JP5070524B2 - Production method of conductive film - Google Patents
Production method of conductive film Download PDFInfo
- Publication number
- JP5070524B2 JP5070524B2 JP2005218237A JP2005218237A JP5070524B2 JP 5070524 B2 JP5070524 B2 JP 5070524B2 JP 2005218237 A JP2005218237 A JP 2005218237A JP 2005218237 A JP2005218237 A JP 2005218237A JP 5070524 B2 JP5070524 B2 JP 5070524B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- coating
- dispersion
- conductive film
- oxide powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Conductive Materials (AREA)
- Manufacturing Of Electric Cables (AREA)
Description
本発明は、導電性酸化物粉による透明導電膜や配線を有利に製造する方法に関する。 The present invention relates to a method for advantageously producing a transparent conductive film and wiring using conductive oxide powder.
Sn含有In酸化物(ITO) やSnO2などは可視光に対する透光性と高い導電性を示すことから各種表示デバイスや太陽電池等の透明酸化物導電膜として用いられている。ITO用いた透明導電膜の形成には、スパッタ法等の物理的方法や、粒子分散液または有機化合物を塗布する塗布法が知られているが、塗布法はスパッタ法等の物理的方法に比べて高価な装置を用いることなく大面積や複雑形状の成膜が可能でコスト的に有利である。このためブラウン管の電磁波シールド膜として広く用いられているが、近年ではタッチパネル、液晶ディスプレイ(LCD) 、プラズマディスプレイ(PDP)、エレクトロルミネセンス(EL)等の表示デバイス、太陽電池用透明電極への適用も検討されている。 Sn-containing In oxide (ITO), SnO 2, and the like are used as transparent oxide conductive films for various display devices, solar cells, and the like because they exhibit translucency for visible light and high conductivity. For the formation of a transparent conductive film using ITO, a physical method such as a sputtering method and a coating method in which a particle dispersion or an organic compound is applied are known, but the coating method is compared with a physical method such as a sputtering method. Therefore, it is possible to form a film with a large area or a complicated shape without using an expensive apparatus, which is advantageous in terms of cost. For this reason, it is widely used as an electromagnetic wave shielding film for cathode ray tubes, but in recent years it has been applied to display devices such as touch panels, liquid crystal displays (LCD), plasma displays (PDP), electroluminescence (EL), and transparent electrodes for solar cells. Has also been considered.
また塗布型の透明電極配線は、スクリーン印刷やインクジェット法等により透明導電膜を線状に配したものであり、末端デバイスと本体電源間の電子通路に供されることが多い。このため,表面抵抗よりも体積抵抗が低いことが重要である。体積抵抗は線径、膜厚および構造が同じであれば表面抵抗と比例することになり,また、形状的には横方向に細く縦方向に長い膜が配線であるため、実用上、膜と配線とに求められる特性は同じであることから、ますます複雑化するデバイスにおいては、両者の区別も定かでは無くなってきている。 In addition, the coating-type transparent electrode wiring is formed by linearly arranging a transparent conductive film by screen printing, an inkjet method, or the like, and is often provided for an electronic path between the terminal device and the main body power supply. For this reason, it is important that the volume resistance is lower than the surface resistance. If the wire diameter, film thickness, and structure are the same, the volume resistance is proportional to the surface resistance, and the shape is thin in the horizontal direction and long in the vertical direction. Since the characteristics required for wiring are the same, in an increasingly complex device, the distinction between the two is becoming unclear.
特許文献1や特許文献2において、導電性金属酸化物微粒子の塗膜や、半導体微粒子分散液の塗膜にマイクロ波を照射して粒子間の焼結を行なわせる成膜法が提案されている。マイクロ波は誘電体損失の大きいもの以外は加熱しないで被加熱物自体が直接的に同時に発熱するので比較的均一に被加熱物を加熱でき、また通常の外部加熱方式に対して基材の熱変質が無いためにフイルムに損失を与えずに対象物質を焼結できるという特徴がある。
導電性酸化物を用いた透明導電膜や配線では導電性が良いこと,すなわち低抵抗で
あることが基本的に求められている。しかし,種々の要因により,その抵抗を低域まで低下させるには導電性酸化物の種類に応じてそれぞれ限界がある。本発明はこの限界を超えて,簡易に透明導電膜や配線の抵抗を低下させることを目的としたものである。またITO粒子を焼結させるためには一般に400℃以上の加熱が必要であり、フィルム上へ塗布したITO粒子の焼結は不可能であった。本発明はこれを可能とすることも目的の一つとする。
A transparent conductive film or wiring using a conductive oxide is basically required to have good conductivity, that is, low resistance. However, due to various factors, there is a limit in reducing the resistance to a low frequency depending on the type of conductive oxide. The object of the present invention is to easily reduce the resistance of a transparent conductive film or wiring beyond this limit. Further, in order to sinter the ITO particles, generally heating at 400 ° C. or higher is necessary, and it was impossible to sinter the ITO particles coated on the film. The present invention also makes this possible.
本発明者は,導電性酸化物を使用した塗布型フィルムにおいて、金属ナノ粒子を導電性酸化物に混合して導電性酸化物同士を焼結させると,低抵抗な透明導電膜や配線が形成できることを見い出した。とくにマイクロ波を用いて焼結させる場合に,低抵抗な透明導電膜や配線が有利に得られる。 The present inventor formed a low-resistance transparent conductive film and wiring when a coating film using a conductive oxide mixed metal nanoparticles with the conductive oxide and sintered the conductive oxides together. I found what I could do. In particular, when sintering is performed using microwaves, a low-resistance transparent conductive film and wiring can be advantageously obtained.
すなわち本発明によれば、200nm以下の金属銀粒子の分散液と導電性酸化物粉とを液状媒体に分散させた分散液を基板に塗布して塗膜を作製し、次いで周波数が1GHz〜1THzのマイクロ波を照射して前記塗膜の導電性酸化物粉粒子を焼結する導電膜の製法を提供する。 That is, according to the present invention, a coating liquid is prepared by applying a dispersion liquid in which a dispersion of metallic silver particles of 200 nm or less and conductive oxide powder is dispersed in a liquid medium to a substrate, and then the frequency is 1 GHz to 1 THz. The manufacturing method of the electrically conductive film which irradiates this microwave and sinters the conductive oxide powder particle of the said coating film is provided.
導電性酸化物粉は、BET法による比表面積から計算される平均粒径が1nm以上200nm以下のものが使用でき、導電性酸化物粉に対する金属銀粒子の割合は重量百分率で0.1%以上、好ましくは0.5wt%であるのがよいが、あまり多いと透明導電膜の本来の透明性が損なわれるので、10wt%以下、好ましくは5wt%以下であるのがよい。代表的な導電性酸化物粉はスズ含有インジウム酸化物である。基板の材質は特に限定されないが、本発明では高分子フイルムであることができる。 As the conductive oxide powder, one having an average particle diameter calculated from the specific surface area by the BET method of 1 nm or more and 200 nm or less can be used, and the ratio of the metal silver particles to the conductive oxide powder is 0.1% or more by weight percentage. However, if it is too much, the original transparency of the transparent conductive film is impaired, so that it is 10 wt% or less, preferably 5 wt% or less. A typical conductive oxide powder is a tin-containing indium oxide. The material of the substrate is not particularly limited, but can be a polymer film in the present invention.
本発明によると,導電性酸化物粉の分散液またはペーストの焼結性が向上すると共に,低温での焼結が可能となり,しかも透明導電膜または配線の抵抗を著しく低減できる。 According to the present invention, the sinterability of the conductive oxide powder dispersion or paste can be improved, the sintering can be performed at a low temperature, and the resistance of the transparent conductive film or wiring can be significantly reduced.
本発明は導電性酸化物粉の分散液またはペーストを基板に塗布して焼結するさいに,該分散液またはペースト中に金属ナノ粒子を適量配合してから,マイクロ波または400℃以下の温度で熱処理して導電性酸化物粒子同士を焼結する点に特徴がある。 In the present invention, when a dispersion or paste of conductive oxide powder is applied to a substrate and sintered, an appropriate amount of metal nanoparticles is blended in the dispersion or paste, and then a microwave or a temperature of 400 ° C. or lower. It is characterized in that the conductive oxide particles are sintered by heat treatment.
本発明が適用できる導電性酸化物としては,Sn含有In2O3(ITO)、Zn含有In2O3(IZO)、F含有In2O3(FTO)、Sb含有SnO2(ATO)、ZnO、Al含有ZnO(AZO)、Ga含有ZnO(GZO)、CdSnO3、Cd2SnO4、TiO2、CdOなどが挙げられ、これらを単独で用いてもよいし、2種以上を組み合わせてもよい。この中で特にInもしくはSnを主体とした金属酸化物が導電性、透明性、安全性を両立する上で好ましい。これらの導電性酸化物粉の粒径はBET法による比表面積から計算される粒径で1nm以上,好ましくは10nm以上で,200nm以下のものが好ましい。粒径が10nm未満では塗料化する場合の分散が難しくなり、200nmを越えるような粒子の場合は、膜の透明性が十分ではなくなる。 Examples of the conductive oxide to which the present invention can be applied include Sn-containing In 2 O 3 (ITO), Zn-containing In 2 O 3 (IZO), F-containing In 2 O 3 (FTO), Sb-containing SnO 2 (ATO), ZnO, Al-containing ZnO (AZO), Ga-containing ZnO (GZO), CdSnO 3 , Cd 2 SnO 4 , TiO 2 , CdO, etc. may be mentioned, and these may be used alone or in combination of two or more. Good. Among these, metal oxides mainly composed of In or Sn are preferable in order to achieve both conductivity, transparency and safety. The particle size of these conductive oxide powders is 1 nm or more, preferably 10 nm or more and 200 nm or less as calculated from the specific surface area by the BET method. When the particle size is less than 10 nm, dispersion in the case of forming a paint becomes difficult, and in the case of particles exceeding 200 nm, the transparency of the film becomes insufficient.
このような酸化物粒子は公知の方法で製造することができ、例えば特開2000-3618 号公報に記述されているようなスパッタリング法や真空蒸着法を採用してもよく、あるいは四塩化スズ添加した三塩化インジウムの溶液を用いて気相反応を行う方法、アンモニウム炭酸塩の溶液に三塩化インジウムと四塩化スズとの混合溶液を滴下してインジウムとスズの共沈水酸化物を生成させ、これを水洗、乾燥し、さらにこの乾燥物を水素雰囲気または真空雰囲気内で加熱還元した後、粉砕する還元焼成方法等を採用することができる。また上記製法において四塩化スズに代えて二塩化スズを用いてもよく、この場合低抵抗化がより有利となる。 Such oxide particles can be produced by a known method, for example, a sputtering method or a vacuum evaporation method described in JP 2000-3618 A may be employed, or tin tetrachloride added. A vapor phase reaction using a solution of indium trichloride prepared, a mixed solution of indium trichloride and tin tetrachloride is dropped into an ammonium carbonate solution to form a coprecipitated hydroxide of indium and tin. It is possible to employ a reduction firing method or the like that is washed with water, dried, and further heat-reduced in a hydrogen atmosphere or vacuum atmosphere, and then pulverized. In the above production method, tin dichloride may be used instead of tin tetrachloride. In this case, lowering the resistance is more advantageous.
