[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5469107B2 - Method for producing aluminum-doped zinc oxide transparent conductive film containing metal nanoparticles - Google Patents

Method for producing aluminum-doped zinc oxide transparent conductive film containing metal nanoparticles Download PDF

Info

Publication number
JP5469107B2
JP5469107B2 JP2011028102A JP2011028102A JP5469107B2 JP 5469107 B2 JP5469107 B2 JP 5469107B2 JP 2011028102 A JP2011028102 A JP 2011028102A JP 2011028102 A JP2011028102 A JP 2011028102A JP 5469107 B2 JP5469107 B2 JP 5469107B2
Authority
JP
Japan
Prior art keywords
zinc oxide
transparent conductive
conductive film
aluminum
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011028102A
Other languages
Japanese (ja)
Other versions
JP2011119273A (en
Inventor
正全 王
秀文 李
愛綱 栗
東煌 陳
坤陽 呉
松勳 江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of JP2011119273A publication Critical patent/JP2011119273A/en
Application granted granted Critical
Publication of JP5469107B2 publication Critical patent/JP5469107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Non-Insulated Conductors (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

この発明は、透明導電膜とその製造方法とに関し、特に、低い抵抗率を備えた金属ナノ粒子を含むアルミニウム添加亜鉛酸化物(AZO)透明導電膜の製造方法に関する。   The present invention relates to a transparent conductive film and a method for manufacturing the transparent conductive film, and more particularly to a method for manufacturing an aluminum-added zinc oxide (AZO) transparent conductive film containing metal nanoparticles having a low resistivity.

透明導電酸化物(TCO)薄膜は、良好な導電性、可視光線範囲内の高い透明度、赤外線高反射率ならびに半導体特性を有するため、各種の光電製品、例えば、パネル表示器、太陽電池、光電トランジスター、タッチパネル、発光素子、有機発光フラット表示パネル、プラズマ表示パネル、自動車防熱くもり止めガラス、光電変換器、透明ヒーター静電気防止膜、赤外線反射装置、建築用機能性ガラスなどに広範に応用されている。従って、TCO材料の開発について、性質及び製造工程の改良ならびに応用研究などが大きく注目されている。とりわけ、近年において、各種の光電素子が急激な発展を遂げ、基板として使用するTCO薄膜材料が多くの人々の注目する焦点となっている。   Transparent conductive oxide (TCO) thin film has good electrical conductivity, high transparency in the visible light range, high infrared reflectance and semiconductor properties, so various photoelectric products such as panel displays, solar cells, photoelectric transistors, etc. Widely applied to touch panels, light-emitting elements, organic light-emitting flat display panels, plasma display panels, automotive heat-resistant anti-fogging glass, photoelectric converters, transparent heaters, anti-static films, infrared reflectors, architectural functional glass, and the like. Therefore, with regard to the development of TCO materials, improvements in properties and manufacturing processes, applied research, and the like have received much attention. In particular, in recent years, various photoelectric devices have made rapid development, and TCO thin film materials used as substrates have become the focus of attention by many people.

現在、TCO薄膜の製造方法については、気相工程と湿式工程とに分けられる。そのうち、湿式工程は、ゾルゲル浸漬法を主流とする。   At present, the manufacturing method of the TCO thin film is divided into a vapor phase process and a wet process. Among them, the wet process is mainly a sol-gel dipping method.

前記ゾルゲル浸漬法は熱処理を採用する必要ある。熱処理の条件及び工程がTCO薄膜の結晶形態、結晶構造及び緻密性に対して大きな影響を与えるため、TCO薄膜の導電性ならびに光透過率において大きな変化をもたらす。薄膜結晶構造が完璧になれば、結晶が大きくなり、薄膜界面性を低下させ、キャリア移動性を向上し、導電性を増加させる。従って、一般のTCO薄膜の製造工程は、いずれも高温工程または後段の高温処理(T>400℃)を経て、その導電性質を向上させる必要がある。   The sol-gel dipping method needs to employ heat treatment. Since the conditions and processes of the heat treatment have a great influence on the crystal form, crystal structure and denseness of the TCO thin film, the TCO thin film has a great change in conductivity and light transmittance. If the thin film crystal structure is perfect, the crystal becomes large, the thin film interface is lowered, the carrier mobility is improved, and the conductivity is increased. Accordingly, in any general TCO thin film manufacturing process, it is necessary to improve the electrical conductivity through a high temperature process or a subsequent high temperature treatment (T> 400 ° C.).

しかしながら、熱処理温度が高くなると結晶成長が良くなると共に酸素欠損(Oxygen vacancy)の低下をもたらし、かえってTCO薄膜の導電性質を低下させてしまう。   However, when the heat treatment temperature is increased, crystal growth is improved and oxygen deficiency (Oxygen vacancy) is reduced, and the conductivity of the TCO thin film is deteriorated.

そこで、本発明の目的は、薄膜の光透過率に影響せず、電導性を向上させた金属ナノ粒子を含むアルミニウム添加亜鉛酸化物透明導電膜を提供することにある。   Therefore, an object of the present invention is to provide an aluminum-added zinc oxide transparent conductive film containing metal nanoparticles having improved conductivity without affecting the light transmittance of a thin film.

本発明の別の目的は、薄膜の光透過率を著しく低下させず、低い抵抗率を有する金属ナノ粒子を含むアルミニウム添加亜鉛酸化物透明導電膜の製造方法を提供することにある。   Another object of the present invention is to provide a method for producing an aluminum-added zinc oxide transparent conductive film containing metal nanoparticles having a low resistivity without significantly reducing the light transmittance of a thin film.

上記課題を解決し、所望の目的を達成するために、請求項1に記載の発明は、ゾルゲル法によりアルミニウム添加亜鉛酸化物を作製するアルコール含有反応液中に金属前駆体を加え、前記アルミニウム添加亜鉛酸化物のゾルゲルを形成する過程において、同時にアルコールの還元作用により金属ナノ粒子を生成して、金属ナノ粒子を含むアルミニウム添加亜鉛酸化物のゲル溶液を形成する工程と、
前記ゲル溶液により薄膜を形成する工程と、前記薄膜に対して熱処理を行い、透明導電膜を形成する工程とを備える金属ナノ粒子を含むアルミニウム添加亜鉛酸化物(AZO)透明導電膜の製造方法に関する。
To solve the above problems, in order to achieve the desired purpose, the invention according to claim 1, the metal precursor is added to the alcohol-containing reaction solution to produce a more aluminum additive zinc oxide in the sol-gel method, the aluminum In the process of forming the sol-gel of the added zinc oxide , simultaneously forming a metal nanoparticle by the reducing action of the alcohol to form a gel solution of the aluminum-added zinc oxide containing the metal nanoparticle,
The manufacturing method of the aluminum addition zinc oxide (AZO) transparent conductive film containing the metal nanoparticle provided with the process of forming a thin film with the said gel solution, and heat-processing with respect to the said thin film, and forming a transparent conductive film .

請求項2に記載の発明は、前記熱処理工程は、焼成を行う第1次熱処理と、水素熱処理を行う第2次熱処理と、を備えることを特徴とする請求項1に記載の金属ナノ粒子を含むアルミニウム添加亜鉛酸化物透明導電膜の製造方法に関する。   The invention according to claim 2 is characterized in that the heat treatment step includes a primary heat treatment in which firing is performed and a secondary heat treatment in which hydrogen heat treatment is performed. It is related with the manufacturing method of the aluminum addition zinc oxide transparent conductive film containing.

請求項3に記載の発明は、前記熱処理工程は水素熱処理を備えることを特徴とする請求項1に記載の金属ナノ粒子を含むアルミニウム添加亜鉛酸化物透明導電膜の製造方法に関する。   Invention of Claim 3 is related with the manufacturing method of the aluminum addition zinc oxide transparent conductive film containing the metal nanoparticle of Claim 1 characterized by the said heat treatment process comprising hydrogen heat treatment.

請求項4に記載の発明は、前記ゲル溶液を薄膜に形成する方法、スピンコーティング法、浸漬法、プリンティング法、スクリーンプリンティング法、ステンシルプリンティング法、スプレー法またはローラーコーティングの何れか1つであることを特徴とする請求項1〜3の何れか一項に記載の金属ナノ粒子を含むアルミニウム添加亜鉛酸化物透明導電膜の製造方法に関する。 The invention according to claim 4, the method of forming the gel solution to the thin film, spin coating, dipping, printing, screen printing, is one of a stencil printing method, a spray method or a roller coating It is related with the manufacturing method of the aluminum addition zinc oxide transparent conductive film containing the metal nanoparticle as described in any one of Claims 1-3 characterized by the above-mentioned.

請求項5に記載の発明は、前記金属ナノ粒子は、銀、金、プラチナ、インジウム、ガリウム、ニッケル、パラジウム、銅及びタリウムから何れか1つを選択することを特徴とする請求項1〜4の何れか一項に記載の金属ナノ粒子を含むアルミニウム添加亜鉛酸化物透明導電膜の製造方法に関する。
The invention according to claim 5, wherein the metal nanoparticles, according to claim 1, wherein silver, gold, platinum, indium, gallium, nickel, palladium, selecting any one of copper and thallium The manufacturing method of the aluminum addition zinc oxide transparent conductive film containing the metal nanoparticle as described in any one of these.

上記により製造される金属ナノ粒子を含むアルミニウム添加亜鉛酸化物透明導電膜は、アルミニウムを添加した亜鉛酸化物と、金属ナノ粒子とからなる金属ナノ粒子を含むアルミニウム添加亜鉛酸化物透明導電膜であって、前記透明導電膜は2×10-3Ω・cm以下の抵抗率を有し、前記金属ナノ粒子の含有量は0.01at.%〜5at.%とすることができる。 The aluminum-doped zinc oxide transparent conductive film containing metal nanoparticles produced as described above is an aluminum-added zinc oxide transparent conductive film containing metal nanoparticles composed of zinc oxide added with aluminum and metal nanoparticles. The transparent conductive film has a resistivity of 2 × 10 −3 Ω · cm or less, and the content of the metal nanoparticles is 0.01 at. % To 5 at. %.

また、前記透明導電膜の光透過率は85%以上とすることができる。   The light transmittance of the transparent conductive film can be 85% or more.

また、前記透明導電膜の膜厚は200nm〜1000nmとすることができる。   The film thickness of the transparent conductive film can be 200 nm to 1000 nm.

また、前記透明導電膜において、前記アルミニウム添加亜鉛酸化物のアルミニウム含有量は0.5at.%〜10at.%とすることができる。   In the transparent conductive film, the aluminum content of the aluminum-added zinc oxide is 0.5 at. % To 10 at. %.

また、前記透明導電膜において、前記金属ナノ粒子の粒径は50nmより小さくすることができる。   In the transparent conductive film, the metal nanoparticles may have a particle size of less than 50 nm.

また、前記透明導電膜において、前記金属ナノ粒子は、銀、金、プラチナ、インジウム、ガリウム、ニッケル、パラジウム、銅及びタリウムから何れか1つを選択することができる。   In the transparent conductive film, the metal nanoparticles may be any one selected from silver, gold, platinum, indium, gallium, nickel, palladium, copper, and thallium.

本発明はアルミニウム添加亜鉛酸化物透明導電膜内に金属ナノ粒子を含むので、光透過率に影響を与えず、その抵抗率を低下させることができ、薄膜の導電性を向上させる。   Since the present invention includes metal nanoparticles in the aluminum-doped zinc oxide transparent conductive film, the resistivity can be lowered without affecting the light transmittance, and the conductivity of the thin film is improved.

さらに、本発明は、湿式工程により透明導電膜を調製するものであるから、従来の気相工程とは違って、常圧条件で行うことができ、設備コストが比較的低いだけでなく、生産面積も大きいものとなる。   Furthermore, since the present invention is to prepare a transparent conductive film by a wet process, unlike the conventional gas phase process, it can be performed under normal pressure conditions, and the equipment cost is relatively low, as well as production. The area is also large.

以下、本発明を実施するための最良の形態を図面に基づいて説明する。
図1は、本発明の実施形態に係る金属ナノ粒子を含むアルミニウム添加亜鉛酸化物(AZO)透明導電膜の製造工程を示すフローチャート図である。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a flowchart showing a manufacturing process of an aluminum-added zinc oxide (AZO) transparent conductive film containing metal nanoparticles according to an embodiment of the present invention.

図1において、先ずステップ100を行って、金属ナノ粒子を含むアルミニウム添加亜鉛酸化物ゲル溶液を作製する。このステップは、金属前駆体104をゾルゲル法により作製したアルミニウム添加亜鉛酸化物のアルコール含有反応液102中に加えて、ステップ106を経て前記したアルコール含有反応液102と金属前駆体104とを混合した後、さらにステップ108を行って、前記した混合物を保温・攪拌し、アルコールの還元作用によって、アルミニウム添加亜鉛酸化物のゾルゲルを形成すると同時に、金属ナノ粒子を生成して、金属ナノ粒子を含むAZOゲル溶液を形成した。   In FIG. 1, first, step 100 is performed to prepare an aluminum-added zinc oxide gel solution containing metal nanoparticles. In this step, the metal precursor 104 is added to the aluminum-containing zinc oxide alcohol-containing reaction solution 102 prepared by the sol-gel method, and the alcohol-containing reaction solution 102 and the metal precursor 104 are mixed through the step 106. Thereafter, step 108 is further performed, and the mixture described above is kept warm and stirred to form a sol-gel of aluminum-added zinc oxide by the reducing action of alcohol. At the same time, metal nanoparticles are generated and AZO containing metal nanoparticles is formed. A gel solution was formed.

前記金属ナノ粒子は、銀、金、プラチナ、インジウム、ガリウム、ニッケル、パラジウム、銅及びタリウムから何れか1つを選択することができ、好ましくは金または銀の金属ナノ粒子である。   The metal nanoparticles may be any one selected from silver, gold, platinum, indium, gallium, nickel, palladium, copper, and thallium, and are preferably gold or silver metal nanoparticles.

その後、ステップ120において、塗布成膜を行い、ゲル溶液を薄膜に形成した。この薄膜を形成した方法は、例えば、スピンコーティング法、浸漬法、プリンティング法、スクリーンプリンティング法、ステンシルプリンティング法、スプレー法またはローラーコーティング法であり、好ましくはスピンコーティング法または浸漬法である。   Thereafter, in step 120, coating film formation was performed to form a gel solution into a thin film. The method of forming this thin film is, for example, a spin coating method, a dipping method, a printing method, a screen printing method, a stencil printing method, a spray method or a roller coating method, and preferably a spin coating method or a dipping method.

次に、ステップ130において、前記薄膜に対して熱処理を行い、透明導電膜を形成した。その厚さは、例えば20nm〜2000nm、好ましくは、200nm〜1000nmである。   Next, in step 130, the thin film was heat-treated to form a transparent conductive film. The thickness is, for example, 20 nm to 2000 nm, preferably 200 nm to 1000 nm.

ステップ130の熱処理工程は、2段式工程あるいは水素熱処理を直接行うことができる。そのうち、2段式工程は、焼成(calcination)を行う第1次熱処理及び水素熱処理を行う第2次熱処理からなる。   The heat treatment process in step 130 can be directly performed by a two-stage process or a hydrogen heat treatment. Among them, the two-stage process includes a primary heat treatment for performing calcination and a secondary heat treatment for performing hydrogen heat treatment.

形成された透明導電膜中の金属ナノ粒子の含有量が0.01at.%〜5at.%、好ましくは0.05at.%〜1at.%である。前記金属ナノ粒子の粒径が50nmより小さい。   The content of metal nanoparticles in the formed transparent conductive film is 0.01 at. % To 5 at. %, Preferably 0.05 at. % To 1 at. %. The metal nanoparticles have a particle size of less than 50 nm.

以下、複数の実施例を挙げて、本発明の内容を詳細に説明するが、発明の範囲をこれらの実施例に限定するものではない。   Hereinafter, the content of the present invention will be described in detail with reference to a plurality of examples, but the scope of the invention is not limited to these examples.

(実施例1)銀ナノ粒子を含むAZO透明導電膜の製造方法
実施例1は、AZOゲル溶液において、メトキシエタノールの還元作用を利用して、銀の前駆体を原子状態に還元し、銀のナノ粒子が得られる。
Example 1 Method for Producing AZO Transparent Conductive Conductive Film Containing Silver Nanoparticles In Example 1, in an AZO gel solution, a silver precursor is reduced to an atomic state using the reducing action of methoxyethanol, Nanoparticles are obtained.

先ず、適量の硝酸銀(AgNO3)を取り、エタノール(C25OH)又は脱イオン水と混合し、均一に攪拌して、0.1MAg+イオンを含むエタノール又は水溶液を用意した。 First, an appropriate amount of silver nitrate (AgNO 3 ) was taken, mixed with ethanol (C 2 H 5 OH) or deionized water, and stirred uniformly to prepare ethanol or an aqueous solution containing 0.1 MAg + ions.

次に、30mlの試験管に、適量な酢酸亜鉛(Zn(CH3COO)2・2H2O)及び塩化アルミニウム(AlCl3・6H2O)(Al/Znの原子数比が約1at.%)を入れて、順番に適量な2-メトキシエタノール及びモノエタノールアミン(MEA)(MEA/Zn2+モル比が1:1)を加えて均一に混合し、0.75Mアルミニウムを添加したZn2+イオンを含む混合溶液を用意した。 Next, an appropriate amount of zinc acetate (Zn (CH 3 COO) 2 .2H 2 O) and aluminum chloride (AlCl 3 .6H 2 O) (Al / Zn atomic ratio is about 1 at.% In a 30 ml test tube. ), And in order, add appropriate amounts of 2-methoxyethanol and monoethanolamine (MEA) (MEA / Zn 2+ molar ratio is 1: 1) and mix uniformly, and Zn 2 with 0.75M aluminum added A mixed solution containing + ions was prepared.

その後、前記用意した二つの溶液を混合して恒温水槽にいれ、保温温度60℃で10時間均一に攪拌し、銀ナノ粒子を含むAZOゲル溶液は得られた。   Thereafter, the two prepared solutions were mixed and placed in a constant temperature water bath, and stirred uniformly at a temperature of 60 ° C. for 10 hours to obtain an AZO gel solution containing silver nanoparticles.

次に、ガラス基板上に適量の前記銀ナノ粒子を含むAZOゲル溶液を入れて、順番に塗布、乾燥、焼成及び/又は水素熱処理などの工程を行い、高い透光性及び導電性を同時に備える銀ナノ粒子を含むAZO導電膜は得られた。   Next, an AZO gel solution containing an appropriate amount of the above-mentioned silver nanoparticles is put on a glass substrate, and steps such as coating, drying, firing and / or hydrogen heat treatment are sequentially performed to simultaneously provide high translucency and conductivity. An AZO conductive film containing silver nanoparticles was obtained.

詳細は、以下の通りである:
1.前記銀ナノ粒子を含むAZOゲル溶液をガラス基板上に滴下してから、約3000rpmで30秒間スピンコーティングを行う。
2.スピンコーティングを行ったガラス基板を350℃の高温炉中で10分間乾燥させる。
そして、以下のステップ3aまたはステップ3bを選択的に行う。
The details are as follows:
1. After dropping the AZO gel solution containing the silver nanoparticles on a glass substrate, spin coating is performed at about 3000 rpm for 30 seconds.
2. The glass substrate subjected to the spin coating is dried in a high temperature furnace at 350 ° C. for 10 minutes.
Then, the following step 3a or step 3b is selectively performed.

3a.2段式熱処理:第1次熱処理は、塗布乾燥後のガラス基板を高温炉中に入れ、1時間焼成して、試料の結晶性及び透光度を向上させる。第2次熱処理は、第1次熱処理した試料を3%の水素(H2)及び97%のアルゴン(Ar)を導入した混合雰囲気のチューブ炉中に入れて、水素熱処理を1時間行い、試料に酸素欠損を発生させて、これにより導電性を更に向上させる。 3a. Two-stage heat treatment: In the first heat treatment, the glass substrate after coating and drying is placed in a high-temperature furnace and baked for 1 hour to improve the crystallinity and translucency of the sample. In the second heat treatment, the sample subjected to the first heat treatment is placed in a tube furnace having a mixed atmosphere into which 3% hydrogen (H 2 ) and 97% argon (Ar) are introduced, and the hydrogen heat treatment is performed for 1 hour. Oxygen vacancies are generated in this, thereby further improving the conductivity.

3b.水素熱処理を直接行う:塗布乾燥後のガラス基板を3%の水素及び97%のアルゴンを導入した混合雰囲気のチューブ炉中に入れて、雰囲気圧力を0.4kg/cm2に固定し、水素熱処理を2時間行い、試料に酸素欠損を発生させて、導電性を向上させる。 3b. Direct hydrogen heat treatment: The glass substrate after coating and drying is placed in a tube furnace having a mixed atmosphere into which 3% hydrogen and 97% argon are introduced, and the atmospheric pressure is fixed at 0.4 kg / cm 2 , and the hydrogen heat treatment is performed. For 2 hours to generate oxygen vacancies in the sample to improve conductivity.

分析測定により、実験で得られた銀ナノ粒子を含むAZO透明導電膜の抵抗率は従来のAZO透明導電膜より小さく、銀ナノ粒子の粒径範囲が約20〜30nmであった。銀含有量の増大に伴い、表面結晶粒子凝集の現象が顕著であった。Ag含有量が0.1at.%である時、表面に連続的で緻密な薄膜が形成されており、その厚さが250〜300nmであった。前記得られた薄膜は、400nm〜700nmの可視光線範囲において、全体の光透過率が85%以上である。   From the analytical measurement, the resistivity of the AZO transparent conductive film containing silver nanoparticles obtained in the experiment was smaller than that of the conventional AZO transparent conductive film, and the particle size range of the silver nanoparticles was about 20 to 30 nm. As the silver content increased, the phenomenon of surface crystal particle aggregation was remarkable. Ag content is 0.1 at. %, A continuous and dense thin film was formed on the surface, and the thickness was 250 to 300 nm. The obtained thin film has an overall light transmittance of 85% or more in the visible light range of 400 nm to 700 nm.

(実施例2)金ナノ粒子を含むAZO透明導電膜の製造方法
実施例2は、AZOゲル溶液において、メトキシエタノールの還元作用を利用して、金の前駆体を原子状態に還元し、金のナノ粒子が得られる。
Example 2 Method for Producing AZO Transparent Conductive Conductive Film Containing Gold Nanoparticles Example 2 uses an AZO gel solution to reduce the gold precursor to an atomic state using the reducing action of methoxyethanol, Nanoparticles are obtained.

実施例2において、先に適量の塩化金酸(HAuCl4)を取り、エタノールまたは脱イオン水と混合し、均一に攪拌して、0.1MAu3+イオンを含むエタノールまたは水溶液を金属前駆体として用意した。その後の工程は、実施例1と類似であるので、その説明を省略する。 In Example 2, an appropriate amount of chloroauric acid (HAuCl 4 ) is first taken, mixed with ethanol or deionized water, stirred uniformly, and ethanol or an aqueous solution containing 0.1 MAu 3+ ions is used as a metal precursor. Prepared. Subsequent steps are similar to those of the first embodiment, and thus description thereof is omitted.

実施例2により得られた金粒子含有量が異なるAZO透明導電膜は、第1次及び第2次熱処理の抵抗率が図2に示される。図2から分かるように、本発明のAZO透明導電膜は、熱処理が完了後、その抵抗率が2×10-3Ω・cm以下になり、1×10-3Ω・cmに接近している。 The AZO transparent conductive films having different gold particle contents obtained in Example 2 have the resistivity of the first and second heat treatments shown in FIG. As can be seen from FIG. 2, the AZO transparent conductive film of the present invention has a resistivity of 2 × 10 −3 Ω · cm or less after the heat treatment is completed, and is close to 1 × 10 −3 Ω · cm. .

また、実施例2の金ナノ粒子を含むAZO透明導電膜の光透過率は、UV−VIS分光スペクトロメーターによる波長300nm〜800nmの光線範囲で測定され、図3に示してある。図3から分かるように、400nm〜700nmの可視光線範囲において、全体の光透過率は85%以上である。   Moreover, the light transmittance of the AZO transparent conductive film containing the gold nanoparticles of Example 2 was measured in a light range of a wavelength of 300 nm to 800 nm by a UV-VIS spectrophotometer, and is shown in FIG. As can be seen from FIG. 3, the total light transmittance is 85% or more in the visible light range of 400 nm to 700 nm.

以上のごとく、本発明を好適な実施例により開示したが、もとより、本発明を限定するためのものではなく、当業者であれば容易に理解できるように、本発明の技術思想の範囲内において、適当な変更ならびに修正が当然なされうるものであるから、その特許権保護の範囲は、特許請求の範囲及び、それと均等な領域を基準として定めなければならない。   As described above, the present invention has been disclosed by the preferred embodiments. However, the present invention is not intended to limit the present invention and is within the scope of the technical idea of the present invention so that those skilled in the art can easily understand. Since appropriate changes and modifications can be made naturally, the scope of protection of the patent right must be determined on the basis of the scope of claims and areas equivalent thereto.

本発明の実施形態に係る金属ナノ粒子を含むアルミニウム添加亜鉛酸化物透明導電膜の製造工程を示すフローチャート図である。It is a flowchart figure which shows the manufacturing process of the aluminum addition zinc oxide transparent conductive film containing the metal nanoparticle which concerns on embodiment of this invention. 本発明の実施形態に係る金属ナノ粒子を含むアルミニウム添加亜鉛酸化物透明導電膜の2段式熱処理における金ナノ粒子含有量とその抵抗率との関係曲線図である。It is a relationship curve figure of the gold nanoparticle content in the two-step heat processing of the aluminum addition zinc oxide transparent conductive film containing the metal nanoparticle which concerns on embodiment of this invention, and its resistivity. 本発明の実施形態に係る金ナノ粒子含有量が異なるアルミニウム添加亜鉛酸化物透明導電膜の波長及び透過率の曲線図である。It is a curve figure of the wavelength and transmittance | permeability of an aluminum addition zinc oxide transparent conductive film from which gold nanoparticle content differs based on embodiment of this invention.

100,106,108,120,130 ステップ
104 金属前駆体
102 ゾルゲル法により作製したアルコール含有反応液
100, 106, 108, 120, 130 Step 104 Metal precursor 102 Alcohol-containing reaction solution prepared by sol-gel method

Claims (5)

ゾルゲル法によりアルミニウム添加亜鉛酸化物を作製するアルコール含有反応液中に金属前駆体を加え、前記アルミニウム添加亜鉛酸化物のゾルゲルを形成する過程において、同時にアルコールの還元作用により金属ナノ粒子を生成して、金属ナノ粒子を含むアルミニウム添加亜鉛酸化物のゲル溶液を形成する工程と、
前記ゲル溶液により薄膜を形成する工程と、
前記薄膜に対して熱処理を行い、透明導電膜を形成する工程と、
を備える金属ナノ粒子を含むアルミニウム添加亜鉛酸化物(AZO)透明導電膜の製造方法。
In the process of adding a metal precursor to an alcohol-containing reaction solution for producing an aluminum-added zinc oxide by a sol-gel method and forming a sol-gel of the aluminum-added zinc oxide, metal nanoparticles are generated simultaneously by the reducing action of the alcohol. Forming a gel solution of aluminum-added zinc oxide containing metal nanoparticles;
Forming a thin film with the gel solution;
Performing a heat treatment on the thin film to form a transparent conductive film;
The manufacturing method of the aluminum addition zinc oxide (AZO) transparent conductive film containing the metal nanoparticle provided with.
前記熱処理工程は、
焼成を行う第1次熱処理と、
水素熱処理を行う第2次熱処理と、
を備えることを特徴とする請求項1に記載の金属ナノ粒子を含むアルミニウム添加亜鉛酸化物透明導電膜の製造方法。
The heat treatment step includes
A primary heat treatment for firing;
A second heat treatment for performing a hydrogen heat treatment;
The manufacturing method of the aluminum addition zinc oxide transparent conductive film containing the metal nanoparticle of Claim 1 characterized by the above-mentioned.
前記熱処理工程は水素熱処理を備えることを特徴とする請求項1に記載の金属ナノ粒子を含むアルミニウム添加亜鉛酸化物透明導電膜の製造方法。   The method for manufacturing an aluminum-added zinc oxide transparent conductive film containing metal nanoparticles according to claim 1, wherein the heat treatment step includes a hydrogen heat treatment. 前記ゲル溶液を薄膜に形成する方法は、スピンコーティング法、浸漬法、プリンティング法、スクリーンプリンティング法、ステンシルプリンティング法、スプレー法またはローラーコーティングの何れか1つであることを特徴とする請求項1〜3の何れか一項に記載の金属ナノ粒子を含むアルミニウム添加亜鉛酸化物透明導電膜の製造方法。   The method for forming the gel solution into a thin film is any one of a spin coating method, a dipping method, a printing method, a screen printing method, a stencil printing method, a spray method, and a roller coating. A method for producing an aluminum-added zinc oxide transparent conductive film comprising the metal nanoparticles according to any one of 3. 前記金属ナノ粒子は、銀、金、プラチナ、インジウム、ガリウム、ニッケル、パラジウ
ム、銅及びタリウムから何れか1つを選択することを特徴とする請求項1〜4の何れか一項に記載の金属ナノ粒子を含むアルミニウム添加亜鉛酸化物透明導電膜の製造方法。
5. The metal according to claim 1 , wherein the metal nanoparticles are selected from any one of silver, gold, platinum, indium, gallium, nickel, palladium, copper, and thallium. The manufacturing method of the aluminum addition zinc oxide transparent conductive film containing a nanoparticle.
JP2011028102A 2006-04-03 2011-02-14 Method for producing aluminum-doped zinc oxide transparent conductive film containing metal nanoparticles Active JP5469107B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW095111762 2006-04-03
TW95111762A TWI309050B (en) 2006-04-03 2006-04-03 Azo transparent conducting film with metallic nano particles and method of producing thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006149382A Division JP2007280910A (en) 2006-04-03 2006-05-30 Aluminum-added zinc oxide transparent conductive film and its manufacturing method containing metallic nano particles

Publications (2)

Publication Number Publication Date
JP2011119273A JP2011119273A (en) 2011-06-16
JP5469107B2 true JP5469107B2 (en) 2014-04-09

Family

ID=38682127

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2006149382A Pending JP2007280910A (en) 2006-04-03 2006-05-30 Aluminum-added zinc oxide transparent conductive film and its manufacturing method containing metallic nano particles
JP2011028102A Active JP5469107B2 (en) 2006-04-03 2011-02-14 Method for producing aluminum-doped zinc oxide transparent conductive film containing metal nanoparticles

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2006149382A Pending JP2007280910A (en) 2006-04-03 2006-05-30 Aluminum-added zinc oxide transparent conductive film and its manufacturing method containing metallic nano particles

Country Status (2)

Country Link
JP (2) JP2007280910A (en)
TW (1) TWI309050B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8288767B2 (en) 2010-01-04 2012-10-16 National Taiwan University Thin-film transistor and forming method thereof
TWI573288B (en) * 2010-10-18 2017-03-01 鴻海精密工業股份有限公司 Light emitting diode and manufacture method for same
KR101324558B1 (en) * 2012-04-04 2013-11-01 부산대학교 산학협력단 Transparent composite conductive oxide thin films and method for preparing the oxide thin films
KR101351475B1 (en) 2012-12-31 2014-01-15 순천대학교 산학협력단 Fabrication method for transparent conductive oxide thin film and transparent conductive oxide thin film made by the method
KR101397078B1 (en) * 2013-09-10 2014-05-19 부산대학교 산학협력단 Transparent composite conductive oxide thin films and display device produced using the oxide thin films
JP6436487B2 (en) * 2014-12-29 2018-12-12 小林 博 Manufacturing method for manufacturing transparent conductive film
CN108231998A (en) * 2017-12-31 2018-06-29 中国科学院声学研究所 One kind mixes vanadium ZnO thick films and preparation method thereof
CN108329023B (en) * 2018-03-05 2021-03-30 国网湖南省电力有限公司 Preparation method of zinc oxide based nano composite powder resistance card

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6196609A (en) * 1984-10-15 1986-05-15 大阪特殊合金株式会社 Transparent conductive film
JPS61205619A (en) * 1985-03-08 1986-09-11 Osaka Tokushu Gokin Kk Transparent electrically-conductive film of heat-resistant zinc oxide
JP3834339B2 (en) * 1992-12-15 2006-10-18 出光興産株式会社 Transparent conductive film and method for producing the same
JPH10283847A (en) * 1997-04-01 1998-10-23 Sharp Corp Transparent conductive film
JP4814491B2 (en) * 2004-02-24 2011-11-16 株式会社アルバック Method for forming transparent conductive film and transparent electrode
JP5070524B2 (en) * 2005-07-28 2012-11-14 Dowaエレクトロニクス株式会社 Production method of conductive film

Also Published As

Publication number Publication date
JP2011119273A (en) 2011-06-16
TW200739619A (en) 2007-10-16
JP2007280910A (en) 2007-10-25
TWI309050B (en) 2009-04-21

Similar Documents

Publication Publication Date Title
JP5469107B2 (en) Method for producing aluminum-doped zinc oxide transparent conductive film containing metal nanoparticles
Shi et al. Enhanced light absorption of thin perovskite solar cells using textured substrates
Hernández-Granados et al. Optically uniform thin films of mesoporous TiO2 for perovskite solar cell applications
Jeng The influence of annealing atmosphere on the material properties of sol–gel derived SnO2: Sb films before and after annealing
JPH10261326A (en) Transparent conductive composition, transparent conductive film made of the composition, and manufacture of the film
Kermani et al. Design and fabrication of nanometric ZnS/Ag/MoO3 transparent conductive electrode and investigating the effect of annealing process on its characteristics
Pinheiro et al. Design of experiments optimization of fluorine-doped tin oxide films prepared by spray pyrolysis for photovoltaic applications
Gökçeli et al. Investigation of hydrogen post-treatment effect on surface and optoelectronic properties of indium tin oxide thin films
EP1462541B1 (en) Method for forming thin film.
Lee et al. Fabrication of high transmittance and low sheet resistance dual ion doped tin oxide films and their application in dye-sensitized solar cells
Li et al. High infrared insulation and high visible light transmittance Sb/Yb co-doped SnO2 film prepared with sol–gel method
Batmunkh et al. Tin Oxide Light‐Scattering Layer for Titania Photoanodes in Dye‐Sensitized Solar Cells
CN101704635B (en) Method for preparing aluminum-doped zinc oxide film on optical solar reflector
Fernandes et al. Effect of anionic bromine doping on the structural, optical and electrical properties of spray-pyrolyzed SnO2 thin films
Chu et al. Study of Cu-based Al-doped ZnO multilayer thin films with different annealing conditions
US8568828B2 (en) Amorphous tin-cadmium oxide films and the production thereof
Lee et al. The sandwich structure of Ga-doped zno thin films grown via H2O-, O2-, and O3-based atomic layer deposition
Nehmann et al. Aluminum-doped zinc oxide sol–gel thin films: Influence of the sol's water content on the resistivity
Lansåker et al. Thin gold films on SnO2: In: Temperature-dependent effects on the optical properties
Yang et al. Improvement of high-temperature resistance of the Ag-based multilayer films deposited by magnetron sputtering
CN103177800B (en) A kind of high transmittance transparent conductive film and preparation method thereof
CN106245007B (en) A kind of preparation method being orientated ito thin film
JPH06187832A (en) Manufacture of transparent conductive film
JP2002114515A (en) METHOD FOR PRODUCING THIN CuAlO2 FILM BY CHEMICAL PROCESS
CN113816615A (en) Ultrahigh-transparency conductive ITO film and preparation method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140130

R150 Certificate of patent or registration of utility model

Ref document number: 5469107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250