JP5331929B2 - Electronic member, electronic component and method for manufacturing the same - Google Patents
Electronic member, electronic component and method for manufacturing the same Download PDFInfo
- Publication number
- JP5331929B2 JP5331929B2 JP2012177687A JP2012177687A JP5331929B2 JP 5331929 B2 JP5331929 B2 JP 5331929B2 JP 2012177687 A JP2012177687 A JP 2012177687A JP 2012177687 A JP2012177687 A JP 2012177687A JP 5331929 B2 JP5331929 B2 JP 5331929B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- silver oxide
- bonding
- silver
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/73—Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01047—Silver [Ag]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01327—Intermediate phases, i.e. intermetallics compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/10251—Elemental semiconductors, i.e. Group IV
- H01L2924/10253—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
- H01L2924/183—Connection portion, e.g. seal
- H01L2924/18301—Connection portion, e.g. seal being an anchoring portion, i.e. mechanical interlocking between the encapsulation resin and another package part
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19105—Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
Landscapes
- Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
- Wire Bonding (AREA)
- Die Bonding (AREA)
Abstract
Description
本発明は、電子部材同士の電気的接合(例えば、半導体素子と回路部材との接合)を行うことを前提とした電子部材に関し、該電子部材を実装した電子部品とその実装方法に関する。以下、半導体素子や回路部材等を総称して電子部材と称す。 The present invention relates to an electronic member on the premise that electrical bonding between electronic members (for example, bonding between a semiconductor element and a circuit member) is performed, and relates to an electronic component mounted with the electronic member and a mounting method thereof. Hereinafter, semiconductor elements, circuit members, and the like are collectively referred to as electronic members.
近年、モバイル機器などをはじめ、多機能化,高速化,軽薄短小化に対する要求が高まっている。これを実現するために、電気信号を入出力する電極の狭ピッチ化や低背化が重要となっている。 In recent years, there has been an increasing demand for multi-functionality, high speed, lightness, thinness and miniaturization, including mobile devices. In order to achieve this, it is important to reduce the pitch and height of electrodes for inputting and outputting electrical signals.
一方で、高密度な実装とともに、単位面積,単位体積あたりの発熱量が増加するため、放熱性の向上が重要となる。また同時に、電極面積の減少に伴い接合部の低抵抗化も重要となる。 On the other hand, since heat generation per unit area and unit volume increases with high-density mounting, improvement in heat dissipation becomes important. At the same time, it is important to reduce the resistance of the joint as the electrode area decreases.
複数の電子部材間の電極を電気的に接合する接続技術として、導電性接着剤,はんだを用いた接合,金属の圧接(金バンプなどの接合)などがある。さらに、これら先行する接続技術に対して、酸化銀粒子を用いることによって、はんだや銀ペーストよりも優れた放熱や耐熱特性を有する接合部を実現できる技術が報告されている(例えば、非特許文献1参照)。 Examples of connection techniques for electrically bonding electrodes between a plurality of electronic members include bonding using a conductive adhesive and solder, and metal pressure welding (bonding such as gold bumps). Furthermore, with respect to these preceding connection technologies, there has been reported a technology capable of realizing a joint having heat dissipation and heat resistance characteristics superior to solder and silver paste by using silver oxide particles (for example, non-patent literature). 1).
酸化銀粒子を用いた接合技術は、酸化銀粒子を低温で還元させ、接合部を低抵抗で高放熱な銀で構成させる技術である。その接合材料として、酸化銀粒子とこれを低温で還元することが可能な還元剤を混合した組成物を用いる。また、バインダを含有する組成物(特許文献1)、あるいはバインダを含有しない組成物(特許文献2)の二つに分けられる。
特に、後者のバインダを含有しない組成物を接合材料として用いた場合、接合させる相手電極に対して金属接合が得られるため(非特許文献1)、放熱性に優れた接合部を提供できる。
The joining technique using silver oxide particles is a technique in which silver oxide particles are reduced at a low temperature and the joint is made of silver having low resistance and high heat dissipation. As the bonding material, a composition in which silver oxide particles and a reducing agent capable of reducing it at a low temperature are mixed is used. Moreover, it can be divided into two, a composition containing a binder (Patent Document 1) and a composition not containing a binder (Patent Document 2).
In particular, when a composition that does not contain the latter binder is used as a bonding material, metal bonding is obtained with respect to the mating electrode to be bonded (Non-patent Document 1), and thus a bonded portion with excellent heat dissipation can be provided.
酸化銀と還元剤からなる組成物を加熱すると、粒径の小さい銀粒子が生成する。粒径の小さい銀粒子は、低温でも優れた焼結能力を有し、熱処理により組成物中に含まれる有機成分が分解することで、生成した銀粒子と接続する電子部品の電極との接合と銀粒子間の焼結がなされる。最終的に、有機成分が除去されることで、金属銀のネットワークで構成された接合層を有する電子部品が完成する。金属銀で構成されることで放熱特性に優れた接合層となる。接合に要する加熱温度が、エレクトロニクス実装で広く用いられているはんだ材と同程度であるため、高放熱が可能な電子部品用接合材料として注目されている。
ただし、良好な接合状態とするためには、加熱工程とともに加圧付与の工程が必要とされている。
When a composition comprising silver oxide and a reducing agent is heated, silver particles having a small particle size are generated. Silver particles having a small particle size have excellent sintering ability even at low temperatures, and the organic components contained in the composition are decomposed by heat treatment, so that the generated silver particles are joined to the electrode of the electronic component to be connected. Sintering between silver particles is performed. Finally, the organic component is removed to complete an electronic component having a bonding layer composed of a metallic silver network. By being composed of metallic silver, the bonding layer has excellent heat dissipation characteristics. Since the heating temperature required for joining is approximately the same as that of a solder material widely used in electronics mounting, it has been attracting attention as a joining material for electronic parts capable of high heat dissipation.
However, in order to obtain a good bonded state, a pressure application step is required together with the heating step.
上記に掲げた粒子状の酸化銀接合用材料の供給は、酸化銀を低温で銀に還元するための還元剤を添加して、下記の手法によりなされることが提案されている。 It has been proposed that the particulate silver oxide bonding material listed above is supplied by the following method by adding a reducing agent for reducing silver oxide to silver at a low temperature.
1)粘度調整のための種々の溶剤を添加し、ペースト状態で印刷する手法。 1) A method of adding various solvents for viscosity adjustment and printing in a paste state.
2)ペースト状態で板材に塗布してこれを挿入する手法。 2) A method of applying a paste to a plate and inserting it.
3)室温では液体状態にならない還元剤を選定し、該固体粉末に圧力を付与しシート状 で挿入する手法。 3) A method of selecting a reducing agent that does not become liquid at room temperature, applying pressure to the solid powder, and inserting it in a sheet form.
酸化銀粒子を用いた接合では、その還元時に粒径が小さい銀粒子が生成することで低温かつ低加圧の接合が可能となる。これは、金属粒子の粒径が減少すると、曲率が大きくなるために焼結能力が向上するためであり、この現象を利用した接合技術が発明されている。金属粒子の焼結は、粒子間のネック部に表面張力が作用し、ネックが成長することでなされる。すなわち、曲率の大きな粒子を接合材料に用いることで、表面張力がバルク状態よりも増大し、低温,低加圧で電気的な接合が可能となる。しかし、本発明者らが粒子状の酸化銀粒子を用いて接合する技術に関して、鋭意実験を行った結果、次に挙げる課題があることが判明した。 In joining using silver oxide particles, joining at low temperature and low pressure is possible by producing silver particles having a small particle size during the reduction. This is because, as the particle size of the metal particles decreases, the curvature increases, so that the sintering ability improves, and a joining technique using this phenomenon has been invented. The metal particles are sintered by the surface tension acting on the neck portions between the particles and the neck growth. That is, by using particles having a large curvature for the bonding material, the surface tension increases from the bulk state, and electrical bonding is possible at low temperature and low pressure. However, as a result of diligent experiments regarding the technique of joining using particulate silver oxide particles, the inventors have found that there are the following problems.
粒子状の組成物を微細ピッチで供給するには、ペースト化して印刷する手法が取られる。よって、精度よく印刷するために、流動性を上昇させる必要があった。しかし、組成物中の添加する有機物量が増加する問題が生じた。これにより、酸化銀粒子を緻密に供給することができず接合不良が生じた。また、酸化銀粒子を用いた接合では、はんだを用いた接合とは異なり、材料が溶融しないため、接合前に空隙が存在すると、その空隙が接合後にも空隙として残存しやすいという課題がある。酸化銀を用いた接合では、接合後の接合層となる焼結銀層の緻密度が高いことが、優れた放熱性や機械的特性を実現するために必要である。 In order to supply the particulate composition at a fine pitch, a method of making a paste and printing is taken. Therefore, it is necessary to increase the fluidity in order to print with high accuracy. However, there is a problem that the amount of organic matter added in the composition increases. As a result, the silver oxide particles could not be supplied precisely, resulting in poor bonding. In addition, in joining using silver oxide particles, unlike the joining using solder, since the material does not melt, if there is a void before joining, there is a problem that the void tends to remain as a void after joining. In joining using silver oxide, it is necessary for the sintered silver layer, which becomes the joining layer after joining, to have a high density in order to achieve excellent heat dissipation and mechanical characteristics.
また、精度よく印刷するために、酸化銀粒子の粒子径を減少させ、有機溶剤への分散性を向上させる手法を検討した。しかしながら、合成後に有機物で被覆しないと粒子間の凝集が生じる問題が生じた。そこで、たとえば特許文献3にある手法により、酸化銀粒子の表面にその凝集を防止するための有機物を被覆した。しかし、揮発しにくい有機物で被覆することになり、接合材料として用いた際に有機物を除去するための温度が上昇し、接合温度が上昇する課題が生じた。このように、ペースト材の印刷では微細ピッチで供給が困難であること、信頼性のある接合ができない課題があることがわかった。 Moreover, in order to print accurately, the method of reducing the particle diameter of a silver oxide particle and improving the dispersibility to an organic solvent was examined. However, there is a problem that the particles are aggregated if not coated with an organic substance after synthesis. Thus, for example, the surface of the silver oxide particles was coated with an organic substance for preventing the aggregation by the technique disclosed in Patent Document 3. However, since it is coated with an organic substance that is difficult to volatilize, the temperature for removing the organic substance rises when used as a bonding material, resulting in a problem that the bonding temperature increases. Thus, it has been found that the paste material is difficult to supply at a fine pitch and that there is a problem that reliable bonding cannot be performed.
次に、微細ピッチで配置したLSIチップのAuバンプにペースト材をディップ塗布し、接続端子間にソルダレジストを有しているプリント基板に設置した。設置の段階では問題はなかった。しかしながら、接合時に加圧した結果、ペースト材は流動性が良いため、レジストの範囲をこえる接合材料の広がりが生じ、接合後に電極同士の短絡が生じた。 Next, a paste material was dip coated on the Au bumps of the LSI chip arranged at a fine pitch, and placed on a printed board having a solder resist between the connection terminals. There was no problem at the stage of installation. However, as a result of pressurizing at the time of bonding, the paste material has good fluidity, so that the bonding material spreads beyond the resist range, and the electrodes are short-circuited after bonding.
また、接合前に乾燥処理を行い、加圧による接合材料の広がりを防止した。しかし、バンプ側面に塗布された領域の接合層は無加圧での接合となり、Auバンプに対する接合強度が得られず、接合後に接合層の剥離が生じ、剥離した接合層による隣の電極との短絡箇所が現れた。 Moreover, the drying process was performed before joining and the spreading | diffusion of the joining material by pressurization was prevented. However, the bonding layer in the region applied to the side surface of the bump is bonded without applying pressure, and the bonding strength to the Au bump cannot be obtained. After the bonding, the bonding layer peels off, and the peeled bonding layer contacts the adjacent electrode. A short circuit appeared.
本発明はこのような問題点に鑑みてなされたものである。接合材料を微細ピッチで供給し電気的な接続が可能な電子部材を提供することを目的とする。 The present invention has been made in view of such problems. It is an object of the present invention to provide an electronic member that can be electrically connected by supplying a bonding material at a fine pitch.
本発明者らは、酸化銀から銀へ還元する挙動を透過型顕微鏡により調査した。その結果、還元前の酸化銀の曲率が小さい層状であっても、還元し生成する銀の曲率は大きくなることを確認した。これは、酸化銀が銀に還元され体積が減少する現象が、図1(a)に示すように、相似形で収縮するのではなく、図1(b)に示すように酸化銀内に多数の金属銀の核が形成し、元の外形を維持したまま形骸化して還元するためであることを見出した。 The present inventors investigated the behavior of silver oxide to silver reduction using a transmission microscope. As a result, it was confirmed that even when the curvature of silver oxide before reduction is small, the curvature of silver produced by reduction increases. This is because the phenomenon that silver oxide is reduced to silver and the volume is reduced does not shrink in a similar shape as shown in FIG. 1 (a), but a large number in silver oxide as shown in FIG. 1 (b). It was found that the metal silver nuclei formed and reduced into a skeleton while maintaining the original shape.
この微粒子化メカニズムを利用することで、酸化銀を粒子状ではなく、緻密な層状で提供しても接合が可能となることを推察した。鋭意実験した結果、層状で形成した酸化銀を用いて接合できることを確認した。このように、層状で形成した酸化銀を用いた接合により、ペースト化することで生じる課題を解決できることを見出した。 By utilizing this fine particle formation mechanism, it was inferred that bonding is possible even if silver oxide is provided in a dense layer rather than in the form of particles. As a result of earnest experiments, it was confirmed that bonding was possible using silver oxide formed in layers. Thus, it discovered that the problem which arises by paste-izing can be solved by joining using the silver oxide formed in the layer form.
このように、本発明は上記目的を達成するため、電気信号を入出力する電極または電気信号を接続するための接続端子の最表面が酸化銀層であることを特徴とする電子部材を提供する。 Thus, in order to achieve the above object, the present invention provides an electronic member characterized in that an outermost surface of an electrode for inputting / outputting an electric signal or a connecting terminal for connecting an electric signal is a silver oxide layer. .
前記電子部材は、前記電極または前記接続端子の最表面に対して、銀層を形成し、さらに前記銀層を酸化処理により、前記銀層の全部あるいは一部を酸化銀層とすることを特徴とする電子部材の製造方法により作製できる。 The electronic member is characterized in that a silver layer is formed on the outermost surface of the electrode or the connection terminal, and further, the silver layer is oxidized to make all or part of the silver layer a silver oxide layer. It can produce with the manufacturing method of the electronic member to make.
また、前記の電子部材の酸化銀層に還元剤を供給し、少なくとも接合面に100℃〜400℃の加熱を付与する工程と、少なくとも酸化銀が金属銀に還元する際に接合面に0.1〜20MPaの加圧を付与することで、電極間を電気的に接合することを特徴とする電子部品の実装方法を提供する。 Further, a step of supplying a reducing agent to the silver oxide layer of the electronic member and applying heating at 100 ° C. to 400 ° C. to at least the bonding surface, and at least when the silver oxide is reduced to metallic silver, the bonding surface is reduced to 0.5. Provided is a method for mounting an electronic component, wherein electrodes are electrically joined by applying a pressure of 1 to 20 MPa.
前記手法により、回路基板に設けられた一つ以上の接続端子に対して、電子部材に設けられた一つ以上の電極端子が接合層を介して電気的に接合された電子部品であって、前記接合層は結晶粒径が1000nm以下の結晶粒径を有する焼結銀を主体として構成され、前記接合層以外の電極表面の全面あるいは一部が金属銀の粗化層であることを特徴とする電子部品を提供できる。 By the above technique, one or more connection terminals provided on the circuit board are electronic components in which one or more electrode terminals provided on the electronic member are electrically bonded via a bonding layer, The bonding layer is mainly composed of sintered silver having a crystal grain size of 1000 nm or less, and the entire surface or part of the electrode surface other than the bonding layer is a roughened layer of metallic silver, Can provide electronic parts.
本発明では、Agメタライズの全部あるいは一部を酸化銀層に酸化させる手法をとる。
そのため、Agメタライズされた電極が形成できるピッチ間隔が、本発明で接合可能なピッチ間隔となる。すなわち、接合材料の供給方法によるピッチ間隔の減少がほとんどない電子部材となる。このように本発明によれば、高放熱,高耐熱な酸化銀を用いた接合部を微細ピッチでかつ薄く供給可能となり、高精度な高密度実装が可能となる。
In the present invention, a technique is adopted in which all or part of the Ag metallization is oxidized to the silver oxide layer.
Therefore, the pitch interval at which an Ag metallized electrode can be formed is the pitch interval that can be joined in the present invention. That is, the electronic member is almost free from a decrease in pitch interval due to the bonding material supply method. As described above, according to the present invention, it is possible to supply thin joints using silver oxide having high heat dissipation and high heat resistance at a fine pitch, and high-precision and high-density mounting is possible.
本発明のひとつの例を図2により説明する。図2(a)は、基板絶縁層201上に配線202が形成され、配線202の接続端子(電極)となる部分に電極203が形成され、接続端子周辺にレジスト204が設けられた回路基板200である。 One example of the present invention will be described with reference to FIG. FIG. 2A shows a circuit board 200 in which a wiring 202 is formed on a substrate insulating layer 201, an electrode 203 is formed in a portion to be a connection terminal (electrode) of the wiring 202, and a resist 204 is provided around the connection terminal. It is.
(1)前記電子部材の電極203をAgメタライズとする、あるいはさらにその最表面 にAgメタライズを設ける。 (1) The electrode 203 of the electronic member is made of Ag metallization, or further, Ag metallization is provided on the outermost surface thereof.
(2)次に、そのAgメタライズ層の全部あるいは一部残した状態で酸化銀層とする。 (2) Next, a silver oxide layer is formed with all or part of the Ag metallized layer remaining.
(1)と(2)により、図2(b)に示すように、接合材料となる酸化銀層205を高密度に提供できることを見出した。これは、Agメタライズから酸化銀層へ酸化する際に、体積膨張が伴う反応機構をとるためである。 From (1) and (2), it was found that the silver oxide layer 205 serving as a bonding material can be provided at a high density as shown in FIG. This is because a reaction mechanism accompanied by volume expansion is taken when oxidizing from Ag metallization to a silver oxide layer.
図2(b)に示す回路基板に対し、上記で述べた実装方法でLSIチップ209(チップ206,電極207,メタライズ層208)を接合することで、図2(c)に示す焼結銀層205aを接合部に有する電子部品が提供できる。また、接合時加圧されていない焼結銀層205bは粗化層となる。本発明では、接合材料となる酸化銀層が、ペースト材のように流動性がなく、さらに下地メタライズに対して一定の強度を有しており、さらにはんだ材料のように接合時に溶融しないため、接合時の加熱や加圧による接合材料(導電部)の広がりがない。また、接合面当たり0.1〜20MPaという低加圧で、金属接合が得られるために、圧着法に比較してバンプの接合面平行方向への塑性変形を低減できる。
このように、従来法の課題であった電子部材実装時のピッチ間隔の減少がほとんどない電子部品となる。
By bonding the LSI chip 209 (chip 206, electrode 207, metallized layer 208) to the circuit board shown in FIG. 2B by the mounting method described above, the sintered silver layer shown in FIG. An electronic component having 205a at the joint can be provided. Moreover, the sintered silver layer 205b which is not pressurized at the time of joining becomes a roughened layer. In the present invention, the silver oxide layer to be the bonding material is not fluid like the paste material, and has a certain strength against the underlying metallization, and further does not melt at the time of bonding like the solder material, There is no spread of the bonding material (conductive part) due to heating or pressing during bonding. In addition, since metal bonding can be obtained at a low pressure of 0.1 to 20 MPa per bonding surface, plastic deformation in the direction parallel to the bonding surface of the bump can be reduced as compared with the pressure bonding method.
In this way, the electronic component is hardly reduced in pitch interval when mounting an electronic member, which was a problem of the conventional method.
以下に、この特性を利用した発明と改良点について説明する。 The invention using this characteristic and the improvements will be described below.
酸化銀を粒子状ではなく、層状で供給することにより、供給面に対して一定の強度を付与することが可能になる。このように接合前の接合材料と下地との強度を持たせることによって、耐衝撃や接合時の接合材料の飛散などを防止できる。また、Agメタライズ層から酸化銀層への処理後にAgメタライズを一部残す、すなわち、酸化銀層の下地をAgメタライズとすることによって、酸化銀層と下地との間に5MPa以上の密着力を付与できる。 By supplying silver oxide in layers instead of particles, it is possible to give a certain strength to the supply surface. Thus, by giving the strength between the bonding material before bonding and the base, it is possible to prevent impact resistance and scattering of the bonding material during bonding. Further, by leaving a part of the Ag metallization after the processing from the Ag metallized layer to the silver oxide layer, that is, by making the base of the silver oxide layer Ag metallized, an adhesion force of 5 MPa or more is provided between the silver oxide layer and the base. Can be granted.
さらに、上記の状態で接合すると、無加圧の状態(図2(b)の205bの領域)でも、下地のAgメタライズと一体化(金属接合)するため、Agのバルク状態の強度となる。これにより、粒子状酸化銀を用いた際に課題となる無加圧部分の接合領域(図2(b)の205bの領域)の除去が不要となる。これは、接合面積よりも材料の供給面積を広くとれることにつながり、より安定した接続が可能となる。 Further, when bonding is performed in the above state, even in a non-pressurized state (region 205b in FIG. 2B), since it is integrated with the underlying Ag metallization (metal bonding), the strength of the Ag bulk state is obtained. This eliminates the need to remove the non-pressurized joining region (region 205b in FIG. 2B), which is a problem when using particulate silver oxide. This leads to a larger material supply area than the bonding area, and a more stable connection is possible.
酸化銀を用いた接合では、還元時に生成した銀粒子の焼結により接合がなされる。しかし、酸化銀から金属銀に還元する際、体積減少が生じる。このため、膜厚が厚いほど、接合時に加圧を付与することによって、接合面に垂直方向に圧縮され緻密になる。詳しくは実施例3で述べるが、酸化銀層の厚さが約400nmを越えると急激な強度上昇が認められた。よって、接合層となる酸化銀層の厚さは400nm以上ある方が好ましい。ただし、5μmより大きくなると、酸化銀を形成するのに長時間要するとともに、接合時に還元する時間も長時間化するため、好ましくない。よって、接合層となる酸化銀層の厚さは5μm以下が好ましい。 In joining using silver oxide, joining is performed by sintering silver particles generated during reduction. However, volume reduction occurs when reducing from silver oxide to metallic silver. For this reason, as the film thickness is increased, pressure is applied at the time of bonding so that the film is compressed in a direction perpendicular to the bonding surface and becomes dense. Although details will be described in Example 3, when the thickness of the silver oxide layer exceeds about 400 nm, a rapid increase in strength was observed. Therefore, the thickness of the silver oxide layer serving as the bonding layer is preferably 400 nm or more. However, if it exceeds 5 μm, it takes a long time to form silver oxide, and the time for reduction at the time of bonding also becomes longer, which is not preferable. Therefore, the thickness of the silver oxide layer serving as the bonding layer is preferably 5 μm or less.
接合する電子部品の電極表面は、曲率が小さく酸化銀から還元した銀粒子との焼結は、銀粒子同士と比較して困難になる。上記で述べたように、酸化銀から還元し生成する銀粒子は、還元する前の酸化銀の外形を反映するため、還元する前の酸化銀の曲率半径が小さい方が有利である。酸化銀の曲率は、酸化処理条件により制御可能である。また、生成する銀粒子の曲率はナノメートルサイズの粒子となるように、酸化銀層の表面ではその曲率半径が1μm以下になるように制御することが好ましい。さらに、二つ以上の電子部材を重ねて加圧し接合する場合、表面の摩擦抵抗があることで、加圧した際の部品の滑りを抑制することが可能となる。 The electrode surfaces of the electronic parts to be joined have a small curvature, and sintering with silver particles reduced from silver oxide becomes difficult as compared with silver particles. As described above, the silver particles generated by reduction from silver oxide reflect the outer shape of the silver oxide before reduction, and therefore it is advantageous that the radius of curvature of the silver oxide before reduction is smaller. The curvature of silver oxide can be controlled by the oxidation treatment conditions. Moreover, it is preferable to control the curvature radius of the silver oxide layer to be 1 μm or less on the surface of the silver oxide layer so that the curvature of the silver particles to be generated becomes nanometer-sized particles. Furthermore, when two or more electronic members are stacked and pressed and joined, there is a frictional resistance on the surface, so that it is possible to suppress slipping of components when pressed.
酸化銀層に対して、有機金属(例えばカルボン酸銀塩)は還元剤として機能する。よって、これを酸化銀層に供給することより、酸化銀を還元させる接合が可能である。有機金属の供給は、溶液を塗布してもよいし、酸化銀の一部を改質してもよい。また、有機金属による酸化銀の還元温度は200℃以下となるため、融点が200℃以上の有機金属を用いれば接合時に液層ができず、接合層中にサイズが大きなボイドができることを防止することが可能である。 For the silver oxide layer, an organic metal (for example, a carboxylic acid silver salt) functions as a reducing agent. Therefore, by supplying this to the silver oxide layer, bonding for reducing the silver oxide is possible. The organic metal may be supplied by applying a solution or modifying a part of silver oxide. In addition, since the reduction temperature of silver oxide with an organic metal is 200 ° C. or lower, if an organic metal having a melting point of 200 ° C. or higher is used, a liquid layer cannot be formed at the time of bonding, and large voids are prevented from being formed in the bonding layer. It is possible.
上記と同様に、酸化銀層に対して、還元剤として機能する材料には有機物がある。有機物の種類としては、カルボン酸類,アルコール類,アミン類から選ばれる1種以上の有機物が好ましい。なお、「類」のなかには、有機物が金属と化学的に結合した場合などに由来するイオンや錯体等も含めるものとする。また、粒径がナノメートルサイズの金属粒子を被覆している有機物も含める。ただし、硫黄やハロゲン元素を含有する有機物は、接合後に接合層内に当該元素が残留して腐食の原因となる可能性があるため、避ける方が望ましい。 Similarly to the above, there is an organic substance as a material that functions as a reducing agent for the silver oxide layer. As the kind of organic substance, one or more kinds of organic substances selected from carboxylic acids, alcohols, and amines are preferable. Note that “class” includes ions, complexes, and the like derived from cases where organic substances are chemically bonded to metals. Moreover, the organic substance which coat | covers the metal particle with a particle size of nanometer size is also included. However, it is preferable to avoid organic substances containing sulfur or halogen elements because the elements may remain in the bonding layer after bonding and cause corrosion.
カルボン酸類の例としては、酢酸,カプロン酸,エナント酸,カプリル酸,ペラルゴン酸,カプリン酸,ウンデカン酸,ラウリン酸,トリデシル酸,ミリスチン酸,ペンタデシル酸,パルミチン酸,マルガリン酸,ステアリン酸,ミリストレイン酸,パルミトレイン酸,オレイン酸,エライジン酸,エルカ酸ネルボン酸,リノール酸,リノレン酸,アラキドン酸,エイコサペンタエン酸,イワシ酸,シュウ酸,マロン酸,マレイン酸,フマル酸,コハク酸,グルタル酸,リンゴ酸,アジピン酸,クエン酸,安息香酸,フタル酸,イソフタル酸,テレフタル酸,サリチル酸,2,4−ヘキサジインカルボン酸,2,4−ヘプタジインカルボン酸,2,4−オクタジインカルボン酸,2,4−デカジインカルボン酸,2,4−ドデカジインカルボン酸,2,4−テトラデカジインカルボン酸,2,4−ペンタデカジインカルボン酸,2,4−ヘキサデカジインカルボン酸,2,4−オクタデカジインカルボン酸,2,4−ノナデカジインカルボン酸,10,12−テトラデカジインカルボン酸,10,12−ペンタデカジインカルボン酸,10,12−ヘキサデカジインカルボン酸,10,12−ヘプタデカジインカルボン酸,10,12−オクタデカジインカルボン酸,10,12−トリコサジインカルボン酸,10,12−ペンタコサジインカルボン酸,10,12−ヘキサコサジインカルボン酸,10,12−ヘプタコサジインカルボン酸,10,12−オクタコサジインカルボン酸,10,12−ノナコサジインカルボン酸,2,4−ヘキサジインジカルボン酸,3,5−オクタジインジカルボン酸,4,6−デカジインジカルボン酸,8,10−オクタデカジインジカルボン酸などが挙げられる。 Examples of carboxylic acids include acetic acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecanoic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, myristolein Acid, palmitoleic acid, oleic acid, elaidic acid, erucic acid, nervonic acid, linoleic acid, linolenic acid, arachidonic acid, eicosapentaenoic acid, succinic acid, oxalic acid, malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, Malic acid, adipic acid, citric acid, benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid, 2,4-hexadiyne carboxylic acid, 2,4-heptadiyne carboxylic acid, 2,4-octadiyne carboxylic acid, 2,4-decadiyne carboxylic acid, 2,4-dodecadiyne carbo Acid, 2,4-tetradecadiyne carboxylic acid, 2,4-pentadecadiyne carboxylic acid, 2,4-hexadecadiyne carboxylic acid, 2,4-octadecadiin carboxylic acid, 2,4-nonadecadin carboxylic acid Acid, 10,12-tetradecadiyne carboxylic acid, 10,12-pentadecadiyne carboxylic acid, 10,12-hexadecadiin carboxylic acid, 10,12-heptadecadin carboxylic acid, 10,12-octadecadiin carboxylic acid Acid, 10,12-tricosadiyne carboxylic acid, 10,12-pentacosadiyne carboxylic acid, 10,12-hexacosadiyne carboxylic acid, 10,12-heptacosadiyne carboxylic acid, 10,12-octacosadiyne Carboxylic acid, 10,12-nonacosadiyne carboxylic acid, 2,4-hexadiyne dicarboxylic acid, 3,5-octane Di Print acid, 4,6-deca-di Inge acid, 8,10-like octadecatienyl indicator acids.
アルコール類の例としては、エチルアルコール,プロピルアルコール,ブチルアルコール,アミルアルコール,ヘキシルアルコール,ヘプチルアルコール,オクチルアルコール,ノニルアルコール,デシルアルコール,ウンデシルアルコール,ドデシルアルコール,ミリスチルアルコール,セチルアルコール,ステアリルアルコール,オエレイルアルコール,リノリルアルコール,エチレングリコール,トリエチレングリコール,グリセリンなどが挙げられる。 Examples of alcohols include ethyl alcohol, propyl alcohol, butyl alcohol, amyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, dodecyl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, Examples include oleyl alcohol, linoleyl alcohol, ethylene glycol, triethylene glycol, and glycerin.
アミン類の例としては、メチルアミン,エチルアミン,プロピルアミン,ブチルアミン,ペンチルアミン,ヘキシルアミン,ヘプチルアミン,オクチルアミン,ノニルアミン,デシルアミン,ウンデシルアミン,ドデシルアミン,トリデシルアミン,テトラデシルアミン,ペンタデシルアミン,ヘキサデシルアミン,ヘプタデシルアミン,オクタデシルアミン,オレイルアミン,ジメチルアミン,ジエチルアミン,ジプロピルアミン,ジブチルアミン,ジペンチルアミン,ジヘキシルアミン,ジヘプチルアミン,ジオクチルアミン,ジノニルアミン,ジデシルアミン,イソプロピルアミン,1,5−ジメチルヘキシルアミン,2−エチルヘキシルアミン,ジ(2−エチルヘキシル)アミン,メチレンジアミン,トリメチルアミン,トリエチルアミン,エチレンジアミン,テトラメチルエチレンジアミン,ヘキサメチレンジアミン,N,N−ジメチルプロパン−2−アミン,アニリン,N,N−ジイソプロピルエチルアミン,2,4−ヘキサジイニルアミン,2,4−ヘプタジイニルアミン,2,4−オクタジイニルアミン,2,4−デカジイニルアミン,2,4−ドデカジイニルアミン,2,4−テトラデカジイニルアミン,2,4−ペンタデカジイニルアミン,2,4−ヘキサデカジイニルアミン,2,4−オクタデカジイニルアミン,2,4−ノナデカジイニルアミン,10,12−テトラデカジイニルアミン,10,12−ペンタデカジイニルアミン,10,12−ヘキサデカジイニルアミン,10,12−ヘプタデカジイニルアミン,10,12−オクタデカジイニルアミン,10,12−トリコサジイニルアミン,10,12−ペンタコサジイニルアミン,10,12−ヘキサコサジイニルアミン,10,12−ヘプタコサジイニルアミン,10,12−オクタコサジイニルアミン,10,12−ノナコサジイニルアミン,2,4−ヘキサジイニルジアミン,3,5−オクタジイニルジアミン,4,6−デカジイニルジアミン,8,10−オクタデカジイニルジアミン,ステアリン酸アミド,パルミチン酸アミド,ラウリン酸ラウリルアミド,オレイン酸アミド,オレイン酸ジエタノールアミド,オレイン酸ラウリルアミドなどが挙げられる。 Examples of amines include methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecyl Amine, hexadecylamine, heptadecylamine, octadecylamine, oleylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, diheptylamine, dioctylamine, dinonylamine, didecylamine, isopropylamine, 1,5 -Dimethylhexylamine, 2-ethylhexylamine, di (2-ethylhexyl) amine, methylenediamine, trimethylamine, triethyl Amine, ethylenediamine, tetramethylethylenediamine, hexamethylenediamine, N, N-dimethylpropan-2-amine, aniline, N, N-diisopropylethylamine, 2,4-hexadiynylamine, 2,4-heptadiynylamine, 2, 4-octadiynylamine, 2,4-decadiynylamine, 2,4-dodecadiynylamine, 2,4-tetradecadiynylamine, 2,4-pentadecadiynylamine, 2,4-hexadecadiynylamine, 2 , 4-octadecadiynylamine, 2,4-nonadecadiynylamine, 10,12-tetradecadiynylamine, 10,12-pentadecadiynylamine, 10,12-hexadecadiynylamine, 10,12-heptadeca Diinylamine, 10,12-octadecadiynylamino , 10,12-tricosadiynylamine, 10,12-pentacosadiynylamine, 10,12-hexacosadiynylamine, 10,12-heptacosadiynylamine, 10,12-octacosadiynylamine, 10,12- Nonacosadiynylamine, 2,4-hexadiynyldiamine, 3,5-octadiynyldiamine, 4,6-decadiynyldiamine, 8,10-octadecadiynyldiamine, stearic acid amide, palmitic acid amide, Examples thereof include lauric acid laurylamide, oleic acid amide, oleic acid diethanolamide, and oleic acid laurylamide.
上記に掲げた有機物単体、あるいは混合した組成物を酸化銀層に供給した際、室温で液体の状態であると酸化銀層との還元反応速度が固体状態よりも増加する。また、保管が困難になる。よって、供給後すぐに接合に用いない場合は、室温で固体である方が好ましい。また、これら有機物は酸化銀と反応した際に、副生成物が低温で分解しやすい分子構造であることが好ましい。 When the organic substance alone or the mixed composition listed above is supplied to the silver oxide layer, the reduction reaction rate with the silver oxide layer is higher than that in the solid state when it is in a liquid state at room temperature. Moreover, storage becomes difficult. Therefore, when it is not used for joining immediately after supply, it is preferable that it is solid at room temperature. These organic substances preferably have a molecular structure in which by-products are easily decomposed at a low temperature when reacted with silver oxide.
詳細は実施例6で述べるが、本発明に係る接合材は接合に要する最低加熱温度が100℃とはんだ材に比較して非常に低い。このことから、はんだを用いた接合では、耐熱性の観点から使用不可能であったポリエチレンテレフタラートやポリエチレンなどを電子部品内に導入することが可能である。また、蒸着やめっき技術を用いて電極最表面にAgメタライズを施し、Agメタライズを酸化処理し、酸化銀層を供給すれば、金属をはじめ有機物やセラミクスなどの無機物に対して酸化銀層を供給可能である。 Although details will be described in Example 6, the bonding material according to the present invention has a minimum heating temperature required for bonding of 100 ° C., which is very low compared to the solder material. From this, it is possible to introduce polyethylene terephthalate, polyethylene, or the like, which cannot be used from the viewpoint of heat resistance, into the electronic component in the joining using solder. In addition, if metallization is applied to the outermost surface of the electrode using vapor deposition or plating technology, the Ag metallization is oxidized, and a silver oxide layer is supplied, a silver oxide layer is supplied to metals and other inorganic substances such as organic substances and ceramics. Is possible.
この特性を利用し、本発明の接合材料となる酸化銀層を電極あるいは接続端子の表面に有する電子部材としては、CSP用TAB,COFキャリアテープ,リードフレーム,セラミック配線基板,有機配線基板,LSIチップ、又は、半導体パッケージなどがある。 An electronic member that uses this characteristic and has a silver oxide layer on the surface of the electrode or connection terminal as a bonding material of the present invention includes TAB for CSP, COF carrier tape, lead frame, ceramic wiring board, organic wiring board, LSI There is a chip or a semiconductor package.
本発明は、フリップ実装用の電子部材に適用することが可能である。本発明は、上記に述べたように、接合面当たり0.1〜20MPaという低加圧で金属接合が得られるため、フリップチップ実装での低加圧化が可能となり、配線などの変形を低減することができる。 The present invention can be applied to an electronic member for flip mounting. As described above, the present invention can achieve metal bonding at a low pressure of 0.1 to 20 MPa per bonding surface, thus enabling low pressure in flip chip mounting and reducing deformation of wiring and the like. can do.
フリップ実装技術では、微細ピッチ接合による接合面積の低減に対して、接合した部材間の隙間に樹脂を充填することによって、接合部全体の強度を補助する手法がとられる場合がある。従来のペースト状の接合材料では流動性があるために、予め樹脂を設置して、フリップチップ実装を行うことができない問題があった。従って、樹脂を充填した構造とする場合には、部材間を接合した後に樹脂を充填する必要があった。これに対して、本発明の接合材料は電極と一体化しているため、予め樹脂を設置した状態でフリップチップ実装を行うことも可能である。これにより、従来の方法よりも工程の省略化が可能となる。 In the flip mounting technique, there is a case where a technique of assisting the strength of the entire joint portion by filling a gap between the joined members with a resin in order to reduce the joint area by fine pitch joining. Since the conventional paste-like bonding material has fluidity, there has been a problem that flip chip mounting cannot be performed by previously installing a resin. Therefore, in the case of a structure filled with resin, it is necessary to fill the resin after joining the members. On the other hand, since the bonding material of the present invention is integrated with the electrode, it is possible to perform flip chip mounting in a state where a resin is previously installed. Thereby, the process can be omitted as compared with the conventional method.
本発明に係るフリップ実装技術において、バンプを突起型とし凹部型の電極に挿入したり、平面状の電極に押し当て接合相手電極の酸化皮膜を破壊させたり、予めバンプ間に樹脂を挿入する手法をとることができる。従来のペースト材塗布層では、挿入時のせん断力で塗布層が剥離し、この手法をとることができなかった。しかし、本発明では酸化銀を高密度な層状とすることによって下地との密着性が向上しており可能となる。また、下地はAgメタライズの時、酸化銀層と下地との強度が強固となり好ましい。さらに、接合相手電極の酸化皮膜を破壊する場合、突起型バンプの表面を酸化銀層とすることでバンプの表面硬度が上昇し、表面がCu,Au,Ag,Alの場合よりも低加圧で接合相手電極の酸化皮膜を破壊させることが可能である。 In the flip mounting technology according to the present invention, a method in which a bump is formed as a protrusion type and inserted into a concave electrode, pressed against a planar electrode to destroy an oxide film of a bonding partner electrode, or a resin is previously inserted between bumps Can be taken. In a conventional paste material coating layer, the coating layer peels off due to the shearing force at the time of insertion, and this method cannot be taken. However, in the present invention, it is possible to improve the adhesion with the base by making silver oxide into a high-density layer. Further, the base is preferably Ag metallized because the strength of the silver oxide layer and the base becomes strong. Furthermore, when destroying the oxide film on the bonding partner electrode, the bump surface hardness is increased by making the surface of the protruding bump a silver oxide layer, and the surface is pressed lower than when Cu, Au, Ag, Al is used. It is possible to destroy the oxide film of the bonding partner electrode.
上記までに述べた接合部材を用いて電子部品を作製することで、たとえば、図2(c)に示すような、回路基板に設けられた一つ以上の接続端子に対して、電子部材に設けられた一つ以上の電極端子が接合層を介して電気的に接合された電子部品であって、前記接合層は結晶粒径が1000nm以下の結晶粒径を有する焼結銀を主体として構成され、前記接合層以外の電極表面の全面あるいは一部が金属銀の粗化層であることを特徴とする電子部品を提供できる。 By producing an electronic component using the joining member described above, for example, it is provided on the electronic member with respect to one or more connection terminals provided on the circuit board as shown in FIG. An electronic component in which one or more electrode terminals obtained are electrically bonded through a bonding layer, the bonding layer being mainly composed of sintered silver having a crystal grain size of 1000 nm or less. In addition, it is possible to provide an electronic component in which the entire surface or part of the electrode surface other than the bonding layer is a roughened layer of metallic silver.
熱伝導率が金属の中で最も優れているAgを主体として構成されることで、高密度化に伴い必要となる放熱性の確保が可能となる。また、接合層の厚さを薄くできることや電気抵抗率が低いために、信号の高速化が可能である。さらに、接合層以外の電極表面が粗化層とし電極表面の一部として構成されるため、無加圧での場合に接合欠陥となる領域(図2(c)205b)を除去する必要がない。また、粗化層の下地はAgメタライズである方が強度を上昇できるため好ましい。 By being composed mainly of Ag, which has the highest thermal conductivity among metals, it is possible to ensure the heat dissipation necessary for higher density. Further, since the thickness of the bonding layer can be reduced and the electrical resistivity is low, the signal can be speeded up. Furthermore, since the electrode surface other than the bonding layer is formed as a roughened layer as a part of the electrode surface, there is no need to remove a region (FIG. 2 (c) 205b) that becomes a bonding defect when no pressure is applied. . Further, it is preferable that the base of the roughened layer is Ag metallized because the strength can be increased.
接合部材間に樹脂を充填した構造の場合、接合領域に相当しない電極表面も酸化銀とすることによって、樹脂との密着強度を上昇させることが可能である。これにより、接続信頼性を向上することが可能である。また、上記で述べたように、樹脂の充填は加熱前に行うことも可能である。 In the case of the structure in which the resin is filled between the bonding members, the adhesion strength with the resin can be increased by making the electrode surface not corresponding to the bonding region also silver oxide. Thereby, it is possible to improve connection reliability. As described above, the resin can be filled before heating.
また、充填された樹脂中には、アルミナ,窒化アルミニウム,窒化珪素などの熱膨張率の異なるフィラーを混合させてもよい。これにより、例えばSiチップとCu配線間の熱膨張率の違いから生じる熱応力を緩和することができる。 In the filled resin, fillers having different thermal expansion coefficients such as alumina, aluminum nitride, and silicon nitride may be mixed. Thereby, the thermal stress which arises from the difference in the thermal expansion coefficient between Si chip and Cu wiring, for example can be relieved.
上記に述べたように、例えばSiチップとCu配線間では、素材の熱膨張係数の違いから、電子部品作製時や使用環境の温度上昇に伴って熱応力が発生する。これに対して、接合層である焼結銀の緻密度を低減させて、焼結銀の内部に樹脂を充填することにより、さらに熱ひずみの吸収を向上できSiチップにかかる応力を低減することが可能となる。接合層の焼結銀の緻密度は接合時の加圧力の低減などにより制御可能である。樹脂の充填は、上記と同様に接合前後どちらでも可能である。 As described above, for example, a thermal stress is generated between the Si chip and the Cu wiring due to the difference in the thermal expansion coefficient of the raw material when the electronic component is manufactured or the temperature of the usage environment increases. On the other hand, by reducing the density of the sintered silver that is the bonding layer and filling the resin inside the sintered silver, it is possible to further improve the absorption of thermal strain and reduce the stress applied to the Si chip. Is possible. The density of the sintered silver in the bonding layer can be controlled by reducing the pressure applied during bonding. The resin can be filled either before or after joining as described above.
Agメタライズを施す電極又は接続端子の材質として、Ag,Au,Cu,Pt,Ni,Co,Si,Fe,Ti,Mo,Alの単体,合金あるいは混合物から選択することによって、熱膨張率や、耐腐食性などをはじめとして機械的特性や化学的特性などを接合部に付与することが可能である。 By selecting from Ag, Au, Cu, Pt, Ni, Co, Si, Fe, Ti, Mo, Al simple substance, alloy or mixture as the material of the electrode or connection terminal to be Ag metallized, It is possible to impart mechanical properties and chemical properties to the joint, including corrosion resistance.
また、本発明に係る接合部は、Agを主体として構成されることから、その融点ははんだ材料に比較してはるかに高い。半導体装置の製造プロセスにおける現行の実装方法は、階層はんだを用いることが主流となっており、1次実装で用いられるはんだには、2次実装で主に用いられるSn−Ag−Cu系はんだの実装温度(230〜260℃)以上の融点を有していることが求められる。そのため、従来は高温はんだ(鉛含有率:約96%、融点:約300℃)がしばしば用いられている。よって、この融点の観点から、下地はAgと合金化してもその融点が少なくとも300℃を超える金属であるAg,Au,Cu,Pt,Ni,Co,Si,Fe,Ti,Mo,Alの群から選ばれる単体、またはその合金、あるいはその混合物であることが好ましい。これにより、現状では困難となっている高温はんだの鉛フリー化が可能になる。 Moreover, since the junction part which concerns on this invention is comprised mainly by Ag, the melting | fusing point is much higher compared with a solder material. The current mounting method in the manufacturing process of a semiconductor device is mainly to use a hierarchical solder, and the solder used in the primary mounting is Sn-Ag-Cu solder mainly used in the secondary mounting. It is calculated | required to have melting | fusing point more than mounting temperature (230-260 degreeC). Therefore, conventionally, high-temperature solder (lead content: about 96%, melting point: about 300 ° C.) is often used. Therefore, from the viewpoint of this melting point, the group of Ag, Au, Cu, Pt, Ni, Co, Si, Fe, Ti, Mo, Al, which is a metal whose melting point exceeds 300 ° C. even when the base is alloyed with Ag. It is preferable that it is the simple substance chosen from these, its alloy, or its mixture. This makes it possible to make the high-temperature solder lead-free, which is difficult at present.
たとえば、本発明にかかる半導体接合部を有するパッケージをさらに回路基板に実装する際に、はんだ材料を用いて接合してもその接合部は溶融することがない。また、半導体パッケージと回路基板との接合に用いても良い。さらに一括で接合することも可能である。 For example, when a package having a semiconductor junction according to the present invention is further mounted on a circuit board, the junction does not melt even if it is joined using a solder material. Moreover, you may use for joining of a semiconductor package and a circuit board. Furthermore, it is also possible to join together.
上記に述べたように、本発明に係る接合材は接合に要する最低加熱温度が100℃とはんだ材に比較して非常に低い。よって、耐熱性が問題とならない場合で、特に応力緩和が必要な接合部である場合、焼結銀よりも応力緩和の能力があるSnやSn合金、あるいはInやIn合金を電極の構成に含めればよい。また、強度が要求されず、耐熱性が要求される場合は、SnやSn合金、あるいはInやIn合金を溶融させ、酸化銀層から還元し生成した銀粒子と反応させることで、融点の高い金属間化合物とすればよい。この際、酸化銀から生成する銀粒子は表面積が大きいために、金属間化合物になる反応時間が短縮できる効果がある。 As described above, the bonding material according to the present invention has a minimum heating temperature required for bonding of 100 ° C., which is very low compared to the solder material. Therefore, in the case where heat resistance is not a problem, especially in a joint where stress relaxation is necessary, Sn or Sn alloy, or In or In alloy, which has a stress relaxation capability than sintered silver, can be included in the electrode configuration. That's fine. When strength is not required and heat resistance is required, Sn or Sn alloy, or In or In alloy is melted and reacted with silver particles generated by reduction from the silver oxide layer, resulting in a high melting point. An intermetallic compound may be used. At this time, since the silver particles generated from the silver oxide have a large surface area, there is an effect that the reaction time to become an intermetallic compound can be shortened.
電極の構成の中にバンプを含めることによって、電子部品と回路基板間の距離を容易に制御できる。金属バンプの圧着による接合加圧力よりも低加圧で接合可能であるため、配線などの変形を低減することが可能である。また、バンプの水平方向の塑性変形量が低減するため、より微細なピッチ間隔とすることが可能となる。 By including bumps in the electrode configuration, the distance between the electronic component and the circuit board can be easily controlled. Since the bonding can be performed at a pressure lower than the bonding pressure applied by the pressure bonding of the metal bumps, it is possible to reduce the deformation of the wiring and the like. In addition, since the amount of plastic deformation in the horizontal direction of the bumps is reduced, a finer pitch interval can be achieved.
バンプを硬度が低いAl,Sn,Cu,Au,In,Agの単体や合金などの金属やプラスチックや樹脂などにすれば、接合時の加圧力をさらに低減することが可能であり好ましい。 If the bump is made of a metal such as Al, Sn, Cu, Au, In, or Ag having a low hardness, a metal such as an alloy, a plastic, a resin, or the like, it is possible to further reduce the pressure applied at the time of joining.
バンプを硬度の高いAl,Cu,Au,Ag,Niの単体や合金などの金属やセラミクスなど突型のバンプとすれば、相手電極の酸化皮膜を破壊し接合し、金属接合を達成することが低加圧で可能となる。金属の硬度は熱処理やひずみ付与、めっき液の選択により変化させることが可能である。 If bumps are made of bumps such as high hardness Al, Cu, Au, Ag, Ni, metals such as alloys or ceramics, and ceramic bumps, the oxide film of the mating electrode can be destroyed and bonded to achieve metal bonding. This is possible with low pressure. The hardness of the metal can be changed by heat treatment, strain application, and plating solution selection.
また、本発明では、様々な材質や形状のバンプに精度よく接合材料を供給できるため、プラスチック,樹脂,セラミクスなどの一部に蒸着やめっきを行うことで、絶縁性を付与した接合も可能となる。 In addition, in the present invention, since the bonding material can be supplied to bumps of various materials and shapes with high accuracy, it is possible to perform bonding with insulation by performing vapor deposition or plating on a part of plastic, resin, ceramic, etc. Become.
本発明に係る電子部品の1つにRFIDタグがある。本発明のRFIDタグは、従来に比較して接合部の厚さを低減できる効果がある。また、はんだを用いた接合では、耐熱性の観点から使用不可能であったポリエチレンテレフタラートやポリエチレンを電子部品内に導入することが可能である。 One of the electronic components according to the present invention is an RFID tag. The RFID tag of the present invention has an effect that the thickness of the joint can be reduced as compared with the conventional one. Moreover, in the joining using solder, it is possible to introduce polyethylene terephthalate or polyethylene, which could not be used from the viewpoint of heat resistance, into the electronic component.
酸化銀に酸化する前の金属銀を加工や鋳造や溶着することによって様々な形状にすることが可能である。また、接合後に加圧して接合することを考慮して、加工後に焼きなましを施すことで硬度を下げ、接合時の加圧時に塑性変形しやすくすることで、接合面の密着度が向上し接合強度が上昇する。 Various shapes can be obtained by processing, casting, or welding the metallic silver before being oxidized to silver oxide. In addition, in consideration of pressurizing and joining after joining, annealing is performed after processing to reduce the hardness and facilitate plastic deformation during pressurizing during joining, thereby improving the adhesion of the joining surface and joining strength. Rises.
これまでの電子部品の電極,端子間の狭ピッチ化とともに、さらなる実装面積の高密度を達成するために、部品を内蔵したビルドアップ配線基板、同一パッケージ内でのチップの積層,パッケージ同士の積層といった3次元実装技術が提案されている。この技術では、狭ピッチ化とともに、信号の高速化や垂直方向への実装による高背化の対策として、従来法に比較して特に接合部の低背化が求められる。 In addition to the narrow pitch between electrodes and terminals of electronic components so far, in order to achieve a higher mounting area density, build-up wiring boards with built-in components, chip stacking within the same package, and stacking between packages Such a three-dimensional mounting technique has been proposed. In this technique, in addition to narrowing the pitch, as a countermeasure for increasing the height of signals by increasing the speed of signals and mounting in the vertical direction, it is particularly required to reduce the height of the joint compared to the conventional method.
本発明に係る接合材料は、ペースト材とは異なり、有機物の供給を必要最低限に抑えることが可能である。よって、接合時発生するガス量を低減できる。これにより、発生ガスによる周囲部品の汚染が少ない接合が可能になる。この特性は、上記の3次元実装に最適な接合材料である。 Unlike the paste material, the bonding material according to the present invention can suppress the supply of organic matter to the minimum necessary. Therefore, the amount of gas generated during bonding can be reduced. As a result, it is possible to perform bonding with less contamination of surrounding parts by the generated gas. This characteristic is an optimum bonding material for the above-described three-dimensional mounting.
本発明を適用することにより、一つ以上の電子部品が内蔵された多層配線基板であって、前記電子部品の電極間の接合層は結晶粒径が1000nm以下の結晶粒径を有する焼結銀により構成され、前記接合層以外の電極表面と樹脂の全面あるいは一部が金属銀または酸化銀の粗化層を介していることを特徴とする電子部品内蔵の多層配線基板を提供することができる。これにより、接合部の低背化とともに樹脂との密着性を向上できる。 By applying the present invention, it is a multilayer wiring board in which one or more electronic components are built, and the bonding layer between the electrodes of the electronic component has a crystal grain size of 1000 nm or less. It is possible to provide a multilayer wiring board with built-in electronic components, characterized in that the electrode surface other than the bonding layer and the entire surface or part of the resin are interposed with a roughened layer of metallic silver or silver oxide. . Thereby, adhesiveness with resin can be improved with the shortening of a junction part.
また、複数のLSIチップが積層された積層チップであって、前記チップ間の電極が接合層を介して電気的に接合され、前記接合層は結晶粒径が1000nm以下の結晶粒径を有する焼結銀を主体として構成され、前記接合層以外の電極表面の全面あるいは一部が金属銀の粗化層であることを特徴とする積層チップを提供することができる。 In addition, it is a laminated chip in which a plurality of LSI chips are laminated, and the electrodes between the chips are electrically bonded via a bonding layer, and the bonding layer has a crystal grain size of 1000 nm or less. It is possible to provide a multilayer chip which is mainly composed of silver and is characterized in that the entire surface or part of the electrode surface other than the bonding layer is a roughened layer of metallic silver.
本発明に係る電子部材や電子部品の製造方法の一実施形態を以下に記載する。 One embodiment of a method for manufacturing an electronic member or electronic component according to the present invention will be described below.
本発明は、電気信号を入出力あるいは接続する電極の最表面に銀層を形成し、さらに前記銀層に酸化処理を施し、前記銀層の全部あるいは一部を酸化銀層とする電子部材の製造方法を特徴とする。銀層を形成することによって、様々な形状の導電体、半導体、絶縁体に接合材料となる酸化銀を供給でき、それらを低温、低加圧で接合することが可能となる。 The present invention provides an electronic member in which a silver layer is formed on the outermost surface of an electrode for inputting / outputting or connecting an electric signal, and further, the silver layer is subjected to oxidation treatment, and all or part of the silver layer is a silver oxide layer. Features a manufacturing method. By forming a silver layer, it is possible to supply silver oxide as a bonding material to conductors, semiconductors, and insulators of various shapes, and bond them at a low temperature and low pressure.
上記の製造方法において、銀層を鍛造または溶着により形成することを特徴とする。 In the above production method, the silver layer is formed by forging or welding.
上記の製造方法において、銀層を蒸着またはめっきにより形成することを特徴とする。 In the above production method, the silver layer is formed by vapor deposition or plating.
上記の製造方法において、酸化銀層を陽極酸化またはオゾン酸化により形成することを特徴とする。 In the above production method, the silver oxide layer is formed by anodization or ozone oxidation.
銀層を酸化銀層にする手法として陽極酸化法を適用すれば、酸化銀層の表面の曲率や層厚を高精度に制御することが可能である。無電解の陽極酸化法の場合は、作製する溶液,温度を変化させることにより目的の酸化銀層の作製が可能である。電解の陽極酸化法の場合は、作製する溶液,電流密度,電位,温度を変化させることにより目的の酸化銀層の作製が可能である。溶液としては、水酸化ナトリウムや水酸化カリウムなどアルカリ性水溶液で作製すればよい。 If an anodic oxidation method is applied as a method for converting the silver layer into a silver oxide layer, the curvature and layer thickness of the surface of the silver oxide layer can be controlled with high accuracy. In the case of the electroless anodic oxidation method, the intended silver oxide layer can be produced by changing the solution to be produced and the temperature. In the case of the electrolytic anodic oxidation method, the target silver oxide layer can be produced by changing the solution to be produced, the current density, the potential, and the temperature. The solution may be made of an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide.
液中での処理が困難な場合、オゾンガスにより銀層を酸化銀層にする手法がとれる。オゾン酸化によっても酸化銀層の表面の曲率や層厚を高精度に制御することが可能である。
すなわち、作製する温度,オゾン濃度を変化させることにより目的の酸化銀層の作製が可能である。
When the treatment in the liquid is difficult, a method of converting the silver layer into a silver oxide layer with ozone gas can be taken. The surface curvature and layer thickness of the silver oxide layer can be controlled with high accuracy also by ozone oxidation.
That is, the target silver oxide layer can be produced by changing the production temperature and ozone concentration.
本発明は、回路基板に設けられた一つ以上の接続端子と電子部材に設けられた一つ以上の電極端子とを接合層を介して電気的に接合する電子部品の実装方法であって、前記接続端子または前記電極端子の少なくとも一方の表面が酸化銀層で構成されており、前記酸化銀層に還元剤を供給し、少なくとも接合面に100℃〜400℃の加熱を付与し、少なくとも酸化銀が金属銀に還元する際に接合面に0.1〜20MPaの加圧を付与することで、前記接続端子と前記電極端子間を電気的に接合する電子部品の実装方法を特徴とする。 The present invention is a mounting method of an electronic component, wherein one or more connection terminals provided on a circuit board and one or more electrode terminals provided on an electronic member are electrically bonded via a bonding layer, At least one surface of the connection terminal or the electrode terminal is formed of a silver oxide layer, a reducing agent is supplied to the silver oxide layer, heating at 100 ° C. to 400 ° C. is applied to at least the bonding surface, and at least oxidation is performed. It is characterized by a method for mounting an electronic component that electrically joins the connection terminal and the electrode terminal by applying a pressure of 0.1 to 20 MPa to the joint surface when silver is reduced to metallic silver.
上記の実装方法において、還元剤がアルコール類,カルボン酸類,アミン類であることを特徴とする。 In the above mounting method, the reducing agent is an alcohol, a carboxylic acid, or an amine.
本発明に係る接合部材(酸化銀層)と接合可能な電極としては、電子部品の最表面のメタライズ層がAu,Ag,Pt,Pd,Cu,Niの単体および合金であれば、還元剤を選定することで金属接合が可能である。また、Alなどをはじめとした酸化皮膜が安定な金属に対してもその酸化皮膜を介して接合することが可能である。また、酸化銀層同士の接合も可能である。 As an electrode that can be bonded to the bonding member (silver oxide layer) according to the present invention, if the metallized layer on the outermost surface of the electronic component is a simple substance or alloy of Au, Ag, Pt, Pd, Cu, Ni, a reducing agent is used. Metal bonding is possible by selecting. Further, it is possible to bond to a metal having a stable oxide film such as Al through the oxide film. Moreover, joining of silver oxide layers is also possible.
還元剤を電子部材の接合面にのみ供給することで、接合面以外を酸化銀層のまま残存させることができる。大気中や窒素中や真空中など還元雰囲気以外で接合を行う際に、還元剤を塗布しない領域を酸化銀として残存させる手法であり、酸化銀と金属銀の抵抗値の大きな差を利用した電気回路を導入することが可能となる。 By supplying the reducing agent only to the bonding surface of the electronic member, the portion other than the bonding surface can remain as the silver oxide layer. This is a technique in which the area where the reducing agent is not applied is left as silver oxide when bonding is performed in a non-reducing atmosphere such as in the air, nitrogen, or vacuum. Electricity using a large difference in resistance between silver oxide and metallic silver A circuit can be introduced.
一方、還元剤を電子部材の電極全面に供給することで、接合面以外を焼結銀とすることが可能である。接合層以外の焼結銀は下地がAgの場合、一体化し強固な接合となる。また、接合面以外は加圧されないため表面は粗化状態であり、例えば接合後に樹脂などにより封止される場合には粗化面に樹脂が入り込んだ状態となり、通常のAg電極の状態よりも接着強度が向上する。 On the other hand, by supplying a reducing agent to the entire surface of the electrode of the electronic member, it is possible to make sintered silver other than the joint surface. When the base is Ag, the sintered silver other than the bonding layer is integrated and becomes a strong bond. In addition, since the surfaces other than the bonding surface are not pressurized, the surface is roughened. For example, when sealed with resin after bonding, the resin enters the roughened surface, which is more than the state of the normal Ag electrode. Adhesive strength is improved.
酸化銀の還元する手法としては、還元剤を用いる以外にガスにより行うことも可能である。すなわち、還元ガス雰囲気で少なくとも接合面に100℃〜400℃の加熱を付与し、少なくとも酸化銀が金属銀に還元する際に接合面に0.1〜20MPaの加圧を付与することで、電極間を電気的に接合することができる。還元雰囲気のガスとしては、水素や蟻酸など酸化銀に対して還元効果のある雰囲気で行えばよい。また、電子部品の電極の最表面に存在する酸化皮膜の還元や酸化防止の効果も期待できる。特に、水素雰囲気中で還元することで、発生するガスは水だけとなり、周囲の汚染が著しく低下する。 As a method of reducing silver oxide, it is possible to use a gas in addition to using a reducing agent. That is, at least the bonding surface is heated to 100 ° C. to 400 ° C. in a reducing gas atmosphere, and at least when the silver oxide is reduced to metallic silver, a pressure of 0.1 to 20 MPa is applied to the bonding surface. The space can be electrically joined. The reducing atmosphere gas may be an atmosphere having a reducing effect on silver oxide such as hydrogen or formic acid. In addition, an effect of reducing or preventing oxidation of the oxide film existing on the outermost surface of the electrode of the electronic component can be expected. In particular, by reducing in a hydrogen atmosphere, the only gas generated is water, and the surrounding contamination is significantly reduced.
また、還元剤と還元雰囲気(ガス)を併用して酸化銀の還元を行うことも可能である。
詳細は、実施例17で述べるが、還元剤の種類によっては、還元した銀粒子が液体状態である還元剤中に分散し、電極上に堆積する無電解めっきの効果が発揮される。この効果は、加圧力の大きさに依存しないため、低加圧で接合する場合は、水素雰囲気でも液相を導入した方が好ましい。
It is also possible to reduce silver oxide using a reducing agent and a reducing atmosphere (gas) in combination.
Although details will be described in Example 17, depending on the type of the reducing agent, the effect of electroless plating in which the reduced silver particles are dispersed in the reducing agent in a liquid state and deposited on the electrode is exhibited. Since this effect does not depend on the magnitude of the applied pressure, it is preferable to introduce a liquid phase even in a hydrogen atmosphere when joining at a low pressure.
以下、本発明の実施例について図面を用いて説明する。ただし、本発明はここで取り上げた実施例に限定されることはなく、適宜組み合わせてもよい。 Embodiments of the present invention will be described below with reference to the drawings. However, the present invention is not limited to the embodiments described here, and may be combined as appropriate.
実施例1では、回路基板のCu配線に電解めっきによりAgメタライズを形成し、Agメタライズの厚さは5μmである。 In Example 1, Ag metallization is formed on the Cu wiring of the circuit board by electrolytic plating, and the thickness of the Ag metallization is 5 μm.
次に、Agメタライズを陽極酸化により酸化銀層とした。陽極酸化は、水酸化ナトリウム(NaOH)水溶液を用い電流密度(mA/cm2)を一定にした。対極にはNi電極を用いた。 Next, Ag metallization was made into a silver oxide layer by anodic oxidation. In anodization, an aqueous solution of sodium hydroxide (NaOH) was used to keep the current density (mA / cm 2 ) constant. A Ni electrode was used as the counter electrode.
水酸化ナトリウムのモル濃度を変化させることでpHを、電流値を変化させることで電流密度を、それぞれ変化させ、pHと電流密度と酸化銀層の厚さの関係を調べた。酸化銀層の厚さは、サンプル断面を切り出し、走査型電子顕微鏡で観察し、任意視野の50点を平均することで求めた。図3にpHと電流密度と酸化銀層の厚さの関係を示す。 The pH was changed by changing the molar concentration of sodium hydroxide, the current density was changed by changing the current value, and the relationship between the pH, the current density, and the thickness of the silver oxide layer was examined. The thickness of the silver oxide layer was determined by cutting out a sample cross section, observing with a scanning electron microscope, and averaging 50 points in an arbitrary field of view. FIG. 3 shows the relationship between pH, current density, and silver oxide layer thickness.
図3に示すように、酸化銀層を作製する際のpHと電流密度の値により生成する酸化銀層の厚さを精度よく制御することが可能であることがわかった。低電流とすると酸化銀層の厚さを大きくすることが可能であり、高電流とすると酸化銀層の厚さを薄くできる。 As shown in FIG. 3, it was found that the thickness of the silver oxide layer produced can be accurately controlled by the pH and current density values when the silver oxide layer is produced. When the current is low, the thickness of the silver oxide layer can be increased, and when the current is high, the thickness of the silver oxide layer can be reduced.
回路基板のCu配線に電解めっきにより厚さ5μmのAgメタライズを形成し、オゾン酸化により酸化銀層を形成した。Agメタライズを150℃のオゾン濃度5vol%ガスを吹き付けた。これにより、酸化銀層が生成し、吹き付ける時間の増加に伴い酸化銀層の厚さが増加することを確認した。 An Ag metallization with a thickness of 5 μm was formed on the Cu wiring of the circuit board by electrolytic plating, and a silver oxide layer was formed by ozone oxidation. Ag metallization was sprayed with an ozone concentration of 5 vol% at 150 ° C. Thereby, it confirmed that the silver oxide layer produced | generated and the thickness of a silver oxide layer increased with the increase in the spraying time.
実施例3では、実施例1,2で作製した酸化銀層の断面を走査型顕微鏡により観察した。倍率10万倍で観察を行った結果、数〜数十nmの空隙が数個散見される程度であり、空隙のほとんどない酸化銀層が形成されていることがわかった。これは、Agメタライズ層が酸化銀に酸化される場合に体積が増加する反応となるためであると考えられる。 In Example 3, the cross section of the silver oxide layer produced in Examples 1 and 2 was observed with a scanning microscope. As a result of observation at a magnification of 100,000, it was found that several voids of several to several tens of nanometers were scattered, and a silver oxide layer having almost no voids was formed. This is thought to be because the reaction increases in volume when the Ag metallized layer is oxidized to silver oxide.
比較として、大きさ1〜3μmの酸化銀粒子に対し、100MPaの圧力を付与した圧粉体を作製した。作製した圧粉体を樹脂埋めして断面を切り出し、断面を走査型顕微鏡により観察した。倍率1万倍で観察を行った結果、数百nm〜数μmの空隙が散見された。
このように、粒子状で供給するよりも層状で供給する方が、接合材料となる酸化銀を緻密に供給できることがわかった。
As a comparison, a green compact in which a pressure of 100 MPa was applied to silver oxide particles having a size of 1 to 3 μm was produced. The produced green compact was filled with resin and the cross section was cut out, and the cross section was observed with a scanning microscope. As a result of observation at a magnification of 10,000, voids of several hundred nm to several μm were scattered.
As described above, it was found that the silver oxide serving as the bonding material can be supplied more densely when supplied in a layer form than in a particle form.
実施例4では、本発明に係る電子部材表面の酸化銀層の厚さと接合体の接合部強度との関係を調べた。回路基板のCu配線にCu側からNiめっき、Agめっきを電解めっきにより施した(Niめっき厚:2μm,Agめっき厚:3μm)。次に、これを実施例1と同様に陽極酸化し酸化銀層を作製した。モル濃度3mol/Lの水酸化ナトリウム水溶液を用いて、電流密度を制御し酸化銀層の厚さを変化させた。 In Example 4, the relationship between the thickness of the silver oxide layer on the surface of the electronic member according to the present invention and the joint strength of the joined body was examined. The Cu wiring of the circuit board was subjected to Ni plating and Ag plating from the Cu side by electrolytic plating (Ni plating thickness: 2 μm, Ag plating thickness: 3 μm). Next, this was anodized in the same manner as in Example 1 to produce a silver oxide layer. A sodium hydroxide aqueous solution having a molar concentration of 3 mol / L was used to control the current density and change the thickness of the silver oxide layer.
上記、回路基板に表面にAuメタライズを施したSiチップを大気中で接合した。接合前に回路基板にトリエチレングリコール溶液を噴霧してからSiチップを設置し、加熱工程と加圧工程を付与することにより接合した。接合条件は、接合最高加熱温度が250℃、接合時間が150s、接合加圧力が2.5MPaである。接合時間とは、室温からの接合温度までの昇温と最高加熱温度で保持した時間の総和である。 The above-mentioned Si chip with Au metallized surface was bonded to the circuit board in the air. Before joining, the circuit board was sprayed with a triethylene glycol solution, and then a Si chip was installed, and joining was performed by applying a heating step and a pressurizing step. The bonding conditions are a maximum heating temperature of 250 ° C., a bonding time of 150 s, and a bonding pressure of 2.5 MPa. The joining time is the sum of the temperature rise from room temperature to the joining temperature and the time kept at the maximum heating temperature.
次に、上記接合条件により作製したSiチップ接合体に対して、純粋せん断応力下での接合部強度を測定した。せん断試験には西進商事製ボンドテスターSS−100KP(最大荷重100kg)を用いた。せん断速度は30mm/minとし、試験片をせん断ツールで破断させ、破断時の最大荷重を測定した。このようにして得られた最大荷重を接合面積で除することにより得られた値を継手のせん断強度とする。また、本実施例における接合材を用いた際のせん断強度の指標として、室温硬化型の導電性ペーストを用い、本発明に係る接合体接合部のせん断強度に対する相対強度比とした。図4にその結果を示す。また、前記導電性ペーストは、主な樹脂成分がエポキシ樹脂であり、導電性フィラーがAgフレークである。 Next, the joint strength under pure shear stress was measured for the Si chip joined body produced under the above joining conditions. For the shear test, a bond tester SS-100KP (maximum load 100 kg) manufactured by Seishin Shoji Co., Ltd. was used. The shear rate was 30 mm / min, the test piece was broken with a shearing tool, and the maximum load at the time of breaking was measured. The value obtained by dividing the maximum load thus obtained by the joint area is taken as the shear strength of the joint. Moreover, as an index of the shear strength when using the bonding material in the present example, a room temperature curable conductive paste was used, and the relative strength ratio to the shear strength of the bonded body joint according to the present invention was used. FIG. 4 shows the result. In the conductive paste, the main resin component is an epoxy resin, and the conductive filler is Ag flakes.
図4に示されるように、酸化銀層が形成していないAg電極の場合では接合強度は得られなかった。また、酸化銀層の厚さが増加するほど強度が上昇した。さらに、導電性ペースト以上の強度を発揮するためには、その厚さが400nm以上であることが望ましいことがわかった。これは、酸化銀から金属銀に還元する際に体積減少が生じるためであり、接合面に垂直方向に圧縮された際に緻密にネットワークを形成するための厚さが必要であることに起因すると考えられる。 As shown in FIG. 4, in the case of an Ag electrode in which a silver oxide layer is not formed, the bonding strength was not obtained. Further, the strength increased as the thickness of the silver oxide layer increased. Furthermore, it was found that the thickness is desirably 400 nm or more in order to exhibit strength higher than that of the conductive paste. This is because volume reduction occurs when silver oxide is reduced to metallic silver, and it is due to the need for a thickness to form a dense network when compressed in the direction perpendicular to the joint surface. Conceivable.
実施例5では、酸化銀層の下地をAgメタライズとした場合の酸化銀層とAgメタライズとの密着度を調べた。測定に用いた被接合試験片は、上側として直径10mm,厚さ25mmである円柱形状の無酸素銅製の試験片であり、Cu表面にNiめっきとAgめっきが電解めっきにより、それぞれ2μmずつ施されている。実施例1の方法により、その片面に酸化銀層を1μm付与し、酸化銀層を付与した面同士をエポキシ系接着剤により張り合わせその引張強度を測定した。比較のため、酸化処理していないAgめっき同士の強度と、水素中で接合最高加熱温度が250℃、接合時間が300s加熱し酸化銀層を焼結させた表面の場合の焼結銀層との強度も測定した。結果を図5に示す。 In Example 5, the adhesion degree between the silver oxide layer and the Ag metallized when the base of the silver oxide layer was Ag metallized was examined. The bonded test piece used for the measurement is a cylindrical oxygen-free copper test piece having a diameter of 10 mm and a thickness of 25 mm on the upper side, and Ni plating and Ag plating are applied to the Cu surface by 2 μm each by electrolytic plating. ing. By the method of Example 1, 1 μm of a silver oxide layer was applied to one side, and the surfaces provided with the silver oxide layer were bonded together with an epoxy adhesive, and the tensile strength was measured. For comparison, the strength of Ag plating not subjected to oxidation treatment, and the sintered silver layer in the case of the surface where the bonding maximum heating temperature in hydrogen is 250 ° C. and the bonding time is heated for 300 s to sinter the silver oxide layer, The strength of was also measured. The results are shown in FIG.
また、その破壊箇所を光学顕微鏡で観察することで調べた。その結果、Agめっき同士の接合体では接着剤とAgめっきの界面で破壊、焼結銀同士の接合体や酸化銀層同士の接合体では接着剤中で破壊していた。よって、焼結銀や酸化銀層と下地のAgとの密着強度は5MPa以上の引張強度であることがわかる。また、焼結銀や酸化銀層と接着剤との密着強度はAgめっきの場合に比較して向上することがわかる。これは、焼結銀や酸化銀層表面が粗化され、接着面積が増加しためであると考えられる。 Moreover, it investigated by observing the destruction part with an optical microscope. As a result, it was destroyed at the interface between the adhesive and the Ag plating in the joined body of Ag plating, and was destroyed in the adhesive at the joined body of sintered silver or silver oxide layers. Therefore, it can be seen that the adhesion strength between the sintered silver or silver oxide layer and the underlying Ag is a tensile strength of 5 MPa or more. Moreover, it turns out that the adhesive strength of a sintered silver or silver oxide layer and an adhesive improves compared with the case of Ag plating. This is considered to be because the surface of the sintered silver or silver oxide layer is roughened and the adhesion area increases.
実施例6では、接合温度と接合部強度との関係を調べた。検討したサンプルは、実施例4と同様にして用意した。酸化銀層の厚さは1μmとなるように作製した。また、接合雰囲気は水素中である。接合条件は、最高加熱温度が100,150,200,250,300℃とし、接合加圧力を1.0MPa、保持時間を100sと一定とすることで最高加熱温度の影響を調べた。また、最高加熱温度が100℃で保持時間を1800sとし保持時間の影響を調べた。接合部の強度は、実施例4と同様にして測定した。図6にその結果を示す。 In Example 6, the relationship between the joining temperature and the joint strength was examined. The examined samples were prepared in the same manner as in Example 4. The silver oxide layer was prepared to have a thickness of 1 μm. The bonding atmosphere is in hydrogen. The bonding conditions were such that the maximum heating temperature was 100, 150, 200, 250, and 300 ° C., the bonding pressure was constant at 1.0 MPa, and the holding time was constant at 100 s, and the influence of the maximum heating temperature was examined. Further, the maximum heating temperature was 100 ° C. and the holding time was 1800 s, and the influence of the holding time was examined. The strength of the joint was measured in the same manner as in Example 4. The result is shown in FIG.
図6に示すように、接合温度が上昇するに伴い接合部強度が上昇し、接合温度200℃で規格化せん断強度1以上を発揮することができた。また、接合温度100,150℃でも保持時間を増加することで、規格化せん断強度1以上を発揮できることがわかった。接合温度が100℃でも接合部強度が得られることから、耐熱性の観点で使用不可能な有機物を接合体の構成に導入することが可能である。 As shown in FIG. 6, the joint strength increased as the joining temperature increased, and a normalized shear strength of 1 or more could be exhibited at a joining temperature of 200 ° C. Further, it was found that the normalized shear strength of 1 or more can be exhibited by increasing the holding time even at a joining temperature of 100 and 150 ° C. Since the joint strength can be obtained even at a joining temperature of 100 ° C., it is possible to introduce an organic substance that cannot be used from the viewpoint of heat resistance into the structure of the joined body.
実施例7では、本発明に係る接合材を用いた場合の接合加圧力と接合部強度との関係を調べた。実施例4と同様に、回路基板のCu配線に電解めっきにより厚さ5μmのAgメタライズを形成し、陽極酸化法により1μm厚の酸化銀層を形成した。加圧力が大きくなり接合部強度が上昇すると、せん断強度測定時Siチップで破壊するため、ここでは、Auめっきを施したCu基板を用いた。 In Example 7, the relationship between the joining pressure and the joint strength when the joining material according to the present invention was used was examined. As in Example 4, 5 μm thick Ag metallization was formed on the Cu wiring of the circuit board by electrolytic plating, and a 1 μm thick silver oxide layer was formed by anodic oxidation. If the applied pressure increases and the joint strength increases, the Si chip breaks when measuring the shear strength. Therefore, a Cu substrate with Au plating was used here.
接合前に酸化銀表面に還元剤として作用するセチルアルコールとエチルアルコールの混合溶液を塗布してからCu基板を設置し、加熱工程と加圧工程を付与することにより大気中で接合した。接合条件は、接合最高加熱温度が250℃、接合時間が150sと一定とし、接合加圧力を0.5〜20MPaと変化させることによって接合加圧力の効果を調べた。図7に結果を示す。 Before bonding, a mixed solution of cetyl alcohol and ethyl alcohol acting as a reducing agent was applied to the surface of the silver oxide, and then a Cu substrate was placed and bonded in the air by applying a heating step and a pressing step. The bonding conditions were such that the maximum heating temperature of the bonding was fixed at 250 ° C. and the bonding time was 150 s, and the effect of the bonding pressure was examined by changing the bonding pressure from 0.5 to 20 MPa. The results are shown in FIG.
図7に示すように、加圧力が増加するに伴い強度が上昇する傾向が認められた。また、接合温度250℃,接合時間150sの場合は接合加圧力が約1.0MPa以上で規格化せん断強度1以上となることがわかった。ただし、実施例6で説明したように、同様の加圧力でも接合温度の上昇や保持時間の増加により強度向上が可能であり、0.1MPa以上の加圧力があれば、接合温度や保持時間の増加により金属接合が可能となる。 As shown in FIG. 7, there was a tendency for the strength to increase as the applied pressure increased. Further, it was found that when the joining temperature was 250 ° C. and the joining time was 150 s, the standardized shear strength was 1 or more when the joining pressure was about 1.0 MPa or more. However, as explained in Example 6, the strength can be improved by increasing the bonding temperature and increasing the holding time even with the same pressing force. If there is a pressing force of 0.1 MPa or more, the bonding temperature and holding time can be reduced. Increased metal bonding becomes possible.
実施例8では、実施例7の構成に対して、構成の改良により接合強度が上昇した例について説明する。改良サンプルAとして、Cu配線とAgメタライズ層間にAgバンプを形成した。次に、接合温度250℃、接合加圧力0.5MPa、接合時間150sで実施例7と同様の手法で接合を行ったところ、規格化せん断強度1.0を得た。改良サンプルBとして、Agバンプに曲率を与えた。その結果、規格化せん断強度1.2を得た。このように、バンプを付与して加圧が接合面に有効にかかりやすい形状とすることで強度が上昇することがわかった。 In the eighth embodiment, an example in which the bonding strength is increased by improving the configuration with respect to the configuration of the seventh embodiment will be described. As an improved sample A, an Ag bump was formed between the Cu wiring and the Ag metallized layer. Next, when joining was performed in the same manner as in Example 7 at a joining temperature of 250 ° C., a joining pressure of 0.5 MPa, and a joining time of 150 s, a normalized shear strength of 1.0 was obtained. As an improved sample B, curvature was given to the Ag bump. As a result, a normalized shear strength of 1.2 was obtained. Thus, it has been found that the strength is increased by applying bumps to form a shape in which pressure is easily applied to the joint surface.
次に、バンプをAlとした。還元剤を水素ガスとし接合温度100℃,接合加圧力1.0MPa,保持時間1800sで実施例6と同様の手法で接合を行ったところ、規格化せん断強度1.3を得た。次にバンプをSn−3.5Ag合金としたところ、規格化せん断強度1.5を得た。このように、変形能の高い硬度の低い金属をバンプとして付与することで強度が上昇することがわかった。 Next, the bump was made of Al. When a reducing agent was used as hydrogen gas and bonding was performed in the same manner as in Example 6 at a bonding temperature of 100 ° C., a bonding pressure of 1.0 MPa, and a holding time of 1800 s, a normalized shear strength of 1.3 was obtained. Next, when the bump was made of Sn-3.5Ag alloy, a normalized shear strength of 1.5 was obtained. Thus, it turned out that intensity | strength raises by providing a metal with high hardness and low hardness as a bump.
実施例7で述べたように、接合時の加圧力を増加することで、接合部の強度を向上させることが可能である。しかし、付与する加圧の大きさによっては、接合する電子部材(例えば、半導体チップやその上面に形成された配線および電極)が物理的に破損する可能性がある。表1に示すように、10MPa以上の加圧を付与すると接合する半導体チップに破損が生じる場合があった。これに対し、実施例7で述べたように、本発明の接合プロセスの温度は100℃程度でも接合可能となるため、合成樹脂など応力の緩衝効果を有する有機材料を半導体チップの破損の防止に用いることが可能である。この効果を確認するため、ポリプロピレンで保護した半導体チップを100℃で加圧したところ、20MPaでも破損はなかった。 As described in the seventh embodiment, it is possible to improve the strength of the joint by increasing the pressure applied at the time of joining. However, depending on the magnitude of the applied pressure, there is a possibility that the electronic member to be joined (for example, the semiconductor chip and the wiring and electrodes formed on the upper surface thereof) may be physically damaged. As shown in Table 1, when a pressure of 10 MPa or more was applied, the semiconductor chip to be bonded might be damaged. On the other hand, as described in Example 7, since bonding is possible even at a temperature of the bonding process of the present invention of about 100 ° C., an organic material having a stress buffering effect such as a synthetic resin is used to prevent damage to the semiconductor chip. It is possible to use. In order to confirm this effect, when a semiconductor chip protected with polypropylene was pressurized at 100 ° C., no damage was observed even at 20 MPa.
本実施例では本発明に係るリードフレームと、これを用いた半導体パッケージ(QFP)について説明する。リードフレームの材質としては、Fe合金,Cu合金がある。 In this embodiment, a lead frame according to the present invention and a semiconductor package (QFP) using the lead frame will be described. As the material of the lead frame, there are an Fe alloy and a Cu alloy.
図8(a)は、本発明に係るリードフレーム300の断面模式図である。リードフレームは、Siチップなどダイを搭載するダイパッド301と、電気信号を入力、出力するリード302から構成される。例えば、Cu−Cu2O複合材からなるリードフレーム(厚さ0.3mm)のダイパッド部301に対し、Cu側からNiめっき303を2μm、Agめっき304を2μmの厚さでそれぞれ電解めっきにより施している。次に、Agめっきをさらに陽極酸化することによって、酸化銀層305を1μmの厚さで施している。 FIG. 8A is a schematic cross-sectional view of a lead frame 300 according to the present invention. The lead frame includes a die pad 301 on which a die such as a Si chip is mounted, and leads 302 that input and output electrical signals. For example, the Ni-plating 303 is applied from the Cu side to the die pad portion 301 of the lead frame (thickness: 0.3 mm) made of a Cu—Cu 2 O composite material with a thickness of 2 μm and the Ag plating 304 is applied to the thickness of 2 μm by electrolytic plating. ing. Next, the silver oxide layer 305 is applied in a thickness of 1 μm by further anodizing the Ag plating.
図8(b)は、本発明に係るQFPの断面模式図である。図8(a)に示した酸化銀層上にデカン酸を酸化銀層に対して塗布し、酸化銀層の最表面をデカン酸銀化合物とした。
デカン酸銀化合物は酸化銀の還元剤として機能する。続いて、半導体素子306としての表面にAuめっきを施したSi素子(サイズ1mm×1mm×0.3mm)を搭載した。接合処理として、接合温度280℃,接合加圧1.5MPaを30秒間付与し、Si素子は焼結銀を主体とした接合層307により接合されている。また、この処理によって、ダイパッド表面には、焼結銀からなる粗化層308が形成している。
FIG. 8B is a schematic cross-sectional view of the QFP according to the present invention. Decanoic acid was applied to the silver oxide layer on the silver oxide layer shown in FIG. 8A, and the outermost surface of the silver oxide layer was a silver decanoate compound.
The silver decanoate compound functions as a silver oxide reducing agent. Subsequently, a Si element (size 1 mm × 1 mm × 0.3 mm) plated with Au was mounted on the surface as the semiconductor element 306. As a bonding process, a bonding temperature of 280 ° C. and a bonding pressure of 1.5 MPa are applied for 30 seconds, and the Si element is bonded by a bonding layer 307 mainly composed of sintered silver. Further, by this treatment, a roughened layer 308 made of sintered silver is formed on the die pad surface.
Si素子306上の電極とリード302との電気的接続はAuワイヤ309の超音波接合により行う。その後、Si素子306とAuワイヤ309が施された主要部は、トランスファモールドによってエポキシ樹脂310で覆われる。この時、粗化層308とエポキシ樹脂の界面密着強度は、上記で述べたように向上している。リードフレーム300はエポキシ樹脂310によるモールドが完了した段階で切り離され、それぞれ独立した端子としての機能が付与される。 The electrical connection between the electrode on the Si element 306 and the lead 302 is performed by ultrasonic bonding of an Au wire 309. Thereafter, the main part to which the Si element 306 and the Au wire 309 are applied is covered with an epoxy resin 310 by a transfer mold. At this time, the interfacial adhesion strength between the roughened layer 308 and the epoxy resin is improved as described above. The lead frame 300 is cut off when the molding with the epoxy resin 310 is completed, and functions as independent terminals are provided.
本実施例では本発明に係るリードフレームと、これを用いた半導体パッケージ(QFP)について説明する。 In this embodiment, a lead frame according to the present invention and a semiconductor package (QFP) using the lead frame will be described.
図9(a)は、図8(a)のリード部302に対しても酸化銀層を付与した構造としたリードフレーム400の断面模式図である。ダイパッド部401,リード402の全面にCu側からNiめっき403を2μm、Agめっき404を2μmの厚さでそれぞれ電解めっきにより施している。次に、Agめっきをさらに陽極酸化することによって、酸化銀層405を1μmの厚さで施している。 FIG. 9A is a schematic cross-sectional view of a lead frame 400 having a structure in which a silver oxide layer is also provided to the lead portion 302 of FIG. Ni plating 403 is applied to the entire surface of the die pad 401 and the lead 402 from the Cu side by a thickness of 2 μm, and an Ag plating 404 is applied by electrolytic plating to a thickness of 2 μm. Next, the silver oxide layer 405 is applied with a thickness of 1 μm by further anodizing the Ag plating.
図9(b)は、本発明に係るQFPの断面模式図である。パッケージング前工程として、酸化銀層表面への還元剤供給は、その後パッケージを実装する領域以外の接合層407と粗化層408aと粗化層408bのみとしている。Si素子406のダイパッド401への接合条件は、接合温度280℃,接合加圧1.5MPa,接合時間30秒間であり、パッケージを実装する領域は、酸化銀層411として還元されない。 FIG. 9B is a schematic cross-sectional view of the QFP according to the present invention. As a pre-packaging process, the supply of the reducing agent to the surface of the silver oxide layer is limited to the bonding layer 407, the roughened layer 408a, and the roughened layer 408b other than the region where the package is mounted thereafter. The bonding conditions of the Si element 406 to the die pad 401 are a bonding temperature of 280 ° C., a bonding pressure of 1.5 MPa, a bonding time of 30 seconds, and the region where the package is mounted is not reduced as the silver oxide layer 411.
Si素子406上の電極とリード402との電気的接続はAuワイヤ409の超音波接合によって行っている。その後、上記と同様に、トランスファモールドによってエポキシ樹脂410で覆われる。この時、リードフレーム全面(粗化層408aと粗化層408b)とエポキシ樹脂の界面密着強度は、上記よりもさらに向上している。 The electrical connection between the electrode on the Si element 406 and the lead 402 is performed by ultrasonic bonding of an Au wire 409. Thereafter, similarly to the above, it is covered with an epoxy resin 410 by a transfer mold. At this time, the interfacial adhesion strength between the entire surface of the lead frame (roughened layer 408a and roughened layer 408b) and the epoxy resin is further improved than the above.
リードフレーム400はエポキシ樹脂410によるモールドが完了した段階で切り離され、それぞれ独立した端子としての機能が付与される。次に、酸化銀層411を例えばトリエチレングリコールを浸漬し、加熱加圧することにより、QFPは回路基板上の電極に対して実装される。 The lead frame 400 is separated when the molding with the epoxy resin 410 is completed, and functions as independent terminals are provided. Next, the QFP is mounted on the electrodes on the circuit board by immersing, for example, triethylene glycol in the silver oxide layer 411 and applying heat and pressure.
本実施例では本発明に係るTABテープキャリアについて説明する。図10(a)に示すように、ポリエチレンテレフタレートやポリイミドフィルムなどの絶縁性フィルム501上に接着剤層502を介してCu箔503を貼り合わせる。次に、図10(b)に示すようにCu箔503上にフォトレジスト504を成膜する。図10(c)に示すように、露光,現像する。図10(d)に示すように、銅箔503をエッチングし配線パターンを形成する。本実施例では、接着剤層によりCu箔を貼り合わせたが、絶縁フィルムへの導体形成は、例えばNi合金のスパッタリング層を介してめっきを施す手法を用いてもよい。 In this embodiment, a TAB tape carrier according to the present invention will be described. As shown in FIG. 10A, a Cu foil 503 is bonded to an insulating film 501 such as polyethylene terephthalate or polyimide film with an adhesive layer 502 interposed therebetween. Next, a photoresist 504 is formed on the Cu foil 503 as shown in FIG. As shown in FIG. 10C, exposure and development are performed. As shown in FIG. 10D, the copper foil 503 is etched to form a wiring pattern. In this embodiment, the Cu foil is bonded by the adhesive layer, but the conductor may be formed on the insulating film by using a technique of plating through a sputtering layer of Ni alloy, for example.
配線パターンの接続端子領域505以外に、絶縁層としてレジスト506を塗布形成する。そして、露出領域である接続端子領域505にAgめっき507を施し、Agめっきの一部を酸化銀層508とすることでTABテープが完成する。 In addition to the connection terminal region 505 of the wiring pattern, a resist 506 is applied and formed as an insulating layer. Then, Ag plating 507 is applied to the connection terminal region 505 that is the exposed region, and a part of the Ag plating is used as the silver oxide layer 508, thereby completing the TAB tape.
完成したTABテープは、デバイスホール上でSiチップのAuバンプと酸化銀層508を合わせることで用いられる。接合は、上記までの方法により行うことが可能であり、従来の熱圧着に比較して、低温,低加圧で電子部品を作製できる。また、デバイスホールが存在しない形態であるCOF(Chip on Film)に対しても、同様の手法にて酸化銀層を付与し電子部品実装部材として用いることが可能である。 The completed TAB tape is used by combining the Au bump of the Si chip and the silver oxide layer 508 on the device hole. Bonding can be performed by the above-described method, and an electronic component can be produced at a lower temperature and lower pressure than conventional thermocompression bonding. In addition, a COF (Chip on Film) that does not have device holes can be used as an electronic component mounting member by applying a silver oxide layer by a similar method.
本実施例では本発明に係るRFIDについて説明する。図11(a)はRFID用のアンテナ基板の断面模式図である。図11(a)に示すように、例えばポリエチレンテレフタレートやアクリロニトリルブタジエンスチレン共重合体などの絶縁フィルム601上に、CuやAlなどの金属製のアンテナ602が設置されている。アンテナの設置方法は、めっきや蒸着により膜形成してからエッチングする手法,導電性インクにより印刷し焼成させる手法,金属箔を接着剤により接着する手法などがとられる。 In this embodiment, an RFID according to the present invention will be described. FIG. 11A is a schematic cross-sectional view of an RFID antenna substrate. As shown in FIG. 11A, an antenna 602 made of metal such as Cu or Al is installed on an insulating film 601 such as polyethylene terephthalate or acrylonitrile butadiene styrene copolymer. As an antenna installation method, a method of forming a film by plating or vapor deposition and then etching, a method of printing and baking with conductive ink, a method of bonding a metal foil with an adhesive, and the like are taken.
次に、RFIDチップを搭載するための電極603が形成される。電極となるメタライズ層603の表面をAgメタライズとし、さらにAgメタライズの一部あるいは全部を酸化銀層604とする。 Next, an electrode 603 for mounting the RFID chip is formed. The surface of the metallized layer 603 to be an electrode is Ag metallized, and part or all of the Ag metallized is a silver oxide layer 604.
図11(b)はRFIDタグの断面模式図である。図11(a)に示したアンテナ基板の酸化銀層604上にRFIDチップ605を搭載する。チップ605のバンプ電極606を酸化銀層604に合わせフリップチップ実装する。上記で述べたように、従来の手法に比較して、低温,低加圧で接合が可能である。焼結銀を主体とした接合層607により、アンテナ側電極603とバンプ電極606は電気的に接続される。また、チップ搭載後、アンダーフィル608としてエポキシ樹脂などで封止する。この時、アンテナ基板上電極には粗化層がけいせいされているため、樹脂との密着性が向上する。最後に、ポリエチレンテレフタレートなどでラミネートしている(609)。 FIG. 11B is a schematic cross-sectional view of an RFID tag. An RFID chip 605 is mounted on the silver oxide layer 604 of the antenna substrate shown in FIG. The bump electrode 606 of the chip 605 is flip-chip mounted according to the silver oxide layer 604. As described above, bonding is possible at a low temperature and low pressure compared to the conventional method. The antenna side electrode 603 and the bump electrode 606 are electrically connected by the bonding layer 607 mainly composed of sintered silver. Further, after mounting the chip, the underfill 608 is sealed with an epoxy resin or the like. At this time, since the roughened layer is formed on the antenna substrate electrode, the adhesion to the resin is improved. Finally, it is laminated with polyethylene terephthalate (609).
また、図2に示したようなバンプ無しの接合も可能であり、接合部の低背化が図れる。
Agでアンテナを形成する、あるいはアンテナ全面にAgメタライズ層を形成し酸化銀層とすることで、接合と同時に全面が粗化層となる。これにより、樹脂やラミネート材の密着性を向上させる構造にすることが可能である。
Further, bonding without a bump as shown in FIG. 2 is possible, and the height of the bonded portion can be reduced.
By forming an antenna with Ag, or forming an Ag metallized layer on the entire surface of the antenna to form a silver oxide layer, the entire surface becomes a roughened layer simultaneously with the bonding. Thereby, it is possible to make it the structure which improves the adhesiveness of resin or a laminate material.
本実施例では本発明に係るLEDパッケージについて説明する。図12は、LEDパッケージの断面模式図である。有機基板701(セラミクス基板、有機フィルム)上には、LEDチップ702,金属線703(リード,リボン),リフレクタ704を搭載するためのメタライズ層705が形成されている。また、706は配線である。それぞれの部品の搭載は、焼結銀層を主体とする接合層707を介してなされている。 In this embodiment, an LED package according to the present invention will be described. FIG. 12 is a schematic cross-sectional view of an LED package. On the organic substrate 701 (ceramic substrate, organic film), an LED chip 702, metal wires 703 (leads, ribbons), and a metallized layer 705 for mounting the reflector 704 are formed. Reference numeral 706 denotes a wiring. Each component is mounted via a bonding layer 707 mainly composed of a sintered silver layer.
LED実装では、発熱量の増大が問題となっているが、接合部が金属銀により構成されることで放熱性が向上する。また、発光域によっては紫外光が接合部に照射されることで、樹脂を主体とした接合では接合部が劣化する問題があった。しかしながら、接合部が金属銀により構成されることで接続信頼性が向上する。 In LED mounting, an increase in the amount of heat generation is a problem, but heat dissipation is improved by forming the joint portion with metallic silver. In addition, depending on the light emission region, ultraviolet light is irradiated to the joint, and there is a problem that the joint is deteriorated in the joint mainly made of resin. However, connection reliability improves because a junction part is comprised with metal silver.
LEDパッケージでは、その光照射効率を向上させるために、Agメタライズ708を施したリフレクタ704が用いられることがあるが、そのAgメタライズを図12のように全面に行い、メタライズ層705との接合部を酸化銀層にし搭載することができる。配線と電気的に接合していないメタライズ層705や接合部707を利用して放熱性を向上することも可能となる。また、必要によって蛍光体709が取り付けられる。 In the LED package, a reflector 704 with Ag metallization 708 may be used to improve the light irradiation efficiency. However, the Ag metallization is performed on the entire surface as shown in FIG. Can be mounted in a silver oxide layer. It is also possible to improve heat dissipation by using the metallized layer 705 and the joint 707 that are not electrically joined to the wiring. Further, a phosphor 709 is attached if necessary.
本実施例では本発明に係る部品内蔵型の多層配線基板について説明する。図13(a)〜(c)は、部品内蔵型の多層配線基板の内蔵される部品の断面模式図を示している。図13(a)は、インダクタ,コンデンサ,抵抗部品など受動部品803の断面模式図であり、電極にメタライズ層802、その表面に酸化銀層801が形成してある。メタライズ層や酸化銀層はバレルめっきにより作製できる。 In this embodiment, a component built-in type multilayer wiring board according to the present invention will be described. FIGS. 13A to 13C are schematic cross-sectional views of components built in a component built-in type multilayer wiring board. FIG. 13A is a schematic cross-sectional view of a passive component 803 such as an inductor, a capacitor, or a resistance component, in which a metallized layer 802 is formed on an electrode, and a silver oxide layer 801 is formed on the surface thereof. The metallized layer and the silver oxide layer can be produced by barrel plating.
図13(b)は、LSIチップ804の断面模式図であり、電極に設けられたバンプ805は突起状となっており、さらに酸化銀層806が形成されている。また、図13(c)は多層配線板の一部コア層と層間の断面模式図を表している。コア807の高さ方向の導通はスルーホール808表面の配線809によりなされる。層間のプリプレグ810の導通は、表面に酸化銀層811を有するバンプ状の貫通電極812によりなされる。また、酸化銀層811は配線809表面(プリプレグ810と配線809の界面)に設けてもよい。 FIG. 13B is a schematic cross-sectional view of the LSI chip 804. The bump 805 provided on the electrode has a protruding shape, and a silver oxide layer 806 is further formed. FIG. 13C shows a schematic cross-sectional view between a partial core layer and an interlayer of a multilayer wiring board. Conduction in the height direction of the core 807 is performed by the wiring 809 on the surface of the through hole 808. Conduction of the prepreg 810 between the layers is performed by a bump-shaped through electrode 812 having a silver oxide layer 811 on the surface. The silver oxide layer 811 may be provided on the surface of the wiring 809 (interface between the prepreg 810 and the wiring 809).
図14に上記部品を用いて作製した部品内蔵型多層配線板の断面模式図を示す。受動部品803,LSIチップ804,貫通配線812の接合は、上記に述べた手法により、酸化銀が還元し生成した銀粒子によりなされ、焼結銀層813を介して電極に搭載される。
また、それぞれの接合箇所以外の酸化銀層は焼結銀粗化層814となるため、プリプレグ810との密着度を向上できる。また、バンプ805および貫通電極812のようにバンプ表面に硬度が硬い酸化銀を設けることにより、低い加圧で接合する相手の酸化皮膜を破ることが可能となる。
FIG. 14 is a schematic cross-sectional view of a component built-in type multilayer wiring board manufactured using the above components. The passive component 803, the LSI chip 804, and the through wiring 812 are joined by silver particles produced by reduction of silver oxide by the method described above, and are mounted on the electrode through the sintered silver layer 813.
Moreover, since the silver oxide layer other than each joining location becomes the sintered silver roughened layer 814, the adhesion degree with the prepreg 810 can be improved. Further, by providing silver oxide having a high hardness on the bump surface such as the bump 805 and the through electrode 812, it is possible to break the oxide film to be bonded with low pressure.
また、図15に示すように、電子部品の電極を垂直方向に接続したり、図16に示すように平行方向に接続したりすることで、電子部品の寸法に合わせ積層基板の厚さを最小にしたり、放熱性を考慮することができ設計の自由度が高い。 Also, as shown in FIG. 15, by connecting the electrodes of the electronic component in the vertical direction or in the parallel direction as shown in FIG. 16, the thickness of the multilayer substrate is minimized according to the dimensions of the electronic component. The design freedom is high because heat dissipation can be taken into account.
三次元実装では、高さ方向の制御が重要である。本発明に係る接合形態では、接合層の高さを小さくできる、傾きが出ない、接合時発生するガスが少ないという効果がある。また、それぞれの接合層は薄いために電気信号の遅延が少ない回路にできる効果がある。 In three-dimensional mounting, control in the height direction is important. In the bonding mode according to the present invention, there are effects that the height of the bonding layer can be reduced, there is no inclination, and less gas is generated during bonding. In addition, since each bonding layer is thin, there is an effect that a circuit with little delay of an electric signal can be obtained.
本実施例では本発明に係る積層チップについて説明する。図17は、積層チップの断面模式図である。半導体素子901には、絶縁層902を介して貫通電極903が形成されている。また、片側にはAgメタライズ904が貫通電極形成時に設けられ、さらに酸化銀層が形成される。この酸化銀層を用いて、焼結銀を主体とした接合層905を介して複数の半導体素子が積層される。 In this example, a multilayer chip according to the present invention will be described. FIG. 17 is a schematic cross-sectional view of a multilayer chip. A through electrode 903 is formed in the semiconductor element 901 with an insulating layer 902 interposed therebetween. Further, Ag metallized 904 is provided on one side when the through electrode is formed, and a silver oxide layer is further formed. Using this silver oxide layer, a plurality of semiconductor elements are laminated via a bonding layer 905 mainly composed of sintered silver.
一方、両面にAgメタライズが形成された半導体素子906は、貫通電極がAgではない例えばCuの場合、まずAgめっきを施してから、CuめっきしてさらにAgめっきをすることで作製し、その後に半導体素子をダイシングしている。そうすることでAgメタライズ907の一部を陽極酸化して、インターポーザ908の電極909を接合できる。
また、Agメタライズを片面だけ施し、インターポーザとはろう付けや圧着で接合することも可能である。さらに、インターポーザに設けられたバンプ910と回路基板との接合に関しても、本発明を用いても良いしその他の接合法が利用可能である。
On the other hand, the semiconductor element 906 having Ag metallization formed on both sides is manufactured by first performing Ag plating after the through electrode is not Ag, for example, Cu, and then performing further Cu plating and then Ag plating. The semiconductor element is diced. By doing so, a part of the Ag metallized 907 can be anodized and the electrode 909 of the interposer 908 can be joined.
It is also possible to apply Ag metallization only on one side and join the interposer by brazing or crimping. Furthermore, regarding the bonding between the bump 910 provided on the interposer and the circuit board, the present invention may be used or other bonding methods may be used.
実施例17では、接合相手の電極種が接合部強度に及ぼす影響を調べた。検討したサンプルは、実施例4と同様にして用意した。酸化銀層の厚さは1μmとなるように作製した。接合雰囲気は水素中とした。接合相手の表面電極は、Ag,Au,Pt,Pd,Cu,Niと変化させた。接合条件は、最高加熱温度250℃,加圧力2.5MPa,保持時間100sとした。 In Example 17, the influence of the bonding partner electrode type on the joint strength was examined. The examined samples were prepared in the same manner as in Example 4. The silver oxide layer was prepared to have a thickness of 1 μm. The bonding atmosphere was in hydrogen. The surface electrode of the bonding partner was changed to Ag, Au, Pt, Pd, Cu, and Ni. The joining conditions were a maximum heating temperature of 250 ° C., a pressure of 2.5 MPa, and a holding time of 100 s.
図18に還元剤無しで接合した酸化銀シートと、さらにトリエチレングリコールを滴下した酸化銀シートの規格化せん断強度の値を示す。Ni電極以外はほぼ同等の強度を示したが、Ni電極との接合の場合はトリエチレングリコールを滴下することで著しい強度上昇が認められた。これは、トリエチレングリコールを滴下することにより、還元した銀粒子がトリエチレングリコール中に分散し、電極上に堆積する無電解めっきの効果が発揮されるためである。この効果は、加圧力の大きさに依存しないため、低加圧で接合する場合は、水素雰囲気でも液相を導入した方が好ましい。 FIG. 18 shows the normalized shear strength values of a silver oxide sheet joined without a reducing agent and a silver oxide sheet further dropped with triethylene glycol. Except for the Ni electrode, the strength was almost the same, but in the case of joining with the Ni electrode, a significant increase in strength was observed by dropping triethylene glycol. This is because when the triethylene glycol is dropped, the reduced silver particles are dispersed in the triethylene glycol, and the effect of electroless plating is deposited on the electrode. Since this effect does not depend on the magnitude of the applied pressure, it is preferable to introduce a liquid phase even in a hydrogen atmosphere when joining at a low pressure.
101 酸化銀
102 銀粒子
103 還元前の酸化銀外形
200 回路基板
201 基板絶縁層
202,706,809 配線
203 メタライズ層(電極)
204,506 レジスト
205,305,405,411,508,604,801,806,811 酸化銀層205a 焼結銀層(接合層)
205b 焼結銀層(粗化層)
206 チップ
207,603,909 電極
208,705,802 メタライズ層
209 LSIチップ
300 リードフレーム
301 ダイパッド
302,402 リード
303,403 Niめっき
304,404,507 Agめっき
306,901,906 半導体素子
307,407,607,905 接合層
308,408a,408b 粗化層
309,409 Auワイヤ
310,410 エポキシ樹脂
400 リードフレーム
401 ダイパッド部
406 Si素子
501 絶縁性フィルム
502 接着剤層
503 Cu箔
504 フォトレジスト
505 接続端子領域
601 絶縁フィルム
602 アンテナ
605 RFIDチップ
606 バンプ電極
608 アンダーフィル
609 ラミネート
701 有機基板
702 LEDチップ
703 金属線
704 リフレクタ
707 接合部
708,904,907 Agメタライズ
709 蛍光体
803 受動部品
804 LSIチップ
805,910 バンプ
807 コア
808 スルーホール
810 プリプレグ
812,903 貫通電極
813 焼結銀層
814 焼結銀粗化層
902 絶縁層
908 インターポーザ
DESCRIPTION OF SYMBOLS 101 Silver oxide 102 Silver particle 103 Silver oxide external shape 200 before reduction | restoration Circuit board 201 Insulating layer 202,706,809 wiring 203 Metallization layer (electrode)
204, 506 Resist 205, 305, 405, 411, 508, 604, 801, 806, 811 Silver oxide layer 205a Sintered silver layer (bonding layer)
205b Sintered silver layer (roughened layer)
206 Chip 207, 603, 909 Electrode 208, 705, 802 Metallized layer 209 LSI chip 300 Lead frame 301 Die pad 302, 402 Lead 303, 403 Ni plating 304, 404, 507 Ag plating 306, 901, 906 Semiconductor elements 307, 407, 607, 905 Bonding layer 308, 408a, 408b Roughening layer 309, 409 Au wire 310, 410 Epoxy resin 400 Lead frame 401 Die pad portion 406 Si element 501 Insulating film 502 Adhesive layer 503 Cu foil 504 Photoresist 505 Connection terminal region 601 Insulating film 602 Antenna 605 RFID chip 606 Bump electrode 608 Underfill 609 Laminate 701 Organic substrate 702 LED chip 703 Metal wire 704 Lector 707 Joint 708, 904, 907 Ag metallized 709 Phosphor 803 Passive component 804 LSI chip 805, 910 Bump 807 Core 808 Through hole 810 Prepreg 812, 903 Through electrode 813 Sintered silver layer 814 Sintered silver roughened layer 902 Insulation Layer 908 interposer
Claims (8)
前記接合層は焼結銀を主体として構成され、
前記接合層と接していない電極表面の全面あるいは一部が酸化銀の粗化層であり、
当該酸化銀の粗化層の厚さは400nm以上5μm以下であり、
前記酸化銀の層の最表面は1μmより小さい曲率半径となっていることを特徴とする電子部品。 An electronic component in which one or more electrodes provided on an electronic member are electrically bonded via a bonding layer to one or more connection terminals provided on a circuit board,
The bonding layer is mainly composed of sintered silver,
The whole or part of the electrode surface not in contact with the bonding layer is a roughened layer of silver oxide,
The thickness of the roughened layer of silver oxide is 400 nm or more and 5 μm or less,
The electronic component according to claim 1, wherein an outermost surface of the silver oxide layer has a radius of curvature smaller than 1 μm.
前記電子部品の電極間の接合層は焼結銀により構成され、前記接合層と接していない前記電極表面の全面あるいは一部が酸化銀の粗化層であり、
前記酸化銀の粗化層は400nm以上5μm以下であり、
前記酸化銀の層の最表面は1μmより小さい曲率半径となっており、
前記電子部品の電極間には樹脂が充填されていることを特徴とする電子部品内蔵の多層配線基板。 A multilayer wiring board with one or more electronic components built therein,
The bonding layer between the electrodes of the electronic component is composed of sintered silver, and the entire surface or part of the electrode surface not in contact with the bonding layer is a roughened layer of silver oxide,
The roughened layer of silver oxide is 400 nm or more and 5 μm or less,
The outermost surface of the silver oxide layer has a radius of curvature smaller than 1 μm,
A multilayer wiring substrate with a built-in electronic component, wherein a resin is filled between electrodes of the electronic component.
前記チップ間の電極が接合層を介して電気的に接合されており、
前記接合層は焼結銀を主体として構成され、
前記接合層と接していない電極表面の全面あるいは一部が酸化銀の粗化層であり、
当該酸化銀の粗化層は400nm以上5μm以下であり、
前記酸化銀の層の最表面は1μmより小さい曲率半径となっていることを特徴とする積層チップ。 A plurality of LSI chips are laminated chips,
The electrodes between the chips are electrically bonded via a bonding layer,
The bonding layer is mainly composed of sintered silver,
The whole or part of the electrode surface not in contact with the bonding layer is a roughened layer of silver oxide,
The roughened layer of silver oxide is 400 nm or more and 5 μm or less,
The multilayer chip, wherein the outermost surface of the silver oxide layer has a radius of curvature smaller than 1 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012177687A JP5331929B2 (en) | 2012-08-10 | 2012-08-10 | Electronic member, electronic component and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012177687A JP5331929B2 (en) | 2012-08-10 | 2012-08-10 | Electronic member, electronic component and method for manufacturing the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009018959A Division JP5156658B2 (en) | 2009-01-30 | 2009-01-30 | Electronic components for LSI |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012235163A JP2012235163A (en) | 2012-11-29 |
JP5331929B2 true JP5331929B2 (en) | 2013-10-30 |
Family
ID=47435108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012177687A Expired - Fee Related JP5331929B2 (en) | 2012-08-10 | 2012-08-10 | Electronic member, electronic component and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5331929B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7083235B2 (en) * | 2017-07-20 | 2022-06-10 | 神島化学工業株式会社 | Silver oxide and its manufacturing method |
CN114121694A (en) * | 2021-11-19 | 2022-03-01 | 深圳市鼎华芯泰科技有限公司 | Packaging method for improving IC packaging tightness |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4737116B2 (en) * | 2007-02-28 | 2011-07-27 | 株式会社日立製作所 | Joining method |
WO2010084742A1 (en) * | 2009-01-23 | 2010-07-29 | 日亜化学工業株式会社 | Semiconductor device and method of manufacturing same |
-
2012
- 2012-08-10 JP JP2012177687A patent/JP5331929B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012235163A (en) | 2012-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5156658B2 (en) | Electronic components for LSI | |
JP5151150B2 (en) | Composition for forming conductive sintered layer, and method for forming conductive film and bonding method using the same | |
US12113039B2 (en) | Low pressure sintering powder | |
US8821768B2 (en) | Bonding method and bonding material using metal particle | |
JP4737116B2 (en) | Joining method | |
EP3659971B1 (en) | Sintering powder | |
EP3134221B1 (en) | Method for manufacturing metal powder | |
JP5375343B2 (en) | Bonding material, manufacturing method thereof, and mounting method using the same | |
JP2011014556A (en) | Semiconductor device and method of manufacturing the same | |
JP2010050189A (en) | Bonding material, semiconductor device, and method of manufacturing the same | |
JP2012191238A (en) | Conductive sintered layer forming composition, and conductive coating film forming method and jointing method using the same | |
JP2012038790A (en) | Electronic member and electronic component and manufacturing method thereof | |
JP2019087607A (en) | Substrate for power module with heat sink and manufacturing method of substrate for power module with heat sink | |
JP2020020015A (en) | Metal paste for joining, bonded body, and method for manufacturing bonded body | |
JP6613929B2 (en) | Metal member with Ag underlayer, insulated circuit substrate with Ag underlayer, semiconductor device, insulating circuit substrate with heat sink, and method for producing metal member with Ag underlayer | |
JP5331929B2 (en) | Electronic member, electronic component and method for manufacturing the same | |
JP2012124497A (en) | Semiconductor device | |
TWI808208B (en) | Nano copper paste and film for sintered die attach and similar applications and method of manufacturing sintering powders | |
CN108305838B (en) | Low-temperature chip mounting method and chip mounting structure without organic matters | |
JP2011029472A (en) | Junction material, method of mounting semiconductor using the same, and semiconductor device | |
CN114450107A (en) | Copper paste for bonding, method for producing bonded body, and bonded body | |
JP2016039223A (en) | Material for sinter bonding, electronic member equipped with material for sinter bonding, and semiconductor module | |
JP2006120973A (en) | Circuit board and manufacturing method thereof | |
JP5677685B2 (en) | Circuit board and semiconductor device using the same | |
JP2013197436A (en) | High thermal conduction low thermal expansion bonding material and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130620 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130729 |
|
LAPS | Cancellation because of no payment of annual fees |