上記酸化物粒子を液状媒体中に分散させて分散液またはペースト状に塗料化する。塗料化の方法は従来の方法を使用することができる。液状媒体としてはアルコール、ケトン、エーテル、エステル等の有機溶媒や水を使用でき、分散剤としての界面活性剤やカップリング剤等を添加してビーズミル等の分散装置を用いて分散させるのが好ましい。バインダーを用いても用いなくてもよいが、バインダーを用いる場合はエポキシ樹脂、アクリル樹脂、塩ビ樹脂、ポリウレタン樹脂、ポリビニールアルコール樹脂等が使用できるが、これに限られない。 The oxide particles are dispersed in a liquid medium to form a dispersion or a paste. A conventional method can be used as a method for forming a paint. As the liquid medium, an organic solvent such as alcohol, ketone, ether or ester or water can be used, and it is preferable to add a surfactant or a coupling agent as a dispersant and disperse using a dispersing device such as a bead mill. . Although a binder may or may not be used, when a binder is used, an epoxy resin, an acrylic resin, a vinyl resin, a polyurethane resin, a polyvinyl alcohol resin, or the like can be used, but is not limited thereto.
本発明においては,このような導電性酸化物粉の分散液またはペースト中に金属ナノ粒子を0.1wt%以上配合し,導電性酸化物粒子間に金属ナノ粒子を介在させる。この金属ナノ粒子としては,Au,Ag,CuまたはNi等が適するが,特にAgが低抵抗率、耐候性およびコストの面から望ましい。 In the present invention, 0.1 wt% or more of metal nanoparticles are mixed in such a dispersion or paste of conductive oxide powder, and the metal nanoparticles are interposed between the conductive oxide particles. As the metal nanoparticles, Au, Ag, Cu, Ni, or the like is suitable, but Ag is particularly desirable from the viewpoint of low resistivity, weather resistance, and cost.
金属ナノ粒子は,焼結をマイクロ波で行う場合には,平均粒径(DTEM)が200nm以下のものを,400℃以下の熱処理で行う場合には平均粒径(DTEM)が50nm以下のものを使用するのがよい。平均粒径DTEMはTEM(透過電子顕微鏡)観察により測定される平均粒径を表している。その測定は60万倍に拡大したTEM画像から重なっていない独立した粒子300個の径を測定して平均値を求める。 The metal nanoparticles have an average particle size (D TEM ) of 200 nm or less when sintering is performed by microwaves, and the average particle size (D TEM ) is 50 nm or less when performed by heat treatment at 400 ° C. or less. It is better to use one. The average particle diameter D TEM represents the average particle diameter measured by TEM (transmission electron microscope) observation. In the measurement, the average value is obtained by measuring the diameters of 300 independent particles not overlapping from the TEM image magnified 600,000 times.
粒径が50nmを超える金属粒子ではその焼結には通常300℃以上の加熱が必要となる。通常用いられるプラスチックフィルムでは300℃を越えるような温度に耐えられない。最も耐熱性のあるポリイミド系のフィルムでも耐熱温度はせいぜい300℃〜350℃である。したがって,プラスチックフィルム上で焼結する場合には,粒径が50nm以下の金属ナノ粒子を用いると焼結温度が低下するので,400℃以下,好ましくは350℃以下,さらに好ましくは300℃以下の温度の熱処理でも焼結できる。 In the case of metal particles having a particle size exceeding 50 nm, heating at 300 ° C. or higher is usually required for sintering. Normally used plastic films cannot withstand temperatures exceeding 300 ° C. Even the most heat-resistant polyimide film has a heat-resistant temperature of 300 ° C. to 350 ° C. at most. Therefore, when sintering on a plastic film, if metal nanoparticles having a particle size of 50 nm or less are used, the sintering temperature is lowered, so that it is 400 ° C. or less, preferably 350 ° C. or less, more preferably 300 ° C. or less. It can be sintered even by heat treatment at a temperature.
一方、マイクロ波を加熱源とする場合には,導電層が直接加熱される為に200nmまでの金属ナノ粒子が使用できる。マイクロ波ではプラスチックフィルムは加熱されないので,マイクロ波を加熱源とすればプラスチックフィルム上で焼結することができる。しかし、200nmを越えるような金属粒子を使用する場合には、導電性酸化物同士の焼結向上にあまり寄与せずに膜の光透過性が低下するようになるので望ましくない。 On the other hand, when microwaves are used as a heating source, metal nanoparticles up to 200 nm can be used because the conductive layer is directly heated. Since the plastic film is not heated by the microwave, it can be sintered on the plastic film by using the microwave as a heating source. However, when metal particles exceeding 200 nm are used, it is not desirable because the light transmittance of the film is lowered without contributing much to the improvement in sintering of the conductive oxides.
金属ナノ粒子の製法としては、気相法、液相法どちらでもかまわないが、工業的観点からは液相法が望ましい。液相法では,有機溶媒中で金属化合物を還元する方法として,還元剤として機能する有機溶媒例えばアルコールまたはポリオールを使用し、その還元反応を有機保護剤の存在下で進行させる方法によると、単分散化した金属ナノ粒子を得ることができる。 As a method for producing metal nanoparticles, either a gas phase method or a liquid phase method may be used, but from the industrial viewpoint, the liquid phase method is desirable. In the liquid phase method, as a method for reducing a metal compound in an organic solvent, an organic solvent that functions as a reducing agent such as an alcohol or a polyol is used, and the reduction reaction proceeds in the presence of an organic protective agent. Dispersed metal nanoparticles can be obtained.
金属ナノ粒子を導電性酸化物粉の分散液またはペーストに配合するには,金属ナノ粒子を液状媒体中に分散させて塗料化してから該分散液またはペーストに配合するのがよい。この塗料化には,液状媒体としてアルコール、ケトン、エーテル、エステル等の有機溶媒や水を使用し、分散剤として界面活性剤、カップリング剤等を添加してビーズミル等の分散装置で金属ナノ粒子を液状媒体中に分散させることができる。バインダーを用いる場合はエポキシ樹脂、アクリル樹脂、塩ビ樹脂,ポリウレタン樹脂、ポリビニルアルコール樹脂等を用いることができる。 In order to mix the metal nanoparticles into the conductive oxide powder dispersion or paste, it is preferable to disperse the metal nanoparticles in a liquid medium to form a paint, and then mix the metal nanoparticles into the dispersion or paste. For this coating, an organic solvent such as alcohol, ketone, ether or ester or water is used as a liquid medium, a surfactant, a coupling agent or the like is added as a dispersant, and the metal nanoparticles are dispersed with a dispersing device such as a bead mill. Can be dispersed in a liquid medium. When using a binder, an epoxy resin, an acrylic resin, a vinyl chloride resin, a polyurethane resin, a polyvinyl alcohol resin, or the like can be used.
このようにして得た金属ナノ粒子の塗料を前述の導電性酸化物粉の分散液またはペースト中に,導電性酸化物に対する金属ナノ粒子の割合が0.1wt%以上となるように配合し混合して,本発明に従う低温焼結性の導電性酸化物粉の分散液またはペーストを得ることができる。この分散液またはペーストを基板に塗布するには,スクリーン印刷、スピンコート,ディップコート,ロールコート,刷毛コート、スプレーコート等の処法で塗布できる。塗布層の厚みとしては0.1〜50μmの範囲であればよい。これ以上薄くなると十分な導電性が得られず、これより厚くなると透過率が低下する。好ましい塗布厚みは0.2μm以上20μm以下である。 The metal nanoparticle coating obtained in this way is blended and mixed in the conductive oxide powder dispersion or paste described above so that the ratio of the metal nanoparticles to the conductive oxide is 0.1 wt% or more. Thus, a dispersion or paste of the low-temperature sinterable conductive oxide powder according to the present invention can be obtained. In order to apply this dispersion or paste to a substrate, it can be applied by a method such as screen printing, spin coating, dip coating, roll coating, brush coating, spray coating or the like. The thickness of the coating layer may be in the range of 0.1 to 50 μm. If it becomes thinner than this, sufficient conductivity cannot be obtained, and if it becomes thicker than this, the transmittance decreases. A preferable coating thickness is 0.2 μm or more and 20 μm or less.
本発明の分散液またはペーストを塗布する基板としては,有機高分子、プラスチック、ガラス等のフィルム等を挙げることが出来る。タッチパネル等のようにフレキシビリティーを要求される基板には、有機高分子フィルムが好ましく、ポリエチレンテレフタレート(PET) 、ポリエチレンナフタレート(PEN) 、ポリイミド、アラミド等のフィルムやポリカーボネード等を用いることが出来る。 Examples of the substrate to which the dispersion or paste of the present invention is applied include organic polymers, plastics, glass films and the like. For a substrate that requires flexibility such as a touch panel, an organic polymer film is preferable, and a film such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, aramid, polycarbonate, or the like can be used. .
基板に分散液またはペーストを塗布したあとは,マイクロ波照射または熱照射によって分散液またはペースト中の粒子を焼結する。加熱源としてマイクロ波を用いる場合には,塗膜中の酸化物粒子を直接加熱出来る。塗膜中の金属ナノ粒子はマイクロ波を反射するが、酸化物粒子によって発生した熱エネルギーが金属ナノ粒子に伝達して溶融すると,酸化物粒子同士を接着する媒介となる。 After the dispersion or paste is applied to the substrate, the particles in the dispersion or paste are sintered by microwave irradiation or heat irradiation. When microwaves are used as the heating source, the oxide particles in the coating can be directly heated. The metal nanoparticles in the coating film reflect microwaves, but when the thermal energy generated by the oxide particles is transferred to the metal nanoparticles and melted, it becomes a medium for bonding the oxide particles together.
マイクロ波としては1GHz〜1THzの周波数のものが使用可能である。マイクロ波を照射すると,プラスチックフイルム等の誘電損失の少ない物質では単に透過するだけであるが,酸化物粒子のように誘電損失の大きい物質ではマイクロ波が吸収されて熱を発生するので,導電性酸化物の塗膜を選択的に加熱する事が出来る。またマイクロ波高速応答性能を有しているので、加熱時間や出力調整によって必要な温度への制御を容易に行うことができる。最も一般的なマイクロ波の周波数は、2.45GHz(家庭用電子レンジ) もしくは28GHz(工業炉など) である。後記の実施例では2.45GHzのマイクロ波を用いたが,前記範囲の周波数を用いる場合にも同様の効果が得られる。照射投入電力は500〜1000W,照射時間は1〜10分でよいが,導電性酸化物と金属ナノ粒子の組成比によって最適照射条件が異 なる。 A microwave having a frequency of 1 GHz to 1 THz can be used. When irradiated with microwaves, materials with low dielectric loss such as plastic film simply transmit, but materials with high dielectric loss such as oxide particles absorb heat and generate heat. The oxide coating can be selectively heated. Further, since it has high-speed microwave response performance, it can be easily controlled to the required temperature by adjusting the heating time and output. The most common microwave frequency is 2.45 GHz (household microwave oven) or 28 GHz (industrial furnace, etc.). In the examples described later, a microwave of 2.45 GHz is used, but the same effect can be obtained when a frequency in the above range is used. The irradiation input power may be 500 to 1000 W and the irradiation time may be 1 to 10 minutes, but the optimum irradiation condition varies depending on the composition ratio of the conductive oxide and the metal nanoparticles.
なおマイクロ波の照射にあたっては,照射方向に対して塗膜が基板の裏面となるようにして(アプリケータ内に設置した金属シートの上に塗膜付きの基板を塗膜面が下側となるように載せ,基板の上方から)マイクロ波を照射するのがよい。そのさい,金属シートとして多孔性の金属シート(発泡金属シート)を用いるのがよい。このようにすることにより,塗膜表面のひび割れを防止することができる。発泡金属シートとしては後記実施例では発泡Niシートを用いたが,電子伝導性が良く,放熱性に優れた材料であればこれに代えて使用できる。 In the microwave irradiation, the coating film should be on the back side of the substrate with respect to the irradiation direction (the substrate with the coating film on the metal sheet installed in the applicator and the coating surface on the bottom side) It is better to irradiate microwaves (from above the substrate). At that time, it is preferable to use a porous metal sheet (foamed metal sheet) as the metal sheet. By doing in this way, the crack of the coating-film surface can be prevented. As the foam metal sheet, a foam Ni sheet was used in the examples described later, but any material having good electronic conductivity and excellent heat dissipation can be used instead.
マイクロ波の照射によって金属ナノ粒子配合の導電性酸化物の塗膜が焼結するメカニズムとしては,まず誘電損失の大きい酸化物粒子がマイクロ波によって加熱され、その熱が金属ナノ粒子に伝播し、融点の低い金属ナノ粒子の溶融物が酸化物粒子間に介在するようになり,この溶融物の存在により酸化物粒子間の焼結を励起するものと考えられる。 As a mechanism of sintering a conductive oxide coating containing metal nanoparticles by microwave irradiation, oxide particles with a large dielectric loss are first heated by microwaves, and the heat propagates to the metal nanoparticles. It is considered that a melt of metal nanoparticles having a low melting point is interposed between oxide particles, and the presence of this melt excites sintering between oxide particles.
電気炉などを用いて熱照射で塗膜付き基板を加熱して塗膜の焼結を行う場合には,基板も雰囲気温度と同じ温度にさらされて加熱されることになるので、基板として高分子フイルムを用いる場合には,加熱温度は400℃が限界となる。例えば、耐熱フイルムとして使用されているポリイミド系の樹脂でも310℃が限界である。 When a coated substrate is heated by heat irradiation using an electric furnace or the like to sinter the coated film, the substrate is also heated by being exposed to the same temperature as the ambient temperature. When using a molecular film, the heating temperature is limited to 400 ° C. For example, even a polyimide resin used as a heat resistant film has a limit of 310 ° C.
マイクロ波照射時や熱照射時の雰囲気は大気中でも行えるが、不活性雰囲気、弱い還元雰囲気で行うことも出来る。 The atmosphere during microwave irradiation and heat irradiation can be performed in the air, but can also be performed in an inert atmosphere or a weak reducing atmosphere.
本発明者の経験によれば,金属ナノ粒子を配合しないで,スズ含有インジウム酸化物(ITO)だけで塗膜を作成した場合には,熱処理温度が400℃以下では粒子間焼結はみられず、抵抗値の低下も確認することはできない。しかし,スズ含有インジウム酸化物に低融点の金属ナノ粒子を添加した塗膜では400℃以下で熱処理した場合でも抵抗値の低下が確認できた。すなわち焼結が確認できた。この焼結の過程は次のように考えられる。まず、400℃以下の温度に於いて金属ナノ粒子の溶解が開始する。溶解した金属はITO粒子との接触部分にネックを形成する。ネックの表面張力によりITO粒子間の距離が縮まり、ITO粒子同士の焼結が開始される。400℃以下の温度に於いて、ITO粒子同士の焼結が生じているかは不明だが、熱処理後の抵抗減少が観られることから、焼結しているか、少なくとも金属ナノ粒子がITO粒子の距離を縮め、接着している状態が考えられる。 According to the inventor's experience, when a coating film is formed only with tin-containing indium oxide (ITO) without blending metal nanoparticles, interparticle sintering is observed at a heat treatment temperature of 400 ° C. or lower. In addition, a decrease in resistance value cannot be confirmed. However, in the coating film in which the low melting point metal nanoparticles were added to the tin-containing indium oxide, a decrease in the resistance value was confirmed even when heat-treated at 400 ° C. or lower. That is, sintering was confirmed. This sintering process is considered as follows. First, dissolution of metal nanoparticles starts at a temperature of 400 ° C. or lower. The dissolved metal forms a neck at the contact portion with the ITO particles. The distance between the ITO particles is reduced by the surface tension of the neck, and sintering of the ITO particles starts. It is unclear whether sintering between ITO particles occurs at a temperature of 400 ° C. or lower. However, since a decrease in resistance is observed after heat treatment, it is sintered, or at least the metal nanoparticles have a distance between the ITO particles. It can be considered that it is shrunk and bonded.
透明導電膜層の上部にはシリケートインク等を用いて、オーバーコート層をもうける
ことも出来る。オーバーコート層は膜強度向上、耐候性、反射低減、導電率向上などの目的で、用途に応じ用いられる。
An overcoat layer can be formed on the transparent conductive film layer using silicate ink or the like. The overcoat layer is used according to the purpose for the purpose of improving the film strength, weather resistance, reducing reflection, and improving conductivity.
以下に実施例を挙げるが,諸特性の測定条件を先ず説明する。
比表面積(g/m2):BET法(一点法)によって求めた。
平均粒径(nm):TEM写真中の200個の径をノギスで測定し,倍率換算してその平均値を求めた。
BET粒径(nm):下式を用いた求めた。
BET粒径(nm)=6/(ρ×BET法による比表面積)×109
ただし,ρは真比重(g/m3)である。例えばITOの場合の真比重ρは7.13×109g/m3の値を用いた。
シート抵抗:三菱化学株式会社製のLoresta HPを用いて四探針方式により測定した。
光透過率:日本電色工業株式会社製のNDH2000 を用いて全光透過率をJIS7361−1の規格に準拠した方法で測定した。
Examples will be given below, but the measurement conditions for various characteristics will be described first.
Specific surface area (g / m 2 ): determined by the BET method (one-point method).
Average particle diameter (nm): 200 diameters in a TEM photograph were measured with a vernier caliper, and converted into a magnification to obtain an average value.
BET particle size (nm): Determined using the following formula.
BET particle size (nm) = 6 / (ρ × specific surface area by BET method) × 10 9
Where ρ is the true specific gravity (g / m 3 ). For example, the true specific gravity ρ in the case of ITO was 7.13 × 10 9 g / m 3 .
Sheet resistance: Measured by a four-point probe method using Loresta HP manufactured by Mitsubishi Chemical Corporation.
Light transmittance: The total light transmittance was measured by the method based on the standard of JIS7361-1 using NDH2000 made by Nippon Denshoku Industries Co., Ltd.
〔対照例1〕
SnO2を15%含有したITO粉末(BET粒径30nm)5gと,混合溶剤(エタノール:プロパノール=7:3)20gと,アニオン系分散剤0.25gとを,遊星ボールミル(フリッチェ製P−5型、容器容量80mL,PSZ0.3mmボール) に入れ、回転数300rpmで30分間回転させた。得られた分散液にエタノールを加えて、ITO粉末の含有量=2%,残部がエタノールおよびプロパノールからなる塗料を作製した。
[Control Example 1]
5 g of ITO powder (BET particle size 30 nm) containing 15% of SnO 2 , 20 g of a mixed solvent (ethanol: propanol = 7: 3), and 0.25 g of an anionic dispersing agent, a planetary ball mill (P-5 manufactured by Fritche) Mold, container capacity 80 mL, PSZ 0.3 mm ball) and rotated for 30 minutes at 300 rpm. Ethanol was added to the obtained dispersion to prepare a coating material containing ITO powder content = 2% and the balance consisting of ethanol and propanol.
この塗料を,ポリエチレンテレフタレートからなるフイルム基板に,アプリケーターを用いて塗布した。得られた塗膜の抵抗値は800Ω/ □、透明度は86%であった。 This paint was applied to a film substrate made of polyethylene terephthalate using an applicator. The obtained coating film had a resistance of 800Ω / □ and a transparency of 86%.
〔対照例2〕
フィルム基板上に塗料を塗布するまでは前記の対照例1と同様に行った。得られた塗膜付きのフィルム基板を電気炉に入れて200℃×1時間の熱処理を行なった。熱処理合金の塗膜の抵抗値は800Ω/ □、透明度は85%であり,対照例2のものと殆んど変化はなかった。
[Control Example 2]
The same procedure as in Control Example 1 was performed until the coating material was applied on the film substrate. The obtained film substrate with a coating film was put in an electric furnace and heat-treated at 200 ° C. for 1 hour. The resistance value of the heat-treated alloy coating film was 800Ω / □, and the transparency was 85%, which was almost the same as that of Control Example 2.
〔実施例1〕
まず,下記の方法で銀ナノ粒子の分散液を製造した。すなわち,溶媒兼還元剤としてイソブタノール(和光純薬株式会社製の特級)140mLに,有機保護材としてオレイルアミン(和光純薬株式会社製のMw=267)186mLと,銀化合物としての硝酸銀結晶( 関東化学株式会社製)19gと添加し、マグネットスターラーにて撹拌して硝酸銀を溶解させる。これらの溶液を還流器のついた容器に移してオイルバスに載せ、容器内に不活性ガスとしてN2を吹き込みながら、いずれも100℃の温度で還流を行った後,108℃迄温度を上げて再び還流し、反応を終了した。
[Example 1]
First, a dispersion of silver nanoparticles was produced by the following method. That is, 140 mL of isobutanol (special grade manufactured by Wako Pure Chemical Industries, Ltd.) as a solvent and reducing agent, 186 mL of oleylamine (Mw = 267 manufactured by Wako Pure Chemical Industries, Ltd.) as an organic protective material, and silver nitrate crystals (Kanto) as a silver compound (Chemical Co., Ltd.) 19 g is added and stirred with a magnetic stirrer to dissolve silver nitrate. These solutions are transferred to a container equipped with a reflux device and placed in an oil bath. While N 2 is blown into the container as an inert gas, both are refluxed at a temperature of 100 ° C., and then raised to 108 ° C. The mixture was refluxed again to complete the reaction.
反応後のスラリーを遠心分離器を用いて3000rpmで30分間の固液分離を実施したあと,その上澄みを廃棄した。得られた沈殿物にエタノールを加え、超音波分散で分散させた。この操作を三回繰り返し、沈殿物を得た。この沈殿物にケロシンを40mL添加し、超音波分散器にかけた。この銀粒子とケロシンの混濁液を遠心分離器を用いて3000rpmで30分間の固液分離を実施し,その上澄み液を回収した。この上澄み液は平均粒径10nmの銀粒子の分散液であった。 The slurry after the reaction was subjected to solid-liquid separation at 3000 rpm for 30 minutes using a centrifuge, and then the supernatant was discarded. Ethanol was added to the resulting precipitate and dispersed by ultrasonic dispersion. This operation was repeated three times to obtain a precipitate. 40 mL of kerosene was added to this precipitate, and it was applied to an ultrasonic disperser. The turbid solution of silver particles and kerosene was subjected to solid / liquid separation at 3000 rpm for 30 minutes using a centrifuge, and the supernatant was recovered. This supernatant was a dispersion of silver particles having an average particle diameter of 10 nm.
得られた銀ナノ粒子の分散液と,対照例1で用いたITO粉末とをケロシンに分散させて,銀含有量が0.1wt%(実施例1−1),1wt%(実施例1−2),5wt%(実施例1−3,または10wt%(実施例1−4)となるように混合して,複合分散溶液を作製した。この複合分散溶液から塗料を作製し,得られた塗料をポリエチレンテレフタレートからなるフイルム基板に,アプリケーターを用いて塗布して塗膜を作製した。 The obtained dispersion of silver nanoparticles and the ITO powder used in Control Example 1 were dispersed in kerosene so that the silver content was 0.1 wt% (Example 1-1), 1 wt% (Example 1 2), 5 wt% (Example 1-3, or 10 wt% (Example 1-4)) was mixed to prepare a composite dispersion solution, and a paint was prepared from the composite dispersion solution. The coating was applied to a film substrate made of polyethylene terephthalate using an applicator.
家庭用電子レンジ(2.45GHz)のトレイの上に発泡Niシートを置き,この発泡Niシートに塗膜面が接するように,塗膜面を下にしてフイルム基板をセットし,マイクロ波を300秒間照射した。得られた各導電膜の膜抵抗と光透過率を測定し,その結果を表1に示した。 A foamed Ni sheet is placed on a tray of a household microwave oven (2.45 GHz), and the film substrate is set so that the coated film surface is in contact with the foamed Ni sheet. Irradiated for 2 seconds. The film resistance and light transmittance of each conductive film obtained were measured, and the results are shown in Table 1.
〔実施例2〕
実施例1と同様の液相法で,平均粒径が10nm,50nm,100nmおよび200nmの銀粒子の分散液を製造し,これらの分散液と対照例1で用いたITO粉末とを,いずれも銀含有量が0.1wt%となる量でケロシンに分散させて,銀粒子の平均粒径10nm(実施例2−1),50nm(実施例2−2),100nm(実施例2−3)および200nm(実施例2−4)の4種の複合分散液を作製し,これらの複合分散液から塗料を作製し,実施例1と同様の条件でマイクロ波を照射した。得られた各導電膜の膜抵抗と光透過率を測定し,その結果を表1に示した。
[Example 2]
In the same liquid phase method as in Example 1, silver particle dispersions having an average particle diameter of 10 nm, 50 nm, 100 nm, and 200 nm were produced, and these dispersion liquids and the ITO powder used in Control Example 1 were all used. Silver particles are dispersed in kerosene in an amount of 0.1 wt%, and the average particle size of silver particles is 10 nm (Example 2-1), 50 nm (Example 2-2), 100 nm (Example 2-3). And 4 types of composite dispersion liquid of 200 nm (Example 2-4) was produced, the coating material was produced from these composite dispersion liquids, and the microwave was irradiated on the conditions similar to Example 1. FIG. The film resistance and light transmittance of each conductive film obtained were measured, and the results are shown in Table 1.
〔実施例3〕
使用したITO粉末のBET粒径が8nmのもの(実施例3−1)と,84nmのもの(実施例3−2)であった以外は,実施例1−2を繰り返した。得られた各導電膜の膜抵抗と光透過率を測定し,その結果を表1に示した。
Example 3
Example 1-2 was repeated except that the ITO powder used had a BET particle size of 8 nm (Example 3-1) and 84 nm (Example 3-2). The film resistance and light transmittance of each conductive film obtained were measured, and the results are shown in Table 1.
〔実施例4〕
マイクロ波加熱に代えて,200℃×1時間の電気炉加熱を行なった以外は,実施例2−1と,実施例2−2を繰り返した。得られた各導電膜の膜抵抗と光透過率を測定し,その結果を表1に示した。
Example 4
Example 2-1 and Example 2-2 were repeated except that instead of microwave heating, electric furnace heating at 200 ° C. × 1 hour was performed. The film resistance and light transmittance of each conductive film obtained were measured, and the results are shown in Table 1.
表1に見られるように,銀ナノ粒子を配合したITO塗膜はマイクロ波加熱によって膜抵抗が大幅に低下することがわかる。また,銀ナノ粒子を配合しないITO塗膜は200℃加熱で膜抵抗が低下しないのに対し,銀ナノ粒子を配合したITO塗膜は200℃加熱で膜抵抗が低下することがわかる。 As seen in Table 1, it can be seen that the film resistance of the ITO coating containing silver nanoparticles is greatly reduced by microwave heating. It can also be seen that the ITO coating without silver nanoparticles does not decrease in membrane resistance when heated at 200 ° C, whereas the ITO coating with silver nanoparticles decreases in membrane resistance when heated at 200 ° C.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005218237A JP5070524B2 (en) | 2005-07-28 | 2005-07-28 | Production method of conductive film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005218237A JP5070524B2 (en) | 2005-07-28 | 2005-07-28 | Production method of conductive film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007035471A JP2007035471A (en) | 2007-02-08 |
JP5070524B2 true JP5070524B2 (en) | 2012-11-14 |
Family
ID=37794470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005218237A Expired - Fee Related JP5070524B2 (en) | 2005-07-28 | 2005-07-28 | Production method of conductive film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5070524B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI309050B (en) * | 2006-04-03 | 2009-04-21 | Ind Tech Res Inst | Azo transparent conducting film with metallic nano particles and method of producing thereof |
JP2008218243A (en) * | 2007-03-05 | 2008-09-18 | Dainippon Printing Co Ltd | Manufacturing method of transparent conductive substrate, and transparent conductive substrate |
US10231344B2 (en) * | 2007-05-18 | 2019-03-12 | Applied Nanotech Holdings, Inc. | Metallic ink |
JP2009051674A (en) * | 2007-08-23 | 2009-03-12 | Tosoh Corp | Method for producing ceramics |
JP4835541B2 (en) * | 2007-08-23 | 2011-12-14 | 東ソー株式会社 | Manufacturing method of sintered ceramics |
JP4835542B2 (en) * | 2007-08-23 | 2011-12-14 | 東ソー株式会社 | Method for producing conductive ceramic sintered body |
JPWO2010106920A1 (en) * | 2009-03-18 | 2012-09-20 | コニカミノルタホールディングス株式会社 | Thin film transistor manufacturing method and thin film transistor |
JP2012028136A (en) * | 2010-07-22 | 2012-02-09 | Showa Denko Kk | Conductive particle dispersed body for conductive film formation, method of manufacturing printed wiring board, and conductive film formation method |
WO2012115165A1 (en) * | 2011-02-25 | 2012-08-30 | 東京エレクトロン株式会社 | Film forming method and film forming device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09286936A (en) * | 1996-04-22 | 1997-11-04 | Sumitomo Metal Mining Co Ltd | Applying solution for forming transparent conductive film, transparent conductive film using the same and its formation |
JP2000123658A (en) * | 1998-10-09 | 2000-04-28 | Fuji Photo Film Co Ltd | Manufacture of transparent conductive film and transparent conductive film |
JP2003151362A (en) * | 2001-08-31 | 2003-05-23 | Toppan Printing Co Ltd | Conductive film and manufacturing method of conductive film |
JP4271438B2 (en) * | 2002-12-24 | 2009-06-03 | 住友大阪セメント株式会社 | Transparent conductive film forming paint, transparent conductive film, method for producing the same, and display device including the same |
JP4438381B2 (en) * | 2003-11-05 | 2010-03-24 | 株式会社ブリヂストン | Crystalline ITO film, method for crystallizing ITO film, transparent conductive film, touch panel, and dye-sensitized solar cell |
-
2005
- 2005-07-28 JP JP2005218237A patent/JP5070524B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007035471A (en) | 2007-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI485070B (en) | Transparent conducting film | |
JP5309440B2 (en) | Composition for forming electrode of solar cell, method for forming the electrode, and method for producing solar cell using the electrode obtained by the forming method | |
JP6767723B2 (en) | Oxide thin film and oxide sintered body for sputtering target for producing the thin film | |
US20090236567A1 (en) | Silver particle powder and process for production thereof | |
TWI450821B (en) | Transparent electrode with flexibility and method for manufacturing the same | |
JP2007314364A (en) | Oxide sintered compact, target, oxide transparent conductive film obtained by using the same and method of manufacturing the same | |
JP2009129882A (en) | Transparent conductive coat, transparent conductive film, and flexible transparent plane electrode | |
JP5070524B2 (en) | Production method of conductive film | |
CN104021838B (en) | A kind of polythiophene/mixed valence metal oxide works in coordination with electrocondution slurry and preparation method thereof | |
JP2012054222A (en) | Conductive paste and method of producing the same | |
CN102044309A (en) | Conductive material shaped through optical energy or heat energy, method for preparing conductive material and conductive composition | |
JP5405935B2 (en) | Transparent conductive sheet | |
Chen et al. | Facile preparation of high conductive silver electrodes by dip-coating followed by quick sintering | |
JP2009259806A (en) | Method of manufacturing porous copper sintered film, and porous copper sintered film | |
CN107025952A (en) | Electric conductor, its manufacture method and the electronic device including it | |
JP4756163B2 (en) | Dispersion and paste of composite particle powder and method for producing silver particle powder used therefor | |
JP2006009120A (en) | Metal particulate-dispersed body | |
JP5247078B2 (en) | Indium oxide fine particle dispersion | |
JP2007027487A (en) | Method for forming conductive film or wiring | |
JP2010146995A (en) | Manufacturing method of transparent conductive sheet | |
JP2012106879A (en) | Zinc oxide-based transparent conductive film-forming material, method for manufacturing the same, target using the same, and method for forming zinc oxide-based transparent conductive film | |
JP4793537B2 (en) | Visible light transmission type particle-dispersed conductor, conductive particles, visible light transmission type conductive article, and manufacturing method thereof | |
JP2012158825A (en) | Zinc oxide-based transparent conductive film-forming material and method for producing the same, target using the same, method for forming zinc oxide-based transparent conductive film, and transparent conductive substrate | |
JP2010146757A (en) | Manufacturing method of transparent conductive sheet | |
JP2012106880A (en) | Zinc oxide-based transparent conductive film-forming material, method for manufacturing the same, target using the same, and method for forming zinc oxide-based transparent conductive film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080619 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110516 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110711 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120403 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120531 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120703 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20120724 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120724 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120725 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5070524 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150831 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |