JP5477578B2 - Thick high-strength steel sheet excellent in brittle crack propagation stopping characteristics and method for producing the same - Google Patents
Thick high-strength steel sheet excellent in brittle crack propagation stopping characteristics and method for producing the same Download PDFInfo
- Publication number
- JP5477578B2 JP5477578B2 JP2010085350A JP2010085350A JP5477578B2 JP 5477578 B2 JP5477578 B2 JP 5477578B2 JP 2010085350 A JP2010085350 A JP 2010085350A JP 2010085350 A JP2010085350 A JP 2010085350A JP 5477578 B2 JP5477578 B2 JP 5477578B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- temperature
- steel sheet
- rolling
- arrestability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
Description
本発明は、造船、建築、橋梁、タンク、海洋構造物等の溶接構造物に好適な、脆性き裂伝播停止特性(以下、アレスト性ともいう。)に優れた板厚50mm以上の厚手高強度鋼板及びその製造方法に関する。 The present invention is suitable for welded structures such as shipbuilding, architecture, bridges, tanks, offshore structures, etc., and has a high thickness and thickness of 50 mm or more, which is excellent in brittle crack propagation stopping characteristics (hereinafter also referred to as arrestability). It is related with a steel plate and its manufacturing method.
近年の鋼構造物の大型化にともない、使用される鋼材の厚手化及び高強度化、更には、安全性確保の観点から、脆性き裂伝播停止特性への要求が厳しくなってきている。しかし、降伏強度が355〜460MPa級の高強度鋼板では、板厚が50mm以上になると、アレスト性を確保することが極めて困難になる。したがって、大型の溶接構造物への適用が可能な、アレスト性に優れた厚手高強度鋼板が要求されている。 With the recent increase in the size of steel structures, the demand for brittle crack propagation stopping characteristics has become stricter from the viewpoint of increasing the thickness and strength of steel materials used, and ensuring safety. However, in a high strength steel plate with a yield strength of 355 to 460 MPa class, it is extremely difficult to ensure arrestability when the plate thickness is 50 mm or more. Therefore, a thick high-strength steel sheet excellent in arrestability that can be applied to a large welded structure is required.
アレスト性を向上させる手段としては、従来から結晶粒微細化がよく知られているが、近年では集合組織制御の観点からも検討が行われている。すなわち、脆性き裂は鋼のへき開面を伝播することから、鋼板のへき開面が、き裂伝播方向と一致しないように集合組織を制御し、鋼材のアレスト性を向上させる方法できる。具体的には、板厚中心部の温度と圧延条件を制御して、圧延面に平行な集合組織において、(100)面の集積度を高めた鋼板が提案されている(例えば、特許文献1、2参照)。これらは、冷却時のフェライト変態開始温度であるAr3の近傍の特定の温度範囲での圧下率を高めて製造される。 As means for improving arrestability, crystal grain refinement has been well known, but in recent years, studies have also been made from the viewpoint of texture control. That is, since a brittle crack propagates through the cleavage plane of steel, the texture can be controlled so that the cleavage plane of the steel sheet does not coincide with the crack propagation direction and the arrestability of the steel material can be improved. Specifically, a steel sheet has been proposed in which the degree of integration on the (100) plane is increased in a texture parallel to the rolled surface by controlling the temperature at the center of the plate thickness and rolling conditions (for example, Patent Document 1). 2). These are produced by increasing the rolling reduction in a specific temperature range in the vicinity of Ar 3 that is the ferrite transformation start temperature during cooling.
また、鋼板の表面から発生した脆性き裂の伝播を停止させるため、Ar3以下の温度、すなわちオーステナイトとフェライトが共存する二相域で熱間圧延する技術が提案されている(例えば、特許文献3参照)。更に、鋼板の表面温度をAr3以下に冷却して複熱過程で熱間圧延を行う方法が提案されている(例えば、特許文献4参照)。これは、鋼板の表層の組織の微細化及び集合組織の制御により、アレスト性を向上させるものである。 Further, in order to stop the propagation of a brittle crack generated from the surface of a steel sheet, a technique of hot rolling at a temperature of Ar 3 or lower, that is, a two-phase region in which austenite and ferrite coexist has been proposed (for example, Patent Document 3). Furthermore, a method has been proposed in which the surface temperature of the steel sheet is cooled to Ar 3 or lower and hot rolling is performed in a double heat process (see, for example, Patent Document 4). This improves the arrestability by refining the structure of the surface layer of the steel sheet and controlling the texture.
また、鋼板の表面温度をオーステナイト低温域から二相域、板厚中心部の温度をオーステナイト域として熱間圧延し、板厚方向に集合組織が異なるような分布とする技術が提案されている(例えば、特許文献5参照)。これは、表層部に発生した脆性き裂を分岐させて、アレスト性を高めるものである。 In addition, a technology has been proposed in which the steel sheet is hot-rolled from the austenite low-temperature region to the two-phase region, and the thickness at the center of the plate thickness is austenite, and the distribution is such that the texture is different in the plate thickness direction ( For example, see Patent Document 5). This is to improve the arrestability by branching the brittle crack generated in the surface layer portion.
しかし、特許文献4によって提案されている方法は、表層部の集合組織及び組織に着目しているが、板厚内部の組織及び集合組織を制御するものではない。しかし、アレスト性は、鋼板の全厚の特性であるため、板厚内部の組織及び集合組織が不適切であると、アレスト性が向上しない場合がある。また、特許文献5によって提案されている方法は、板厚方向の集合組織の分布を大幅に変化させるものではなく、アレスト性の向上には限界があると考えられる。 However, the method proposed by Patent Document 4 focuses on the texture and texture of the surface layer portion, but does not control the texture and texture inside the plate thickness. However, since arrestability is a characteristic of the total thickness of the steel sheet, the arrestability may not be improved if the structure and texture inside the sheet thickness are inappropriate. Further, the method proposed by Patent Document 5 does not significantly change the distribution of texture in the thickness direction, and it is considered that there is a limit to improving the arrestability.
更に、特許文献1〜5の方法に共通する問題であるが、特定の面のX線面強度比を有する鋼板であってもアレスト性が十分でない場合がある。例えば、圧延面と平行な(100)面強度比を規定しても、(001)[010]と(001)[110]とでは、アレスト性への寄与が異なる。すなわち、アレスト性を高めるには、三次元の集合組織を制御することが必要である。 Furthermore, although it is a problem common to the method of patent documents 1-5, even if it is a steel plate which has the X-ray surface intensity ratio of a specific surface, there are cases where arrestability is not enough. For example, even if a (100) plane strength ratio parallel to the rolling surface is defined, contributions to arrestability are different between (001) [010] and (001) [110]. That is, in order to improve arrestability, it is necessary to control a three-dimensional texture.
また、アレスト性と同時に、需要家の短納期化に対する要望も年々大きくなり、鋼板製造工程における生産性向上が強く望まれている。しかし、特許文献4によって提案されている方法のように、表層部のフェライトを再結晶させるには、Ac1以上の温度域での圧下率を十分確保する必要があり、生産性が著しく低下してしまう。特許文献5によって提案された方法は、通常の制御圧延技術の延長線上にあり、生産性の向上は期待できない。 In addition to the arrestability, demands for shortening the delivery time of customers are increasing year by year, and improvement in productivity in the steel sheet manufacturing process is strongly desired. However, in order to recrystallize the ferrite in the surface layer portion as in the method proposed by Patent Document 4, it is necessary to secure a sufficient rolling reduction in the temperature range of Ac 1 or higher, and the productivity is significantly reduced. End up. The method proposed by Patent Document 5 is an extension of normal control rolling technology, and improvement in productivity cannot be expected.
本発明は、このような実状に鑑みてなされたものであり、板厚が50mm以上の厚手材で、降伏強度が355〜460MPa級でも、Kca=6000N/mm1.5となる温度TKca=6000が−10℃以下となる、大型構造物に適用可能な、脆性き裂伝播停止特性に優れた鋼板(以下、高アレスト鋼板ともいう。)、及び、高アレスト鋼板を安定的かつ効率的に製造する技術を提供するものである。なお、以下では、Kca=6000N/mm1.5となる温度TKca=6000を、アレスト性指標と記すことがある。 The present invention has been made in view of such a situation, and even when the plate thickness is 50 mm or more and the yield strength is 355 to 460 MPa class, the temperature T Kca = 6000 at which Kca = 6000 N / mm 1.5 is obtained. A steel plate excellent in brittle crack propagation stopping characteristics (hereinafter also referred to as a high arrested steel plate) and a high arrested steel plate that can be applied to a large structure having a temperature of −10 ° C. or lower, and a high arrested steel plate is stably and efficiently manufactured. Provide technology. Hereinafter, the temperature T Kca = 6000 at which Kca = 6000 N / mm 1.5 is sometimes referred to as an arrestability index.
本発明は、従来、空冷していた粗圧延後に加速冷却を行うことによって、生産性を著しく高め、かつ、鋼板の表裏面及び板厚中心部の三次元の集合組織を制御した、脆性き裂伝播停止特性に優れた厚手高強度鋼板及びその製造方法である。本発明の要旨は以下のとおりである。 The present invention is a brittle crack in which productivity is significantly increased by performing accelerated cooling after rough rolling, which has been conventionally air-cooled, and the three-dimensional texture of the front and back surfaces of the steel sheet and the center of the sheet thickness is controlled. A thick high-strength steel sheet having excellent propagation stop characteristics and a method for producing the same. The gist of the present invention is as follows.
(1) 質量%で、
C :0.02〜0.18%、
Si:0.03〜0.5%、
Mn:0.3〜2.0%、
P :0.020%以下、
S :0.010%以下、
Nb:0.003〜0.050%、
Ti:0.003〜0.050%、
Al:0.002〜0.10%、
N :0.0010〜0.0080%
を含有し、残部Fe及び不可避的不純物からなる組成を有し、結晶方位差が15゜以上の境界を粒界とする有効結晶粒の平均円相当径が、表面から板厚の1/10の位置では25μm以下、板厚中心部では35μm以下であり、更に圧延面、圧延方向に対する集合組織強度比I{hkl}<uvw>が、表面から板厚の1/10の位置では、
I{001}<110>+I{112}<110>+I{332}<113>≧5、
I{110}<001>+I{110}<110>+I{001}<010>≦3
を満足し、かつ板厚中心部では、
I{001}<110>+I{112}<110>+I{332}<113>≧3.5
を満足することを特徴とする脆性き裂伝播停止特性に優れた厚手高強度鋼板。
(1) In mass%,
C: 0.02 to 0.18%,
Si: 0.03 to 0.5%,
Mn: 0.3 to 2.0%,
P: 0.020% or less,
S: 0.010% or less,
Nb: 0.003 to 0.050%,
Ti: 0.003 to 0.050%,
Al: 0.002 to 0.10%,
N: 0.0010 to 0.0080%
The effective equivalent of the effective crystal grains having a composition having the balance Fe and inevitable impurities and having a crystal orientation difference of 15 ° or more as a grain boundary is 1/10 of the plate thickness from the surface. At the position of 25 μm or less, at the center of the sheet thickness, 35 μm or less, and when the texture strength ratio I {hkl} <uvw> relative to the rolling surface and the rolling direction is 1/10 of the sheet thickness from the surface,
I {001} <110> + I {112} <110> + I {332} <113> ≧ 5,
I {110} <001> + I {110} <110> + I {001} <010> ≦ 3
In the center of the plate thickness,
I {001} <110> + I {112} <110> + I {332} <113> ≧ 3.5
A thick, high-strength steel sheet with excellent brittle crack propagation stopping characteristics.
(2) 質量%で、
Cu:0.05〜1.5%、
Cr:0.05〜1.0%、
Mo:0.05〜1.0%、
Ni:0.05〜2.0%、
V :0.005〜0.10%、
B :0.0002〜0.0030%
の1種又は2種以上を含有することを特徴とする上記(1)に記載の脆性き裂伝播停止特性に優れた厚手高強度鋼板。
(2) By mass%
Cu: 0.05 to 1.5%,
Cr: 0.05 to 1.0%,
Mo: 0.05-1.0%,
Ni: 0.05-2.0%,
V: 0.005-0.10%,
B: 0.0002 to 0.0030%
A thick high-strength steel sheet having excellent brittle crack propagation stopping characteristics as described in (1) above, comprising one or more of the following.
(3) 質量%で、
Mg:0.0003〜0.0050%、
Ca:0.0005〜0.0030%、
REM:0.0005〜0.010%
の1種又は2種以上を含有することを特徴とする上記(1)又は(2)に記載の脆性き裂伝播停止特性に優れた厚手高強度鋼板。
(3) In mass%,
Mg: 0.0003 to 0.0050%,
Ca: 0.0005 to 0.0030%,
REM: 0.0005 to 0.010%
A thick high-strength steel sheet having excellent brittle crack propagation stopping characteristics as described in (1) or (2) above, comprising one or more of the following.
(4) 上記(1)〜(3)の何れかに記載の組成を有する鋼片を用いて、950〜1150℃に加熱し、900℃以上の温度で累積圧下率30%以上の粗圧延を行った後、鋼板の表裏面が300℃以上Ar3−100℃以下となるまで5〜30℃/sの冷却速度で冷却した後、鋼板の表裏面がAr3−50℃以上Ar3+50℃以下、板厚中心部がAr3+80℃以上900℃以下となる温度にて、各パス圧下率10%以下、累積圧下率40%以上の仕上圧延を行い、引き続き板厚平均で8℃/s以上の冷却速度で500℃以下の温度まで加速冷却を行うことを特徴とする脆性き裂伝播停止特性に優れた厚手高強度鋼板の製造方法。 (4) Using the steel slab having the composition described in any one of (1) to (3) above, the steel slab is heated to 950 to 1150 ° C. and subjected to rough rolling with a cumulative reduction ratio of 30% or more at a temperature of 900 ° C. or more. After the cooling, the steel sheet was cooled at a cooling rate of 5 to 30 ° C./s until the front and back surfaces of the steel sheet were 300 ° C. or higher and Ar 3 −100 ° C. or lower, and then the front and back surfaces of the steel sheet were Ar 3 −50 ° C. or higher and Ar 3 + 50 ° C. Thereafter, finish rolling is performed at a temperature at which the central portion of the plate thickness is Ar 3 + 80 ° C. or more and 900 ° C. or less, and each pass reduction rate is 10% or less and the cumulative reduction rate is 40% or more. A method for producing a thick high-strength steel sheet excellent in brittle crack propagation stopping characteristics, wherein accelerated cooling is performed to a temperature of 500 ° C. or lower at the above cooling rate.
(5) 加速冷却終了後、300〜650℃の温度で焼戻し処理することを特徴とする上記(4)に記載の脆性き裂伝播停止特性に優れた厚手高強度鋼板の製造方法。 (5) The method for producing a thick high-strength steel sheet having excellent brittle crack propagation stopping characteristics as described in (4) above, wherein tempering is performed at a temperature of 300 to 650 ° C. after completion of the accelerated cooling.
本発明によって、板厚が50mm以上の厚手材で、降伏強度が355〜460MPa級でも、アレスト性指標TKca=6000が−10℃以下となる、大型構造物に適用可能な高アレスト鋼板を、効率的な製造方法により提供することが可能になり、厚手かつ高強度の高アレスト鋼板を安価に提供することができるなど、産業上の効果は極めて大きい。 According to the present invention, a high arrested steel plate applicable to a large structure, in which the thickness is 50 mm or more and the yield strength is 355 to 460 MPa, and the arrestability index T Kca = 6000 is −10 ° C. or less. It is possible to provide by an efficient manufacturing method, and the industrial effect is extremely large, such as providing a thick and high strength high arrested steel sheet at low cost.
一般に、鋼板のアレスト性は、温度勾配型ESSO試験や二重引張試験によって評価される。試験後の破面を走査型電子顕微鏡(SEM)にて観察し、ティアリッジと呼ばれる延性破壊部で囲まれたへき開面の単位を「破面単位」と定義すると、この破面単位が細かいほどアレスト性が向上することが知られている。破面単位は、結晶方位差が15゜以上の境界を粒界とする有効結晶粒と相関があり、アレスト性の向上にはミクロ組織の微細化が有効である。 Generally, the arrestability of a steel sheet is evaluated by a temperature gradient type ESSO test or a double tensile test. When the fracture surface after the test is observed with a scanning electron microscope (SEM) and the unit of the cleavage plane surrounded by the ductile fracture portion called tear ridge is defined as “fracture surface unit”, the smaller the fracture surface unit, the smaller the fracture surface unit. It is known that arrestability is improved. The fracture surface unit has a correlation with effective crystal grains having a boundary whose crystal orientation difference is 15 ° or more, and refinement of the microstructure is effective for improving arrestability.
そこで、本発明者らは、破面単位を効率的に微細化する手段について、種々の実験的検証を行った。まず、ミクロ組織を微細化するための有効な手段である、オーステナイト(γ)未再結晶温度域における制御圧延(Controlled Rolling;CR)と、これに続く加速冷却(Accelerated Cooling;ACC)について検討した。具体的には、鋼片を種々の圧延条件及び加速冷却条件で熱間圧延し、降伏強度が355MPa級、板厚が50mm以上の鋼板を製造して、温度勾配型ESSO試験によりアレスト性を評価し、更にミクロ組織の観察と破面単位の測定を行った。 Therefore, the present inventors conducted various experimental verifications on means for efficiently miniaturizing the fracture surface unit. First, we investigated controlled rolling (CR) and subsequent accelerated cooling (ACC) in the austenite (γ) non-recrystallization temperature range, which is an effective means for refining the microstructure. . Specifically, a steel slab is hot-rolled under various rolling conditions and accelerated cooling conditions to produce a steel sheet having a yield strength of 355 MPa class and a thickness of 50 mm or more, and the arrestability is evaluated by a temperature gradient type ESSO test. Furthermore, the microstructure was observed and the unit of fracture surface was measured.
その結果、圧延温度が低く、累積圧下率が大きいほど、更に、冷却速度が大きく、冷却停止温度が低いほど、破面単位が小さく、ミクロ組織が微細になり、鋼板のアレスト性が向上する傾向を確認した。ところが、この方法では厚手材の板厚全体にわたってミクロ組織、例えば、フェライト粒径を細かくすることは困難であるとともに、仕上圧延の開始まで長時間の温度待ちが生じるため生産性が著しく低下してしまう。 As a result, the lower the rolling temperature, the higher the cumulative rolling reduction, the higher the cooling rate, and the lower the cooling stop temperature, the smaller the fracture surface unit, the finer the microstructure, and the better the arrestability of the steel sheet. It was confirmed. However, with this method, it is difficult to reduce the microstructure, for example, the ferrite grain size, over the entire thickness of the thick material, and a long wait time until the start of finish rolling occurs, resulting in a significant reduction in productivity. End up.
そこで、本発明者らは、生産性を向上させつつ、板厚方向の組織分布を制御してアレスト性を確保するべく、仕上圧延とその前後の水冷との組み合わせについて詳細な検討を行った。具体的には、表面をAr3以下の適当な温度域に冷却した後、表面と内部がそれぞれ所定の温度域となるまで待ち、1パス当たりの圧下率を規制しつつ、累積圧下率を確保するように圧延する方法である。 Therefore, the present inventors have made a detailed study on the combination of finish rolling and water cooling before and after that in order to secure the arrestability by controlling the structure distribution in the sheet thickness direction while improving the productivity. Specifically, after cooling the surface to an appropriate temperature range of Ar 3 or lower, wait until the surface and the interior reach the specified temperature range respectively, and secure the cumulative reduction rate while regulating the reduction rate per pass. It is a method of rolling so as to.
種々のプロセスによって製造した鋼板を用いて、アレスト性に及ぼす鋼板の集合組織の影響を明確化するために、EBSP(Electron Back Scattering Pattern:後方散乱電子回折)による解析を実施した。測定面は圧延方向(RD)に垂直な面(RD面とする)とし、測定位置は、表面からt/10、t/4、t/2(t:板厚)の位置とした。測定は1.5×1mmの領域を10μm間隔で行い、結晶方位分布関数(Crystallite Orientation Distribution Function;ODF)を作成した上で、ランダム強度に対する特定の集合組織強度の比を読み取った。集合組織の解析には、(株)TSLソリューションズ製の解析装置を使用した。 Analysis using EBSP (Electron Back Scattering Pattern) was performed in order to clarify the influence of the texture of steel sheets on arrestability using steel sheets manufactured by various processes. The measurement surface was a surface perpendicular to the rolling direction (RD) (referred to as the RD surface), and the measurement positions were t / 10, t / 4, and t / 2 (t: plate thickness) from the surface. The measurement was performed on a 1.5 × 1 mm region at 10 μm intervals, and after creating a crystallite orientation distribution function (ODF), the ratio of the specific texture strength to the random strength was read. For the analysis of the texture, an analyzer manufactured by TSL Solutions Co., Ltd. was used.
図1に、Bungeの表示法によるφ2=45゜断面のODFの例を示す。供試鋼は従来の鋼材であり、通常のCR−ACCにより製造したものである。結晶方位を圧延面(ND面)、圧延方向(RD方向)にそれぞれ平行な結晶面{hkl}、結晶方向<uvw>を用いて表現すると、t/2部におけるODFは、{001}<110>、{112}<110>、{332}<113>方位に集積が見られる。これは、圧縮歪を受けたγから変態した場合の典型的な集合組織である。 FIG. 1 shows an example of an ODF having a cross section of φ 2 = 45 ° according to the Bunge display method. The test steel is a conventional steel material and is manufactured by ordinary CR-ACC. When the crystal orientation is expressed using a crystal plane {hkl} and a crystal direction <uvw> parallel to the rolling plane (ND plane) and the rolling direction (RD direction), the ODF at t / 2 part is {001} <110. >, {112} <110>, {332} <113> orientation is seen. This is a typical texture when transformed from γ subjected to compression strain.
図2に、ODF上に示される結晶方位と鋼材の結晶面との関係を模式的に示した。なお、脆性き裂の伝播方向は、圧延方向と直交する方向(TD)である。図2に示すように、従来の鋼板では、へき開面である{100}面、すなわち、{001}<010>、{110}<110>、{110}<001>が、き裂伝播方向(TD)に配置している。そのため、従来の鋼板では、脆性き裂が伝播方向に直進しやすく、アレスト性に劣ると考えられる。 FIG. 2 schematically shows the relationship between the crystal orientation shown on the ODF and the crystal plane of the steel material. In addition, the propagation direction of a brittle crack is a direction (TD) orthogonal to a rolling direction. As shown in FIG. 2, in the conventional steel plate, the {100} plane which is a cleavage plane, that is, {001} <010>, {110} <110>, {110} <001> has a crack propagation direction ( TD). For this reason, in conventional steel plates, brittle cracks are likely to go straight in the propagation direction and are considered to be inferior in arrestability.
図1に示したODFのうち、t/2部のODFでは、{001}<010>、{110}<110>、{110}<001>には集積が見られず、き裂は直進しにくいと考えられる。一方、図1のt/4部のODFは、ランダムに近いものの、若干、{001}<010>や{110}<001>に集積がみられ、t/2部に比べると、き裂が伝播しやすいものと推測される。なお、t/4のODFは、せん断歪を受けたγから変態した集合組織と似ている。また、図1のt/10部のODFは、t/4部のものと近い。 Among the ODFs shown in FIG. 1, in the t / 2 part ODF, no accumulation is observed in {001} <010>, {110} <110>, {110} <001>, and the crack goes straight. It is considered difficult. On the other hand, although the ODF of the t / 4 part in FIG. 1 is close to random, some accumulation is observed in {001} <010> and {110} <001>, and cracks are observed compared to the t / 2 part. It is assumed that it is easy to propagate. The t / 4 ODF is similar to a texture transformed from γ subjected to shear strain. Further, the ODF of the t / 10 part in FIG. 1 is close to that of the t / 4 part.
これに対して、図3にアレスト性に優れる鋼板の各板厚位置におけるODFを示す。図3のODFのうち、t/2部とt/4部のODFは、それぞれ、図1に示した従来鋼のものとほぼ同じである。しかし、図3のt/10部のODFは、図1のt/10部のODFとは大きく異なっており、t/2部のODFと似ていることを確認した。これは、表層部でもt/2部のようにき裂が直進しにくくなることを示唆しており、アレスト性向上の原因と考えられる。 On the other hand, FIG. 3 shows the ODF at each plate thickness position of the steel plate having excellent arrestability. Of the ODFs in FIG. 3, the ODFs at t / 2 and t / 4 are substantially the same as those of the conventional steel shown in FIG. However, it was confirmed that the ODF of the t / 10 part in FIG. 3 is greatly different from the ODF of the t / 10 part in FIG. 1 and is similar to the ODF of the t / 2 part. This suggests that the crack is difficult to advance straight in the surface layer portion as in the case of t / 2 portion, which is considered to be the cause of improvement in arrestability.
図3に示したODFは、表層域が軽度の二相域圧延組織、内部が低温CR組織であり、表面をAr3以下、内部をAr3以上とし、温度差をつけた状態で熱間圧延した鋼板の集合組織である。また、内部をAr3以上の未再結晶温度で熱間圧延することにより、中心部のCR効果が高まり、細粒化が促進される。一方、表層部では、特異な集合組織が発達して、き裂伝播抵抗を高めることができる。 The ODF shown in FIG. 3 is a hot rolling in a state where the surface layer region is a light two-phase region rolling structure, the inside is a low temperature CR structure, the surface is Ar 3 or less, the inside is Ar 3 or more, and a temperature difference is given. It is the texture of the steel plate. Further, by hot rolling the inside at a non-recrystallization temperature of Ar 3 or higher, the CR effect at the center portion is enhanced and fine graining is promoted. On the other hand, in the surface layer portion, a specific texture is developed, and the crack propagation resistance can be increased.
次に、アレスト性と集合組織との関係について、詳細に検討を行った。なお、{hkl}<uvw>方位のランダム強度に対する比をI{hkl}<uvw>と表記する。図4は、板厚中心部(t/2)と表層部(t/10)のI{001}<110>、I{112}<110>、I{332}<113>の和と、本発明のアレスト性指標である、Kca=6000N/mm1.5となる温度TKca=6000との関係を示したものである。図5は、表層部(t/10)のI {110}<001> 、I {110}<110>、I{001}<010> の和と、本発明のアレスト性指標である、Kca=6000N/mm1.5となる温度TKca=6000との関係を示したものである。
Next, the relationship between arrestability and texture was examined in detail. Note that the ratio of {hkl} <uvw> orientation to random intensity is expressed as I {hkl} <uvw> . FIG. 4 shows the sum of I {001} <110> , I {112} <110> , I {332} <113> of the center portion (t / 2) and the surface layer portion (t / 10) This shows the relationship with the temperature T Kca = 6000 at which Kca = 6000 N / mm 1.5 , which is the arrestability index of the invention. FIG. 5 shows the sum of I {110} <001> , I {110} < 110> and I {001} <010> in the surface layer portion (t / 10), and Kca = This shows the relationship with the temperature T Kca = 6000 at 6000 N / mm 1.5 .
図4及び図5に示したように、アレスト性を確保するためには、以下の条件が必要であることがわかった。
(a)t/10部においてI{001}<110>、I{112}<110>、I{332}<113>の和(ΣIa)が5以上
(b)t/10部においてI {110}<001> 、I {110}<110>、I{001}<010> の和(ΣIp)が3以下
(c)t/2部においてI{001}<110>、I{112}<110>、I{332}<113>の和(ΣIa)が3.5以上
なお、t/4部の集合組織については、製造プロセスによって大きく変化しない。また、本発明における集合組織の測定にはEBSPを用いたが、X線回折やECP(電子チャンネリングパターン)等他の方法で測定しても差し支えない。
As shown in FIGS. 4 and 5, it was found that the following conditions are necessary to ensure arrestability.
(A) The sum (ΣIa) of I {001} <110> , I {112} <110> and I {332} <113> is 5 or more at t / 10 part (b) I {110 at t / 10 part } <001> , I {110} < 110> , I {001} <010> sum (ΣIp) is 3 or less (c) When t / 2 part, I {001} <110> , I {112} <110 > , I {332} <113> sum (ΣIa) is 3.5 or more Note that the texture of the t / 4 part does not vary greatly depending on the manufacturing process. In addition, although EBSP is used for the measurement of the texture in the present invention, it may be measured by other methods such as X-ray diffraction or ECP (Electronic Channeling Pattern).
更に、本発明者らは、鋼板のミクロ組織についても、EBSPを用いて調査した。EBSP測定は、400×300μmの領域を1μm間隔で行い、結晶方位差が15゜以上の界面を粒界と定義したときの結晶粒(有効結晶粒)の円相当径を算出した。なお、有効結晶粒の円相当径を有効結晶粒径ということがある。各板厚位置における有効結晶粒径とアレスト性指標との関係を詳細に解析した結果を図6に示す。図6に示したように、アレスト性を確保するためには、有効結晶粒径を、t/10部で25μm以下、t/2部で35μm以下とすることが必要である。 Furthermore, the present inventors also investigated the microstructure of the steel sheet using EBSP. In the EBSP measurement, a region of 400 × 300 μm was performed at 1 μm intervals, and the equivalent circle diameter of crystal grains (effective crystal grains) was calculated when an interface having a crystal orientation difference of 15 ° or more was defined as a grain boundary. Note that the equivalent-circle diameter of effective crystal grains is sometimes referred to as effective crystal grain diameter. FIG. 6 shows the result of detailed analysis of the relationship between the effective crystal grain size and the arrestability index at each plate thickness position. As shown in FIG. 6, in order to ensure arrestability, it is necessary that the effective crystal grain size is 25 μm or less at t / 10 parts and 35 μm or less at t / 2 parts.
アレスト性に優れたミクロ組織、集合組織を有する鋼板を得るためには、仕上圧延として、表層を二相域、板厚中心をγ未再結晶域とする制御圧延(CR)を行うことが必要である。したがって、本発明の鋼板の製造方法では、最も重要な工程は、仕上圧延前の水冷と仕上圧延である。本発明者らは、良好なアレスト特性を得るための水冷、仕上圧延条件を検討し、以下の知見を得た。なお、水冷は鋼板の表裏面から行うが、以下では、単に表面ということがある。 In order to obtain a steel sheet having a microstructure and texture excellent in arrestability, it is necessary to carry out controlled rolling (CR) as finish rolling with the surface layer as a two-phase region and the thickness center as a γ non-recrystallized region. It is. Therefore, in the steel sheet manufacturing method of the present invention, the most important steps are water cooling before finish rolling and finish rolling. The present inventors examined water cooling and finish rolling conditions for obtaining good arrest properties, and obtained the following knowledge. In addition, although water cooling is performed from the front and back of a steel plate, it may only be called the surface below.
まず、仕上圧延前の水冷は、表裏面が300℃以上Ar3−100℃以下となるまで、5〜30℃/sの冷却速度で行う必要がある。これは、300℃未満まで水冷すると、その後の複熱によって温度が上昇せず、表層部の圧延温度が低下し、アレスト性を確保することができないためである。一方、仕上圧延前の水冷直後、表面の温度がAr3−100℃を超えていると、中心部の温度が低下するまでに時間が掛かり、表層部のフェライトが粗大化したり、生産性が低下してしまう。また、表層部の冷却速度が5℃/s未満であると、冷却時に粗大なフェライトが生成し、仕上圧延後の組織が不均一な加工フェライトとなり、靭性が低下してしまう。一方、冷却速度が30℃/s超となると、均一に冷却することが困難となり、最終的な組織、材質にばらつきが生じる可能性がある。 First, water cooling before finish rolling needs to be performed at a cooling rate of 5 to 30 ° C./s until the front and back surfaces are 300 ° C. or higher and Ar 3 -100 ° C. or lower. This is because when the water is cooled to less than 300 ° C., the temperature does not increase due to the subsequent double heat, the rolling temperature of the surface layer portion decreases, and the arrestability cannot be ensured. On the other hand, if the surface temperature exceeds Ar 3 −100 ° C. immediately after water cooling before finish rolling, it takes time until the temperature of the central portion decreases, and the ferrite of the surface layer portion becomes coarse or the productivity decreases. Resulting in. On the other hand, if the cooling rate of the surface layer is less than 5 ° C./s, coarse ferrite is generated during cooling, and the structure after finish rolling becomes non-uniformly processed ferrite, resulting in reduced toughness. On the other hand, when the cooling rate exceeds 30 ° C./s, it is difficult to cool uniformly, and the final structure and material may vary.
仕上圧延前冷却の開始温度については特に規定する必要はない。生産性の観点からは、温度待ちをせず直ちに冷却を行うのが望ましいが、事前に計算しておいた条件に合わせるために温度待ちを行ってもよい。本発明の粗圧延条件では、温度待ちの間にオーステナイトが顕著に粒成長して材質に悪影響を及ぼす恐れはほとんどない。 There is no need to specify the starting temperature for cooling before finish rolling. From the viewpoint of productivity, it is desirable to immediately cool without waiting for the temperature. However, the temperature may be waited to meet the conditions calculated in advance. Under the rough rolling conditions of the present invention, there is almost no possibility that austenite grows significantly during the temperature waiting and adversely affects the material.
水冷後の仕上圧延は、表面の温度がAr3−50℃以上Ar3+50℃以下で行う必要がある。図7に示すように、仕上圧延の表面温度がAr3−50℃未満であると、表層部に過度の二相域圧延が施され、表層部の加工フェライトが増加し、靭性とアレスト性が低下する。一方、仕上圧延の表面温度がAr3+50℃を超えると仕上圧延前の冷却によって生成した表層部のフェライトが粗大化し、アレスト性が低下する可能性がある。 The finish rolling after water cooling needs to be performed at a surface temperature of Ar 3 −50 ° C. or higher and Ar 3 + 50 ° C. or lower. As shown in FIG. 7, when the surface temperature of the finish rolling is less than Ar 3 -50 ° C., excessive two-phase region rolling is applied to the surface layer portion, the processed ferrite in the surface layer portion increases, and the toughness and arrestability are increased. descend. On the other hand, if the surface temperature of finish rolling exceeds Ar 3 + 50 ° C., ferrite in the surface layer portion generated by cooling before finish rolling may become coarse and the arrestability may be reduced.
また、水冷後の仕上圧延は、板厚中心部の温度がAr3+80℃以上900℃以下で行う必要がある。図8に示すように、板厚中心部の温度が900℃超であると、組織が十分に微細化せず、アレスト性が低下する。また、板厚中心部の温度が高いと、アレスト性に有利な集合組織が発達しないことがある。一方、中心部温度をAr3+80℃未満にするには、温度の低下に時間が掛かり、表層のフェライトが粗大化したり、生産性が低下することがある。 Moreover, the finish rolling after water cooling needs to be performed at a temperature at the center of the plate thickness of Ar 3 + 80 ° C. or higher and 900 ° C. or lower. As shown in FIG. 8, when the temperature at the central portion of the plate thickness exceeds 900 ° C., the structure is not sufficiently refined and the arrestability is lowered. Further, when the temperature at the center of the plate thickness is high, a texture that is advantageous for arrestability may not develop. On the other hand, if the center temperature is less than Ar 3 + 80 ° C., it takes time to lower the temperature, and the ferrite on the surface layer may become coarse or the productivity may be reduced.
仕上圧延の1パス当たりの圧下率は、10%以下に抑える必要がある。図9に示すように、10%を超えると加工発熱により板厚中心部の組織が粗大化するとともに、表層部の集合組織にも影響を及ぼし、アレスト特性が低下する場合がある。下限は特に規制する必要はないが、パス数が多くなりすぎると圧延効率が低下するため、通常は3%程度とすることが多い。仕上圧延の累積圧下率は40%以上を確保する必要がある。40%未満であるとCRの効果が不十分となり、微細組織が得られず、アレスト特性が低下する。また、仕上圧延の累積圧下率が低いと、表層部及び板厚中心部で、アレスト性に有利な集合組織が発達しないことがある。累積圧下率は、鋼片及び製品の板厚、粗圧延における累積圧下率から、適宜決定すればよく、上限を規定しない。 The rolling reduction per pass of finish rolling must be suppressed to 10% or less. As shown in FIG. 9, when it exceeds 10%, the structure of the central portion of the plate thickness is coarsened by processing heat generation, and the texture of the surface layer portion is also affected, and the arrest characteristics may be deteriorated. The lower limit is not particularly limited, but if the number of passes is too large, rolling efficiency is lowered, so usually it is often about 3%. It is necessary to secure 40% or more of the cumulative rolling reduction of finish rolling. If it is less than 40%, the effect of CR becomes insufficient, a fine structure cannot be obtained, and the arrest characteristics deteriorate. In addition, when the cumulative rolling reduction of finish rolling is low, a texture that is advantageous for arrestability may not develop in the surface layer portion and the plate thickness center portion. The cumulative rolling reduction may be appropriately determined from the thickness of the steel slab and the product and the cumulative rolling reduction in rough rolling, and does not define an upper limit.
本発明では、仕上圧延前の水冷の条件、仕上圧延の温度、圧下率を制御することによって、アレスト性の確保が可能になり、かつ、仕上圧延の温度待ち時間が従来の1/3程度以下に短縮されるために、生産性が大幅に向上する。 In the present invention, by controlling the water cooling conditions before finish rolling, the temperature of finish rolling, and the rolling reduction, it becomes possible to ensure arrestability and the temperature waiting time of finish rolling is about 1/3 or less of the conventional one. Therefore, productivity is greatly improved.
続いて本発明におけるその他の製造条件の限定理由について説明する。 Next, the reasons for limiting other manufacturing conditions in the present invention will be described.
本発明では鋼片の加熱温度を950〜1150℃とした。再加熱温度が950℃未満では合金元素の溶体化が不十分で材質不均一の原因となる。一方、再加熱温度が、1150℃を超えると加熱γ粒径が粗大化してしまい最終的な組織の微細化が困難になるおそれがある。 In the present invention, the heating temperature of the steel slab was 950 to 1150 ° C. If the reheating temperature is less than 950 ° C., the alloy elements are not sufficiently solutioned, which causes unevenness of the material. On the other hand, if the reheating temperature exceeds 1150 ° C., the heated γ grain size becomes coarse, and it may be difficult to refine the final structure.
再加熱後、900℃以上の温度で行う圧延を粗圧延といい、30%以上の累積圧下率で行う。900℃以上での累積圧下率が30%未満であると、オーステナイト(γ)の再結晶が十分進行せず混粒組織となり、材質が不均一になることがある。粗圧延の開始温度及び累積圧下率の上限は特に規定しない。粗圧延は、加熱炉から鋼片を抽出した後、直ちに開始してもよい。また、粗圧延の累積圧下率は、30%未満にならないように、鋼片の板厚と製品の板厚、仕上圧延の圧下率に応じて適宜決定すればよい。 Rolling performed at a temperature of 900 ° C. or higher after reheating is called rough rolling, and is performed at a cumulative reduction of 30% or more. If the cumulative rolling reduction at 900 ° C. or higher is less than 30%, the recrystallization of austenite (γ) does not proceed sufficiently to form a mixed grain structure, and the material may become non-uniform. The upper limit of the rough rolling start temperature and the cumulative rolling reduction is not particularly specified. Rough rolling may be started immediately after the steel slab is extracted from the heating furnace. Further, the cumulative rolling reduction ratio of the rough rolling may be appropriately determined according to the thickness of the steel slab, the thickness of the product, and the rolling reduction ratio of the finish rolling so as not to be less than 30%.
仕上圧延後、板厚平均で8℃/s以上の冷却速度で、500℃以下の温度まで加速冷却を行う。冷却速度が8℃/s未満、あるいは冷却停止温度が500℃よりも高いと、強度が不足するだけでなく、組織の微細化が不十分となり、アレスト性が低下してしまう。加速冷却の冷却速度の上限は特に規定しないが、本発明は、板厚が50mm以上の厚手材を対象とするため、30℃/sを超えることは難しい。加速冷却の停止温度の下限も特に限定せず、室温まで冷却してもよい。ただし、本発明は、板厚が50mm以上の厚手材を対象とするため、100℃未満まで加速冷却するには時間が掛かるため、生産性を考慮すると、100℃以上で加速冷却を停止することが好ましい。 After finish rolling, accelerated cooling is performed to a temperature of 500 ° C. or less at a cooling rate of 8 ° C./s or more on the average of the sheet thickness. When the cooling rate is less than 8 ° C./s or the cooling stop temperature is higher than 500 ° C., not only the strength is insufficient, but the structure is not sufficiently refined, and the arrestability is deteriorated. Although the upper limit of the cooling rate of accelerated cooling is not particularly defined, it is difficult to exceed 30 ° C./s because the present invention targets thick materials having a plate thickness of 50 mm or more. The lower limit of the accelerated cooling stop temperature is not particularly limited, and may be cooled to room temperature. However, since the present invention is intended for thick materials with a plate thickness of 50 mm or more, it takes time to accelerate cooling to below 100 ° C. Therefore, considering productivity, the accelerated cooling is stopped at 100 ° C. or more. Is preferred.
加速冷却の開始温度については特に規定する必要はないが、CRの効果を最大限享受するためにはできる限り速やかに冷却を開始することが望ましい。 The start temperature of the accelerated cooling does not need to be specified in particular, but it is desirable to start the cooling as quickly as possible in order to fully enjoy the effects of CR.
加速冷却後は、強度及び靭性を調整するために、焼戻し処理を行ってもよい。延性や靭性を高めるには、焼戻し処理を300℃以上で行うことが好ましい。一方、セメンタイトや結晶粒が粗大化を抑制して、アレスト性を確保するには、焼戻し温度の上限を650℃以下にすることが好ましい。 After accelerated cooling, a tempering treatment may be performed to adjust strength and toughness. In order to improve ductility and toughness, it is preferable to perform tempering at 300 ° C. or higher. On the other hand, the upper limit of the tempering temperature is preferably set to 650 ° C. or less in order to suppress the coarsening of cementite and crystal grains and ensure arrestability.
次に、本発明の成分限定理由について説明する。 Next, the reasons for limiting the components of the present invention will be described.
Cは、安価に強度を高めるのに不可欠な元素であるため0.02%以上添加する。一方、C量が増えると大入熱HAZ靭性確保が困難となるため0.18%を上限とする。なお、C量は0.03%以上、0.13%以下が好ましい。 C is an element essential for increasing strength at a low cost, so 0.02% or more is added. On the other hand, if the amount of C increases, it becomes difficult to ensure high heat input HAZ toughness, so the upper limit is made 0.18%. The C content is preferably 0.03% or more and 0.13% or less.
Siは、安価な脱酸元素であり、マトリクスを固溶強化するため0.03%以上添加する。一方、Si量が0.5%を超えると溶接性とHAZ靭性を劣化させるため上限を0.5%とする。Si量は、0.1%以上、0.3%以下が好ましい。 Si is an inexpensive deoxidizing element and is added in an amount of 0.03% or more in order to strengthen the matrix by solid solution. On the other hand, if the Si content exceeds 0.5%, the weldability and the HAZ toughness are deteriorated, so the upper limit is made 0.5%. The amount of Si is preferably 0.1% or more and 0.3% or less.
Mnは、母材の強度及び靭性を向上させる元素として有効であるため0.3%以上添加する。一方、Mnを過剰に添加すると、HAZ靭性、溶接割れ性を劣化させるため2.0%を上限とする。Mn量は、0.7%以上、1.7%以下が好ましく、更に好ましくは、0.9%以上、1.5%以下である。 Mn is effective as an element for improving the strength and toughness of the base material, so 0.3% or more is added. On the other hand, if Mn is added excessively, the HAZ toughness and weld cracking properties are deteriorated, so 2.0% is made the upper limit. The amount of Mn is preferably 0.7% or more and 1.7% or less, and more preferably 0.9% or more and 1.5% or less.
P、Sは、不純物であり、靭性、アレスト性を確保するため、Pは0.02%、Sは0.01%を上限とする。P及びSの含有量は少ないほど望ましい。 P and S are impurities, and in order to ensure toughness and arrestability, the upper limit of P is 0.02% and S is 0.01%. The smaller the P and S contents, the better.
Nb及びTiは、微量の添加により組織微細化、変態強化、析出強化に寄与し、母材強度確保に有効な元素であるため、それぞれ、0.003%以上添加する。一方、Ti及びNbを過剰に添加するとHAZを硬化させ著しく靭性を劣化させるため、それぞれ、0.050%を上限とする。Nb及びTiの添加量の上限は、0.03%以下が好ましく、更に好ましくは、0.02%以下である。 Nb and Ti are elements that contribute to refinement of structure, transformation strengthening, and precipitation strengthening when added in a small amount and are effective in securing the strength of the base material, and are each added in an amount of 0.003% or more. On the other hand, excessive addition of Ti and Nb hardens the HAZ and significantly deteriorates the toughness. Therefore, the upper limit is 0.050%. The upper limit of the addition amount of Nb and Ti is preferably 0.03% or less, and more preferably 0.02% or less.
Alは、重要な脱酸元素であるため0.002%以上添加する。一方、Alを過剰に添加すると鋼片の表面品位を損ない、靭性に有害な介在物を形成するため0.10%を上限とする。Al量の好ましい上限は、0.05%以下であり、更に好ましくは、0.03%以下である。 Since Al is an important deoxidizing element, 0.002% or more is added. On the other hand, if Al is added excessively, the surface quality of the steel slab is impaired and inclusions harmful to toughness are formed, so the upper limit is made 0.10%. The upper limit with preferable Al amount is 0.05% or less, More preferably, it is 0.03% or less.
Nは、Tiと共に窒化物を形成しHAZ靭性を向上させるため、含有量の下限を0.0010%以上とする。一方、Nの含有量が過剰であると、固溶Nによる脆化が生じたり、粗大な窒化物を生成して靭性が低下するため、上限を0.0080%以下とする。N量の好ましい上限は、0.0050%以下であり、更に好ましくは、0.0004%以下である。 N forms a nitride with Ti and improves the HAZ toughness, so the lower limit of the content is 0.0010% or more. On the other hand, if the content of N is excessive, embrittlement due to solute N occurs, or coarse nitrides are generated and the toughness is lowered, so the upper limit is made 0.0080% or less. The upper limit with preferable N amount is 0.0050% or less, More preferably, it is 0.0004% or less.
更に、選択成分として、Cu、Cr、Mo、Ni、V、Bの群およびMg、Ca、REMの群の内の1種又は2種以上を添加してもよい。 Furthermore, you may add the 1 type (s) or 2 or more types in the group of Cu, Cr, Mo, Ni, V, and B, and Mg, Ca, and REM as a selection component.
Cu、Cr、Moは、何れも焼入れ性を向上させ、高強度化に有効であるため、0.05%以上を添加することが好ましい。一方、Cu、Cr、Moを過剰に添加すると、HAZ靭性が低下することがあるため、Cuは1.5%以下、Cr及びMoはそれぞれ1.0%以下を上限とすることが好ましい。より好ましいCu、Cr、Moの上限は、それぞれ、0.5%以下、0.8%以下、0.6%以下である。 Since Cu, Cr, and Mo all improve the hardenability and are effective for increasing the strength, it is preferable to add 0.05% or more. On the other hand, if Cu, Cr and Mo are added excessively, the HAZ toughness may be lowered. Therefore, it is preferable that the upper limit of Cu is 1.5% or less and the upper limit of Cr and Mo is 1.0% or less. More preferable upper limits of Cu, Cr, and Mo are 0.5% or less, 0.8% or less, and 0.6% or less, respectively.
Niは、強度確保とアレスト性、HAZ靭性向上に有効であるため0.05%以上を添加することが好ましい。しかし、2.0%を超えてNiを添加しても効果が飽和し、過度に添加するとコストが上昇するため、上限を2.0%以下することが好ましい。 Since Ni is effective for securing strength, arrestability, and HAZ toughness, 0.05% or more is preferably added. However, if Ni is added in excess of 2.0%, the effect is saturated, and if added excessively, the cost increases, so the upper limit is preferably made 2.0% or less.
Vは、析出強化により強度上昇に寄与するため0.005%以上を添加することが好ましい。一方、0.10%超のVを添加すると、HAZ靭性を損なうことがあるため、0.10%以下を上限とすることが好ましい。より好ましいV量の上限は、0.05%以下である。 V contributes to an increase in strength by precipitation strengthening, so 0.005% or more is preferably added. On the other hand, if adding more than 0.10% V, the HAZ toughness may be impaired, so it is preferable to set the upper limit to 0.10% or less. A more preferable upper limit of the V amount is 0.05% or less.
Bは、焼入れ性を向上させる元素であり、適量添加により鋼の強度を高めるのに有効である。鋼の焼入れ性を高めて強度を確保するには、0.0002%以上を添加することが好ましい。一方、Bを過度に添加すると、溶接性を損ねることがあるため、B量の上限は0.0030%以下が好ましい。 B is an element that improves hardenability and is effective in increasing the strength of steel by adding a suitable amount. In order to increase the hardenability of the steel and ensure the strength, it is preferable to add 0.0002% or more. On the other hand, since excessive addition of B may impair weldability, the upper limit of the B amount is preferably 0.0030% or less.
Mg、Ca、REMは、いずれも微細な酸化物や硫化物を形成しHAZ靭性向上に寄与する元素であり、Mgは0.0003%以上、Caは0.0005%以上、REMは0.0005%以上の1種または2種以上を添加することが好ましい。一方、Mg、Ca、REMを過度に添加すると、介在物が粗大化し、靭性を損なうことがあるため、Mgは0.0050%以下、Caは0.0030%以下、REMは0.010%以下を、それぞれの上限とすることが好ましい。より好ましいMg、Ca、REMの上限は、それぞれ、である。0.0030%以下、0.0020%以下、0.0050%以下である。なお、REMとはLa,Ce等の希土類元素のことである。 Mg, Ca, and REM are elements that contribute to improving HAZ toughness by forming fine oxides and sulfides. Mg is 0.0003% or more, Ca is 0.0005% or more, and REM is 0.0005. It is preferable to add 1% or 2% or more. On the other hand, if Mg, Ca, and REM are added excessively, inclusions become coarse and the toughness may be impaired. Therefore, Mg is 0.0050% or less, Ca is 0.0030% or less, and REM is 0.010% or less. Is preferably the upper limit of each. More preferable upper limits of Mg, Ca, and REM are as follows. 0.0030% or less, 0.0020% or less, or 0.0050% or less. Note that REM is a rare earth element such as La or Ce.
表1の化学成分を有する鋼片を用いて、表2、3の製造条件により板厚50〜80mmの鋼板を試作した。なお、表3の中心温度は圧延温度モデルによる計算値である。鋼板の表面から板厚の1/10の位置及び板厚中心部から試料を採取し、EBSPによって、集合組織及び有効結晶粒径を求めた。 A steel plate having a thickness of 50 to 80 mm was manufactured on the basis of the manufacturing conditions shown in Tables 2 and 3 using steel pieces having chemical components shown in Table 1. In addition, the center temperature of Table 3 is a calculated value by a rolling temperature model. Samples were taken from the position of 1/10 of the plate thickness from the surface of the steel plate and from the center of the plate thickness, and the texture and effective crystal grain size were determined by EBSP.
降伏強度(YP)、引張強度(TS)は、板厚中心部から圧延方向と直角の方向に採取したJIS Z 2201の4号引張試験片を用いて評価した。引張試験は、JIS Z 2241に準拠して行った。アレスト性についてはWES 3003(低温用圧延鋼板判定基準)に記載されている方法をもとに温度勾配型ESSO試験を行い、Kca=6000N/mm1.5を示す温度にて評価した。生産性は、鋼片重量を粗圧延開始から仕上圧延終了までの時間で割ることにより算出した。表4に母材強度、アレスト性、生産性を示す。 Yield strength (YP) and tensile strength (TS) were evaluated using a JIS Z 2201 No. 4 tensile test specimen taken from the center of the plate thickness in a direction perpendicular to the rolling direction. The tensile test was conducted in accordance with JIS Z 2241. For arrestability performs the temperature gradient type ESSO test based on the method described in WES 3003 (low temperature rolled steel criterion), was evaluated at a temperature showing a Kca = 6000N / mm 1.5. Productivity was calculated by dividing the steel slab weight by the time from the start of rough rolling to the end of finish rolling. Table 4 shows the base material strength, arrestability, and productivity.
本発明例のNo.1〜15は化学成分が所定の範囲内にあり、かつ所定の条件で製造したため、何れもYP:355〜460MPa級鋼として十分な強度を有しており、アレスト性指標TKca=6000も−10℃以下と良好で、生産性も180ton/h以上で高かった。 No. of the example of the present invention. Nos. 1 to 15 have chemical components within a predetermined range and manufactured under predetermined conditions, and thus all have sufficient strength as YP: 355 to 460 MPa class steel, and the arrestability index T Kca = 6000 is also − It was good at 10 ° C. or lower, and the productivity was high at 180 ton / h or higher.
一方、比較例のNo.16〜30は化学成分、製造条件の何れかが本発明の範囲を逸脱していたために、所定の結晶粒径、集合組織強度を満たさず、アレスト性が低下、あるいは生産性が低下している。No.18は粗圧延後の冷却を実施しない通常の製造方法であり、所定の集合組織が発達しないためにアレスト性が低く、生産性も極端に低下した。 On the other hand, no. Nos. 16 to 30 have chemical constituents or production conditions that deviate from the scope of the present invention, so that the predetermined crystal grain size and texture strength are not satisfied, and arrestability is reduced or productivity is reduced. . No. No. 18 is a normal manufacturing method in which cooling after rough rolling is not performed, and since the predetermined texture does not develop, the arrestability is low, and the productivity is extremely reduced.
No.25は鋼片の再加熱温度が高く、No.24は粗圧延の累積圧下率が小さく、仕上圧延の表面温度が高い例であり、有効結晶粒径が微細にならず、集合組織も発達せず、アレスト性が低下している。No.16は粗圧延後の冷却過程で、表面の温度が低下しすぎた例であり、仕上圧延時の表面の温度が十分上がらず、表層部に不利な集合組織が発達し、アレスト性が低下している。No.17は粗圧延後の冷却速度が小さい例であり、表層部に粗大なαが生成するとともに、有利な集合組織が発達せず、アレスト性が低下している。 No. No. 25 has a high reheating temperature of the steel slab. No. 24 is an example in which the cumulative rolling reduction of rough rolling is small and the surface temperature of finish rolling is high, the effective crystal grain size does not become fine, the texture does not develop, and the arrestability is lowered. No. 16 is an example in which the temperature of the surface has decreased too much during the cooling process after rough rolling, the surface temperature during finish rolling does not rise sufficiently, an unfavorable texture develops in the surface layer, and the arrestability decreases. ing. No. 17 is an example in which the cooling rate after rough rolling is small, coarse α is generated in the surface layer portion, an advantageous texture is not developed, and arrestability is reduced.
No.23は板厚中心部の仕上圧延温度が高かったために、有効結晶粒が微細化されず、アレスト性に有利な集合組織が発達しなかった例であり、アレスト性が低下している。No.20は仕上圧延の累積圧下率が小さい例であり、表層部と板厚中心部でアレスト性に有利な集合組織が発達せず、有効結晶粒が微細化されず、アレスト性が低下している。No.28は仕上圧延の温度が、表面では低く、板厚中心部では高い例であり、中心部の結晶粒が微細化されず、表層部と板厚中心部でアレスト性に有利な集合組織が発達せず、アレスト性が低下している。 No. No. 23 is an example in which effective crystal grains were not refined and a texture advantageous to arrestability did not develop because the finish rolling temperature at the center of the plate thickness was high, and the arrestability was lowered. No. No. 20 is an example in which the cumulative rolling reduction of finish rolling is small, a texture advantageous to arrestability does not develop in the surface layer portion and the center portion of the plate thickness, effective crystal grains are not refined, and arrestability is reduced. . No. No. 28 is an example in which the finish rolling temperature is low on the surface and high in the center of the plate thickness, the crystal grains in the center are not refined, and a texture that is advantageous for arrestability develops in the surface layer and the center of the plate thickness. Without arresting.
No.27は、表面の温度が低下した例であり、表層部に加工フェライトが生成し、アレスト性に有利な集合組織が発達せず、アレスト性が低下しており、また、仕上圧延前の待ち時間が長いため、生産性も低下している。No.22は仕上圧延の各パス圧下率が大きかったために、加工発熱により板厚中心部の結晶粒径が大きくなり、表層部ではアレスト性に有利な集合組織が発達せず、アレスト性が低下している。 No. No. 27 is an example in which the temperature of the surface is lowered, the processed ferrite is formed in the surface layer portion, the texture advantageous to arrestability is not developed, the arrestability is lowered, and the waiting time before finish rolling However, productivity is also decreasing. No. No. 22 had a large rolling reduction in each pass of the finish rolling, so the crystal grain size at the center of the plate thickness increased due to processing heat generation, and the surface layer did not develop a texture favorable to arrestability, and the arrestability decreased. Yes.
No.21は圧延終了後の加速冷却の冷却速度が小さく、No.26は冷却停止温度が高い例であり、有効結晶粒の微細化が不十分になり、アレスト性が低下している。No.19は熱処理温度が高く、セメンタイト及び組織が粗大化し、アレスト性が低下した例である。No.29はC含有量が多く、強度が過大となった例であり、アレスト性が低下している。No.30はNb量が多い例であり、加熱時に残存した粗大な未固溶Nbが脆性破壊の起点となり、アレスト性が低下している。 No. No. 21 has a low cooling rate of accelerated cooling after rolling. No. 26 is an example in which the cooling stop temperature is high, the refinement of effective crystal grains is insufficient, and the arrestability is lowered. No. No. 19 is an example in which the heat treatment temperature is high, cementite and the structure are coarsened, and the arrestability is lowered. No. No. 29 is an example in which the C content is large and the strength is excessive, and the arrestability is reduced. No. No. 30 is an example in which the amount of Nb is large. Coarse undissolved Nb remaining during heating becomes the starting point of brittle fracture, and the arrestability is lowered.
Claims (5)
C :0.02〜0.18%、
Si:0.03〜0.5%、
Mn:0.3〜2.0%、
P :0.020%以下、
S :0.010%以下、
Nb:0.003〜0.050%、
Ti:0.003〜0.050%、
Al:0.002〜0.10%、
N :0.0010〜0.0080%
を含有し、残部Fe及び不可避的不純物からなる組成を有し、結晶方位差が15゜以上の境界を粒界とする有効結晶粒の平均円相当径が、表面から板厚の1/10の位置では25μm以下、板厚中心部では35μm以下であり、更に圧延面、圧延方向に対する集合組織強度比I{hkl}<uvw>が、表面から板厚の1/10の位置では、
I{001}<110>+I{112}<110>+I{332}<113>≧5、
I{110}<001>+I{110}<110>+I{001}<010>≦3
を満足し、かつ板厚中心部では、
I{001}<110>+I{112}<110>+I{332}<113>≧3.5
を満足することを特徴とする脆性き裂伝播停止特性に優れた厚手高強度鋼板。 % By mass
C: 0.02 to 0.18%,
Si: 0.03 to 0.5%,
Mn: 0.3 to 2.0%,
P: 0.020% or less,
S: 0.010% or less,
Nb: 0.003 to 0.050%,
Ti: 0.003 to 0.050%,
Al: 0.002 to 0.10%,
N: 0.0010 to 0.0080%
The effective equivalent of the effective crystal grains having a composition having the balance Fe and inevitable impurities and having a crystal orientation difference of 15 ° or more as a grain boundary is 1/10 of the plate thickness from the surface. The position is 25 μm or less, the center of the plate thickness is 35 μm or less, and the texture strength ratio I {hkl} <uvw> relative to the rolling surface and the rolling direction is 1/10 of the plate thickness from the surface,
I {001} <110> + I {112} <110> + I {332} <113> ≧ 5,
I {110} <001> + I {110} <110> + I {001} <010> ≦ 3
In the center of the plate thickness,
I {001} <110> + I {112} <110> + I {332} <113> ≧ 3.5
A thick, high-strength steel sheet with excellent brittle crack propagation stopping characteristics.
Cu:0.05〜1.5%、
Cr:0.05〜1.0%、
Mo:0.05〜1.0%、
Ni:0.05〜2.0%、
V :0.005〜0.10%、
B :0.0002〜0.0030%
の1種又は2種以上を含有することを特徴とする請求項1に記載の脆性き裂伝播停止特性に優れた厚手高強度鋼板。 % By mass
Cu: 0.05 to 1.5%,
Cr: 0.05 to 1.0%,
Mo: 0.05-1.0%,
Ni: 0.05-2.0%,
V: 0.005-0.10%,
B: 0.0002 to 0.0030%
The thick high-strength steel sheet having excellent brittle crack propagation stopping characteristics according to claim 1, comprising one or more of the following.
Mg:0.0003〜0.0050%、
Ca:0.0005〜0.0030%、
REM:0.0005〜0.010%
の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の脆性き裂伝播停止特性に優れた厚手高強度鋼板。 % By mass
Mg: 0.0003 to 0.0050%,
Ca: 0.0005 to 0.0030%,
REM: 0.0005 to 0.010%
The thick high-strength steel sheet having excellent brittle crack propagation stopping characteristics according to claim 1 or 2, characterized by containing one or more of the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010085350A JP5477578B2 (en) | 2010-04-01 | 2010-04-01 | Thick high-strength steel sheet excellent in brittle crack propagation stopping characteristics and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010085350A JP5477578B2 (en) | 2010-04-01 | 2010-04-01 | Thick high-strength steel sheet excellent in brittle crack propagation stopping characteristics and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011214116A JP2011214116A (en) | 2011-10-27 |
JP5477578B2 true JP5477578B2 (en) | 2014-04-23 |
Family
ID=44944154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010085350A Active JP5477578B2 (en) | 2010-04-01 | 2010-04-01 | Thick high-strength steel sheet excellent in brittle crack propagation stopping characteristics and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5477578B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5796869B2 (en) | 2011-09-29 | 2015-10-21 | シェブロンジャパン株式会社 | Lubricating oil composition |
JP5949113B2 (en) * | 2011-11-28 | 2016-07-06 | Jfeスチール株式会社 | Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same |
JP5949682B2 (en) * | 2012-07-03 | 2016-07-13 | Jfeスチール株式会社 | Manufacturing method of steel plate for high heat input welding with excellent brittle crack propagation stop properties |
CN102766806B (en) * | 2012-07-11 | 2014-03-12 | 莱芜钢铁集团有限公司 | Ultrawide and ultrafine gauge structural steel plate for bridges and production method thereof |
JP5958428B2 (en) * | 2012-07-30 | 2016-08-02 | Jfeスチール株式会社 | Manufacturing method of steel plates for high heat input welding |
BR112015021658A2 (en) * | 2013-03-26 | 2017-07-18 | Jfe Steel Corp | high strength thick steel plate with superior brittle crack breakability for high heat inlet welding and method for fabricating it |
BR112015020815B1 (en) | 2013-03-26 | 2021-06-29 | Jfe Steel Corporation | HIGH STRENGTH THICK STEEL SHEET FOR HIGH HEAT WELDING WITH EXCELLENT FRAGILE BREAKAGE INTERRUPTION CAPACITY AND METHOD FOR MANUFACTURING THE SAME |
JP5713135B1 (en) | 2013-11-19 | 2015-05-07 | 新日鐵住金株式会社 | steel sheet |
JP6252291B2 (en) * | 2014-03-26 | 2017-12-27 | 新日鐵住金株式会社 | Steel sheet and manufacturing method thereof |
JP6398576B2 (en) * | 2014-10-10 | 2018-10-03 | 新日鐵住金株式会社 | Steel sheet with excellent toughness and method for producing the same |
CN108779525A (en) * | 2016-02-24 | 2018-11-09 | 杰富意钢铁株式会社 | The high intensity pole steel plate and its manufacturing method of excellent in brittle-cracking propagation stopping characteristics |
JP6477743B2 (en) * | 2016-03-07 | 2019-03-06 | Jfeスチール株式会社 | High-strength ultra-thick steel plate excellent in brittle crack propagation stopping characteristics and weld heat-affected zone toughness and method for producing the same |
JP7248885B2 (en) * | 2019-01-24 | 2023-03-30 | 日本製鉄株式会社 | Steel plate and steel plate manufacturing method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62180012A (en) * | 1986-02-01 | 1987-08-07 | Kobe Steel Ltd | Manufacture of high toughness thick steel plate |
JPH0313524A (en) * | 1989-06-10 | 1991-01-22 | Kobe Steel Ltd | Production of thick high-toughness high tensile steel plate having excellent toughness on steel plate surface and in central part of thickness |
JP3348359B2 (en) * | 1992-03-26 | 2002-11-20 | 新日本製鐵株式会社 | Structural steel with excellent arrest performance and its manufacturing method |
JP4277405B2 (en) * | 2000-01-26 | 2009-06-10 | Jfeスチール株式会社 | Manufacturing method of hot-rolled steel sheet for high-strength ERW steel pipe excellent in low temperature toughness and weldability |
-
2010
- 2010-04-01 JP JP2010085350A patent/JP5477578B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011214116A (en) | 2011-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5477578B2 (en) | Thick high-strength steel sheet excellent in brittle crack propagation stopping characteristics and method for producing the same | |
JP4309946B2 (en) | Thick high-strength steel sheet excellent in brittle crack propagation stopping characteristics and method for producing the same | |
JP5522084B2 (en) | Thick steel plate manufacturing method | |
JP4058097B2 (en) | High strength steel plate with excellent arrestability | |
JP5445720B1 (en) | High strength steel plate with excellent arrestability | |
JP6007968B2 (en) | High-strength and highly ductile steel plate and its manufacturing method | |
WO2013145771A1 (en) | Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same | |
JP4897126B2 (en) | Thick steel plate manufacturing method | |
JP6682967B2 (en) | Steel plate and method of manufacturing the same | |
WO2013099318A1 (en) | High-strength thick steel plate for construction having excellent characteristics for preventing diffusion of brittle cracks, and production method therefor | |
JP6911575B2 (en) | Steel sheet with excellent brittle crack propagation stop characteristics and its manufacturing method | |
JP6620575B2 (en) | Thick steel plate and manufacturing method thereof | |
JP6217234B2 (en) | Thick steel plate and manufacturing method thereof | |
JP6766642B2 (en) | Steel sheet with excellent brittle crack propagation stop characteristics and its manufacturing method | |
JP2017193759A (en) | Thick steel sheet and manufacturing method therefor | |
JP4962440B2 (en) | Manufacturing method of high-strength cold-rolled steel sheet | |
JP2011052244A (en) | METHOD FOR MANUFACTURING THICK HIGH-STRENGTH STEEL SHEET HAVING SUPERIOR CHARACTERISTICS OF STOPPING PROPAGATION OF BRITTLE CRACK SHEET AND SHEET THICKNESS OF 50-125 mm | |
JP5439889B2 (en) | Thick steel plate for thick and high toughness steel pipe material and method for producing the same | |
JP2009287086A (en) | High-strength thick steel plate having excellent arrest property in 45 degree direction to rolling direction and method for producing the same | |
JP2010084170A (en) | Thick steel plate for high toughness line pipe in which lowering of yield stress caused by bauschinger effect is reduced and its production method | |
JP2008261030A (en) | Method of manufacturing thick high-strength steel plate excellent in brittle crack propagation stopping characteristic | |
JP2008189973A (en) | Method for producing high-toughness and high-tension steel sheet excellent in strength-elongation balance | |
JP2011179050A (en) | High strength cold rolled steel sheet having excellent balance in elongation and stretch flange property | |
WO2017077967A1 (en) | Steel member and steel plate, and production processes therefor | |
JP4502272B2 (en) | Hot-rolled steel sheet excellent in workability and fatigue characteristics and casting method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120809 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140128 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5477578 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |