[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5117873B2 - Heat exchanger, heat pump water heater - Google Patents

Heat exchanger, heat pump water heater Download PDF

Info

Publication number
JP5117873B2
JP5117873B2 JP2008020136A JP2008020136A JP5117873B2 JP 5117873 B2 JP5117873 B2 JP 5117873B2 JP 2008020136 A JP2008020136 A JP 2008020136A JP 2008020136 A JP2008020136 A JP 2008020136A JP 5117873 B2 JP5117873 B2 JP 5117873B2
Authority
JP
Japan
Prior art keywords
pipe
refrigerant
heat exchanger
water
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008020136A
Other languages
Japanese (ja)
Other versions
JP2009180436A5 (en
JP2009180436A (en
Inventor
島村  裕二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008020136A priority Critical patent/JP5117873B2/en
Publication of JP2009180436A publication Critical patent/JP2009180436A/en
Publication of JP2009180436A5 publication Critical patent/JP2009180436A5/ja
Application granted granted Critical
Publication of JP5117873B2 publication Critical patent/JP5117873B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Details Of Fluid Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は,ヒートポンプサイクルに循環される冷媒によって水やブライン(不凍液)などの流体を加熱する熱交換器及びこれを備えたヒートポンプ式給湯機に関し,特に,前記熱交換器において冷媒が循環される冷媒配管の冷媒の温度を検出するための技術に関するものである。   The present invention relates to a heat exchanger for heating a fluid such as water or brine (antifreeze) by a refrigerant circulated in a heat pump cycle, and a heat pump water heater provided with the heat exchanger, and in particular, the refrigerant is circulated in the heat exchanger. The present invention relates to a technique for detecting the temperature of a refrigerant in a refrigerant pipe.

従来から,圧縮機や膨張弁,水熱交換器,室外空気熱交換器などが接続されたヒートポンプサイクルを備え,該ヒートポンプサイクルに循環される冷媒との熱交換によって,給湯や浴室,暖房などに用いる水を加熱するヒートポンプ式給湯機(システム)が知られている(例えば,特許文献1参照)。
前記水熱交換器には,例えば前記ヒートポンプサイクルに循環される冷媒が流通する冷媒配管と,その冷媒との熱交換によって加熱される水が流通する水配管とを渦巻状に曲成して積層したものが用いられる。ここに,図6は,従来のヒートポンプ式給湯機で用いられる水熱交換器Zの要部断面図を示している。
図6に示すように,水熱交換器Zでは,冷媒配管101,給湯用の水配管102,及び床暖房用の水配管103が順に積層されている。ここで,水熱交換器Zでは,冷媒配管101と水配管102,103との間の熱伝達係数を高めるべく,冷媒配管101と水配管102,103とがろう付されている。そして,水熱交換器Zでは,冷媒配管101内の冷媒と水配管102,103内の水との間で熱交換が行われ,その水配管102,103内の水が加熱される。
また,水熱交換器Zには,冷媒配管101の配管長の中央付近に,該水熱交換器Zで凝縮された冷媒の温度(凝縮温度)を測定する熱電対などの温度センサ104が設けられている。温度センサ104で測定された凝縮温度は,ヒートポンプサイクル上に設けられた圧縮機や膨張弁,室外空気熱交換器のファンなどの制御に用いられる。
特開2003−65602号公報
Conventionally, it has a heat pump cycle connected to a compressor, expansion valve, water heat exchanger, outdoor air heat exchanger, etc., and it can be used for hot water supply, bathroom, heating, etc. by heat exchange with the refrigerant circulated in the heat pump cycle. A heat pump type water heater (system) that heats water to be used is known (for example, see Patent Document 1).
In the water heat exchanger, for example, a refrigerant pipe through which a refrigerant circulated in the heat pump cycle and a water pipe through which water heated by heat exchange with the refrigerant circulates are spirally stacked. Used. FIG. 6 shows a cross-sectional view of a main part of a water heat exchanger Z used in a conventional heat pump type hot water heater.
As shown in FIG. 6, in the water heat exchanger Z, a refrigerant pipe 101, a hot water supply water pipe 102, and a floor heating water pipe 103 are laminated in this order. Here, in the water heat exchanger Z, the refrigerant pipe 101 and the water pipes 102 and 103 are brazed to increase the heat transfer coefficient between the refrigerant pipe 101 and the water pipes 102 and 103. In the water heat exchanger Z, heat is exchanged between the refrigerant in the refrigerant pipe 101 and the water in the water pipes 102 and 103, and the water in the water pipes 102 and 103 is heated.
Further, the water heat exchanger Z is provided with a temperature sensor 104 such as a thermocouple for measuring the temperature (condensation temperature) of the refrigerant condensed in the water heat exchanger Z near the center of the pipe length of the refrigerant pipe 101. It has been. The condensation temperature measured by the temperature sensor 104 is used for controlling a compressor, an expansion valve, a fan of an outdoor air heat exchanger, and the like provided on the heat pump cycle.
JP 2003-65602 A

しかしながら,熱交換器Zのように,冷媒配管101と水配管102,103とが積層されてろう付された状態では,温度センサ104によって検出される凝縮温度が,水配管102,103内の水温の影響を受けて本来の凝縮温度よりも低くなるという問題があった。例えば,温度センサ104の検出温度と実際の凝縮温度とには10〜15℃程度の温度差が生じる。このとき,温度センサ104による検出温度を,実際の凝縮温度に近似するように予め定めた関係式などに従って補正することが考えられるが,ヒートポンプユニットが稼働してから凝縮温度が安定するまでの間は,実際の凝縮温度と温度センサ104の検出温度との関係も不安定であるため,補正が適正に行われるように前記関係式を定めることは困難である。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,当該熱交換器における冷媒配管内の冷媒温度を精度高く検出することが可能な熱交換器及びこれを備えたヒートポンプ式給湯機を提供することにある。
However, in the state where the refrigerant pipe 101 and the water pipes 102 and 103 are laminated and brazed as in the heat exchanger Z, the condensation temperature detected by the temperature sensor 104 is the water temperature in the water pipes 102 and 103. There was a problem that it was lower than the original condensing temperature under the influence of. For example, a temperature difference of about 10 to 15 ° C. occurs between the temperature detected by the temperature sensor 104 and the actual condensation temperature. At this time, it is conceivable that the temperature detected by the temperature sensor 104 is corrected according to a predetermined relational expression or the like so as to approximate the actual condensing temperature. However, the time until the condensing temperature is stabilized after the heat pump unit is operated. Since the relationship between the actual condensing temperature and the temperature detected by the temperature sensor 104 is also unstable, it is difficult to determine the relational expression so that the correction is properly performed.
Accordingly, the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a heat exchanger capable of accurately detecting the refrigerant temperature in the refrigerant pipe in the heat exchanger and the heat exchanger. Another object is to provide a heat pump type hot water heater.

上記目的を達成するために本発明は,ヒートポンプサイクルに循環される冷媒が流通する冷媒配管と,前記冷媒との熱交換によって加熱される被加熱流体が流通する一又は複数の被加熱流体配管とが積層されるように渦巻状に曲成され,且つ前記冷媒配管と前記被加熱流体とがろう付されてなる熱交換器に適用されるものであって,前記冷媒配管と前記被加熱流体配管とが積層された積層部の一部に,前記冷媒配管と前記被加熱流体配管とをろう付しない非ろう付部が形成されてなり,前記非ろう付部に接触配置されることにより前記非ろう付部に流通する冷媒の温度を検出する冷媒温度検出手段を備えてなることを特徴とする熱交換器として構成される。また,本発明は,前記熱交換器を備えるヒートポンプ式給湯機の発明として捉えてもよい。
このように構成された前記熱交換器では,前記冷媒配管と前記被加熱流体配管との間の熱伝達係数が低い前記非ろう付部に前記冷媒温度検出手段が接触配置されることになるため,前記被加流体配管内の被加熱流体の温度の影響が少ない状態で,前記冷媒温度検出手段による精度の高い温度検出を行うことができる。従って,例えば前記熱交換器を備えるヒートポンプ式給湯機では,前記冷媒温度検出手段によって検出された精度の高い冷媒の温度に基づいて該ヒートポンプ式給湯機の動作を適切に制御することができる。また,本発明の熱交換器においては,前記非ろう付部が,前記冷媒配管の配管長の略中央部に設けられていてもよい。このような構成にすることにより,冷媒の温度をより正確に検出することができる。
さらに,前記冷媒温度検出手段は,前記非ろう付部の略中央部に設けられてなることが好ましい。このようにすれば,前記非ろう付部の両側にあるろう付部からはなれた位置で冷媒温度の検出を行うことができるため,前記被加熱流体配管内の流体温度の影響を受けにくくなり,該前記冷媒温度検出手段による検出精度が高まる。
より具体的に,本発明は,前記被加熱流体配管が,給湯用の水が流通する給湯用水配管と暖房用の水が流通する暖房用水配管とを含んでなり,前記冷媒配管が前記給湯用水配管及び前記暖房用水配管で挟まれるように,前記冷媒配管,前記給湯用水配管,及び前記暖房用水配管が積層されてなる構成への適用が好適である。
To achieve the above object, the present invention includes a refrigerant pipe through which a refrigerant circulated in a heat pump cycle flows, and one or a plurality of heated fluid pipes through which a heated fluid heated by heat exchange with the refrigerant flows. And is applied to a heat exchanger in which the refrigerant pipe and the heated fluid are brazed, wherein the refrigerant pipe and the heated fluid pipe are laminated. And a non-brazing portion that does not braze the refrigerant pipe and the heated fluid pipe is formed in a part of the laminated portion in which the non-brazing portion is placed in contact with the non-brazing portion. It is comprised as a heat exchanger characterized by including the refrigerant temperature detection means which detects the temperature of the refrigerant | coolant which distribute | circulates to a brazing part. Further, the present invention may be understood as an invention of a heat pump type water heater provided with the heat exchanger.
In the heat exchanger configured as described above, the refrigerant temperature detection means is disposed in contact with the non-brazed portion having a low heat transfer coefficient between the refrigerant pipe and the heated fluid pipe. In the state where the influence of the temperature of the fluid to be heated in the fluid-to-be-added fluid pipe is small, the refrigerant temperature detection means can detect the temperature with high accuracy. Therefore, for example, in a heat pump type water heater provided with the heat exchanger, the operation of the heat pump type hot water heater can be appropriately controlled based on the temperature of the refrigerant with high accuracy detected by the refrigerant temperature detecting means. Moreover, in the heat exchanger of this invention, the said non-brazing part may be provided in the approximate center part of the piping length of the said refrigerant | coolant piping. With such a configuration, the temperature of the refrigerant can be detected more accurately.
Furthermore, it is preferable that the refrigerant temperature detecting means is provided at a substantially central portion of the non-brazing portion. In this way, since the refrigerant temperature can be detected at a position away from the brazing part on both sides of the non-brazing part, it is less affected by the fluid temperature in the heated fluid pipe, The detection accuracy by the refrigerant temperature detection means increases.
More specifically, in the present invention, the heated fluid pipe includes a hot water supply water pipe through which hot water supply water circulates and a heating water pipe through which heating water circulates, and the refrigerant pipe is the hot water supply water. Application to a configuration in which the refrigerant pipe, the hot water supply water pipe, and the heating water pipe are stacked so as to be sandwiched between the pipe and the heating water pipe is preferable.

また,前記非ろう付部における前記冷媒配管と前記被加熱流体配管との間の熱伝達係数を低くする程,前記冷媒温度検出手段によって正確に冷媒の温度を検出することができる。
そこで,前記非ろう付部において前記冷媒配管と前記被加熱流体配管とが離間するように,前記非ろう付部における前記冷媒配管を,積層方向に垂直な方向に長径を成す扁平形状又は楕円形状に形成しておくことが考えられる。これにより,前記非ろう付部において前記冷媒配管及び前記被加熱流体配管の間に間隙が形成されるため,前記冷媒配管と前記被加熱流体配管との間の熱伝達係数を更に下げることができ,前記冷媒温度検出手段による検出精度をより高めることができる。
さらに,他の手法として,前記非ろう付部における前記冷媒配管と前記被加熱流体配管とのいずれか一方又は両方を,積層方向に垂直な方向であって前記非ろう付部において前記冷媒配管と前記被加熱流体配管とが離間する方向に突出形成することも考えられる。この場合にも,前記非ろう付部において前記冷媒配管及び前記被加熱流体配管の間に間隙が形成されるため,前記冷媒配管と前記被加熱流体配管との間の熱伝達係数を更に下げることが可能であり,前記冷媒温度検出手段による検出精度をより高めることができる。
また,前記非ろう付部における前記冷媒配管と前記被加熱流体配管との間に断熱材が設けることが望ましい。これにより,前記冷媒配管と前記被加熱流体配管とを断熱することができ,前記冷媒温度検出手段による冷媒の温度の検出精度を高めることができる。
Further, as the heat transfer coefficient between the refrigerant pipe and the heated fluid pipe in the non-brazing portion is lowered, the refrigerant temperature detecting means can detect the refrigerant temperature more accurately.
Therefore, the refrigerant pipe in the non-brazing part is formed in a flat shape or an elliptical shape having a major axis in a direction perpendicular to the stacking direction so that the refrigerant pipe and the heated fluid pipe are separated from each other in the non-brazing part. It is conceivable to form it. As a result, a gap is formed between the refrigerant pipe and the heated fluid pipe in the non-brazed portion, so that the heat transfer coefficient between the refrigerant pipe and the heated fluid pipe can be further reduced. , The detection accuracy by the refrigerant temperature detection means can be further increased.
Further, as another method, either one or both of the refrigerant pipe and the heated fluid pipe in the non-brazing portion is a direction perpendicular to the stacking direction and the refrigerant pipe in the non-brazing portion. It is also conceivable to form a protrusion in a direction away from the heated fluid piping. Also in this case, since a gap is formed between the refrigerant pipe and the heated fluid pipe in the non-brazed portion, the heat transfer coefficient between the refrigerant pipe and the heated fluid pipe is further reduced. The detection accuracy by the refrigerant temperature detection means can be further increased.
Moreover, it is desirable to provide a heat insulating material between the refrigerant pipe and the heated fluid pipe in the non-brazing portion. As a result, the refrigerant pipe and the heated fluid pipe can be insulated, and the refrigerant temperature detection accuracy by the refrigerant temperature detection means can be increased.

ところで,前記非ろう付部は,前記冷媒配管の略中央部に設けられるが,その略中央部が曲線部分である場合には,前記冷媒温度検出手段の前記冷媒配管への接触部の形状を曲線状にしなければ十分な接触面積を確保することが難しい。そのため,前記非ろう付部は,前記冷媒配管の直線部分に形成することが望ましい。この場合には,前記冷媒温度検出手段の前記冷媒配管への接触部の形状が直線形状であっても十分に接触面積を確保することができ,高い精度で温度検出を行うことができる。
また,前記非ろう付部の長さが短すぎると,前記被加熱流体配管内の流体温度の影響を十分に小さくすることができず検出精度が低下し,逆に前記非ろう付部の長さが長すぎると,前記冷媒配管及び前記被加熱流体配管の熱交換効率が低下してエネルギ消費効率が悪くなるという問題が生じる。
そこで,前記非ろう付部の長さを200〜400mm程度とすることが望ましい。これにより,エネルギ消費効率をできるだけ悪化させずに,前記冷媒温度検出手段による精度の高い温度検出を行うことができる。
By the way, the non-brazing portion is provided at a substantially central portion of the refrigerant pipe. When the substantially central portion is a curved portion, the shape of the contact portion of the refrigerant temperature detecting means to the refrigerant pipe is changed. Unless it is curved, it is difficult to ensure a sufficient contact area. Therefore, it is desirable that the non-brazing portion is formed in a straight portion of the refrigerant pipe. In this case, a sufficient contact area can be secured even if the shape of the contact portion of the coolant temperature detecting means to the coolant pipe is a linear shape, and temperature detection can be performed with high accuracy.
In addition, if the length of the non-brazed portion is too short, the influence of the fluid temperature in the heated fluid pipe cannot be sufficiently reduced, and the detection accuracy is lowered. If the length is too long, there arises a problem that the heat exchange efficiency of the refrigerant pipe and the heated fluid pipe is lowered and the energy consumption efficiency is deteriorated.
Therefore, it is desirable that the length of the non-brazing portion is about 200 to 400 mm. Thereby, highly accurate temperature detection by the said refrigerant | coolant temperature detection means can be performed, without degrading energy consumption efficiency as much as possible.

本発明によれば,前記冷媒配管と前記被加熱流体配管との間の熱伝達係数が低い前記非ろう付部に前記冷媒温度検出手段が接触配置されることになるため,前記被加流体配管内の被加熱流体の温度の影響が少ない状態で,前記冷媒温度検出手段による精度の高い温度検出を行うことができる。従って,例えば前記熱交換器を備えるヒートポンプ式給湯機では,前記冷媒温度検出手段によって検出された精度の高い冷媒の温度に基づいて該ヒートポンプ式給湯機の動作を適切に制御することができる。   According to the present invention, the refrigerant temperature detection means is disposed in contact with the non-brazed portion having a low heat transfer coefficient between the refrigerant pipe and the heated fluid pipe. In the state where the influence of the temperature of the fluid to be heated is small, temperature detection with high accuracy can be performed by the refrigerant temperature detection means. Therefore, for example, in a heat pump type water heater provided with the heat exchanger, the operation of the heat pump type hot water heater can be appropriately controlled based on the temperature of the refrigerant with high accuracy detected by the refrigerant temperature detecting means.

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係るヒートポンプ式給湯機Xの概略構成を示すブロック図,図2は本発明の実施の形態に係る水熱交換器14の外観模式図,図3は図2の拡大図AにおけるB−B’断面を示す図,図4は温度センサ15の検出温度と扁平部41aの長さとの関係を示すグラフである。
まず,図1を用いて,本発明の実施の形態に係るヒートポンプ式給湯機Xの概略構成について説明する。なお,本実施の形態では,ヒートポンプ式給湯機Xが,温水を給湯する給湯機能及び床暖房を行う床暖房機能を有する場合を例に挙げて説明するが,その他,例えば風呂の追い焚き機能や空気調和機(エアコン)の機能を有するものであってもよい。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
FIG. 1 is a block diagram showing a schematic configuration of a heat pump type water heater X according to the embodiment of the present invention, FIG. 2 is a schematic external view of the water heat exchanger 14 according to the embodiment of the present invention, and FIG. FIG. 4 is a diagram showing a cross section taken along line BB ′ in the enlarged view A of FIG. 2, and FIG. 4 is a graph showing the relationship between the temperature detected by the temperature sensor 15 and the length of the flat portion 41a.
First, the schematic configuration of the heat pump type hot water heater X according to the embodiment of the present invention will be described with reference to FIG. In the present embodiment, the heat pump type water heater X is described as an example in which it has a hot water supply function for supplying hot water and a floor heating function for performing floor heating. However, for example, a reheating function for a bath, It may have a function of an air conditioner (air conditioner).

図1に示すように,ヒートポンプ式給湯機Xは,大別すると,冷媒が循環されるヒートポンプサイクル(冷凍サイクル)1と,温水を給湯するための給湯回路2と,床暖房を行うための床暖房回路3とを備えて構成されている。ここに,ヒートポンプサイクル1に循環される冷媒には,例えばCO2冷媒などの炭酸ガス冷媒や,R410AなどのHFC冷媒が用いられる。
なお,ヒートポンプ式給湯機Xは,CPUやRAM,ROMなどを有する不図示の制御部を備えており,該制御部によって統括的に制御される。具体的に,ヒートポンプ式給湯機Xの制御部は,後述の温度センサ15によって検出される冷媒の凝縮温度(気体から液体に変化するときの温度)に基づいて当該ヒートポンプ式給湯機Xの動作を制御する。
As shown in FIG. 1, the heat pump type hot water heater X is roughly divided into a heat pump cycle (refrigeration cycle) 1 in which refrigerant is circulated, a hot water supply circuit 2 for supplying hot water, and a floor for performing floor heating. The heating circuit 3 is provided. Here, as the refrigerant circulated in the heat pump cycle 1, for example, a carbon dioxide refrigerant such as a CO 2 refrigerant or an HFC refrigerant such as R410A is used.
The heat pump type water heater X includes a control unit (not shown) having a CPU, a RAM, a ROM, and the like, and is comprehensively controlled by the control unit. Specifically, the control unit of the heat pump type hot water heater X performs the operation of the heat pump type hot water heater X based on the condensation temperature of the refrigerant (temperature when changing from gas to liquid) detected by the temperature sensor 15 described later. Control.

ヒートポンプサイクル1は,冷媒を圧縮する圧縮機11と,圧縮機11から流出した冷媒と水との間で熱交換を行うことにより該水を加熱する水熱交換器14(本発明に係る熱交換器の一例)と,水熱交換器14から流出した冷媒を膨張させる膨張弁13と,膨張弁13で膨張された冷媒と室外空気との間で熱交換を行うことにより該冷媒を加熱する(即ち,蒸発器として機能する)室外空気熱交換器12とを備えている。
給湯回路2は,水熱交換器14において加熱された後の温水(例えば60℃程度)を貯溜するための貯湯タンク21と,貯湯タンク21の下層から水熱交換器14を経て貯湯タンク21の上層に水を循環させるための循環ポンプ22と,給水口23からの水の供給先を切り換える電磁三方弁24と,給湯口26から給湯する温水の温度を調節するための電磁三方弁25とを備えている。
The heat pump cycle 1 includes a compressor 11 that compresses a refrigerant, and a water heat exchanger 14 that heats the water by exchanging heat between the refrigerant flowing out of the compressor 11 and water (the heat exchange according to the present invention). One example), an expansion valve 13 for expanding the refrigerant flowing out of the water heat exchanger 14, and heat exchange between the refrigerant expanded by the expansion valve 13 and the outdoor air to heat the refrigerant ( That is, the outdoor air heat exchanger 12 (functioning as an evaporator) is provided.
The hot water supply circuit 2 includes a hot water storage tank 21 for storing hot water (for example, about 60 ° C.) heated in the water heat exchanger 14, and a hot water storage tank 21 through a water heat exchanger 14 from a lower layer of the hot water storage tank 21. A circulation pump 22 for circulating water in the upper layer, an electromagnetic three-way valve 24 for switching the supply destination of water from the water supply port 23, and an electromagnetic three-way valve 25 for adjusting the temperature of hot water supplied from the hot water supply port 26 I have.

床暖房回路3は,水熱交換器14において加熱された後の温水を用いて床暖房を行う床暖房装置31と,水熱交換器14及び床暖房装置31に水を循環させるための循環ポンプ32とを備えている。なお,床暖房回路3では,水に代えてブライン(不凍液)を用いる場合も考えられる。
ヒートポンプ式給湯機Xにおけるヒートポンプサイクル1,給湯回路2,及び床暖房回路3の基本的な動作については,従来と異なるところがないため,ここでは説明を省略する。
本発明の実施の形態に係るヒートポンプ式給湯機Xは,水熱交換器14内の冷媒の凝縮温度を検出するための構成に特徴を有しており,以下,図2〜図4を用いてこの点について説明する。
The floor heating circuit 3 includes a floor heating device 31 that performs floor heating using hot water heated in the water heat exchanger 14, and a circulation pump that circulates water through the water heat exchanger 14 and the floor heating device 31. 32. In the floor heating circuit 3, a case where brine (antifreeze) is used instead of water may be considered.
The basic operation of the heat pump cycle 1, the hot water supply circuit 2, and the floor heating circuit 3 in the heat pump type hot water heater X is not different from the conventional operation, so the description thereof is omitted here.
The heat pump type hot water heater X according to the embodiment of the present invention is characterized by a configuration for detecting the condensing temperature of the refrigerant in the water heat exchanger 14, and will be described below with reference to FIGS. This point will be described.

図2に示すように,水熱交換器14は,ヒートポンプサイクル1に循環される冷媒が流通する冷媒配管41と,冷媒との熱交換によって加熱される水(被加熱流体の一例)が流通する水配管(被加熱流体配管の一例)であって,給湯回路2に接続された給湯用水配管42及び床暖房回路3に接続された暖房用水配管43とが,積層されるように渦巻状(コイル状,螺旋状など)に曲成され,且つ冷媒配管41と給湯用水配管42,暖房用水配管43とがろう付されることによって構成されている。例えば,水熱交換器14は平面視で略矩形状,略円形状,略扁平形状などに形成されており,これらの形状で巻かれた状態を含む概念を渦巻状と表現している。具体的に,本実施の形態の水熱交換器14は,上面から見る(平面視する)と直線部分及び曲線部分からなる偏平形状(例えば,陸上競技場のトラックのような形状)を成している。
また,冷媒配管41,給湯用水配管42,暖房用水配管43各々は円形状の配管である。なお,冷媒配管41と給湯用水配管42,暖房用水配管43とのろう付には,銀ろう,銅ろう,黄銅ろう,りん銅ろうなどのろう材が用いられる。
そして,水熱交換器14では,冷媒配管41が給湯用水配管42,暖房用水配管43によって挟まれるように冷媒配管41,給湯用水配管42,暖房用水配管43が積層されているため,給湯用水配管42,暖房用水配管43内の水が,冷媒配管41内の冷媒との間の熱交換によって加熱される。このように,冷媒配管41,給湯用水配管42,暖房用水配管43が積層されている積層部において,熱交換が行われる。このとき,冷媒配管41内の冷媒は,給湯用水配管42,暖房用水配管43内の水との熱交換によって凝縮されて液化される。
As shown in FIG. 2, in the water heat exchanger 14, the refrigerant pipe 41 through which the refrigerant circulated in the heat pump cycle 1 circulates, and water heated by heat exchange with the refrigerant (an example of a heated fluid) circulates. A water pipe (an example of a heated fluid pipe) that is spirally wound (coiled) so that a hot water supply water pipe 42 connected to the hot water supply circuit 2 and a heating water pipe 43 connected to the floor heating circuit 3 are laminated. The refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 are brazed. For example, the water heat exchanger 14 is formed in a substantially rectangular shape, a substantially circular shape, a substantially flat shape or the like in a plan view, and a concept including a state wound in these shapes is expressed as a spiral shape. Specifically, the water heat exchanger 14 of the present embodiment has a flat shape (for example, a shape like a track in an athletics stadium) that is composed of a straight portion and a curved portion when viewed from above (plan view). ing.
Each of the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 is a circular pipe. A brazing material such as silver brazing, copper brazing, brass brazing, and phosphor copper brazing is used for brazing the refrigerant pipe 41 with the hot water supply water pipe 42 and the heating water pipe 43.
In the water heat exchanger 14, the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 are stacked so that the refrigerant pipe 41 is sandwiched between the hot water supply water pipe 42 and the heating water pipe 43. 42, the water in the heating water pipe 43 is heated by heat exchange with the refrigerant in the refrigerant pipe 41. In this way, heat exchange is performed in the laminated portion in which the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 are laminated. At this time, the refrigerant in the refrigerant pipe 41 is condensed and liquefied by heat exchange with the water in the hot water supply water pipe 42 and the heating water pipe 43.

また,水熱交換器14には,該水熱交換器14内で凝縮されて液化された冷媒の温度(凝縮温度)を検出する温度センサ15(冷媒温度検出手段の一例)が設けられている。ここで,温度センサ15は,冷媒配管41,給湯用水配管42,暖房用水配管43が積層されている積層部であって,冷媒配管41の配管長の略中央部に配置されている。具体的に,温度センサ15は,熱電対を用いて温度を検出するものであることが考えられるが,これに限られず,例えば,サーミスタなどの温度センサを用いることができる。また,温度センサ15の配置位置は,冷媒配管41の配管長の中央部と同等の温度を検出することができる位置であれば,該中央部からずれた位置であってもよい。
温度センサ15で検出された凝縮温度は,該温度センサ15が接続された不図示の電気回路を介してヒートポンプ式給湯機Xの制御部(不図示)に入力される。
そして,ヒートポンプ式給湯機Xでは,前記制御部(不図示)により,温度センサ15によって検出された凝縮温度に基づいてヒートポンプサイクル1上に設けられた圧縮機11や膨張弁13,室外空気熱交換器12のファンなどの各種機器が制御される。
Further, the water heat exchanger 14 is provided with a temperature sensor 15 (an example of a refrigerant temperature detecting means) that detects the temperature (condensation temperature) of the refrigerant condensed and liquefied in the water heat exchanger 14. . Here, the temperature sensor 15 is a laminated portion in which the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 are laminated, and is disposed at a substantially central portion of the pipe length of the refrigerant pipe 41. Specifically, the temperature sensor 15 may be one that detects the temperature using a thermocouple, but is not limited to this, and for example, a temperature sensor such as a thermistor can be used. Further, the arrangement position of the temperature sensor 15 may be a position shifted from the central portion as long as it can detect a temperature equivalent to the central portion of the pipe length of the refrigerant pipe 41.
The condensation temperature detected by the temperature sensor 15 is input to a control unit (not shown) of the heat pump type hot water heater X via an electric circuit (not shown) to which the temperature sensor 15 is connected.
In the heat pump type hot water heater X, the control unit (not shown), based on the condensation temperature detected by the temperature sensor 15, the compressor 11 and the expansion valve 13 provided on the heat pump cycle 1, the outdoor air heat exchange. Various devices such as a fan of the container 12 are controlled.

ここに,図2に示す拡大図Aは,水熱交換器14における冷媒配管41の配管長の略中央部を拡大したものであり,図3は図2の拡大図AにおけるB−B’断面を示す図であって(a)は斜視図,(b)は正面図を示している。
図2の拡大図A及び図3に示すように,水熱交換器14では,冷媒配管41,給湯用水配管42,暖房用水配管43が積層されている積層部であって該冷媒配管41の配管長の略中央部(積層部の一部の一例)に,冷媒配管41,給湯用水配管42,暖房用水配管43の積層方向と垂直な方向に長径を成す扁平形状に変形させた扁平部41aが形成されている。なお,扁平部41aに代えて,冷媒配管41,給湯用水配管42,暖房用水配管43の積層方向と垂直な方向に長径を成す楕円形状に変形させた楕円形部を形成してもよい。
扁平部41aでは,冷媒配管41と給湯用水配管42,暖房用水配管43とが接触せず離間した状態になる。従って,冷媒配管41と給湯用水配管42,暖房用水配管43とをろう付する際に,扁平部41aを除く領域だけをろう付することができる。具体的に,冷媒配管41の扁平部41aは,例えば冷媒配管41,給湯用水配管42,暖房用水配管43を積層して渦巻状に曲成した後,ろう付される前に冷媒配管41だけを工具で挟み込んで変形させることによって形成すればよい。そして,扁平部41aにろう材を添付せずにろう付作業を行うことにより,該扁平部41aを除く領域だけをろう付することができる。
このようにろう付がなされていない扁平部41a(非ろう付部の一例)では,冷媒配管41と給湯用水配管42,暖房用水配管43との熱伝達係数が低くなり,冷媒配管41内の冷媒と給湯用水配管42,暖房用水配管43内の水との間の熱交換が行われない。
Here, the enlarged view A shown in FIG. 2 is an enlarged view of the substantially central portion of the pipe length of the refrigerant pipe 41 in the water heat exchanger 14, and FIG. 3 is a cross-sectional view taken along the line BB ′ in the enlarged view A of FIG. (A) is a perspective view, (b) is a front view.
As shown in the enlarged views A and 3 of FIG. 2, the water heat exchanger 14 is a laminated portion in which a refrigerant pipe 41, a hot water supply water pipe 42, and a heating water pipe 43 are laminated. A flat portion 41 a that is deformed into a flat shape having a long diameter in a direction perpendicular to the stacking direction of the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 is formed at a substantially central portion (an example of a part of the stacked portion). Is formed. Instead of the flat part 41a, an elliptical part deformed into an elliptical shape having a major axis in a direction perpendicular to the stacking direction of the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 may be formed.
In the flat portion 41a, the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 are not in contact with each other and are in a separated state. Therefore, when the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 are brazed, only the region excluding the flat portion 41a can be brazed. Specifically, the flat portion 41a of the refrigerant pipe 41 includes, for example, the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 stacked in a spiral shape, and then only the refrigerant pipe 41 before brazing. What is necessary is just to form by inserting | pinching with a tool and making it deform | transform. And only the area | region except this flat part 41a can be brazed by performing brazing operation | work, without attaching a brazing material to the flat part 41a.
Thus, in the flat part 41a (an example of a non-brazing part) which is not brazed, the heat transfer coefficient between the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 becomes low, and the refrigerant in the refrigerant pipe 41 Is not exchanged with the water in the hot water supply water pipe 42 and the water in the heating water pipe 43.

そして,水熱交換器14では,図2の拡大図A及び図3に示すように,温度センサ15が,冷媒配管41の配管長の略中央部に形成された扁平部41aの外周に接触配置されている。これにより,温度センサ15によって扁平部41a内に流通する冷媒の温度が検出される。
前述したように,水熱交換器14では,扁平部41aにおける冷媒配管41と給湯用水配管42,暖房用水配管43との熱伝達係数が低いため,該扁平部41aに接触配置された温度センサ15による検出温度は,給湯用水配管42,暖房用水配管43内の水温の影響を受けない。なお,本実施の形態においては,温度センサ15は,扁平部41aの中央付近に設けられている。このようにすることで,扁平部41aの両側のろう付部から離れた位置で冷媒温度の検出を行うことができるため,給湯用水配管42,暖房用水配管43内の水温の影響をより受けにくくなり,温度センサ15による検出精度が高まる。
従って,ヒートポンプ式給湯機Xでは,水熱交換器14の冷媒配管41,給湯用水配管42,暖房用水配管43が積層されている積層部における冷媒の凝縮温度を,温度センサ15によって高い精度で検出することができるため,該凝縮温度に基づいてヒートポンプサイクル1に設けられた圧縮機11や膨張弁13,室外空気熱交換器12のファンなどの各種の制御を適切に行うことができる。これにより,例えばヒートポンプユニット1の稼働開始時においても水熱交換器14における冷媒の凝縮温度を正確に検出することが可能であり,また,温度センサ15による検出温度を補正するなどの処理を省略することも可能である。
なお,扁平部41aが水熱交換器14において冷媒配管41が曲折された箇所に設定されていると,温度センサ15と扁平部41aとの接触面積を十分に確保することができないおそれがある。そのため,扁平部41aは,冷媒配管41の直線部分に形成されていることが望ましい(図2,図3参照)。例えば,前記冷媒配管41の中央部が曲折部に位置する場合には,その前後の直線部にずらして扁平部41aを形成すればよい。
In the water heat exchanger 14, as shown in the enlarged view A and FIG. 3 of FIG. 2, the temperature sensor 15 is disposed in contact with the outer periphery of the flat portion 41a formed at the substantially central portion of the pipe length of the refrigerant pipe 41. Has been. Thus, the temperature of the refrigerant flowing in the flat portion 41a is detected by the temperature sensor 15.
As described above, in the water heat exchanger 14, since the heat transfer coefficient between the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 in the flat portion 41a is low, the temperature sensor 15 arranged in contact with the flat portion 41a. The detected temperature is not affected by the water temperature in the hot water supply water pipe 42 and the heating water pipe 43. In the present embodiment, the temperature sensor 15 is provided near the center of the flat portion 41a. In this way, since the refrigerant temperature can be detected at positions away from the brazing parts on both sides of the flat part 41a, it is less susceptible to the influence of the water temperature in the hot water supply water pipe 42 and the heating water pipe 43. Thus, the detection accuracy by the temperature sensor 15 is increased.
Therefore, in the heat pump type hot water heater X, the temperature sensor 15 detects the condensation temperature of the refrigerant in the laminated portion where the refrigerant pipe 41, the hot water supply pipe 42, and the heating water pipe 43 of the water heat exchanger 14 are laminated with high accuracy. Therefore, various controls such as the compressor 11 and the expansion valve 13 provided in the heat pump cycle 1 and the fan of the outdoor air heat exchanger 12 can be appropriately performed based on the condensation temperature. As a result, for example, it is possible to accurately detect the refrigerant condensing temperature in the water heat exchanger 14 even when the heat pump unit 1 starts to operate, and processing such as correcting the temperature detected by the temperature sensor 15 is omitted. It is also possible to do.
In addition, when the flat part 41a is set in the location where the refrigerant | coolant piping 41 was bent in the water heat exchanger 14, there exists a possibility that the contact area of the temperature sensor 15 and the flat part 41a cannot fully be ensured. Therefore, it is desirable that the flat portion 41a is formed in a straight portion of the refrigerant pipe 41 (see FIGS. 2 and 3). For example, when the central portion of the refrigerant pipe 41 is located at the bent portion, the flat portion 41a may be formed by shifting to the linear portion before and after the bent portion.

ところで,扁平部41aは,その長さが長いほど,給湯用水配管42,暖房用水配管43内の水温が,温度センサ15によって検出される冷媒の凝縮温度に影響しにくい。ここに,図4には,温度センサ15の検出温度と扁平部41aの長さとの関係が示されている。図4に示されているように,扁平管41aの長さが約200mm以上であれば,温度センサ15によって冷媒の実際の凝縮温度に近似した検出温度を得ることができる。より好ましくは約300mm以上である。
但し,扁平部41aでは,冷媒配管41内の冷媒と給湯用水配管42,暖房用水配管43内の水との間の熱交換が行われないため,該扁平部41aの長さが長いほど,水熱交換器14における熱交換効率が低下する。
そのため,扁平部41aの長さは,冷媒配管41の配管長の略中央部(例えば全長が10mであれば5m前後の位置)を中心とする200〜400mm程度の長さであることが望ましい。
この程度の長さであれば,冷媒配管41内の冷媒と給湯用水配管42,暖房用水配管43内の水との間の熱交換効率を大きく低下させず,即ちエネルギ消費効率(COP)を大きく悪化させずに,温度センサ15による精度高い温度検出を実現することが可能となる。
By the way, as the flat portion 41 a is longer, the water temperature in the hot water supply water pipe 42 and the heating water pipe 43 is less affected by the refrigerant condensing temperature detected by the temperature sensor 15. FIG. 4 shows the relationship between the temperature detected by the temperature sensor 15 and the length of the flat portion 41a. As shown in FIG. 4, if the length of the flat tube 41a is about 200 mm or more, the temperature sensor 15 can obtain a detected temperature that approximates the actual refrigerant condensation temperature. More preferably, it is about 300 mm or more.
However, in the flat part 41a, heat exchange between the refrigerant in the refrigerant pipe 41 and the water in the hot water supply water pipe 42 and the water in the heating water pipe 43 is not performed. Therefore, the longer the flat part 41a, The heat exchange efficiency in the heat exchanger 14 is reduced.
Therefore, the length of the flat part 41a is desirably about 200 to 400 mm with the center at the substantially central part of the pipe length of the refrigerant pipe 41 (for example, a position around 5 m if the total length is 10 m).
With this length, the heat exchange efficiency between the refrigerant in the refrigerant pipe 41 and the water in the hot water supply pipe 42 and the water in the heating water pipe 43 is not greatly reduced, that is, the energy consumption efficiency (COP) is increased. It is possible to realize temperature detection with high accuracy by the temperature sensor 15 without deteriorating.

なお,本実施の形態では,冷媒配管41に対して二本の給湯用水配管42,暖房用水配管43が設けられ,合計三本の配管が順に積層される場合を例に挙げて説明したが,これに限られるものではない。例えば,本発明は,冷媒配管41と給湯用水配管42(或いは暖房用水配管43)との二本の配管を積層して渦巻状に曲成した熱交換器にも適用可能である。
また,扁平部41aには,冷媒配管41と給湯用水配管42,暖房用水配管43との間にこれらを断熱するセラミック板などの断熱材(不図示)を設けることが望ましい。これにより,冷媒配管41と給湯用水配管42,暖房用水配管43との間の熱伝達を遮断して,温度センサ15による温度検出の精度を高めることができる。
また,本実施の形態では,冷媒配管41に扁平部41aを設けたが,給湯用水配管42と暖房用水配管43に扁平部を設けることで,冷媒配管41と,給湯用水配管42及び暖房用水配管43との間に間隙を設ける構成であってもよい。
In the present embodiment, the case where two hot water supply water pipes 42 and a heating water pipe 43 are provided for the refrigerant pipe 41 and a total of three pipes are sequentially stacked has been described as an example. It is not limited to this. For example, the present invention can be applied to a heat exchanger in which two pipes of a refrigerant pipe 41 and a hot water supply water pipe 42 (or a heating water pipe 43) are stacked and bent in a spiral shape.
In addition, it is desirable to provide a heat insulating material (not shown) such as a ceramic plate between the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 in the flat portion 41a. Thereby, the heat transfer between the refrigerant pipe 41 and the hot water supply water pipe 42 and the heating water pipe 43 can be cut off, and the temperature detection accuracy by the temperature sensor 15 can be improved.
In the present embodiment, the flat portion 41a is provided in the refrigerant pipe 41. However, by providing flat portions in the hot water supply water pipe 42 and the heating water pipe 43, the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe are provided. 43 may be provided with a gap between them.

ここに,図5は,本発明の実施例1に係る水熱交換器14’の要部断面を示すものであって,(a)は斜視図,(b)は正面図,(c)は上面図を示している。なお,前記実施の形態で説明した水熱交換器14と同様の構成については同じ符号を付してその説明を省略する。
図5(a)〜(c)に示すように,本実施例に係る水熱交換器14’では,水熱交換器14(図2参照)に形成されていた扁平部41aに代えて,冷媒配管41,給湯用水配管42,暖房用水配管43の積層方向と垂直な方向に突出した突出部41bが冷媒配管41に形成されている。
突出部41bでは,冷媒配管41と給湯用水配管42,暖房用水配管43とが接触せず離間した状態になる。言い換えれば,冷媒配管41と,給湯用水配管42及び暖房用水配管43との間に間隙が形成される。従って,冷媒配管41と給湯用水配管42,暖房用水配管43とをろう付する際に,突出部41bを除く領域だけをろう付することができる。なお,冷媒配管41の突出部41bは,例えば冷媒配管41,給湯用水配管42,暖房用水配管43を積層して渦巻状に曲成した後,ろう付される前に冷媒配管41だけを工具で押圧して変形させることによって形成すればよい。
このようにろう付されていない突出部41b(非ろう付部の一例)では,冷媒配管41と給湯用水配管42,暖房用水配管43との熱伝達係数が低くなり,冷媒配管41内の冷媒と給湯用水配管42,暖房用水配管43内の水との間の熱交換が行われない。
FIG. 5 shows a cross section of the main part of the water heat exchanger 14 ′ according to the first embodiment of the present invention, where (a) is a perspective view, (b) is a front view, and (c) is a front view. A top view is shown. In addition, about the structure similar to the water heat exchanger 14 demonstrated in the said embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
As shown in FIGS. 5A to 5C, in the water heat exchanger 14 ′ according to the present embodiment, a refrigerant is used instead of the flat portion 41a formed in the water heat exchanger 14 (see FIG. 2). A protruding portion 41 b that protrudes in a direction perpendicular to the stacking direction of the pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 is formed in the refrigerant pipe 41.
In the protrusion 41b, the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 are not in contact with each other and are separated from each other. In other words, a gap is formed between the refrigerant pipe 41 and the hot water supply water pipe 42 and the heating water pipe 43. Therefore, when the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 are brazed, only the region excluding the protruding portion 41b can be brazed. The protrusion 41b of the refrigerant pipe 41 is formed by, for example, stacking the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 into a spiral shape, and then only the refrigerant pipe 41 with a tool before brazing. What is necessary is just to form by pressing and making it deform | transform.
Thus, in the protrusion part 41b (an example of a non-brazing part) which is not brazed, the heat transfer coefficient between the refrigerant pipe 41 and the hot water supply water pipe 42 and the heating water pipe 43 becomes low, and the refrigerant in the refrigerant pipe 41 Heat exchange between the hot water supply water pipe 42 and the water in the heating water pipe 43 is not performed.

そして,水熱交換器14’では,図4に示すように,温度センサ15が,冷媒配管41の配管長の略中央部に形成された突出部41bの外周に接触配置されている。
前述したように,水熱交換器14’では,突出部41bにおける冷媒配管41と給湯用水配管42,暖房用水配管43との熱伝達係数が低いため,該扁平部41aに接触配置された温度センサ15による検出温度は,給湯用水配管42,暖房用水配管43内の水温の影響を受けない。
従って,ヒートポンプ式給湯機Xでは,温度センサ15によって,高い精度で水熱交換器14’における冷媒の凝縮温度を検出することができ,該凝縮温度に基づいてヒートポンプサイクル1に設けられた圧縮機11や膨張弁13,室外空気熱交換器12のファンなどの各種の制御を適切に行うことができる。
In the water heat exchanger 14 ′, as shown in FIG. 4, the temperature sensor 15 is disposed in contact with the outer periphery of the protruding portion 41 b formed at the substantially central portion of the pipe length of the refrigerant pipe 41.
As described above, in the water heat exchanger 14 ′, the heat transfer coefficient between the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 in the protrusion 41 b is low. Therefore, the temperature sensor disposed in contact with the flat portion 41 a is used. The temperature detected by 15 is not affected by the water temperature in the hot water supply water pipe 42 and the heating water pipe 43.
Accordingly, in the heat pump type hot water heater X, the temperature sensor 15 can detect the condensation temperature of the refrigerant in the water heat exchanger 14 ′ with high accuracy, and the compressor provided in the heat pump cycle 1 based on the condensation temperature. 11, the expansion valve 13, the fan of the outdoor air heat exchanger 12, and the like can be appropriately controlled.

また,本実施例に係る水熱交換器14’でも,突出部41bにおける冷媒配管41と給湯用水配管42,暖房用水配管43との間にセラミック板などの断熱材を設けることで,より熱伝達係数を低くすることが望ましい。
ところで,図5に示した水熱交換器14’では,冷媒配管41を変形させることで突出部41bを形成する場合を例に挙げて説明したが,給湯用水配管42,暖房用水配管43を変形させることや,冷媒配管41と給湯用水配管42,暖房用水配管43との両方を,互いに離間する方向に突出するように変形させることによって,冷媒配管41と給湯用水配管42,暖房用水配管43とを離間させる構成も考えられる。
即ち,冷媒配管41と給湯用水配管42,暖房用水配管43とのいずれか一方又は両方を,積層方向に垂直な方向であって冷媒配管41と被加熱流体配管とが離間する方向に突出形成させることで,冷媒配管41と給湯用水配管42,暖房用水配管43とを相対的に一定距離だけ離間させればよい。
Also in the water heat exchanger 14 ′ according to the present embodiment, heat transfer such as a ceramic plate is provided between the refrigerant pipe 41 and the hot water supply water pipe 42 and the heating water pipe 43 in the protruding portion 41b. It is desirable to reduce the coefficient.
Incidentally, in the water heat exchanger 14 ′ shown in FIG. 5, the case where the protrusion 41b is formed by deforming the refrigerant pipe 41 has been described as an example, but the hot water supply water pipe 42 and the heating water pipe 43 are modified. Or by deforming both the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 so as to protrude in directions away from each other, the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 A configuration is also conceivable in which these are separated.
That is, one or both of the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 are formed so as to protrude in a direction perpendicular to the stacking direction and the refrigerant pipe 41 and the heated fluid pipe being separated from each other. Thus, the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 may be relatively spaced apart by a certain distance.

前記実施の形態及び前記実施例1では,冷媒配管41に扁平部41a又は突出部41bを形成することによって,冷媒配管41と給湯用水配管42,暖房用水配管43とを離間させる場合を例に挙げて説明した。しかしながら,冷媒配管41と給湯用水配管42,暖房用水配管43とは必ずしも離間していなくてもよい。
具体的には,冷媒配管41と給湯用水配管42,暖房用水配管43とをろう付する際,該冷媒配管41の配管長の略中央部にろう材を添付せずにろう付を行うことが考えられる。これにより,水熱交換器14には,冷媒配管41と給湯用水配管42,暖房用水配管43とがろう付されない非ろう付部が形成される。この非ろう付部では,冷媒配管41と給湯用水配管42,暖房用水配管43との間の熱伝達係数が下がることになるため,温度センサ15による冷媒配管41内の冷媒温度の検出精度を高めることができる。
なお,この場合にも,前記非ろう付部における冷媒配管41と給湯用水配管42,暖房用水配管43との間にセラミック板などの断熱材を設けることで,できるだけ冷媒配管41と給湯用水配管42,暖房用水配管43との間の熱伝達係数を低くすることが望ましい。
In the embodiment and the first example, the case where the refrigerant pipe 41 is separated from the hot water supply water pipe 42 and the heating water pipe 43 by forming the flat part 41a or the protruding part 41b in the refrigerant pipe 41 is taken as an example. Explained. However, the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 are not necessarily separated from each other.
Specifically, when the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 are brazed, brazing can be performed without attaching a brazing material to a substantially central portion of the pipe length of the refrigerant pipe 41. Conceivable. As a result, the water heat exchanger 14 is formed with a non-brazed portion where the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 are not brazed. In this non-brazing portion, the heat transfer coefficient between the refrigerant pipe 41, the hot water supply water pipe 42, and the heating water pipe 43 is lowered, so that the detection accuracy of the refrigerant temperature in the refrigerant pipe 41 by the temperature sensor 15 is increased. be able to.
Also in this case, the refrigerant pipe 41 and the hot water supply water pipe 42 are provided as much as possible by providing a heat insulating material such as a ceramic plate between the refrigerant pipe 41 and the hot water supply water pipe 42 and the heating water pipe 43 in the non-brazing portion. It is desirable to reduce the heat transfer coefficient with the heating water pipe 43.

本発明の実施の形態に係るヒートポンプ式給湯機の概略構成を示すブロック図。The block diagram which shows schematic structure of the heat pump type water heater which concerns on embodiment of this invention. 本発明の実施の形態に係る熱交換器の外観模式図。The external appearance schematic diagram of the heat exchanger which concerns on embodiment of this invention. 図2の拡大図AにおけるB−B’断面を示す図。The figure which shows the B-B 'cross section in the enlarged view A of FIG. 温度センサの検出温度と扁平部の長さとの関係を示すグラフ。The graph which shows the relationship between the detection temperature of a temperature sensor, and the length of a flat part. 本発明の実施例1に係る熱交換器の要部断面を示す図。The figure which shows the principal part cross section of the heat exchanger which concerns on Example 1 of this invention. 従来の熱交換器の構造を説明するための図。The figure for demonstrating the structure of the conventional heat exchanger.

符号の説明Explanation of symbols

1…ヒートポンプサイクル
2…給湯回路
3…床暖房回路
11…圧縮機
12…室外空気熱交換器
13…膨張弁
14,14’…水熱交換器(本発明に係る熱交換器の一例)
15…温度センサ(冷媒温度検出手段の一例)
21…貯湯タンク
22…循環ポンプ
23…給水口
24,25…電磁三方弁
26…給湯口
31…床暖房装置
32…循環ポンプ
41…冷媒配管
41a…扁平部(非ろう付部の一例)
41b…突出部(非ろう付部の一例)
42…給湯用水配管(被加熱流体配管の一例)
43…暖房用水配管(被加熱流体配管の一例)
X…ヒートポンプ式給湯機
DESCRIPTION OF SYMBOLS 1 ... Heat pump cycle 2 ... Hot-water supply circuit 3 ... Floor heating circuit 11 ... Compressor 12 ... Outdoor air heat exchanger 13 ... Expansion valve 14, 14 '... Water heat exchanger (an example of the heat exchanger which concerns on this invention)
15 ... Temperature sensor (an example of refrigerant temperature detecting means)
DESCRIPTION OF SYMBOLS 21 ... Hot water storage tank 22 ... Circulation pump 23 ... Water supply port 24, 25 ... Electromagnetic three-way valve 26 ... Hot water supply port 31 ... Floor heating device 32 ... Circulation pump 41 ... Refrigerant piping 41a ... Flat part (an example of a non-brazing part)
41b ... Protruding part (an example of a non-brazing part)
42 ... Hot water supply water pipe (an example of a heated fluid pipe)
43 ... Water piping for heating (an example of heated fluid piping)
X ... Heat pump water heater

Claims (3)

ヒートポンプサイクルに循環される冷媒が流通する冷媒配管と,前記冷媒との熱交換によって加熱される被加熱流体が流通する一又は複数の被加熱流体配管とが積層されるように渦巻状に曲成され,且つ前記冷媒配管と前記被加熱流体とがろう付されてなる熱交換器であって,
前記冷媒配管と前記被加熱流体配管とが積層された積層部の一部に,前記冷媒配管と前記被加熱流体配管とをろう付しない非ろう付部が形成されてなり,
前記非ろう付部において前記冷媒配管と前記被加熱流体配管とが離間するように,前記非ろう付部における前記冷媒配管が積層方向に垂直な方向に長径を成す扁平形状又は楕円形状に形成され,
前記非ろう付部に接触配置されることにより前記非ろう付部に流通する冷媒の温度を検出する冷媒温度検出手段を備えてなることを特徴とする熱交換器。
A refrigerant pipe through which the refrigerant circulated in the heat pump cycle circulates and one or more heated fluid pipes through which the heated fluid heated by heat exchange with the refrigerant is stacked in a spiral shape. And a heat exchanger in which the refrigerant pipe and the heated fluid are brazed,
A non-brazing part that does not braze the refrigerant pipe and the heated fluid pipe is formed in a part of the laminated part where the refrigerant pipe and the heated fluid pipe are laminated,
The refrigerant pipe in the non-brazing part is formed in a flat shape or an elliptical shape having a major axis in a direction perpendicular to the stacking direction so that the refrigerant pipe and the heated fluid pipe are separated from each other in the non-brazing part. ,
A heat exchanger comprising refrigerant temperature detection means for detecting the temperature of the refrigerant flowing through the non-brazing part by being disposed in contact with the non-brazing part.
前記非ろう付部が,前記冷媒配管の直線部分に形成されてなる請求項1に記載の熱交換器。The heat exchanger according to claim 1, wherein the non-brazing portion is formed in a straight portion of the refrigerant pipe. 請求項1または2に記載の熱交換器を備えてなるヒートポンプ式給湯機。   A heat pump type water heater comprising the heat exchanger according to claim 1 or 2.
JP2008020136A 2008-01-31 2008-01-31 Heat exchanger, heat pump water heater Expired - Fee Related JP5117873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008020136A JP5117873B2 (en) 2008-01-31 2008-01-31 Heat exchanger, heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008020136A JP5117873B2 (en) 2008-01-31 2008-01-31 Heat exchanger, heat pump water heater

Publications (3)

Publication Number Publication Date
JP2009180436A JP2009180436A (en) 2009-08-13
JP2009180436A5 JP2009180436A5 (en) 2010-07-08
JP5117873B2 true JP5117873B2 (en) 2013-01-16

Family

ID=41034560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008020136A Expired - Fee Related JP5117873B2 (en) 2008-01-31 2008-01-31 Heat exchanger, heat pump water heater

Country Status (1)

Country Link
JP (1) JP5117873B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5404541B2 (en) * 2010-07-07 2014-02-05 三菱電機株式会社 Heat exchanger and hot water supply apparatus provided with the same
JP2012167891A (en) * 2011-02-16 2012-09-06 Panasonic Corp Hot water heating device
JP5699050B2 (en) * 2011-07-14 2015-04-08 リンナイ株式会社 Heat exchanger
JP5712197B2 (en) * 2012-12-04 2015-05-07 シャープ株式会社 Heat pump heat source system
JP6277713B2 (en) * 2013-12-24 2018-02-14 株式会社ノーリツ Double tube heat exchanger
NL2018840B1 (en) * 2017-05-03 2018-11-14 Itho Daalderop Nederland B V Combined tap water / climate heat pump system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108455A (en) * 1997-10-03 1999-04-23 Matsushita Electric Ind Co Ltd Heat-exchanger and combined hot water feeder using heat-exchanger
JP2004044896A (en) * 2002-07-11 2004-02-12 Daikin Ind Ltd Heat exchanger for hot-water supply
JP3949589B2 (en) * 2003-01-24 2007-07-25 東芝キヤリア株式会社 Heat pump water heater

Also Published As

Publication number Publication date
JP2009180436A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP5117873B2 (en) Heat exchanger, heat pump water heater
JP4539777B2 (en) Hot water storage water heater and hot water heater
JP6320568B2 (en) Refrigeration cycle equipment
WO2015129080A1 (en) Heat source side unit and refrigeration cycle device
JP5693498B2 (en) Heat pump hot water heater
JP4100432B2 (en) Refrigerant heating device
EP2770278B1 (en) Water heater
JP2016217669A (en) Double-pipe heat exchanger and heat-pump type water heater
DK2733437T3 (en) Heat Pump Water Heater
JP2003028582A (en) Heat exchanger
JP4995132B2 (en) Heat pump hot water heater
CN105823269B (en) Heat pump system
JP2006234254A (en) Heat exchanger and heat pump type hot water supply device using the same
JP2009133530A (en) Heat exchanger and heat pump hot water supply machine
JP2009180438A (en) Heat exchanger and heat pump type water heater
JP2004144430A (en) Heat exchange pipe and heat exchanger
JP2005337550A (en) Heat pump water heater
US20210033324A1 (en) Heat pump system
JP3966260B2 (en) Heat pump water heater
JP6248393B2 (en) Temperature control system
JP2013024536A (en) Liquid refrigerant heat exchanger and heat pump water heater
JP5490160B2 (en) Heater and refrigeration cycle apparatus
JP2018146169A (en) air conditioner
JP2005351588A (en) Heat pump water heater
CN112984799A (en) Air energy water heater and control method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5117873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees