JP5484713B2 - Polyphenylene sulfide resin film and method for producing the same - Google Patents
Polyphenylene sulfide resin film and method for producing the same Download PDFInfo
- Publication number
- JP5484713B2 JP5484713B2 JP2008296579A JP2008296579A JP5484713B2 JP 5484713 B2 JP5484713 B2 JP 5484713B2 JP 2008296579 A JP2008296579 A JP 2008296579A JP 2008296579 A JP2008296579 A JP 2008296579A JP 5484713 B2 JP5484713 B2 JP 5484713B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- pps
- stretching
- polyphenylene sulfide
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/14—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
- B29C55/143—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L81/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
- C08L81/02—Polythioethers; Polythioether-ethers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2025/00—Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2081/00—Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
- B29K2081/04—Polysulfides, e.g. PPS, i.e. polyphenylene sulfide or derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0088—Blends of polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2381/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
- C08J2381/02—Polythioethers; Polythioether-ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、シンジオタクティックポリスチレンを含有するポリフェニレンサルファイド系樹脂フィルム、及びその製造方法に関する。より詳しくは、ポリフェニレンサルファイド系樹脂フィルムの物性を向上させる技術に関する。 The present invention relates to a polyphenylene sulfide-based resin film containing syndiotactic polystyrene and a method for producing the same. More specifically, the present invention relates to a technique for improving the physical properties of a polyphenylene sulfide resin film.
ポリフェニレンサルファイド(PPS:Poly(phenylene sulfide))フィルムは、耐熱性、耐薬品性、耐湿性及び各種電気特性が優れていることから、粘着フィルム用基材、離型フィルム、フィルムコンデンサ及び回路基板など、種々の用途に利用されている。 Polyphenylene sulfide (PPS) film has excellent heat resistance, chemical resistance, moisture resistance and various electrical properties, so it can be used for adhesive film substrates, release films, film capacitors, circuit boards, etc. It is used for various purposes.
また、従来、PPSフィルムの特性向上のための種々の検討がなされている(特許文献1〜4参照。)。例えば、特許文献1に記載のポリアリーレンスルフィド樹脂組成物、及び特許文献2に記載のポリアリーレンスルフィド系配向成形品では、シンジオタチック構造を有するスチレン系重合体を所定量配合することで、成形性向上を図っている。
Conventionally, various studies for improving the characteristics of PPS films have been made (see Patent Documents 1 to 4). For example, in the polyarylene sulfide resin composition described in Patent Document 1 and the polyarylene sulfide-based oriented molded product described in
また、特許文献3には、PPS樹脂に、液晶性ポリエステル樹脂などの液晶性樹脂を50〜70質量%配合することにより、回路基板として使用する際の寸法安定性を向上させたPPSフィルムが開示されている。
一方、特許文献4には、PPS樹脂と、ポリエチレンテレフタレート(PET:Poly(ethylene terephthalate))を主たる構成単位とするポリエステル樹脂とを、スピノーダル分解により相分離させて、構造周期0.001〜2μmの両相連続構造、又は粒子間距離0.001〜2μmの分散構造を形成することで、耐熱性などを低下させずに、PPS樹脂の使用量を低減したフィルムが開示されている。 On the other hand, in Patent Document 4, a PPS resin and a polyester resin having a main structural unit of polyethylene terephthalate (PET) are phase-separated by spinodal decomposition to obtain a structural period of 0.001 to 2 μm. A film in which the amount of PPS resin used is reduced by reducing the heat resistance and the like by forming a two-phase continuous structure or a dispersed structure having a distance between particles of 0.001 to 2 μm is disclosed.
しかしながら、特許文献1,2に記載されているポリアリーレンスルフィド樹脂組成物からなる二軸延伸フィルムは、成形性は優れているものの、取り扱い性については検討がなされておらず、フィルムにこしがないという問題点がある。また、特許文献3に記載されているPPSフィルムは、未延伸フィルムであるため、同様にこしがなく、取り扱い難いという問題点がある。更に、特許文献4に記載されているPPSフィルムは、PETを主たる構造単位とするポリエステル樹脂を含む両相連続構造であるため、PPSの特徴である耐熱性が低下し、十分に延伸することができなくなるという問題点がある。
However, the biaxially stretched film composed of the polyarylene sulfide resin composition described in
このように、従来のPPSフィルムにおいても種々の検討がなされているが、こしがなく、取り扱い性に劣るという問題点は、未だ解決されていない。 As described above, various studies have been made on conventional PPS films, but the problem of lack of strain and poor handleability has not yet been solved.
そこで、本発明は、取り扱い性に優れたポリフェニレンサルファイド系樹脂フィルム及びその製造方法を提供することを主目的とする。 Therefore, the main object of the present invention is to provide a polyphenylene sulfide-based resin film excellent in handleability and a method for producing the same.
本発明に係るポリフェニレンサルファイド系樹脂フィルムは、ポリフェニレンサルファイド100質量部に対して、シンジオタクティックポリスチレンを0.8〜30質量部配合したポリフェニレンサルファイド系樹脂組成物の押出成形体を、延伸温度:86〜100℃、縦方向の延伸倍率:3.0〜4.0倍、横方向の延伸倍率:2.4〜3.4倍として逐次二軸延伸することにより得られ、厚さが20〜100μmであり、前記ポリフェニレンサルファイドは、310℃の温度で、せん断速度を1200/秒として測定したときの溶融粘度が20〜2000Pa・sであり、シンジオタクティックポリスチレン相が島状に分布し、厚さ方向に平行な断面における前記シンジオタクティックポリスチレン相の平均アスペクト比が10以上である。
この樹脂フィルムでは、厚さを20〜100μmとし、更に、シンジオタクティックポリスチレン相を島状に分布させ、厚さ方向に平行な断面におけるシンジオタクティックポリスチレン相の平均アスペクト比を10以上にしているため、こしが強くなる。
The polyphenylene sulfide-based resin film according to the present invention is an extruded product of a polyphenylene sulfide-based resin composition in which 0.8 to 30 parts by mass of syndiotactic polystyrene is blended with 100 parts by mass of polyphenylene sulfide. ~ 100 ° C, longitudinal stretching ratio: 3.0-4.0 times, transverse stretching ratio: 2.4-3.4 times, obtained by sequential biaxial stretching, thickness 20-100 μm The polyphenylene sulfide has a melt viscosity of 20 to 2000 Pa · s when measured at a temperature of 310 ° C. and a shear rate of 1200 / sec, and a syndiotactic polystyrene phase is distributed in an island shape with a thickness of The average aspect ratio of the syndiotactic polystyrene phase in the cross section parallel to the direction is 10 or more That.
In this resin film, the thickness is set to 20 to 100 μm, the syndiotactic polystyrene phase is distributed in an island shape, and the average aspect ratio of the syndiotactic polystyrene phase in a cross section parallel to the thickness direction is set to 10 or more. Therefore, the strain becomes stronger.
本発明に係るポリフェニレンサルファイド系樹脂フィルムの製造方法は、310℃の温度で、せん断速度を1200/秒として測定したときの溶融粘度が20〜2000Pa・sであるポリフェニレンサルファイド100質量部に対して、シンジオタクティックポリスチレンを0.8〜30質量部配合したポリフェニレンサルファイド系樹脂組成物を、280〜340℃で溶融して押出成形し、その押出成形体を、延伸温度:86〜100℃、縦方向の延伸倍率:3.0〜4.0倍、横方向の延伸倍率:2.4〜3.4倍として逐次二軸延伸して、厚さが20〜100μmで、シンジオタクティックポリスチレン相が島状に分布し、厚さ方向に平行な断面における前記シンジオタクティックポリスチレン相の平均アスペクト比が10以上のフィルムを得る。
本発明の樹脂フィルムの製造方法では、押出成形体を特定の温度及び倍率で二軸延伸し、厚さが20〜100μmのフィルムにしているため、シンジオタクティックポリスチレン相が島状に分布し、厚さ方向に平行な断面におけるシンジオタクティックポリスチレン相の平均アスペクト比が10以上で、こしが強いポリフェニレンサルファイド系樹脂フィルムを製造することができる。
The method for producing a polyphenylene sulfide-based resin film according to the present invention is based on 100 parts by mass of polyphenylene sulfide having a melt viscosity of 20 to 2000 Pa · s when measured at a temperature of 310 ° C. and a shear rate of 1200 / sec . A polyphenylene sulfide-based resin composition containing 0.8 to 30 parts by mass of syndiotactic polystyrene is melted and extruded at 280 to 340 ° C., and the extruded product is stretched at a temperature of 86 to 100 ° C. in the machine direction. Stretch ratio: 3.0 to 4.0 times, transverse direction stretch ratio: 2.4 to 3.4 times, sequentially biaxially stretched, the thickness is 20 to 100 μm, and the syndiotactic polystyrene phase is an island. The syndiotactic polystyrene phase has an average aspect ratio of 10 or more in a cross-section that is distributed in a shape parallel to the thickness direction. Get a film.
In the method for producing a resin film of the present invention, the extrudate is biaxially stretched at a specific temperature and magnification, and the film has a thickness of 20 to 100 μm. Therefore, the syndiotactic polystyrene phase is distributed in islands, A polyphenylene sulfide-based resin film having an average aspect ratio of the syndiotactic polystyrene phase in a cross section parallel to the thickness direction of 10 or more and a strong stiffness can be produced.
本発明によれば、厚さが20〜100μmで、シンジオタクティックポリスチレン相が島状に分布し、厚さ方向に平行な断面におけるシンジオタクティックポリスチレン相の平均アスペクト比が10以上となっているため、こしが強く、取り扱い性に優れたポリフェニレンサルファイド系樹脂フィルムが得られる。 According to the present invention, the thickness is 20 to 100 μm, the syndiotactic polystyrene phase is distributed in an island shape, and the average aspect ratio of the syndiotactic polystyrene phase in a cross section parallel to the thickness direction is 10 or more. Therefore, a polyphenylene sulfide-based resin film having a strong strain and excellent handleability can be obtained.
以下、本発明を実施するための最良の形態について詳細に説明する。本発明者は、上述した問題点を解決するために鋭意実験検討を行い、以下に示す知見を得た。ポリフェニレンサルファイド(PPS)にシンジオタクティックポリスチレン(以下、s−PSと略す。)を配合すると、耐熱性及び耐薬品性などのPPSの優れた特性を低下させずに、離型性及び成形性などのPPSの劣っている特性を向上することができる。しかしながら、PPSとs−PSは、ガラス転移温度が異なり、更に、非相溶性であるため、これらを混合した樹脂組成物は、製膜時にボイドや破断が発生しやすい。特に、フィルム厚さが20〜100μmの範囲では、ボイドや破断が発生しないよう厚さ方向に対して均一に熱を伝え、PPS及びs−PSの両方を均一に延伸することは困難であった。 Hereinafter, the best mode for carrying out the present invention will be described in detail. The present inventor has conducted extensive experiments to solve the above-described problems, and has obtained the following knowledge. When syndiotactic polystyrene (hereinafter abbreviated as s-PS) is blended with polyphenylene sulfide (PPS), release properties, moldability, etc. without deteriorating the excellent properties of PPS such as heat resistance and chemical resistance. The inferior property of PPS can be improved. However, since PPS and s-PS have different glass transition temperatures and are incompatible with each other, a resin composition in which these are mixed is likely to generate voids and breaks during film formation. In particular, when the film thickness is in the range of 20 to 100 μm, it is difficult to uniformly transmit heat in the thickness direction so that voids and breakage do not occur, and to uniformly stretch both PPS and s-PS. .
そこで、本発明者は、フィルム厚さが20〜100μmの範囲でも、製膜時にボイドや破断が発生せず、特性にむらがないフィルムが得られる条件などについて検討を行った。その結果、PPSに特定量のs−PSを配合し、特定条件で成形したフィルムは、s−PS相が島状に分布すると共にその平均アスペクト比が一定値以上となり、かつ平均ボイド値が一定値以下となって、従来にない強いこしが得られることを見出した。 Therefore, the present inventor has studied the conditions for obtaining a film that does not cause voids or breakage during film formation and has no uneven characteristics even when the film thickness is in the range of 20 to 100 μm. As a result, a film formed by blending a specific amount of s-PS with PPS and molded under specific conditions has an s-PS phase distributed in islands, an average aspect ratio of a certain value or more, and a constant average void value. It was found that a strong strain unprecedented was obtained below the value.
即ち、本発明のPPS系樹脂フィルムは、PPS100質量部に対して、s−PSを0.8〜30質量部配合したPPS系樹脂組成物を延伸して形成したものであり、厚さが20〜100μmで、s−PS相が島状に分布し、厚さ方向に平行な断面におけるs−PS相の平均アスペクト比が10以上となっている。以下、本発明のPPS系樹脂フィルムにおける数値限定理由について説明する。 That is, the PPS resin film of the present invention is formed by stretching a PPS resin composition containing 0.8 to 30 parts by mass of s-PS with respect to 100 parts by mass of PPS, and has a thickness of 20 The s-PS phase is distributed in an island shape at ˜100 μm, and the average aspect ratio of the s-PS phase in the cross section parallel to the thickness direction is 10 or more. Hereinafter, the reason for the numerical limitation in the PPS resin film of the present invention will be described.
s−PS配合量:PPS100質量部に対して0.8〜30質量部
PPSは、本発明のPPS系樹脂フィルムの主成分であり、耐熱性及び耐薬品性を確保するために重要な成分である。また、s−PSは、島状に一様に分布させることで、フィルムのこしを強くする効果がある。しかし、PPS樹脂組成物中のs−PS配合量が0.8質量部未満であると、s−PSが均一に分散しにくくなるため、フィルムの特性が不均一になりやすい。一方、s−PS配合量が30質量部を超えると、組成物中のPPS量が少なくなるため、耐熱性及び耐薬品性が低下すると共に、成形性も低下して横延伸時に破断が発生することがある。よって、PPS樹脂組成物におけるs−PS配合量は、PPS100質量部に対して、0.8〜30質量部とする。
s-PS compounding amount: 0.8 to 30 parts by mass of PPS with respect to 100 parts by mass of PPS is a main component of the PPS resin film of the present invention, and is an important component for ensuring heat resistance and chemical resistance. is there. Moreover, s-PS has the effect which strengthens the strain of a film by distributing uniformly in island shape. However, when the amount of s-PS compounded in the PPS resin composition is less than 0.8 part by mass, s-PS is difficult to uniformly disperse, and the film characteristics tend to be non-uniform. On the other hand, when the amount of s-PS compounded exceeds 30 parts by mass, the amount of PPS in the composition is reduced, so that heat resistance and chemical resistance are lowered, moldability is also lowered, and breakage occurs during transverse stretching. Sometimes. Therefore, the amount of s-PS compounded in the PPS resin composition is 0.8 to 30 parts by mass with respect to 100 parts by mass of PPS.
なお、PPS樹脂組成物におけるs−PS配合量は1.0〜25質量部であることが好ましく、より好ましくは1.2〜20質量部である。s−PS含有量をこの範囲にすることにより、後述するs−PS相の平均アスペクト比を一定値以上とし、更に、平均ボイド値も一定値以下とすることができるため、フィルムのこしをより強くすることができる。 In addition, it is preferable that the s-PS compounding quantity in a PPS resin composition is 1.0-25 mass parts, More preferably, it is 1.2-20 mass parts. By setting the s-PS content in this range, the average aspect ratio of the s-PS phase, which will be described later, can be set to a certain value or more, and the average void value can also be made to be a certain value or less. can do.
フィルム厚さ:20〜100μm
本発明のPPS系樹脂フィルムは、例えば離型フィルムとして使用することができるが、このような用途では、剥がすときに加わる力に耐え得るこしや強度が求められるため、一定以上の厚さが必要となる。具体的には、フィルムの厚さが20μm未満の場合、こしが弱く、作業性が低下する。一方、フィルムの厚さが100μmを超えると、延伸時にフィルム全体に均一に熱が伝わりにくくなり、製膜そのものが困難になる。よって、PPS系樹脂フィルムの厚さは、20〜100μmとする。
Film thickness: 20-100 μm
The PPS resin film of the present invention can be used as, for example, a release film. However, in such applications, since it is required to have strength and strength that can withstand the force applied when peeling, a certain thickness or more is required. It becomes. Specifically, when the thickness of the film is less than 20 μm, the strain is weak and workability is lowered. On the other hand, if the thickness of the film exceeds 100 μm, it becomes difficult for heat to be uniformly transmitted to the entire film during stretching, and film formation itself becomes difficult. Therefore, the thickness of the PPS resin film is set to 20 to 100 μm.
なお、フィルム厚さは22.5〜80μmとすることが好ましく、より好ましくは30〜70μmである。これにより、フィルムのこしが強くなり、使用時の作業性を向上させることができる。このような厚さのフィルムを得るためには、例えば、縦方向の延伸倍率を3.0〜4.0倍、横方向の延伸倍率を2.4〜3.4倍にして、二軸延伸すればよい。 In addition, it is preferable that film thickness shall be 22.5-80 micrometers, More preferably, it is 30-70 micrometers. Thereby, the strain of the film becomes strong, and workability at the time of use can be improved. In order to obtain a film having such a thickness, for example, the stretching ratio in the longitudinal direction is 3.0 to 4.0 times, the stretching ratio in the transverse direction is 2.4 to 3.4 times, and biaxial stretching. do it.
厚さ方向に平行な断面におけるs−PS相の平均アスペクト比:10以上
本発明のPPS系樹脂フィルムでは、s−PS相が島状に分布しており、厚さ方向に平行な断面をとったとき、フィルム表面から厚さ方向に1/3〜2/3の範囲で、長さ(幅)300μmの領域におけるs−PS相の平均アスペクト比が10以上となっている。これにより、フィルムのこしをより強くすることができる。一方、上述した領域におけるs−PS相の平均アスペクト比が10未満の場合、s−PSを所定量配合してもこしを向上させる効果が十分でなく、こしの強いフィルムは得られない。なお、本発明における平均アスペクト比は、上述した領域に存在する各s−PS相のアスペクト比(長軸径/短軸径)を平均した値である。また、このs−PS相の平均アスペクト比を10以上にするには、例えば、延伸温度を86〜100℃にすればよい。
Average aspect ratio of s-PS phase in cross section parallel to thickness direction: 10 or more In the PPS resin film of the present invention, the s-PS phase is distributed in an island shape, and the cross section parallel to the thickness direction is taken. In this case, the average aspect ratio of the s-PS phase in the range of 1/3 to 2/3 in the thickness direction from the film surface and a length (width) of 300 μm is 10 or more. Thereby, the strain of the film can be made stronger. On the other hand, when the average aspect ratio of the s-PS phase in the region described above is less than 10, even if a predetermined amount of s-PS is blended, the effect of improving the strain is not sufficient, and a strong film cannot be obtained. In addition, the average aspect ratio in this invention is the value which averaged the aspect ratio (major axis diameter / minor axis diameter) of each s-PS phase which exists in the area | region mentioned above. Moreover, what is necessary is just to make extending | stretching temperature into 86-100 degreeC, for example in order to make the average aspect-ratio of this s-PS phase 10 or more.
更に、本発明のPPS系樹脂フィルムでは、厚さ方向に平行な断面における平均ボイド値が70%以下であることが望ましい。厚さ方向に平行な断面をとったとき、フィルム表面から厚さ方向に1/3〜2/3の範囲で、長さ(幅)300μmの領域における平均ボイド値が70%を超えると、こしの強さが低下することがあるからである。なお、本発明における平均ボイド値は、上述した領域に存在するボイドの長軸径とs−PS相の長軸径に基づき、下記数式1から求められる各ボイド値を平均した値(n=10)である。また、この平均ボイド値を70%以下にするには、例えば、延伸温度を86〜100℃にすればよい。 Furthermore, in the PPS resin film of the present invention, it is desirable that the average void value in a cross section parallel to the thickness direction is 70% or less. When taking a cross section parallel to the thickness direction, if the average void value exceeds 70% in the range of 1/3 to 2/3 in the thickness direction from the film surface and the length (width) of 300 μm. This is because the strength of the material may decrease. The average void value in the present invention is a value obtained by averaging each void value obtained from the following formula 1 based on the major axis diameter of the voids existing in the above-described region and the major axis diameter of the s-PS phase (n = 10). ). Moreover, what is necessary is just to make extending | stretching temperature into 86-100 degreeC, for example in order to make this average void value 70% or less.
次に、本発明のPPS系樹脂フィルムの主成分であるPPSの構造について説明する。PPSは、下記化学式1で表されるp−フェニレンサルファイドを繰り返し単位として有するポリマーである。本発明で使用するPPSは、ポリマー中に繰り返し単位として、p−フェニレンサルファイド単位を70モル%以上含有することが好ましい。p−フェニレンサルファイド単位が70モル%未満の場合、ポリマーの結晶性及びガラス転移点が低くなるため、PPSを主成分とするポリマーフィルムの特徴である耐熱性及び機械的強度を十分に発揮されない場合があるからである。なお、p−フェニレンサルファイド単位は、90モル%以上含有することがより好ましい。 Next, the structure of PPS which is the main component of the PPS resin film of the present invention will be described. PPS is a polymer having p-phenylene sulfide represented by the following chemical formula 1 as a repeating unit. The PPS used in the present invention preferably contains 70 mol% or more of p-phenylene sulfide units as repeating units in the polymer. When the p-phenylene sulfide unit is less than 70 mol%, the crystallinity and glass transition point of the polymer are lowered, and thus the heat resistance and mechanical strength, which are the characteristics of the polymer film containing PPS as a main component, are not sufficiently exhibited. Because there is. The p-phenylene sulfide unit is more preferably contained in 90 mol% or more.
また、PPSは、p−フェニレンサルファイド単位の他に、ポリマーの繰り返し単位のうち30モル%未満、好ましくは10モル%未満であれば、重合可能なスルフィド結合を有する繰り返し単位を含有していてもよい。この重合可能なスルフィド結合を有する繰り返し単位は、特に限定されるものではないが、特に下記化学式2で表される芳香族スルフィド単位であることが好ましい。なお、下記化学式2におけるArは下記化学式3〜8で表される各官能基を示す。また、下記化学式6におけるQはハロゲン原子又はメチル基を示し、mは1〜4の整数を示す。更に、本発明におけるPPSでは、これらの繰り返し単位のうち1種を単独で又は2種以上を組み合わせて含んでいてもよい。
In addition to the p-phenylene sulfide unit, PPS may contain a repeating unit having a polymerizable sulfide bond as long as it is less than 30 mol%, preferably less than 10 mol%, among the repeating units of the polymer. Good. The repeating unit having a polymerizable sulfide bond is not particularly limited, but an aromatic sulfide unit represented by the following
一方、PPSが、上記化学式2で表されるモノマー単位を含む共重合体である場合、ポリマーの形態はランダム重合体及びブロック重合体のいずれでもよい。また、ポリマーの末端又は末端近くに、上記化学式1以外のモノマー単位が存在していてもよい。
On the other hand, when PPS is a copolymer containing a monomer unit represented by the
本発明におけるPPSは、例えば、米国特許第4645826号明細書に記載された方法、即ち、アルカリ金属硫化物とジクロロベンゼンとを、N−メチル2−ピロリドンなどの極性溶媒中で、水が存在している条件下において、特定の二段階昇温重合法によって得ることができる。この重合法を適用することにより、実質的に直鎖状で高分子量のPPSが得られる。また、重合時にハロゲン置換基を3個以上有する芳香族ハロゲン化合物を少量添加することにより、若干の分岐又は架橋構造を導入したPPSを得ることもできる。 PPS in the present invention is obtained by, for example, the method described in US Pat. No. 4,645,826, that is, an alkali metal sulfide and dichlorobenzene in a polar solvent such as N-methyl 2-pyrrolidone. Under certain conditions, it can be obtained by a specific two-step temperature rising polymerization method. By applying this polymerization method, a substantially linear and high molecular weight PPS can be obtained. Further, by adding a small amount of an aromatic halogen compound having 3 or more halogen substituents at the time of polymerization, it is possible to obtain a PPS having some branched or crosslinked structure.
また、PPSの溶融粘度は、310℃の温度で、せん断速度を1200/秒として測定したとき、20〜2000Pa・sであることが好ましい。溶融粘度が20Pa・s未満の場合、フィルムの機械的特性及び耐熱性が低下して、PPSフィルムとしての特徴が得られないことがあり、また、溶融粘度が2000Pa・sを超えると、押出機や濾過装置などの製造装置の付加が増加して、不具合が発生することがあるからである。このPPSの溶融粘度は、30〜1800Pa・sであることがより好ましい。なお、ここでいうせん断速度とは、平行な板の間を粘性流体が通過する際の勾配速度として定義される値である。 The melt viscosity of PPS is preferably 20 to 2000 Pa · s when measured at a temperature of 310 ° C. and a shear rate of 1200 / sec. When the melt viscosity is less than 20 Pa · s, the mechanical properties and heat resistance of the film are lowered, and the characteristics as a PPS film may not be obtained. When the melt viscosity exceeds 2000 Pa · s, the extruder This is because the addition of a manufacturing device such as a filter or a filtration device may increase, causing problems. The melt viscosity of the PPS is more preferably 30 to 1800 Pa · s. The shear rate here is a value defined as a gradient rate when a viscous fluid passes between parallel plates.
次に、本発明のPPS系樹脂フィルムを形成するPPS系樹脂組成物に添加されるs−PSについて説明する。s−PSは、繰り返し単位に、主として、下記化学式9で表されるシンジオタクチック構造を有するスチレン系重合体である。シンジオタクチック構造とは、炭素−炭素結合から形成される主鎖に対して、側鎖であるフェニル基や置換フェニル基が交互に反対方向に位置する立体構造をいう。 Next, s-PS added to the PPS resin composition forming the PPS resin film of the present invention will be described. s-PS is a styrene polymer mainly having a syndiotactic structure represented by the following chemical formula 9 in a repeating unit. The syndiotactic structure refers to a three-dimensional structure in which phenyl groups and substituted phenyl groups which are side chains are alternately positioned in opposite directions with respect to a main chain formed from carbon-carbon bonds.
そして、s−PSのタクティシティーは、同位体炭素による核磁気共鳴法によって定量的に分析することができる。この核磁気共鳴法により測定されるタクティシティーは、連続する複数個の構成単位の存在割合で表すことができ、例えば2個の場合はダイアッド、3個の場合はトリアッド、5個の場合はペンダッドによって表される。本発明で使用されるs−PSは、ダイアッドで75%以上、好ましくは80%以上、若しくは、ペンタッド(ラセミペンタッド)で30%以上、好ましくは50%以上のシンジオタクティシティを有するポリスチレン、ポリ(アルキルスチレン)、ポリ(ハロゲン化スチレン)、ポリ(アルコキシスチレン)、ポリ(ビニル安息香酸エステル)又はこれらの混合物であることが望ましく、これらを主成分とする共重合体でもよい。 The tacticity of s-PS can be quantitatively analyzed by a nuclear magnetic resonance method using isotope carbon. The tacticity measured by the nuclear magnetic resonance method can be expressed by the existence ratio of a plurality of consecutive structural units. For example, two dyads, three triads, and five pendants. Represented by The s-PS used in the present invention is a polystyrene having a syndiotacticity of 75% or more, preferably 80% or more by dyad, or 30% or more, preferably 50% or more by pentad (racemic pentad), Poly (alkyl styrene), poly (halogenated styrene), poly (alkoxy styrene), poly (vinyl benzoate) or a mixture thereof is desirable, and a copolymer based on these may also be used.
また、s−PSは、例えば、特開昭62−187708号公報に記載された方法、即ち、不活性炭化水素溶媒中又は溶媒の不存在下において、チタン化合物及び水とトリアルキルアルミニウムとの縮合生成物を触媒として、スチレン系単量体を重合することにより得られる。 In addition, s-PS is, for example, a method described in JP-A-62-187708, that is, condensation of a titanium compound and water with a trialkylaluminum in an inert hydrocarbon solvent or in the absence of a solvent. It can be obtained by polymerizing a styrene monomer using the product as a catalyst.
次に、本発明のPPS系樹脂フィルムの製造方法について説明する。図1は本発明のPPS系樹脂フィルムの製造方法の一例を示す模式図である。本発明のPPS系樹脂フィルムを製造する際は、先ず、PPSを主成分とする樹脂組成物を押出機に供給し、ペレット状にする。ここで、PPSを主成分とする樹脂組成物とは、例えば、PPSに、必要に応じて炭酸カルシウム及びステアリン酸カルシウムなどの添加剤が添加された樹脂組成物である。 Next, the manufacturing method of the PPS resin film of this invention is demonstrated. FIG. 1 is a schematic view showing an example of a method for producing a PPS resin film of the present invention. When producing the PPS resin film of the present invention, first, a resin composition containing PPS as a main component is supplied to an extruder to form a pellet. Here, the resin composition containing PPS as a main component is, for example, a resin composition in which additives such as calcium carbonate and calcium stearate are added to PPS as necessary.
引き続き、上述した工程で得られたPPSを主成分とする樹脂ペレットと、s−PSを主成分とする樹脂ペレットとを、特定の比率でドライブレンドし、図1に示す押出機1に供給する。なお、s−PSを主成分とする樹脂ペレットには、必要に応じて、滑剤、可塑剤、酸化防止剤、耐衝撃のためのエラストマーなどが添加されていてもよい。また、PPSとs−PSとのブレンドは、それぞれをペレット化する前に行ってもよい。 Subsequently, the resin pellets mainly composed of PPS obtained in the above-described process and the resin pellets mainly composed of s-PS are dry-blended at a specific ratio and supplied to the extruder 1 shown in FIG. . In addition, a lubricant, a plasticizer, an antioxidant, an elastomer for impact resistance, and the like may be added to the resin pellet containing s-PS as a main component, if necessary. Moreover, you may perform the blend of PPS and s-PS before pelletizing each.
そして、押出機1において、供給された樹脂を280〜340℃で溶融し、ダイにてシート状に成型し、吐出させる。このとき、溶融温度を280℃未満にすると、PPSが十分に溶融せず、また、溶融温度が340℃を超えると、押出時に樹脂の分解物が生成する。よって、溶融温度は280〜340℃とする。なお、この工程において、フィルターなどを使用して、溶融した樹脂組成物を濾過し、塵埃又は添加物の凝集物などの粗大異物を除去することが望ましい。その後、ダイから吐出されたフィルムを、金属ドラムなどの冷却体2上に押し当てて、冷却固化し、樹脂シートを得る。
In the extruder 1, the supplied resin is melted at 280 to 340 ° C., formed into a sheet with a die, and discharged. At this time, if the melting temperature is less than 280 ° C., PPS is not sufficiently melted, and if the melting temperature exceeds 340 ° C., a decomposition product of the resin is generated during extrusion. Therefore, the melting temperature is 280 to 340 ° C. In this step, it is desirable to filter the molten resin composition using a filter or the like to remove coarse foreign matters such as dust or aggregates of additives. Thereafter, the film discharged from the die is pressed onto the cooling
次に、上述した工程で得られた樹脂シートを延伸する。本発明において、延伸によりフィルムを形成しているのは、フィルムに強度を付与するためである。離型フィルムには、基板材料から剥離する際にかかる力に耐えうる強度が必要であるが、未延伸フィルムでは、加熱によって脆くなるため、剥離する際の強度に耐えきれず、フィルムが割れてしまう。このため、本発明においては、一軸又は二軸延伸によりフィルムを形成することとする。 Next, the resin sheet obtained in the above-described process is stretched. In the present invention, the film is formed by stretching in order to impart strength to the film. The release film needs to be strong enough to withstand the force applied when peeling from the substrate material, but unstretched film becomes brittle when heated, so it cannot withstand the strength when peeled, and the film cracks. End up. For this reason, in the present invention, the film is formed by uniaxial or biaxial stretching.
なお、本発明のPPS系樹脂フィルムは、延伸フィルムであればよいが、二軸延伸フィルムとすることがより好ましい。ここで、二軸延伸とは、縦方向及び横方向に分子配向を与えるために延伸することをいう。延伸は、二方向を別々に延伸(以下、逐次二軸延伸という。)してもよいし、同時に二方向に延伸してもよい。また、縦及び/又は横方向に再延伸を行ってもよい。 The PPS resin film of the present invention may be a stretched film, but is more preferably a biaxially stretched film. Here, biaxial stretching refers to stretching in order to give molecular orientation in the longitudinal direction and the transverse direction. Stretching may be performed in two directions separately (hereinafter referred to as sequential biaxial stretching) or simultaneously in two directions. Moreover, you may redraw in the vertical and / or horizontal direction.
以下、逐次二軸延伸により、PPS系樹脂フィルムを製造する方法を例にして説明する。先ず、以下に示す条件で、縦方向の延伸を行う。この縦方向の延伸は、通常、ロールの周速差により施される。また、延伸は、1段階で行ってもよく、複数本のロール対を使用して多段階で行ってもよい。 Hereinafter, a method for producing a PPS resin film by sequential biaxial stretching will be described as an example. First, stretching in the longitudinal direction is performed under the following conditions. This stretching in the longitudinal direction is usually performed by the difference in the peripheral speed of the roll. In addition, the stretching may be performed in one stage, or may be performed in multiple stages using a plurality of roll pairs.
延伸温度:86〜100℃
ロール3の温度は、s−PS相の分散構造に影響し、ロール3を86℃未満の温度にして延伸すると、ボイドが多くなり、フィルムのこしの低下に繋がる。一方、ロール3を100℃よりも高い温度にして延伸すると、s−PS相の平均アスペクト比が10未満となり、フィルムのこしが不足する。よって、本発明においては、86〜100℃の温度範囲で延伸を行う。
Stretching temperature: 86-100 ° C
The temperature of the
縦方向の延伸倍率:3.0〜4.0倍
縦方向の延伸倍率は、s−PS相の分散構造やフィルムの平面性、製膜性に影響する。このため、縦方向の延伸倍率が3.0倍未満の場合、s−PS相のアスペクト比が小さくなり、フィルムのこしが不足する。また、延伸むらやたるみが発生し、特性の均一性が低下することもある。一方、縦方向の延伸倍率が4.0倍を超えると、縦方向の配向が強くなりすぎるため、横方向に延伸する際に、破断が発生しやすくなり、製膜が困難になる。よって、本発明においては、縦方向の延伸を行う際は、延伸倍率を3.0〜4.0倍とする。
Longitudinal stretching ratio: 3.0 to 4.0 times the longitudinal draw ratio, flatness of the dispersion structure and the film of s-PS phase, affect the film forming properties. For this reason, when the draw ratio in the longitudinal direction is less than 3.0, the aspect ratio of the s-PS phase becomes small, and the film is insufficiently strained. In addition, stretching unevenness and sagging may occur, and the uniformity of characteristics may be reduced. On the other hand, when the stretching ratio in the longitudinal direction exceeds 4.0 times, the orientation in the longitudinal direction becomes too strong, so that the film tends to be broken when stretched in the lateral direction and film formation becomes difficult. Therefore, in this invention, when extending | stretching longitudinally, a draw ratio shall be 3.0-4.0 times.
次に、上述した方法及び条件で縦方向に延伸したフィルムを、テンター延伸機4に導入し、クリップでフィルムの両端を挟んで引っ張ることにより、横方向の延伸を行う。このとき、延伸温度は、前述した縦方向の延伸と同様の理由から86〜100℃とし、延伸倍率は2.4〜3.4倍とする。 Next, the film stretched in the longitudinal direction by the above-described method and conditions is introduced into the tenter stretching machine 4, and the film is stretched in the transverse direction by pulling the both ends of the film with clips. At this time, the stretching temperature is 86 to 100 ° C. for the same reason as the above-described longitudinal stretching, and the stretching ratio is 2.4 to 3.4 times.
横方向の延伸倍率:2.4〜3.4倍
横方向への延伸倍率も、s−PS相の分散構造やフィルムの平面性、製膜性に影響する。具体的には、横方向の延伸倍率が2.4倍未満の場合は、縦方向への延伸と同様に、s−PS相のアスペクト比が小さくなってフィルムのこしが不足したり、特性の均一性が低下したりする。一方、横方向の延伸倍率が3.4倍を超えると、延伸時に破断が発生しやすくなり、製膜が困難になる。よって、本発明においては、横方向の延伸を行う際は、延伸倍率を2.4〜3.4倍とする。
Transverse stretching ratio: draw ratio to 2.4 to 3.4 times the transverse direction, the plane of the dispersion structure and the film of s-PS phase, affect the film forming properties. Specifically, when the stretching ratio in the transverse direction is less than 2.4 times, the aspect ratio of the s-PS phase becomes small, resulting in insufficient film stiffness or uniform properties, as in the stretching in the longitudinal direction. The sex will be reduced. On the other hand, if the stretching ratio in the transverse direction exceeds 3.4 times, breakage tends to occur during stretching, and film formation becomes difficult. Therefore, in this invention, when extending | stretching transversely, a draw ratio shall be 2.4 to 3.4 times.
次に、横方向の延伸後、直ちにフィルムを挟んでいるクリップ間の距離を0.1〜10%、好ましくは0.5〜7%程度縮めることにより、製膜されたフィルムを緩和させ、テンター延伸機内において、延伸温度以上でかつ融点以下の温度で熱固定処理を行うことが好ましい。これにより、耐熱寸法を安定させることができる。この熱固定処理の温度は、240〜290℃とすることが好ましい。熱固定処理温度が240℃未満の場合、横方向の緩和の効率が低下し、高温下で寸法安定性に優れるフィルムを得ることが困難になることがあり、また、熱固定処理温度が290℃を超えると、PPSフィルムの融点よりも高くなり、製膜が困難になるからである。なお、熱固定処理温度は、250〜285℃とすることがより好ましい。 Next, after stretching in the transverse direction, the distance between the clips immediately sandwiching the film is reduced by about 0.1 to 10%, preferably about 0.5 to 7%. In the stretching machine, it is preferable to perform the heat setting treatment at a temperature not lower than the stretching temperature and not higher than the melting point. Thereby, a heat-resistant dimension can be stabilized. It is preferable that the temperature of this heat setting process shall be 240-290 degreeC. If the heat setting treatment temperature is less than 240 ° C., the efficiency of relaxation in the transverse direction is lowered, and it may be difficult to obtain a film having excellent dimensional stability at high temperatures, and the heat setting treatment temperature is 290 ° C. This is because exceeding the melting point of the PPS film makes it difficult to form a film. The heat setting treatment temperature is more preferably 250 to 285 ° C.
そして、熱固定処理後のフィルムを、テンター延伸機4の出口部分において室温まで冷却した後、巻き取り機5で巻き取り、二軸延伸PPS系樹脂フィルムを得る。 And after cooling to the room temperature in the exit part of the tenter extending | stretching machine 4, the film after a heat setting process is wound up with the winder 5, and a biaxially stretched PPS resin film is obtained.
なお、一軸延伸によりフィルムを形成する場合も、前述した二軸延伸と同様に、延伸温度は86〜100℃とする。延伸温度が86℃未満であるとボイドが多く発生し、また、延伸温度が100℃を超えるとs−PS相の平均アスペクト比が10未満となり、いずれの場合もフィルムに十分なこしが得られないからである。また、一軸延伸する際、延伸倍率が2.4倍未満の場合、s−PS相のアスペクト比が小さくなり、フィルムのこしが不足することがあり、更に、延伸むらやたるみが発生して、特性の均一性が低下することもある。一方、延伸倍率が4.0倍を超えると、破断が発生して、製膜が困難になることがある。よって、一軸延伸する際の延伸倍率は、2.4〜4.0倍とすることが望ましい。 In addition, also when forming a film by uniaxial stretching, extending | stretching temperature shall be 86-100 degreeC similarly to biaxial stretching mentioned above. When the stretching temperature is less than 86 ° C., many voids are generated, and when the stretching temperature exceeds 100 ° C., the average aspect ratio of the s-PS phase is less than 10, and in each case, sufficient strain is obtained for the film. Because there is no. In addition, when the uniaxial stretching is performed, if the draw ratio is less than 2.4 times, the aspect ratio of the s-PS phase is decreased, the film may be insufficiently strained, and further, uneven stretching and sagging may occur. The uniformity of the film may be reduced. On the other hand, when the draw ratio exceeds 4.0, breakage may occur and film formation may be difficult. Therefore, it is desirable that the draw ratio when uniaxially drawing is 2.4 to 4.0 times.
上述の如く、本発明のPPS系樹脂フィルムは、PPS100質量部に対して、s−PSを0.8〜30質量部配合したPPS樹脂組成物を延伸して得たものであり、厚さが20〜100μmで、シンジオタクティックポリスチレン相が島状に分布し、厚さ方向に平行な断面におけるシンジオタクティックポリスチレン相の平均アスペクト比が10以上であるため、こしが強い。その結果、従来のPPSフィルムに比べて、取り扱い性を向上させることができる。 As described above, the PPS resin film of the present invention is obtained by stretching a PPS resin composition containing 0.8 to 30 parts by mass of s-PS with respect to 100 parts by mass of PPS, and has a thickness of Since the syndiotactic polystyrene phase is distributed in an island shape at 20 to 100 μm and the average aspect ratio of the syndiotactic polystyrene phase in the cross section parallel to the thickness direction is 10 or more, the strain is strong. As a result, the handleability can be improved as compared with the conventional PPS film.
以下、本発明の実施例及び比較例を挙げて、本発明の効果について具体的に説明する。本実施例においては、以下に示す方法で、本発明の範囲内の実施例1〜3のPPS系樹脂フィルム、及び本発明の範囲から外れる比較例1〜4のPPS系樹脂フィルムを作製した。更に、参考例として、s−PSを配合していないPPSフィルムを作製した。なお、本発明は、以下に示す実施例に限定されるものではない。 Hereinafter, the effects of the present invention will be specifically described with reference to Examples and Comparative Examples of the present invention. In this example, the PPS resin films of Examples 1 to 3 within the scope of the present invention and the PPS resin films of Comparative Examples 1 to 4 deviating from the scope of the present invention were prepared by the following methods. Furthermore, as a reference example, a PPS film not containing s-PS was produced. In addition, this invention is not limited to the Example shown below.
(実施例1)
先ず、PPS(クレハ社製「フォートロンKPS(登録商標)」W312)粉末100質量部に対して、充填剤として平均粒径が0.7μmの炭酸カルシウム(日東粉化工業社製「NITOREX」#30PS)を0.3質量部、ステアリン酸カルシウムを0.2質量部添加した混合粉末をペレット化したPPSを主成分とする樹脂ペレットを調製した。
Example 1
First, calcium carbonate having a mean particle size of 0.7 μm as a filler (“NITREX” manufactured by Nitto Flour & Chemical Co., Ltd.) # Relative to 100 parts by mass of PPS (“Fortron KPS (registered trademark)” W312) manufactured by Kureha 30PS) and 0.2 parts by mass of calcium stearate were added to prepare a resin pellet mainly composed of PPS obtained by pelletizing a mixed powder.
次に、調製した樹脂ペレット100質量部に対し、s−PS樹脂ペレット(出光興産社製「XAREC(登録商標)」S−104)を1.2質量部配合し、ブレンダーを用いて混合して、PPS系樹脂組成物を得た。 Next, 1.2 parts by mass of s-PS resin pellets (“XAREC (registered trademark)” S-104 manufactured by Idemitsu Kosan Co., Ltd.) is blended with 100 parts by mass of the prepared resin pellets, and mixed using a blender. A PPS resin composition was obtained.
次に、このPPS系樹脂組成物を、直径が50mmの押出機を用いて310℃に加熱して溶融し、目開き40μmのディスクフィルターでろ過した。引き続き、溶融したPPS系樹脂組成物を、長さ560mm、間隙1.1mmの直線状リップを有するダイから押出し、表面を40℃に保持した金属製ドラム上にキャストして冷却させ、厚さが360μmの樹脂シートを作製した。 Next, this PPS resin composition was melted by heating to 310 ° C. using an extruder having a diameter of 50 mm, and filtered through a disk filter having an opening of 40 μm. Subsequently, the melted PPS resin composition was extruded from a die having a linear lip having a length of 560 mm and a gap of 1.1 mm, and the surface was cast on a metal drum maintained at 40 ° C. to be cooled. A 360 μm resin sheet was prepared.
次に、この樹脂シートを、表面温度を80〜90℃に調節した金属製ロールに接触させて予熱を行った後、表面温度を93℃に調節した金属製ロール上で縦方向の長さが3.5倍となるようロール間延伸を行った。引き続き、縦方向に延伸したフィルムをテンター延伸機に導入し、93℃の雰囲気中で横方向に2.9倍に延伸した。延伸後、直ちに横方向に約4%緩和させながら、250℃で約100秒間熱固定し、厚さ40μmの二軸延伸フィルム(PPS系樹脂フィルム)を得た。 Next, the resin sheet was preheated by bringing it into contact with a metal roll whose surface temperature was adjusted to 80 to 90 ° C., and then the length in the vertical direction on the metal roll whose surface temperature was adjusted to 93 ° C. Roll-to-roll stretching was performed so as to be 3.5 times. Subsequently, the film stretched in the longitudinal direction was introduced into a tenter stretching machine, and stretched 2.9 times in the transverse direction in an atmosphere at 93 ° C. Immediately after stretching, the film was heat-set at 250 ° C. for about 100 seconds while being relaxed by about 4% in the transverse direction to obtain a biaxially stretched film (PPS resin film) having a thickness of 40 μm.
(実施例2)
前述した実施例1と同様の方法で、PPS樹脂ペレット100質量部に、s−PS樹脂ペレット6.2質量部を配合したPPS系樹脂組成物を使用し、実施例1と同様の条件で押出し、厚さが360μmの樹脂シートを得た。次に、この樹脂シートを、縦延伸温度を97℃とし、それ以外は実施例1と同様の条件で縦及び横方向に延伸した後、緩和させて、厚さ40μmの二軸延伸フィルム(PPS系樹脂フィルム)を得た。
(Example 2)
Extruded under the same conditions as in Example 1, using a PPS resin composition in which 6.2 parts by mass of s-PS resin pellets were blended with 100 parts by mass of PPS resin pellets in the same manner as in Example 1 described above. A resin sheet having a thickness of 360 μm was obtained. Next, the resin sheet was stretched in the longitudinal and lateral directions under the same conditions as in Example 1 except that the longitudinal stretching temperature was 97 ° C., and then relaxed to a biaxially stretched film (PPS having a thickness of 40 μm). System resin film).
(実施例3)
前述した実施例1と同様の方法で、PPS樹脂ペレット100質量部に、s−PS樹脂ペレット19質量部を配合したPPS系樹脂組成物を使用し、実施例1と同様の条件で押出し、厚さが360μmの樹脂シートを得た。次に、この樹脂シートを、実施例1と同様の条件で縦及び横方向に延伸した後、緩和させて、厚さ40μmの二軸延伸フィルム(PPS系樹脂フィルム)を得た。
(Example 3)
In the same manner as in Example 1 described above, a PPS resin composition in which 19 parts by mass of s-PS resin pellets were blended with 100 parts by mass of PPS resin pellets was extruded under the same conditions as in Example 1, and the thickness was A resin sheet having a thickness of 360 μm was obtained. Next, the resin sheet was stretched in the longitudinal and lateral directions under the same conditions as in Example 1, and then relaxed to obtain a biaxially stretched film (PPS resin film) having a thickness of 40 μm.
(比較例1)
本発明の比較例1として、前述した実施例1と同様の方法で、PPS樹脂ペレット100質量部にs−PS樹脂ペレットを6.2質量部配合したPPS系樹脂組成物を使用し、実施例1と同様の方法で押出し、厚さが200μmの樹脂シートを作製した。次に、この樹脂シートを、実施例1と同様の延伸温度条件で、縦方向に3.5倍、横方向に3.5倍延伸した。その後、実施例1と同様に、緩和及び熱固定を行い、厚さが18μmの二軸延伸フィルム(PPS系樹脂フィルム)を得た。
(Comparative Example 1)
As Comparative Example 1 of the present invention, a PPS resin composition in which 6.2 parts by mass of s-PS resin pellets was blended with 100 parts by mass of PPS resin pellets in the same manner as in Example 1 was used. Extrusion was performed in the same manner as in No. 1 to prepare a resin sheet having a thickness of 200 μm. Next, this resin sheet was stretched 3.5 times in the longitudinal direction and 3.5 times in the transverse direction under the same stretching temperature conditions as in Example 1. Thereafter, relaxation and heat setting were performed in the same manner as in Example 1 to obtain a biaxially stretched film (PPS resin film) having a thickness of 18 μm.
(比較例2)
本発明の比較例2として、前述した実施例1と同様の方法で、PPS樹脂ペレット100質量部にs−PS樹脂ペレットを6.2質量部配合したPPS系樹脂組成物を使用し、実施例1と同様の方法で押出し、厚さが360μmの樹脂シートを作製した。次に、この樹脂シートを、表面温度を約80℃に調節した金属製ロールに接触させて予熱を行った後、表面温度を84℃に調節した金属製ロール上で、縦方向に3.5倍延伸した。引き続き、横方向に84℃で2.9倍延伸した後、緩和させて、厚さが40μmの二軸延伸フィルム(PPS系樹脂フィルム)を得た。なお、本比較例においては、横延伸時に破断することが多く、延伸が困難であった。
(Comparative Example 2)
As Comparative Example 2 of the present invention, a PPS resin composition in which 6.2 parts by mass of s-PS resin pellets was blended with 100 parts by mass of PPS resin pellets in the same manner as in Example 1 was used. Extrusion was performed in the same manner as in No. 1 to prepare a resin sheet having a thickness of 360 μm. Next, the resin sheet was preheated by bringing it into contact with a metal roll whose surface temperature was adjusted to about 80 ° C., and then 3.5 mm in the vertical direction on the metal roll whose surface temperature was adjusted to 84 ° C. The film was stretched twice. Subsequently, the film was stretched 2.9 times in the transverse direction at 84 ° C. and then relaxed to obtain a biaxially stretched film (PPS resin film) having a thickness of 40 μm. In addition, in this comparative example, it often broke at the time of lateral stretching, and stretching was difficult.
(比較例3)
本発明の比較例3として、前述した実施例1と同様の方法で、PPS樹脂ペレット100質量部にs−PS樹脂ペレットを6.2質量部配合したPPS系樹脂組成物を使用し、実施例1と同様の方法で押出し、厚さが360μmの樹脂シートを作製した。次に、この樹脂シートを、表面温度を約95℃に調節した金属製ロールに接触させて予熱を行った後、表面温度を105℃に調節した金属製ロール上で、縦方向に3.5倍延伸した。引き続き、横方向に102℃で2.9倍延伸した後、緩和させて、厚さが40μmの二軸延伸フィルム(PPS系樹脂フィルム)を得た。なお、本比較例においては、フィルム幅が周期的に変化する幅むらが発生した。
(Comparative Example 3)
As Comparative Example 3 of the present invention, a PPS resin composition in which 6.2 parts by mass of s-PS resin pellets were blended with 100 parts by mass of PPS resin pellets in the same manner as in Example 1 was used. Extrusion was performed in the same manner as in No. 1 to prepare a resin sheet having a thickness of 360 μm. Next, the resin sheet was preheated by bringing it into contact with a metal roll whose surface temperature was adjusted to about 95 ° C., and then 3.5 mm in the vertical direction on the metal roll whose surface temperature was adjusted to 105 ° C. The film was stretched twice. Subsequently, the film was stretched 2.9 times in the transverse direction at 102 ° C. and then relaxed to obtain a biaxially stretched film (PPS resin film) having a thickness of 40 μm. In this comparative example, there was uneven width in which the film width changed periodically.
(比較例4)
本発明の比較例4として、前述した実施例1と同様の方法で、PPS樹脂ペレット100質量部にs−PS樹脂ペレットを6.2質量部配合したPPS系樹脂組成物を使用し、実施例1と同様の方法で押出し、厚さが360μmの樹脂シートを作製した。次に、この樹脂シートを、実施例2と同様の延伸温度で、縦方向に3.5倍、横方向に3.5倍延伸した。しかし、延伸の際に破断が頻発し、フィルムを得ることは困難であった。
(Comparative Example 4)
As Comparative Example 4 of the present invention, a PPS resin composition in which 6.2 parts by mass of s-PS resin pellets was blended with 100 parts by mass of PPS resin pellets in the same manner as in Example 1 was used. Extrusion was performed in the same manner as in No. 1 to prepare a resin sheet having a thickness of 360 μm. Next, this resin sheet was stretched 3.5 times in the longitudinal direction and 3.5 times in the transverse direction at the same stretching temperature as in Example 2. However, breakage occurred frequently during stretching, and it was difficult to obtain a film.
(参考例)
本発明の参考例として、s−PSを添加しないPPSフィルムを作製した。具体的には、前述した実施例1と同様の方法で調製したPPSを主成分とする樹脂ペレットを、実施例1と同様の方法で溶融及び濾過した後キャストし、厚さが360μmの樹脂シートを作製した。次に、この樹脂シートを、表面温度を約85℃に調節した金属製ロールに接触させて予熱を行った後、表面温度を約90℃に調節した金属製ロール上で、縦方向の長さが3.5倍となるようにロール間延伸を行った。引き続き、縦方向に延伸したフィルムをテンター延伸機に導入し、92℃の雰囲気中で横方向に2.9倍に延伸した後、直ちに横方向に約3%緩和した。その後、260℃で約100秒間熱固定し、厚さ40μmの二軸延伸フィルム(PPSフィルム)を得た。
(Reference example)
As a reference example of the present invention, a PPS film to which s-PS was not added was produced. Specifically, resin pellets mainly composed of PPS prepared by the same method as in Example 1 described above are melted and filtered by the same method as in Example 1, and then cast to obtain a resin sheet having a thickness of 360 μm. Was made. Next, the resin sheet is preheated by bringing it into contact with a metal roll whose surface temperature is adjusted to about 85 ° C., and then the length in the vertical direction on the metal roll whose surface temperature is adjusted to about 90 ° C. Was stretched between rolls so as to be 3.5 times. Subsequently, the film stretched in the longitudinal direction was introduced into a tenter stretching machine, stretched 2.9 times in the transverse direction in an atmosphere at 92 ° C., and immediately relaxed by about 3% in the transverse direction. Then, it heat-set at 260 degreeC for about 100 second, and obtained the biaxially stretched film (PPS film) with a thickness of 40 micrometers.
次に、上記方法で作製した実施例、比較例及び参考例の各フィルムについて、平均アスペクト比及び平均ボイド値を測定すると共に、こし及び配向均一性について評価した。以下、具体的な測定方法及び評価方法について説明する。図2は平均アスペクト比及び平均ボイド値の測定領域を示す図であり、図2(a)は平面図、図2(b)は図2(a)に示すA−A線による拡大断面図である。 Next, the average aspect ratio and the average void value were measured for the films of Examples, Comparative Examples, and Reference Examples prepared by the above method, and the strain and the alignment uniformity were evaluated. Hereinafter, specific measurement methods and evaluation methods will be described. 2A and 2B are diagrams showing measurement areas of average aspect ratio and average void value. FIG. 2A is a plan view, and FIG. 2B is an enlarged cross-sectional view taken along line AA shown in FIG. is there.
平均アスペクト比及び平均ボイド値は、先ず、実施例及び比較例の各フィルムについて、図2(a)及び(b)に示すように、厚さ方向に平行でかつ幅方向(TD)に垂直な断面のSEM(Scanning Electron Microscope:走査型電子顕微鏡)写真を撮影する。そして、平均アスペクト比は、各フィルムの断面SEM写真に基づいて、フィルム表面から厚さ方向に1/3〜2/3(t/3)で、かつ製膜方向(MD)に300μmの領域に存在するs−PS相の長軸径及び短軸径を測定し、算出した。一方、平均ボイド値も同様に、各フィルムの断面SEM写真に基づき、フィルム表面から厚さ方向に1/3〜2/3(t/3)で、かつ製膜方向(MD)に300μmの領域に存在するs−PS相の長軸径及びボイドの長軸径を測定し、上記数式1を用いて算出した。 As shown in FIGS. 2A and 2B, the average aspect ratio and average void value are parallel to the thickness direction and perpendicular to the width direction (TD) as shown in FIGS. 2A and 2B. A cross-sectional SEM (Scanning Electron Microscope) photograph is taken. The average aspect ratio is 1/3 to 2/3 (t / 3) in the thickness direction from the film surface and 300 μm in the film forming direction (MD) based on the cross-sectional SEM photograph of each film. The major axis diameter and minor axis diameter of the existing s-PS phase were measured and calculated. On the other hand, the average void value is similarly 1/3 to 2/3 (t / 3) in the thickness direction from the film surface and 300 μm in the film forming direction (MD) based on the cross-sectional SEM photograph of each film. The major axis diameter of the s-PS phase and the major axis diameter of the voids were measured and calculated using Equation 1 above.
一方、各フィルムのこしは、ループスティフネスの測定値に基づいて評価した。ループスティフネスとは、試料をループ状に曲げた状態で、自重によってたるみにくい方向に固定し、そのループを直径方向に所定量押しつぶすために要する荷重であり、その値によりフィルムのこしの強弱を評価することができる。本実施例においては、東洋精機製作所社製 ループステフネステスタ を使用し、試料の幅を25mm、有効長さを85mmとし、圧縮速度3.5mm/秒で、ループを15mm押しつぶすのに要する荷重を測定した。以上の結果を下記表1にまとめて示す。 On the other hand, the strain of each film was evaluated based on the measured loop stiffness. Loop stiffness is the load required to fix a sample in a looped shape in a direction where it is difficult to sag due to its own weight, and to crush the loop by a predetermined amount in the diametrical direction, and the strength of the film is evaluated based on this value. be able to. In this example, a loop stiffness tester manufactured by Toyo Seiki Seisakusho Co., Ltd. was used, the width of the sample was 25 mm, the effective length was 85 mm, the compression speed was 3.5 mm / sec, and the load required to crush the loop by 15 mm was obtained. It was measured. The above results are summarized in Table 1 below.
上記表1に示すように、PPSにs−PSを本発明の範囲内で配合した実施例1〜3のPPS系樹脂フィルムは、s−PS相の平均アスペクト比が10以上であったため、ループスティフネスの値が参考例のPPSフィルムよりも高く、こしが強かった。 As shown in Table 1 above, the PPS resin films of Examples 1 to 3 in which s-PS was blended with PPS within the scope of the present invention had an average aspect ratio of s-PS phase of 10 or more. The stiffness value was higher than that of the PPS film of the reference example, and the stiffness was strong.
これに対して、フィルム厚さが20μm未満の比較例1のPPS系樹脂フィルムは、厚さが薄く、s−PS相の平均アスペクト比も10未満であったため、ループスティフネスの値が極めて低かった。 On the other hand, since the PPS resin film of Comparative Example 1 having a film thickness of less than 20 μm was thin and the average aspect ratio of the s-PS phase was also less than 10, the loop stiffness value was extremely low. .
また、延伸温度が86℃未満であった比較例2のPPS系樹脂フィルムは、s−PS相の平均アスペクト比が10未満であり、更に平均ボイド値も70%を超えていたため、ループスティフネスの値が低く、参考例のPPSフィルムよりもこしがなかった。なお、比較例2のPPS系樹脂フィルムは、横延伸時に破断が多く、成形性にも劣っていた。 In addition, the PPS resin film of Comparative Example 2 in which the stretching temperature was less than 86 ° C. had an average aspect ratio of the s-PS phase of less than 10 and an average void value of more than 70%. The value was low, and there was less strain than the PPS film of the reference example. Note that the PPS resin film of Comparative Example 2 had many breaks during transverse stretching and was inferior in moldability.
一方、延伸温度が100℃を超えていた比較例3のPPS系樹脂フィルムは、s−PS相の平均アスペクト比が10未満となり、その結果、ループスティフネスの値が低く、参考例のPPSフィルムよりもこしがなかった。なお、比較例3のPPS系樹脂フィルムは、幅むらが大きく、特性が不均一なフィルムとなった。 On the other hand, the PPS resin film of Comparative Example 3 in which the stretching temperature exceeded 100 ° C. had an average aspect ratio of the s-PS phase of less than 10, resulting in a lower loop stiffness value than the PPS film of the reference example. There was nothing. The PPS resin film of Comparative Example 3 had a large width unevenness and a non-uniform characteristic.
更に、横方向に3.4倍を超える倍率で延伸した比較例4では、破断が頻発し、厚さ40μmのフィルムを得ることはできなかった。 Furthermore, in Comparative Example 4 stretched in the transverse direction at a magnification exceeding 3.4 times, breakage occurred frequently, and a film having a thickness of 40 μm could not be obtained.
以上のように、PPSにs−PSを本発明の範囲内で添加し、厚さ、s−PS相の平均アスペクト比が本発明の範囲内になるように、延伸により製膜した本実施例のPPS系樹脂フィルムは、本発明の範囲から外れる比較例のPPS系樹脂フィルム及び参考例のPPSフィルムに比べて、こしが強かった。即ち、本発明によれば、取り扱い性に優れたPPS系樹脂フィルムが得られることが確認された。 As described above, in this example, s-PS was added to PPS within the scope of the present invention, and the film was formed by stretching so that the thickness and the average aspect ratio of the s-PS phase were within the scope of the present invention. The PPS resin film was stronger than the PPS resin film of the comparative example and the PPS film of the reference example, which were out of the scope of the present invention. That is, according to the present invention, it was confirmed that a PPS resin film excellent in handleability was obtained.
1 押出機
2 冷却体
3 ロール
4 テンター延伸機
5 巻き取り機
DESCRIPTION OF SYMBOLS 1
Claims (2)
厚さが20〜100μmであり、
前記ポリフェニレンサルファイドは、310℃の温度で、せん断速度を1200/秒として測定したときの溶融粘度が20〜2000Pa・sであり、
シンジオタクティックポリスチレン相が島状に分布し、
厚さ方向に平行な断面における前記シンジオタクティックポリスチレン相の平均アスペクト比が10以上である
ポリフェニレンサルファイド系樹脂フィルム。 An extruded product of a polyphenylene sulfide-based resin composition in which 0.8 to 30 parts by mass of syndiotactic polystyrene is blended with 100 parts by mass of polyphenylene sulfide , a stretching temperature: 86 to 100 ° C., and a stretching ratio in the longitudinal direction: 3 It is obtained by sequentially biaxially stretching as 0.0 to 4.0 times and a stretching ratio in the transverse direction: 2.4 to 3.4 times.
The thickness is 20-100 μm,
The polyphenylene sulfide has a melt viscosity of 20 to 2000 Pa · s when measured at a temperature of 310 ° C. and a shear rate of 1200 / second,
Syndiotactic polystyrene phase is distributed in islands,
A polyphenylene sulfide-based resin film, wherein an average aspect ratio of the syndiotactic polystyrene phase in a cross section parallel to the thickness direction is 10 or more.
その押出成形体を、延伸温度:86〜100℃、縦方向の延伸倍率:3.0〜4.0倍、横方向の延伸倍率:2.4〜3.4倍として逐次二軸延伸して、
厚さが20〜100μmで、シンジオタクティックポリスチレン相が島状に分布し、厚さ方向に平行な断面における前記シンジオタクティックポリスチレン相の平均アスペクト比が10以上のフィルムを得る
ポリフェニレンサルファイド系樹脂フィルムの製造方法。 0.8 to 30 parts by mass of syndiotactic polystyrene was blended with 100 parts by mass of polyphenylene sulfide having a melt viscosity of 20 to 2000 Pa · s when measured at a temperature of 310 ° C. with a shear rate of 1200 / sec. Polyphenylene sulfide-based resin composition is melted at 280 to 340 ° C. and extruded,
The extruded product was successively biaxially stretched at a stretching temperature of 86 to 100 ° C., a longitudinal stretching ratio of 3.0 to 4.0 times, and a transverse stretching ratio of 2.4 to 3.4 times. ,
Polyphenylene sulfide-based resin film having a thickness of 20 to 100 μm, a film in which the syndiotactic polystyrene phase is distributed in an island shape, and an average aspect ratio of the syndiotactic polystyrene phase in a cross section parallel to the thickness direction is 10 or more Manufacturing method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008296579A JP5484713B2 (en) | 2008-11-20 | 2008-11-20 | Polyphenylene sulfide resin film and method for producing the same |
PCT/JP2009/066924 WO2010058657A1 (en) | 2008-11-20 | 2009-09-29 | Polyphenylene sulfide resin film, and process for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008296579A JP5484713B2 (en) | 2008-11-20 | 2008-11-20 | Polyphenylene sulfide resin film and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010121055A JP2010121055A (en) | 2010-06-03 |
JP5484713B2 true JP5484713B2 (en) | 2014-05-07 |
Family
ID=42198096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008296579A Expired - Fee Related JP5484713B2 (en) | 2008-11-20 | 2008-11-20 | Polyphenylene sulfide resin film and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5484713B2 (en) |
WO (1) | WO2010058657A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120023772A (en) * | 2009-06-11 | 2012-03-13 | 가부시끼가이샤 구레하 | Biaxially oriented polyarylene sulfide resin film and process for production of same |
CN103481521B (en) * | 2013-08-30 | 2015-10-28 | 山东通佳机械有限公司 | Biaxial orientation stretching breathable membrane production device and production method |
JP6262075B2 (en) * | 2014-05-20 | 2018-01-17 | タイガースポリマー株式会社 | Corrugated tube manufacturing method |
CN110667147B (en) * | 2017-05-28 | 2021-10-22 | 中国计量大学 | Character extraction method for film section image |
DE102017114647A1 (en) * | 2017-06-30 | 2019-01-03 | Brückner Maschinenbau GmbH & Co. KG | Biaxially stretched plastic film for film capacitors, in particular for high-temperature capacitors |
CN118238445B (en) * | 2024-02-22 | 2024-10-22 | 江苏通灵电器股份有限公司 | Method for manufacturing polyphenylene sulfide-based composite solid-state diaphragm by differential rolling |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2627657B2 (en) * | 1988-12-28 | 1997-07-09 | 出光興産株式会社 | Polyarylene sulfide oriented molded product |
JP4196435B2 (en) * | 1998-07-08 | 2008-12-17 | Dic株式会社 | Molded product for container in garbage disposal machine using polyarylene sulfide resin composition |
-
2008
- 2008-11-20 JP JP2008296579A patent/JP5484713B2/en not_active Expired - Fee Related
-
2009
- 2009-09-29 WO PCT/JP2009/066924 patent/WO2010058657A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2010121055A (en) | 2010-06-03 |
WO2010058657A1 (en) | 2010-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6241039B2 (en) | Stretched polypropylene film | |
JP5484713B2 (en) | Polyphenylene sulfide resin film and method for producing the same | |
JP5924183B2 (en) | Biaxially stretched polypropylene film | |
JPWO2019004303A1 (en) | High-concentration particle-containing film and method for producing the same | |
JP6992929B1 (en) | Polypropylene film, metal film laminated film using it, and film capacitor | |
JP6079922B2 (en) | Heat resistant sheet and manufacturing method thereof | |
JP7272263B2 (en) | polyarylene sulfide film | |
JP2020075481A (en) | Thermoplastic resin film and manufacturing method therefor | |
KR101228745B1 (en) | Release film comprising polyphenylene sulfide resin and laminate | |
JP2009062472A (en) | Polyphenylene sulfide film and capacitor made therefrom | |
JPS62251121A (en) | Manufacture of polyphenylene sulfide unoriented film | |
WO2016190183A1 (en) | Multilayer film and method for producing same | |
JP5924263B2 (en) | Porous polypropylene film and method for producing the same | |
WO2021132416A1 (en) | Member for composite materials, composite material, moving body and method for producing film for composite materials | |
JP6814819B2 (en) | Vinylidene fluoride resin film | |
JP2021055036A (en) | Manufacturing method of polypropylene film, manufacturing method of metal layer integrated polypropylene film, and, manufacturing method of film capacitor | |
TWI451959B (en) | Solvent release film and laminates made of polyphenylene sulfide resin | |
KR20190076012A (en) | Vinylidene fluoride resin film | |
JPH05111958A (en) | Laminated film | |
JP2021120442A (en) | Biaxial orientation polyarylene sulfide film | |
JP4259086B2 (en) | Biaxially oriented polyphenylene sulfide film | |
JP2023084521A (en) | Member for composite materials, composite material, moving body, method for producing composite material, and method for producing film | |
JPS63260426A (en) | Manufacture of polyphenylene sulfide film | |
JP2020090613A (en) | Polyarylene sulfide film | |
KR20220054745A (en) | Biaxially oriented polyarylene sulfide film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110908 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130521 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130719 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130917 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5484713 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |