200は、給湯配管9’と冷媒配管1’とが順をなして積層されて、給湯用の水と冷媒とが熱交換を行う。つまり、第二の積層部200では、2本の配管が順次積層されており、冷媒回路1からの熱を冷媒配管1’に隣接して配置された給湯配管9’に放熱する。   Further, in the heat exchanger 3, either one of the hot water supply pipe 9 ′ or the bath pipe 12 ′ and the refrigerant pipe 1 ′ are stacked in order, and either one of the hot water supply water or the bathtub water is stacked. A second laminated portion 200 is formed in which the refrigerant and the heat exchanger exchange heat. For example, as shown in the lower side of the drawing in FIGS. 2 and 3, the second stacking unit 200 includes a hot water supply pipe 9 ′ and a refrigerant pipe 1 ′ that are stacked in order, so that hot water supply water and refrigerant are Perform heat exchange. That is, in the second stacking section 200, two pipes are sequentially stacked, and heat from the refrigerant circuit 1 is radiated to the hot water supply pipe 9 'disposed adjacent to the refrigerant pipe 1'.

このような構成により、給湯用の水または浴槽用の水の何れか一方の熱交換量を、他方より多くすることができる。また、第二の積層部200の積層数(分岐した配管の本数)が多い場合は熱交換量が多くなる。また、第二の積層部200の積層数(分岐した配管の本数)が少ない場合は熱交換量が少なくなる。このため、第二の積層部200の積層数によって、給湯用の水または浴槽用の水の何れか一方の熱交換量を調整することができる。さらに、第一の積層部100および第二の積層部200のそれぞれの積層数によって、給湯用の水および浴槽用の水の熱交換量をそれぞれ調整することができる。   With such a configuration, the heat exchange amount of either hot water or bathtub water can be made greater than that of the other. Moreover, when there are many lamination | stacking numbers (the number of branched piping) of the 2nd lamination | stacking part 200, the amount of heat exchange increases. In addition, when the number of stacked layers of the second stacked unit 200 (the number of branched pipes) is small, the amount of heat exchange is small. For this reason, the heat exchange amount of either the hot water supply water or the bathtub water can be adjusted by the number of stacked layers of the second stacked portion 200. Furthermore, the heat exchange amount of the water for hot water supply and the water for bathtubs can each be adjusted with the number of lamination | stacking of the 1st lamination | stacking part 100 and the 2nd lamination | stacking part 200, respectively.

図2(b)では給湯配管9’は冷媒配管1’と隣接して配置される。風呂配管12’は冷媒配管1’と隣接して配置される。給湯配管9’と冷媒配管1’と風呂配管12’とが順をなして積層されて、給湯用の水および浴槽用の水と冷媒とが熱交換を行う第一の積層部100が形成されている。また、給湯配管9’または風呂配管12’の何れか一方が他方より短く冷媒配管1’とが順をなして積層されている第二の積層部200が形成されている。例えば図では風呂配管12’が給湯配管9’より短く給湯配管9’と冷媒配管1’が順をなして積層されている第二の積層部200部分が長くなっている。第二積層部200では給湯配管9’と冷媒配管1’が順をなして積層される。このため積層部の長さの違いにより給湯用の水および浴槽用の水の熱交換量を調整することができる。   In FIG. 2B, the hot water supply pipe 9 'is arranged adjacent to the refrigerant pipe 1'. The bath pipe 12 'is arranged adjacent to the refrigerant pipe 1'. The hot water supply pipe 9 ′, the refrigerant pipe 1 ′, and the bath pipe 12 ′ are laminated in order, thereby forming the first laminated portion 100 in which the hot water and the water for the bathtub and the refrigerant exchange heat. ing. Further, a second laminated portion 200 is formed in which either one of the hot water supply pipe 9 ′ or the bath pipe 12 ′ is shorter than the other and laminated in order with the refrigerant pipe 1 ′. For example, in the drawing, the bath pipe 12 ′ is shorter than the hot water supply pipe 9 ′, and the second laminated portion 200 where the hot water supply pipe 9 ′ and the refrigerant pipe 1 ′ are laminated in order is long. In the second lamination part 200, the hot water supply pipe 9 'and the refrigerant pipe 1' are laminated in order. For this reason, the heat exchange amount of the water for hot-water supply and the water for bathtubs can be adjusted with the difference in the length of a laminated part.

また、冷媒配管1’、給湯配管9’、および風呂配管12’の断面形状が略同一に形成されている。例えば図3に示すように、配管断面が矩形状に形成され、長辺および短辺がそれぞれ略同一寸法である。つまり、各配管の長辺部分が、配管同士の熱伝導に係る部分となり、短辺部分が熱伝導に係る部分以外の部分となる。
このように、各配管の断面形状を略同一に形成することで、配管同士の熱伝導に係わる部分以外の表面積を大きくすることがない。したがって、熱交換器の配管による放熱ロスを少なくすることができる。
Moreover, the cross-sectional shape of refrigerant | coolant piping 1 ', hot water supply piping 9', and bath piping 12 'is formed substantially the same. For example, as shown in FIG. 3, the pipe cross section is formed in a rectangular shape, and the long side and the short side have substantially the same dimensions. That is, the long side portion of each pipe is a portion related to heat conduction between the pipes, and the short side portion is a portion other than the portion related to heat conduction.
Thus, by forming the cross-sectional shapes of the pipes substantially the same, the surface area other than the part related to the heat conduction between the pipes is not increased. Therefore, it is possible to reduce the heat radiation loss due to the heat exchanger piping.

なお、冷媒が流れる冷媒配管1’の材質は銅やアルミが適用できる。特にアルミの場合は軽量化が図れる。また、水が流れる給湯配管9’および風呂配管12’の材質は銅が適用できる。
なお、冷媒配管1’、給湯配管9’、および風呂配管12’の接合は、ろう付けやはんだ付け、あるいは接着による接合が可能である。
In addition, copper or aluminum can be applied to the material of the refrigerant pipe 1 ′ through which the refrigerant flows. In particular, the weight can be reduced in the case of aluminum. Moreover, copper can be used as the material of the hot water supply pipe 9 'and the bath pipe 12' through which water flows.
The refrigerant pipe 1 ′, the hot water supply pipe 9 ′, and the bath pipe 12 ′ can be joined by brazing, soldering, or adhesion.

以上のように本実施の形態においては、複数の熱媒体間で熱交換を行い、熱媒体毎に熱交換量を調整できる。また、熱交換器の配管による放熱ロスが少ない熱交換器を得ることができる。また、1つの熱交換器3により複数の熱媒体間で熱交換することができるので、熱交換器3の数を低減することができ、低コストで省エネ性のある給湯装置を得ることができる。したがって、配管からの放熱ロスが少ない3つ以上の熱媒体間で熱交換を行う熱交換器およびそれを備えた給湯装置を得ることができる。   As described above, in the present embodiment, heat exchange is performed between a plurality of heat media, and the heat exchange amount can be adjusted for each heat medium. Moreover, the heat exchanger with few heat dissipation loss by piping of a heat exchanger can be obtained. In addition, since heat can be exchanged between a plurality of heat media by one heat exchanger 3, the number of heat exchangers 3 can be reduced, and a low-cost and energy-saving hot water supply device can be obtained. . Therefore, it is possible to obtain a heat exchanger that performs heat exchange between three or more heat media with little heat dissipation loss from the piping, and a hot water supply device including the heat exchanger.

なお、本実施の形態では、各回路の一端をヘッダー20を介して複数の配管に分岐する構成について説明したが本発明はこれに限るものではない。例えば図2(a)に対しては図5に示すように、冷媒配管1’、給湯配管9’および風呂配管12’を円筒状に巻いて積層するようにしても良い。この場合においても、冷媒配管1’、給湯配管9’および風呂配管12’の3連の配管を積層する第一の積層部100と、給湯配管9’および風呂配管12’の何れか一方と冷媒配管1’との2連の配管を積層する第二の積層部200とを形成することで、同様に熱交換量を調整することができ、上述した効果と同様の効果を奏することができる。図2(b)に対しても図示しないが、冷媒配管1’、給湯配管9’および風呂配管12’とが順をなして積層される第一の積層部100を円筒状に巻いて積層するようにしても良い。この場合においても、冷媒配管1’、給湯配管9’および風呂配管12’の3連の配管を積層する第一の積層部100と、給湯配管9’および風呂配管12’の何れか一方と冷媒配管1’との2連の配管を積層する第二の積層部200とを形成することで、同様に熱交換量を調整することができ、上述した効果と同様の効果を奏することができる。なお、各配管の巻き方は円筒状に限らず、平面視矩形状やジグザグ状に積層しても良い。   In addition, although this Embodiment demonstrated the structure which branches one end of each circuit into several piping via the header 20, this invention is not limited to this. For example, with respect to FIG. 2 (a), as shown in FIG. 5, the refrigerant pipe 1 ', the hot water supply pipe 9' and the bath pipe 12 'may be wound in a cylindrical shape and stacked. Also in this case, the first laminated portion 100 for laminating three pipes of the refrigerant pipe 1 ′, the hot water supply pipe 9 ′, and the bath pipe 12 ′, any one of the hot water supply pipe 9 ′ and the bath pipe 12 ′, and the refrigerant. By forming the second laminated portion 200 that laminates the two pipes with the pipe 1 ′, the amount of heat exchange can be adjusted in the same manner, and the same effects as those described above can be achieved. Although not shown in FIG. 2B, the first laminated portion 100 in which the refrigerant pipe 1 ′, the hot water supply pipe 9 ′, and the bath pipe 12 ′ are laminated in order is wound in a cylindrical shape and laminated. You may do it. Also in this case, the first laminated portion 100 for laminating three pipes of the refrigerant pipe 1 ′, the hot water supply pipe 9 ′, and the bath pipe 12 ′, any one of the hot water supply pipe 9 ′ and the bath pipe 12 ′, and the refrigerant. By forming the second laminated portion 200 that laminates the two pipes with the pipe 1 ′, the amount of heat exchange can be adjusted in the same manner, and the same effects as those described above can be achieved. In addition, how to wind each piping is not restricted to a cylindrical shape, You may laminate | stack in a planar view rectangular shape or zigzag shape.

なお、本実施の形態では、3つの回路を流通する3つの熱媒体間で熱交換を行う構成について説明したが、これに限らず4つ以上の回路を流通する4つ以上の熱媒体間で熱交換を行うようにしても良い。例えば4つの回路を用いる場合には、4連の配管を積層する積層部と、任意の3つを積層する第一の積層部100と、任意の2つの配管を積層する第二の積層部200とを形成することで、それぞれの熱交換量を調整することができる。   In addition, in this Embodiment, although the structure which performs heat exchange between the three heat media which distribute | circulate three circuits was demonstrated, it is not restricted to this but between the 4 or more heat media which distribute | circulate four or more circuits Heat exchange may be performed. For example, in the case of using four circuits, a stacking unit that stacks four pipes, a first stacking unit 100 that stacks any three, and a second stacking unit 200 that stacks any two pipings. The amount of heat exchange can be adjusted.

実施の形態2.
本実施の形態2では、冷媒配管1’、給湯配管9’、および風呂配管12’の配管内部の構成について説明する。なお、その他の構成は上記実施の形態1と同様であり、同一部分には同一の符号を付する。
Embodiment 2. FIG.
In the second embodiment, the internal configuration of the refrigerant pipe 1 ′, the hot water supply pipe 9 ′, and the bath pipe 12 ′ will be described. Other configurations are the same as those in the first embodiment, and the same reference numerals are given to the same portions.

図6は本発明の実施の形態2による熱交換器の配管断面を示す図である。
本実施の形態における冷媒配管1’、給湯配管9’、および風呂配管12’の少なくとも1つは、内部を隔壁で区切り複数の流路21を形成した。例えば図6(a)に示すように、冷媒配管1’の内部を隔壁で区切り、複数の流路21を形成した。
このような流路を形成することで冷媒配管1’内部の表面積が増加して伝熱性能を向上することができる。
なお、冷媒配管1’の外径寸法は、長辺が約8mmから約30mm、短辺が約2mmから約5mmであり、内部の流路21は長辺が約1mmから約8mm、短辺が約1mmから約4.5mm程度である。なお、流路21は矩形に限らず直径約1mmから約4mm程度の丸穴でも良い。
FIG. 6 is a diagram showing a pipe cross section of a heat exchanger according to Embodiment 2 of the present invention.
At least one of the refrigerant pipe 1 ′, the hot water supply pipe 9 ′, and the bath pipe 12 ′ in the present embodiment has a plurality of flow passages 21 separated by a partition wall. For example, as shown in FIG. 6A, the interior of the refrigerant pipe 1 ′ is divided by partition walls to form a plurality of flow paths 21.
By forming such a flow path, the surface area inside the refrigerant pipe 1 ′ can be increased and the heat transfer performance can be improved.
The outer diameter of the refrigerant pipe 1 'is about 8 mm to about 30 mm for the long side and about 2 mm to about 5 mm for the short side, and the internal channel 21 has a long side of about 1 mm to about 8 mm and a short side. About 1 mm to about 4.5 mm. The channel 21 is not limited to a rectangle, but may be a round hole having a diameter of about 1 mm to about 4 mm.

また、冷媒配管1’、給湯配管9’、および風呂配管12’の少なくとも1つは、内部に溝22を設けた。例えば図6(a)に示すように、給湯配管9’および風呂配管12’の内部には溝22が形成されている。溝22は流路方向に直線状でも良く、空調器の熱交換器に使用されているような流路方向から角度を持たせて形成されたものでも良い。
このような流路22を形成することで配管内の流れが乱流となって伝熱性能が向上することができる。
なお、溝22の寸法は配管の寸法に合わせて決めることができ、高さが約0.1mmから約1.5mm、幅は約0.1mmから約0.5mm程度である。
Further, at least one of the refrigerant pipe 1 ′, the hot water supply pipe 9 ′, and the bath pipe 12 ′ has a groove 22 therein. For example, as shown to Fig.6 (a), the groove | channel 22 is formed in hot water supply piping 9 'and the inside of bath piping 12'. The groove 22 may be linear in the flow path direction, or may be formed with an angle from the flow path direction used in a heat exchanger of an air conditioner.
By forming such a flow path 22, the flow in the pipe becomes turbulent and heat transfer performance can be improved.
The dimension of the groove 22 can be determined according to the dimension of the pipe, and the height is about 0.1 mm to about 1.5 mm, and the width is about 0.1 mm to about 0.5 mm.

また、冷媒配管1’、給湯配管9’、および風呂配管12’の少なくとも1つは、内部にくぼみ状のディンプル形状23を設けた。例えば図6(b)に示すように、給湯配管9’および風呂配管12’の内部には、くぼみや突起などのディンプル形状23が形成されている。
このような流路を形成することで配管内の流れが乱流となって伝熱性能が向上することができる。また、ディンプル形状23を風呂配管12’に適用することで、浴槽10からの毛髪などにより風呂配管12’のごみ詰まり等を防止しつつ伝熱性能を向上できる効果がある。
なお、ディンプル形状23の寸法は配管の寸法に合わせて決めることができ、高さが約0.1mmから約1.5mm、円形状のディンプル形状23の場合は直径約1mmから約10mm程度である。
Further, at least one of the refrigerant pipe 1 ′, the hot water supply pipe 9 ′, and the bath pipe 12 ′ is provided with a hollow dimple shape 23 therein. For example, as shown in FIG. 6B, dimple shapes 23 such as depressions and protrusions are formed inside the hot water supply pipe 9 ′ and the bath pipe 12 ′.
By forming such a flow path, the flow in the piping becomes a turbulent flow, and the heat transfer performance can be improved. Further, by applying the dimple shape 23 to the bath pipe 12 ', there is an effect that the heat transfer performance can be improved while preventing the bathroom pipe 12' from being clogged with hair from the bathtub 10 or the like.
The size of the dimple shape 23 can be determined according to the size of the pipe. The height is about 0.1 mm to about 1.5 mm, and the diameter of the circular dimple shape 23 is about 1 mm to about 10 mm. .

なお、冷媒配管1’、給湯配管9’、および風呂配管12’のうち、流路21や溝22やディンプル形状23を形成した配管は適時組み合わせて使用できる。
なお、溝22を形成した扁平管あるいはくぼみや突起などのディンプル形状23を形成した扁平管は丸管の溝付伝熱管を扁平にプレスすることでも製造できる。
Of the refrigerant pipe 1 ′, hot water supply pipe 9 ′, and bath pipe 12 ′, pipes in which the flow path 21, the groove 22, and the dimple shape 23 are formed can be combined in a timely manner.
A flat tube having grooves 22 or a flat tube having dimples 23 such as indentations and protrusions can be manufactured by pressing a round grooved heat transfer tube flatly.

実施の形態3.
本実施の形態3では給湯装置の動作について説明する。
なお、本実施の形態3における給湯装置の構成は上記実施の形態1と同様である。また、熱交換器3の構成は上記実施の形態1または2と同様である。
Embodiment 3 FIG.
In Embodiment 3, the operation of the hot water supply apparatus will be described.
The configuration of the hot water supply apparatus in the third embodiment is the same as that in the first embodiment. The configuration of the heat exchanger 3 is the same as that in the first or second embodiment.

図7は本発明の実施の形態3による熱交換器を備えた給湯装置の動作図である。なお、図中の矢印は冷媒と水または湯の流れを示す。
図7において、冷媒回路1が動作すると、低温低圧のガス冷媒が圧縮機2によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機2から吐出された高温高圧のガス冷媒は熱交換器3に流入する。このとき、冷媒が給湯用の水および浴槽用の水を加熱しながら冷却され低温高圧の液冷媒となる。熱交換器3から流出した低温高圧の液冷媒は膨張弁4で膨張・減圧し低温低圧の気液二相状態になる。膨張弁4を出た低温低圧の気液二相状態の冷媒は蒸発器5に流入する。そして、ファン6からの空気により冷媒が加熱され低温低圧のガス冷媒となる。
FIG. 7 is an operation diagram of a hot water supply apparatus including a heat exchanger according to Embodiment 3 of the present invention. In addition, the arrow in a figure shows the flow of a refrigerant | coolant and water or hot water.
In FIG. 7, when the refrigerant circuit 1 operates, the low-temperature and low-pressure gas refrigerant is compressed by the compressor 2 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the heat exchanger 3. At this time, the refrigerant is cooled while heating water for hot water supply and water for bathtubs, and becomes a low-temperature and high-pressure liquid refrigerant. The low-temperature and high-pressure liquid refrigerant flowing out of the heat exchanger 3 is expanded and depressurized by the expansion valve 4 to be in a low-temperature and low-pressure gas-liquid two-phase state. The low-temperature and low-pressure gas-liquid two-phase refrigerant exiting the expansion valve 4 flows into the evaporator 5. Then, the refrigerant is heated by the air from the fan 6 and becomes a low-temperature and low-pressure gas refrigerant.

給湯回路9において、給湯タンク7内の水の沸上げ(加熱された水の貯留)の動作をすると、給湯タンク7の下部から流出した水を給湯ポンプ8で熱交換器3に流入させる。このとき給湯用の水は冷媒と熱交換して加熱される。熱交換器3で吸熱して高温になった給湯用の水は給湯タンク7の上部から流入して給湯タンク7内に貯留される。なお、このとき給湯タンク7と蛇口13とを接続する配管は図示しない開閉弁により閉じられている。   In the hot water supply circuit 9, when water is heated in the hot water supply tank 7 (heated water is stored), the water flowing out from the lower portion of the hot water supply tank 7 is caused to flow into the heat exchanger 3 by the hot water supply pump 8. At this time, water for hot water supply is heated by exchanging heat with the refrigerant. Water for hot water supply that has absorbed heat in the heat exchanger 3 and has reached a high temperature flows from the upper part of the hot water supply tank 7 and is stored in the hot water supply tank 7. At this time, the pipe connecting the hot water supply tank 7 and the faucet 13 is closed by an on-off valve (not shown).

風呂回路12において、浴槽10に貯められた湯を加熱する追い焚きの動作をすると、浴槽10の下部から流出した水を風呂ポンプ11で熱交換器3に流入させる。このとき浴槽用の水は冷媒と熱交換して加熱される。熱交換器3で吸熱して高温になった浴槽用の水は再び浴槽10に戻される。   When the bath circuit 12 performs a reheating operation for heating the hot water stored in the bathtub 10, the water that flows out from the lower portion of the bathtub 10 is caused to flow into the heat exchanger 3 by the bath pump 11. At this time, the water for the bathtub is heated by exchanging heat with the refrigerant. The water for the bathtub that has been absorbed by the heat exchanger 3 and has become hot is returned to the bathtub 10 again.

このように、熱交換器3は冷媒配管1’、給湯配管9’および風呂配管12’を備え、冷媒回路1、給湯回路9および風呂回路12が接続される。このため、給湯タンク7内の水の沸き上げと浴槽10の追い焚きとを1つの熱交換器3で行うことができる。   As described above, the heat exchanger 3 includes the refrigerant pipe 1 ′, the hot water supply pipe 9 ′, and the bath pipe 12 ′, and the refrigerant circuit 1, the hot water supply circuit 9, and the bath circuit 12 are connected to each other. For this reason, boiling of water in the hot water supply tank 7 and reheating of the bathtub 10 can be performed by one heat exchanger 3.

図8は本発明の実施の形態3による熱交換器を備えた給湯装置の動作図である。図中の矢印は冷媒と水または湯の流れを示す。
図8において、給湯タンク7内の水の沸上げの後、浴槽10に湯を貯める(湯はり)を行う場合には、給湯タンク7内に貯留された水(湯)を蛇口13から給湯する。また、このとき、給湯タンク7の湯のみだけでなく、冷媒回路1と給湯回路9の給湯ポンプ8を動作させながら湯はりを行う。
すなわち、冷媒回路1は上述の通り動作し、給湯回路9では給湯タンク7の下部から流出した水を給湯ポンプ8で熱交換器3に流入させる。そして、熱交換器3の給湯配管9’を流通して加熱された水と、給湯タンク7の上部から流出した貯留された湯とを混合して、蛇口13から給湯する。なお、給湯タンク7内の水量は、水道水などを供給する給水14により一定量に調整される。また、蛇口13からの給湯用の水は、例えば水道水などを供給する給水14と混合して適温に調整される。
FIG. 8 is an operation diagram of a hot water supply apparatus including a heat exchanger according to Embodiment 3 of the present invention. The arrows in the figure indicate the flow of refrigerant and water or hot water.
In FIG. 8, when hot water is stored in the bathtub 10 after boiling water in the hot water tank 7 (hot water), the water (hot water) stored in the hot water tank 7 is supplied from the tap 13. . At this time, not only hot water in the hot water supply tank 7 but also hot water is applied while operating the hot water supply pump 8 of the refrigerant circuit 1 and the hot water supply circuit 9.
That is, the refrigerant circuit 1 operates as described above, and in the hot water supply circuit 9, water flowing out from the lower portion of the hot water supply tank 7 is caused to flow into the heat exchanger 3 by the hot water supply pump 8. Then, the water heated through the hot water supply pipe 9 ′ of the heat exchanger 3 and the stored hot water flowing out from the upper part of the hot water supply tank 7 are mixed and hot water is supplied from the faucet 13. The amount of water in the hot water supply tank 7 is adjusted to a certain amount by the water supply 14 that supplies tap water and the like. Moreover, the water for hot water supply from the faucet 13 is mixed with the water supply 14 for supplying, for example, tap water and adjusted to an appropriate temperature.

このように、熱交換器3の給湯配管9’を流通した水と、給湯タンク7から流出した給湯用の水とを混合して流出することで、給湯タンク7内の湯温が浴槽10の必要温度より低い場合でも湯はりを行うことができる。また、給湯タンク7と給水14とから湯はりを行うので湯はり時間の短縮ができる。   In this way, by mixing the water flowing through the hot water supply pipe 9 ′ of the heat exchanger 3 and the hot water flowing out of the hot water tank 7, the hot water temperature in the hot water tank 7 is reduced. Hot water can be applied even when the temperature is lower than the required temperature. Moreover, since hot water is poured from the hot water supply tank 7 and the water supply 14, the hot water time can be shortened.

図9は本発明の実施の形態3による熱交換器を備えた給湯装置の動作図である。なお、図中の矢印は冷媒と水または湯の流れを示す。
図9において、給湯タンク7内の水の沸上げの後、浴槽10の追い焚きを行う場合には、給湯回路9の給湯ポンプ8を動作させて、加熱された給湯用の水(湯)を熱交換器3に流通させる。なお、このとき給湯タンク7と蛇口13とを接続する配管は図示しない開閉弁により閉じられている。風呂回路12は、浴槽10内の水を風呂ポンプ11で熱交換器3に流入させ、給湯用の水と熱交換して追い焚きをする。このとき、冷媒回路1は停止状態である。
FIG. 9 is an operation diagram of a hot water supply apparatus including a heat exchanger according to Embodiment 3 of the present invention. In addition, the arrow in a figure shows the flow of a refrigerant | coolant and water or hot water.
In FIG. 9, when the bathtub 10 is reheated after boiling the water in the hot water supply tank 7, the hot water supply pump 8 of the hot water supply circuit 9 is operated to supply heated hot water (hot water). The heat exchanger 3 is circulated. At this time, the pipe connecting the hot water supply tank 7 and the faucet 13 is closed by an on-off valve (not shown). The bath circuit 12 causes the water in the bathtub 10 to flow into the heat exchanger 3 by the bath pump 11 and exchanges heat with water for hot water supply to retreat. At this time, the refrigerant circuit 1 is in a stopped state.

このように、給湯タンク7内に十分湯が残っている場合には給湯タンク7の熱を使って浴槽10の追い焚きができる。   Thus, when sufficient hot water remains in the hot water supply tank 7, the bathtub 10 can be reheated using the heat of the hot water supply tank 7.

図10は本発明の実施の形態3による熱交換器を備えた給湯装置の動作図である。なお、図中の矢印は冷媒と水または湯の流れを示す。
上記図9で説明した動作では、給湯タンク7内の湯を使って浴槽10の追い焚きを行うと、浴槽10の水と熱交換した後の温度が低下した湯が給湯タンク7に戻ってくる。給湯タンク7に貯留された湯の温度が低下した場合には給湯等にも使うことができない。また給湯タンク7内の温度が約30℃から約40℃になると、この温度の湯を冷媒回路1との熱交換で再び高温に沸き上げるには熱交換器3での冷媒の凝縮温度が高くなるため効率が悪くなる。
一方、図10においては、冷媒回路1は、上記図7の説明と同様に、圧縮機2から吐出した高温の冷媒を熱交換器3の冷媒配管1’に流通させる。そして、風呂回路12は、浴槽10内の水を風呂ポンプ11で熱交換器3の風呂配管12’に流通させ、冷媒と熱交換して追い焚きをする。このとき、給湯回路9での水の循環は停止状態である。
FIG. 10 is an operation diagram of a water heater provided with a heat exchanger according to Embodiment 3 of the present invention. In addition, the arrow in a figure shows the flow of a refrigerant | coolant and water or hot water.
In the operation described with reference to FIG. 9, when the bathtub 10 is reheated using the hot water in the hot water tank 7, the hot water whose temperature has been lowered after the heat exchange with the water in the bathtub 10 returns to the hot water tank 7. . When the temperature of the hot water stored in the hot water supply tank 7 decreases, it cannot be used for hot water supply or the like. Further, when the temperature in the hot water supply tank 7 is changed from about 30 ° C. to about 40 ° C., the hot water at this temperature is again heated to the high temperature by the heat exchange with the refrigerant circuit 1, so that the refrigerant condensation temperature in the heat exchanger 3 is high. Therefore, the efficiency becomes worse.
On the other hand, in FIG. 10, the refrigerant circuit 1 causes the high-temperature refrigerant discharged from the compressor 2 to flow through the refrigerant pipe 1 ′ of the heat exchanger 3 as in the description of FIG. 7. And the bath circuit 12 distribute | circulates the water in the bathtub 10 to the bath piping 12 'of the heat exchanger 3 with the bath pump 11, and heats it up with a refrigerant | coolant. At this time, the circulation of water in the hot water supply circuit 9 is in a stopped state.

このように、浴槽10の追い焚きを冷媒回路1の冷媒との熱交換で行うことができるため、給湯タンク7内の湯温を低下させることがない。したがって省エネ効果がある。   In this way, since the reheating of the bathtub 10 can be performed by heat exchange with the refrigerant of the refrigerant circuit 1, the hot water temperature in the hot water supply tank 7 is not lowered. Therefore, there is an energy saving effect.

図11は本発明の実施の形態3による熱交換器を備えた給湯装置の動作図である。なお、図中の矢印は冷媒と水または湯の流れを示す。
図11において、冷媒回路1は、上記図7の説明と同様に、圧縮機2から吐出した高温の冷媒を熱交換器3の冷媒配管1’に流通させる。また、給湯回路9は、上記図9の説明と同様に、給湯タンク7内の水の沸上げの後、加熱された給湯用の水(湯)を熱交換器3の給湯配管9’に流通させる。そして、風呂回路12は、浴槽10内の水を風呂ポンプ11で熱交換器3の風呂配管12’に流通させ、冷媒および給湯用の水と浴槽用の水とを熱交換して追い焚きをする。
FIG. 11 is an operation diagram of a hot water supply apparatus including a heat exchanger according to Embodiment 3 of the present invention. In addition, the arrow in a figure shows the flow of a refrigerant | coolant and water or hot water.
In FIG. 11, the refrigerant circuit 1 causes the high-temperature refrigerant discharged from the compressor 2 to flow through the refrigerant pipe 1 ′ of the heat exchanger 3 in the same manner as in the description of FIG. Similarly to the description of FIG. 9, the hot water supply circuit 9 circulates heated hot water (hot water) to the hot water supply pipe 9 ′ of the heat exchanger 3 after boiling the water in the hot water tank 7. Let And the bath circuit 12 distribute | circulates the water in the bathtub 10 to the bath piping 12 'of the heat exchanger 3 with the bath pump 11, and heat-exchanges the refrigerant | coolant and the water for hot-water supply, and the water for bathtubs, and replenishes it. To do.

このように、浴槽10の追い焚きを、冷媒回路1の冷媒および給湯タンク7の湯とを併用して行う。こうすることで浴槽10の追い焚きに伴い給湯タンク7内の湯の温度低下を防止することができ、給湯タンク7内の湯温を低下させることがない。したがって省エネ効果がある。   Thus, the reheating of the bathtub 10 is performed using both the refrigerant of the refrigerant circuit 1 and the hot water of the hot water supply tank 7. By doing so, it is possible to prevent the temperature of the hot water in the hot water supply tank 7 from being lowered as the bathtub 10 is reheated, and the hot water temperature in the hot water supply tank 7 is not reduced. Therefore, there is an energy saving effect.

図12は本発明の実施の形態3による熱交換器を備えた給湯装置の動作図である。なお、図中の矢印は冷媒と水または湯の流れを示す。
冷媒回路1を動作させるとヒートポンプサイクルにより吸熱する外気の温度や湿度条件によっては蒸発器5に着霜する場合があり、この霜を除霜して除去する必要がある。
図12において、給湯回路9は、給湯タンク7内の水の沸上げの後、加熱された給湯用の水(湯)を熱交換器3の給湯配管9’に流通させる。冷媒回路1は、圧縮機2から吐出した高温の冷媒を熱交換器3の冷媒配管1’に流通させる。このとき冷媒と給湯用の水(湯)との温度差は、上記図7で説明した場合と比較して小さくなり、凝縮器として動作する熱交換器3での凝縮温度が高くなる。これにより、蒸発器5での蒸発温度が上昇し、蒸発器5に着霜した霜を溶かすことができる。
このように、給湯タンク7内の熱を使って蒸発器5の除霜を行うことができる。
FIG. 12 is an operation diagram of a water heater provided with a heat exchanger according to Embodiment 3 of the present invention. In addition, the arrow in a figure shows the flow of a refrigerant | coolant and water or hot water.
When the refrigerant circuit 1 is operated, the evaporator 5 may be frosted depending on the temperature and humidity conditions of the outside air absorbed by the heat pump cycle, and it is necessary to defrost and remove this frost.
In FIG. 12, the hot water supply circuit 9 causes heated water (hot water) to flow through the hot water supply pipe 9 ′ of the heat exchanger 3 after the water in the hot water tank 7 is boiled. The refrigerant circuit 1 causes the high-temperature refrigerant discharged from the compressor 2 to flow through the refrigerant pipe 1 ′ of the heat exchanger 3. At this time, the temperature difference between the refrigerant and hot water (hot water) becomes smaller than that described with reference to FIG. 7, and the condensation temperature in the heat exchanger 3 operating as a condenser increases. Thereby, the evaporation temperature in the evaporator 5 rises and the frost that has formed on the evaporator 5 can be melted.
Thus, the defrosting of the evaporator 5 can be performed using the heat in the hot water supply tank 7.

図13は本発明の実施の形態3による熱交換器を備えた給湯装置の動作図である。なお、図中の矢印は冷媒と水または湯の流れを示す。
図13において、風呂回路12は、浴槽10内に貯められた浴槽用の水(湯)を風呂ポンプ11で熱交換器3の風呂配管12’に流通させる。冷媒回路1は、圧縮機2から吐出した高温の冷媒を熱交換器3の冷媒配管1’に流通させる。このとき冷媒と浴槽用の水(湯)との温度差は、上記図7で説明した場合と比較して小さくなり、凝縮器として動作する熱交換器3での凝縮温度が高くなる。これにより、蒸発器5での蒸発温度が上昇し、蒸発器5に着霜した霜を溶かすことができる。
このように、浴槽10内の熱を使って蒸発器5の除霜を行うことができる。また、浴槽10においては入浴後(使用後)の熱を用いることで排熱を除霜に用いることができる。したがって省エネ効果がある。
FIG. 13 is an operation diagram of a hot water supply apparatus including a heat exchanger according to Embodiment 3 of the present invention. In addition, the arrow in a figure shows the flow of a refrigerant | coolant and water or hot water.
In FIG. 13, the bath circuit 12 causes the bath water (hot water) stored in the bathtub 10 to flow through the bath piping 12 ′ of the heat exchanger 3 with the bath pump 11. The refrigerant circuit 1 causes the high-temperature refrigerant discharged from the compressor 2 to flow through the refrigerant pipe 1 ′ of the heat exchanger 3. At this time, the temperature difference between the refrigerant and the bath water (hot water) is smaller than that described with reference to FIG. 7, and the condensation temperature in the heat exchanger 3 operating as a condenser is increased. Thereby, the evaporation temperature in the evaporator 5 rises and the frost that has formed on the evaporator 5 can be melted.
Thus, the defrosting of the evaporator 5 can be performed using the heat in the bathtub 10. Moreover, in the bathtub 10, exhaust heat can be used for defrosting by using the heat after bathing (after use). Therefore, there is an energy saving effect.

なお、上記実施の形態1〜3では、本発明の「温熱利用回路」の一例として風呂回路を用いた場合を説明したが本発明はこれに限るものではない。例えば床暖房回路を用いても良い。   In the first to third embodiments, the case where a bath circuit is used as an example of the “heat utilization circuit” of the present invention has been described, but the present invention is not limited to this. For example, a floor heating circuit may be used.

1 冷媒回路、1’ 冷媒配管、2 圧縮機、3 熱交換器、4 膨張弁、5 蒸発器、6 ファン、7 給湯タンク、8 給湯ポンプ、9 給湯回路、9’ 給湯配管、10 浴槽、11 風呂ポンプ、12 風呂回路、12’ 風呂配管、13 蛇口、14 給水、20 ヘッダー、21 流路、22 溝、23 ディンプル形状、100 第一の積層部、200 第二の積層部。   1 refrigerant circuit, 1 ′ refrigerant pipe, 2 compressor, 3 heat exchanger, 4 expansion valve, 5 evaporator, 6 fan, 7 hot water supply tank, 8 hot water supply pump, 9 hot water supply circuit, 9 ′ hot water supply pipe, 10 bathtub, 11 Bath pump, 12 bath circuit, 12 ′ bath piping, 13 faucet, 14 water supply, 20 header, 21 flow path, 22 groove, 23 dimple shape, 100 first laminated portion, 200 second laminated portion.

Claims (10)

熱源となる第一の熱媒体が流通する第一の流路と、
前記第一の流路と隣接して配置され、第二の熱媒体が流通する第二の流路と、
前記第一の流路と隣接して配置され、第三の熱媒体が流通する第三の流路と
を備え、
前記第二の流路と前記第一の流路と前記第三の流路とが順をなして積層されて、前記第二の熱媒体および前記第三の熱媒体と前記第一の熱媒体とが熱交換を行う第一の積層部が複数積層され、
前記第二の流路または第三の流路の何れか一方と前記第一の流路とが順をなして積層されて、前記第二の熱媒体または前記第三の熱媒体の何れか一方と前記第一の熱媒体とが熱交換を行う第二の積層部が前記第一の積層部に積層された
ことを特徴とする熱交換器。
A first flow path through which a first heat medium serving as a heat source flows;
A second channel disposed adjacent to the first channel and through which the second heat medium flows;
A third flow path disposed adjacent to the first flow path and through which a third heat medium flows;
The second flow path, the first flow path, and the third flow path are laminated in order, and the second heat medium, the third heat medium, and the first heat medium are stacked. And a plurality of first laminated parts that perform heat exchange are laminated,
Either the second flow path or the third flow path and the first flow path are laminated in order, and either the second heat medium or the third heat medium A heat exchanger, wherein a second laminated part for exchanging heat with the first heat medium is laminated on the first laminated part.
前記第一の流路、前記第二の流路、および前記第三の流路の断面形状が略同一に形成された
ことを特徴とする請求項1記載の熱交換器。
The heat exchanger according to claim 1, wherein the first flow path, the second flow path, and the third flow path have substantially the same cross-sectional shape.
前記第一の流路、前記第二の流路、および前記第三の流路の少なくとも1つは、内部を隔壁で区切り複数の流路を形成した
ことを特徴とする請求項1又は2記載の熱交換器。
The at least one of said 1st flow path, said 2nd flow path, and said 3rd flow path divided | segmented the inside with the partition, and formed the several flow path. Heat exchanger.
前記第一の流路、前記第二の流路、および前記第三の流路の少なくとも1つは、内部に溝を設けた
ことを特徴とする請求項1又は2記載の熱交換器。
The heat exchanger according to claim 1 or 2, wherein at least one of the first flow path, the second flow path, and the third flow path is provided with a groove therein.
前記第一の流路、前記第二の流路、および前記第三の流路の少なくとも1つは、内部にくぼみ状のディンプル形状を設けた
ことを特徴とする請求項1又は2記載の熱交換器。
3. The heat according to claim 1, wherein at least one of the first flow path, the second flow path, and the third flow path is provided with a hollow dimple shape therein. Exchanger.
請求項1〜5の何れか1項に記載の熱交換器を備えた
ことを特徴とする給湯装置。
A hot water supply apparatus comprising the heat exchanger according to any one of claims 1 to 5.
圧縮機、前記熱交換器の前記第一の流路、膨張弁、および蒸発器を環状に接続し、前記第一の熱媒体としての冷媒を循環させるヒートポンプサイクルと、
給湯タンク、前記熱交換器の前記第二の流路、および給湯ポンプを環状に接続し、前記第二の熱媒体としての水を循環させて前記給湯タンクに貯留する給湯回路と、
前記熱交換器の前記第三の流路、および循環ポンプを環状に接続し、前記第三の熱媒体を循環させる温熱利用回路と
を備えたことを特徴とする請求項6記載の給湯装置。
A heat pump cycle in which a compressor, the first flow path of the heat exchanger, an expansion valve, and an evaporator are connected in an annular shape to circulate a refrigerant as the first heat medium;
A hot water supply tank, the second flow path of the heat exchanger, and a hot water supply pump connected annularly, circulating water as the second heat medium and storing it in the hot water supply tank;
The hot water supply apparatus according to claim 6, further comprising: a heat utilization circuit that connects the third flow path of the heat exchanger and a circulation pump in a ring shape and circulates the third heat medium.
前記給湯回路は、
前記熱交換器の前記第二の流路を流通した前記水と、前記給湯タンクから流出した前記水とを混合して流出する給湯口を備えた
ことを特徴とする請求項7記載の給湯装置。
The hot water supply circuit is
The hot water supply apparatus according to claim 7, further comprising a hot water supply port through which the water flowing through the second flow path of the heat exchanger and the water flowing out of the hot water supply tank are mixed and flowed out. .
前記ヒートポンプサイクルは、
前記圧縮機から吐出した高温の前記冷媒を前記熱交換器の前記第一の流路に流通させ、
前記給湯回路は、
前記冷媒と熱交換して加熱された前記水を前記給湯タンクに貯留し、加熱された前記水を前記熱交換器の前記第二の流路に流通させ、
前記温熱利用回路は、
前記第三の熱媒体を前記熱交換器の前記第三の流路に流通させ、
加熱された前記水および前記冷媒と前記第三の熱媒体とが熱交換して前記第三の熱媒体が加熱される
ことを特徴とする請求項7記載の給湯装置。
The heat pump cycle is
Circulating the high-temperature refrigerant discharged from the compressor through the first flow path of the heat exchanger;
The hot water supply circuit is
Storing the water heated by exchanging heat with the refrigerant in the hot water supply tank, circulating the heated water through the second flow path of the heat exchanger,
The thermal utilization circuit is
Circulating the third heat medium to the third flow path of the heat exchanger;
The hot water supply apparatus according to claim 7, wherein the heated water and the refrigerant are exchanged with the third heat medium to heat the third heat medium.
前記ヒートポンプサイクルは、
前記圧縮機から吐出した高温の前記冷媒を前記熱交換器の前記第一の流路に流通させ、
前記温熱利用回路は、
前記第三の熱媒体を前記熱交換器の前記第三の流路に流通させ、
前記冷媒と前記第三の熱媒体とが熱交換して前記第三の熱媒体が加熱される
ことを特徴とする請求項7記載の給湯装置。
The heat pump cycle is
Circulating the high-temperature refrigerant discharged from the compressor through the first flow path of the heat exchanger;
The thermal utilization circuit is
Circulating the third heat medium to the third flow path of the heat exchanger;
The hot water supply apparatus according to claim 7, wherein the third heat medium is heated by exchanging heat between the refrigerant and the third heat medium.
JP2010155160A 2010-07-07 2010-07-07 Heat exchanger and hot water supply apparatus provided with the same Expired - Fee Related JP5404541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010155160A JP5404541B2 (en) 2010-07-07 2010-07-07 Heat exchanger and hot water supply apparatus provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010155160A JP5404541B2 (en) 2010-07-07 2010-07-07 Heat exchanger and hot water supply apparatus provided with the same

Publications (2)

Publication Number Publication Date
JP2012017900A JP2012017900A (en) 2012-01-26
JP5404541B2 true JP5404541B2 (en) 2014-02-05

Family

ID=45603288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010155160A Expired - Fee Related JP5404541B2 (en) 2010-07-07 2010-07-07 Heat exchanger and hot water supply apparatus provided with the same

Country Status (1)

Country Link
JP (1) JP5404541B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5744316B2 (en) * 2012-03-07 2015-07-08 三菱電機株式会社 Heat exchanger and heat pump system equipped with the heat exchanger
JP2014066408A (en) * 2012-09-25 2014-04-17 Daikin Ind Ltd Heat exchanger and method for manufacturing the same
EP2980504B1 (en) * 2013-03-27 2019-05-08 Panasonic Intellectual Property Management Co., Ltd. Hot-water supply device
JP6102718B2 (en) * 2013-12-17 2017-03-29 三菱電機株式会社 Hot water storage water heater

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3091071B2 (en) * 1993-02-24 2000-09-25 株式会社日立製作所 Heat exchangers and absorption air conditioners
JP2003028582A (en) * 2001-07-11 2003-01-29 Denso Corp Heat exchanger
JP3742356B2 (en) * 2002-03-20 2006-02-01 株式会社日立製作所 Heat pump water heater
JP2004108712A (en) * 2002-09-20 2004-04-08 Hitachi Home & Life Solutions Inc Heat exchanger for heat pump type hot-water supply device
JP2008215766A (en) * 2007-03-07 2008-09-18 Daikin Ind Ltd Heat exchanger for hot water supply
JP5117873B2 (en) * 2008-01-31 2013-01-16 シャープ株式会社 Heat exchanger, heat pump water heater
JP2009264644A (en) * 2008-04-24 2009-11-12 Panasonic Corp Heat exchanger
JP4670963B2 (en) * 2009-01-14 2011-04-13 三菱電機株式会社 Heat pump water heater

Also Published As

Publication number Publication date
JP2012017900A (en) 2012-01-26

Similar Documents

Publication Publication Date Title
CN100465542C (en) Hot-water supply device
JP5474483B2 (en) Intermediate heat exchanger and air-conditioning hot water supply system using the same
CN107421161B (en) Heat pump type water drinking system, control method thereof and heat pump type water drinking device
WO2011104878A1 (en) Three-fluid heat exchanger and air-conditioning/water-heating system using same
US20170248373A1 (en) Plate heat exchanger and heat pump outdoor unit
JP5404541B2 (en) Heat exchanger and hot water supply apparatus provided with the same
JPWO2019193713A1 (en) Distributor and heat exchanger
JP5969270B2 (en) Heat pump equipment
CN103836790A (en) Heat pump water heater
JP4995132B2 (en) Heat pump hot water heater
JP2014126322A (en) Air conditioner and outdoor heat exchanger used in air conditioner
JP6016935B2 (en) Plate heat exchanger and refrigeration cycle apparatus equipped with the plate heat exchanger
JP2012132573A (en) Heat pump system
JP4805179B2 (en) Water refrigerant heat exchanger
JP2008117035A (en) Vending machine
JP6014435B2 (en) Three-fluid heat exchanger
JP2014074508A (en) Cascade heat exchanger
JP7301224B2 (en) Plate heat exchangers, refrigeration cycle equipment and heat transfer equipment
JP2010210206A (en) Hot water supply heating system
TW200916710A (en) Air-conditioning water heater
JP3870841B2 (en) Heat exchanger
KR20140094673A (en) Heat Pump
JP4767207B2 (en) Water heater
JP6565538B2 (en) Heat pump heat source machine
KR101286699B1 (en) heating and cooling system and using a heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R150 Certificate of patent or registration of utility model

Ref document number: 5404541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees