[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5314396B2 - Aluminum alloy plate for lithographic printing plates - Google Patents

Aluminum alloy plate for lithographic printing plates Download PDF

Info

Publication number
JP5314396B2
JP5314396B2 JP2008306063A JP2008306063A JP5314396B2 JP 5314396 B2 JP5314396 B2 JP 5314396B2 JP 2008306063 A JP2008306063 A JP 2008306063A JP 2008306063 A JP2008306063 A JP 2008306063A JP 5314396 B2 JP5314396 B2 JP 5314396B2
Authority
JP
Japan
Prior art keywords
rolling
aluminum alloy
concentration
surface layer
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008306063A
Other languages
Japanese (ja)
Other versions
JP2009293123A (en
Inventor
彰男 上杉
睦 松浦
博史 扇
淳 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Fujifilm Corp
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp, Sumitomo Light Metal Industries Ltd filed Critical Fujifilm Corp
Priority to JP2008306063A priority Critical patent/JP5314396B2/en
Publication of JP2009293123A publication Critical patent/JP2009293123A/en
Application granted granted Critical
Publication of JP5314396B2 publication Critical patent/JP5314396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Printing Plates And Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet for a lithographic printing plate, which is manufactured by cold-rolling a hot-rolled plate into the final thickness while skipping an intermediate annealing step, has a surface layer in which Ga and Mg are concentrated, makes uniform pits formed in electrolysis treatment, and does not form a streak thereon when having been processed as a printing plate. <P>SOLUTION: The aluminum alloy sheet has a composition including 0.03 to 0.15% Si, 0.2 to 0.7% Fe, 0.05 to 0.5% Mg, 0.003 to 0.05% Ti, 30 to 300 ppm Ga and the balance aluminum with unavoidable impurities, has recrystallized grains with an average grain size of 50 &mu;m or smaller in a direction perpendicular to the rolling direction, in the surface layer, contains Mg of 5 to 50 times higher concentration in the surface layer of 0.2 &mu;m deep from the surface than the average Mg concentration, and contains Ga of 2 to 20 times higher concentration in the surface layer of 0.2 &mu;m deep from the surface than the average Ga concentration. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、平版印刷版用アルミニウム合金板、とくに電気化学的エッチング処理による粗面化に適し、製造時の生産性に優れた平版印刷版用アルミニウム合金板に関する。   The present invention relates to an aluminum alloy plate for a lithographic printing plate, and more particularly to an aluminum alloy plate for a lithographic printing plate that is suitable for roughening by electrochemical etching and has excellent productivity during production.

平版印刷版(オフセット印刷版を含む)の支持体としては、一般にアルミニウム合金板が使用されており、支持体については、感光膜の密着性向上と非画像部の保水性向上の観点から粗面化処理が行われるが、近年は、製版適性や印刷性能が優れていること、コイル材での連続処理が可能なことなどから、支持体用アルミニウム合金板の表面を電気化学的エッチング処理により粗面化する手法が急速に発展している。   In general, an aluminum alloy plate is used as a support for lithographic printing plates (including offset printing plates), and the support is rough from the viewpoint of improving the adhesion of the photosensitive film and improving the water retention of the non-image area. In recent years, the surface of the aluminum alloy plate for the support is roughened by electrochemical etching because of its excellent plate-making suitability and printing performance, and continuous processing with coil materials. The approach to surface is developing rapidly.

電気化学的エッチング処理により比較的均一な電解粗面化が得られるアルミニウム合金板としては、A1050(アルミニウム純度99.5%)相当材あるいはA1050相当材をベースとして少量の合金成分を添加した材料が適用されており、合金成分については、いくつかの提案がなされている(例えば、特許文献1参照)。   As an aluminum alloy plate capable of obtaining a relatively uniform electrolytic surface roughening by electrochemical etching treatment, a material equivalent to A1050 (aluminum purity 99.5%) or a material added with a small amount of alloy components based on A1050 equivalent material is used. Some proposals have been made on alloy components (see, for example, Patent Document 1).

また、印刷版の耐刷性向上のために、アルミニウム合金板を支持体とする印刷版を通常の方法で露光、現像処理した後、高温で加熱処理(バーニング処理)することにより画像部を強化することが行われている。バーニング処理は、通常、加熱温度200〜290℃、加熱時間3〜9分の条件で行われているから、バーニング処理時に支持体の強度が低下することのない耐熱性(耐バーニング性)が求められている。   In order to improve the printing durability of the printing plate, the printing plate with an aluminum alloy plate as a support is exposed and developed by normal methods, and then heat-treated (burning) at high temperatures to reinforce the image area. To be done. Since the burning treatment is usually performed under the conditions of a heating temperature of 200 to 290 ° C. and a heating time of 3 to 9 minutes, heat resistance (burning resistance) is required so that the strength of the support does not decrease during the burning treatment. It has been.

さらに、最近では、印刷技術の進歩に伴って印刷速度が速くなり、印刷機の版胴の両側に機械的に固定される印刷版に加わる応力が増大したことに対応して、支持体に対する強度要求が大きくなっており、支持体強度が不足すると、その固定部分が変形または破損して印刷ずれなどの支障が生じるため、前記の耐バーニング性とともに、支持体強度の向上が不可欠となっている。   In addition, recently, with the advance of printing technology, the printing speed has increased and the strength against the support has increased in response to the increased stress applied to the printing plates that are mechanically fixed to both sides of the printing press cylinder. When the demand is increasing and the support strength is insufficient, the fixed portion is deformed or damaged, resulting in troubles such as printing misalignment. Therefore, it is indispensable to improve the strength of the support along with the above-mentioned burning resistance. .

上記の要求を満たすために、A1050相当材をベースとして添加成分を調整する試みが行われ(特許文献2参照)、A1050相当材をベースとして添加成分を調整するとともに、板表面のオイルピットの深さを調整する試みも行われている(特許文献3参照)。   In order to satisfy the above requirements, an attempt was made to adjust the additive component based on the A1050 equivalent material (see Patent Document 2). The additive component was adjusted based on the A1050 equivalent material and the oil pit depth on the plate surface was adjusted. Attempts have also been made to adjust the thickness (see Patent Document 3).

従来、これらの平版印刷版用アルミニウム合金材は、鋳塊を均質化処理、熱間圧延した後、冷間圧延し、冷間圧延の途中で中間焼鈍処理を施して、圧延板表面を再結晶組織とした後、2次冷間圧延を行うことにより、電気化学的エッチング処理時のピットの発生を均一にし、印刷版としての処理を行った場合におけるストリークの発生を防止しているが、中間焼鈍を行うことによる生産性の低下と製造原価の増大は避けられず、改善が望まれている。   Conventionally, these aluminum alloy materials for lithographic printing plates are homogenized, hot-rolled ingots, cold-rolled, and subjected to intermediate annealing in the middle of cold-rolling to recrystallize the rolled plate surface. After forming the structure, by performing secondary cold rolling, the generation of pits during the electrochemical etching process is made uniform, and the occurrence of streaks when the process as a printing plate is performed is prevented. A decrease in productivity and an increase in manufacturing costs due to annealing are inevitable, and improvements are desired.

熱間圧延後、焼鈍処理を行うことなしに冷間圧延して平版印刷版用アルミニウム合金板を得る方法として、熱間粗圧延と熱間仕上げ圧延からなる熱間圧延において、熱間粗圧延の開始温度を450℃以上とし、開始パスから50m/分以上の圧延速度、圧下量30mm以上または1パス圧下率30%のどちらかを満足する圧延を行い、熱間粗圧延の終了温度を300〜370℃とし、ついで行う熱間仕上げ圧延の終了温度を280℃以上とし、コイルとして巻き取ることにより、板表面の再結晶を制御する方法が提案されている(特許文献4参照)。   As a method of obtaining an aluminum alloy plate for lithographic printing plates by performing cold rolling without performing annealing treatment after hot rolling, in hot rolling consisting of hot rough rolling and hot finish rolling, The starting temperature is set to 450 ° C. or more, rolling is performed at a rolling speed of 50 m / min or more from the starting pass, a reduction amount of 30 mm or more, or a one-pass reduction ratio of 30%, and the end temperature of hot rough rolling is set to 300 to A method has been proposed in which the recrystallization of the plate surface is controlled by setting it to 370 ° C., and then setting the end temperature of hot finish rolling to be 280 ° C. or higher and winding it as a coil (see Patent Document 4).

この場合、中間焼鈍を省略するためには、熱間仕上げ圧延終了後、コイルとして巻き取った段階で再結晶していることが必要となるが、均一な電解粗面化特性を得るためには、形成される再結晶粒径が粗大化することなく、中間焼鈍を施した材料と同様に微細、均一であり、また、板表層部の再結晶の度合いが均一であることが重要となる。
特開2000−108534号公報 特開2005−15912号公報 特開2004−35936号公報 特開平11−335761号公報
In this case, in order to omit intermediate annealing, it is necessary to recrystallize at the stage of winding as a coil after completion of hot finish rolling, but in order to obtain uniform electrolytic surface roughening characteristics It is important that the recrystallized grain size to be formed is fine and uniform as in the material subjected to the intermediate annealing without coarsening, and that the degree of recrystallization of the plate surface layer part is uniform.
JP 2000-108534 A JP 2005-15912 A JP 2004-35936 A Japanese Patent Laid-Open No. 11-335761

発明者らは、電解処理においてより均一、微細なピットの形成が達成できる平版印刷板版用アルミニウム合金材を得ることを目的として、従来提案された材料をベースとして、成分組成および組織性状についてあらためて検討を行った結果、Mg、Gaを含有させ、表層部のMg、Ga濃度を表層部よりも深い領域のMg、Ga濃度に比べて高めた材料が有効であることを見出した。また、このような組織性状のアルミニウム合金板を中間焼鈍を省略して製造するためには、とくに、熱間粗圧延の開始温度、熱間粗圧延終了から熱間仕上げ圧延までの材料の保持時間、熱間仕上げ圧延の終了温度の制御が重要であることを見出した。   For the purpose of obtaining an aluminum alloy material for a lithographic printing plate capable of achieving more uniform and fine pit formation in electrolytic treatment, the inventors have re-examined the component composition and structure properties based on the conventionally proposed materials. As a result of investigation, it has been found that a material containing Mg and Ga and having a Mg and Ga concentration in the surface layer portion higher than the Mg and Ga concentration in a region deeper than the surface layer portion is effective. Moreover, in order to manufacture such an aluminum alloy sheet having a textured property without intermediate annealing, in particular, the starting temperature of hot rough rolling, the holding time of the material from the end of hot rough rolling to hot finish rolling It was found that controlling the finishing temperature of hot finish rolling is important.

本発明は、上記の知見に基づいて、さらに試験、検討を重ねた結果としてなされたものであり、その目的は、熱間仕上げ圧延終了後、コイルとして巻き取った段階において、板表層部の再結晶の度合いが均一で、再結晶粒が微細、均一であり、熱間圧延以降に中間焼鈍を行うことなしに最終厚さまで冷間圧延することができ、表層部での適度なMgおよびGaの濃縮度が得られ、電気化学的エッチング処理時のピットの発生が均一且つ微細で、印刷版としての処理を行った場合にストリークの発生がなく、優れた強度特性を有する平版印刷版用アルミニウム合金板を提供することにある。   The present invention has been made as a result of further tests and examinations based on the above knowledge, and the purpose of the present invention is to restore the surface layer portion of the plate at the stage of winding as a coil after the hot finish rolling. The degree of crystal is uniform, the recrystallized grains are fine and uniform, can be cold-rolled to the final thickness without intermediate annealing after hot rolling, and moderate Mg and Ga in the surface layer part An aluminum alloy for a lithographic printing plate that has a high degree of strength characteristics, has a high degree of concentration, has uniform and fine pit generation during electrochemical etching, has no streak when processed as a printing plate To provide a board.

上記の目的を達成するための請求項1による平版印刷版用アルミニウム合金板は、Si:0.03〜0.15%(質量%、以下同じ)、Fe:0.2〜0.7%、Mg:0.05〜0.5%、Ti:0.003〜0.05%、Ga:30〜300ppmを含有し、許容されるZn含有量を50ppm以下とし、残部アルミニウムおよび不可避的不純物からなる組成を有するアルミニウム合金板であって、表層部の圧延方向と直交する方向における平均再結晶粒径が50μm以下、表面から0.2μm深さまでの表層部のMg濃度が平均Mg濃度の5〜50倍、表面から0.2μm深さまでの表層部のGa濃度が平均Ga濃度の2〜20倍であることを特徴とする。 The aluminum alloy plate for a lithographic printing plate according to claim 1 for achieving the above object comprises: Si: 0.03 to 0.15% (mass%, hereinafter the same) , Fe: 0.2 to 0.7%, Mg: 0.05 to 0.5%, Ti: 0.003 to 0.05%, Ga: 30 to 300 ppm , allowable Zn content is 50 ppm or less, and consists of the balance aluminum and inevitable impurities An aluminum alloy plate having a composition, wherein the average recrystallized grain size in the direction orthogonal to the rolling direction of the surface layer portion is 50 μm or less, and the Mg concentration of the surface layer portion from the surface to a depth of 0.2 μm is 5 to 50 of the average Mg concentration The surface layer portion from the surface to a depth of 0.2 μm has a Ga concentration of 2 to 20 times the average Ga concentration.

請求項2による平版印刷版用アルミニウム合金板は、請求項1において、前記アルミニウム合金板が、Cu:0.05%以下を含有することを特徴とする。   An aluminum alloy plate for a lithographic printing plate according to claim 2 is characterized in that, in claim 1, the aluminum alloy plate contains Cu: 0.05% or less.

請求項3による平版印刷版用アルミニウム合金板は、請求項1または2において、前記アルミニウム合金板のマトリックス中に析出しているMg量が、平均Mg濃度の50%以下であることを特徴とする。   The aluminum alloy plate for a lithographic printing plate according to claim 3 is characterized in that, in claim 1 or 2, the amount of Mg precipitated in the matrix of the aluminum alloy plate is 50% or less of the average Mg concentration. .

請求項4による平版印刷版用アルミニウム合金板は、請求項1〜3のいずれかにおいて、190MPa以上の引張強さをそなえていることを特徴とする。   An aluminum alloy plate for a lithographic printing plate according to claim 4 is characterized in that in any one of claims 1 to 3, it has a tensile strength of 190 MPa or more.

本発明によれば、熱間仕上げ圧延終了後、コイルとして巻き取った段階において、板表層部の再結晶の度合いが均一で、再結晶粒が微細、均一であり、熱間圧延以降に中間焼鈍を行うことなしに最終厚さまで冷間圧延することができ、板表層部において適度なMgおよびGaの濃縮度が得られ、電気化学的エッチング処理時のピットの発生が均一且つ微細で、印刷版としての処理を行った場合にストリークの発生がなく、優れた強度特性を有する平版印刷版用アルミニウム合金板が提供される。   According to the present invention, after completion of hot finish rolling, at the stage of winding as a coil, the degree of recrystallization of the plate surface layer portion is uniform, the recrystallized grains are fine and uniform, and intermediate annealing after hot rolling is performed. Can be cold-rolled to the final thickness without performing the process, moderate Mg and Ga enrichment can be obtained in the surface layer of the plate, and the generation of pits during the electrochemical etching process is uniform and fine. Thus, there is provided an aluminum alloy plate for a lithographic printing plate which does not generate streaks and has excellent strength characteristics.

本発明の平版印刷版用アルミニウム合金板における含有成分の意義および限定理由について説明すると、Siは、Feと共存してAl−Fe−Si系金属間化合物を生成し、該化合物の分散により、再結晶組織が微細化され、これらの化合物がピット発生の起点となって電解処理時のピットの形成を均一にし且つピットを微細に分布させる。Siの好ましい含有量は0.03〜0.15%の範囲であり、0.03%未満では化合物の分布が不均一となって、電解処理時に未エッチング部が発生し、ピットの形成を不均一にする。0.15%を超えると、粗大化合物が生成し、また単体のSiの析出が生じ易くなって粗面化構造の均一性が低下する。   The significance and reasons for limitation of the components contained in the aluminum alloy plate for lithographic printing plates of the present invention will be described. Si coexists with Fe to produce an Al—Fe—Si intermetallic compound, The crystal structure is refined, and these compounds serve as starting points for pit generation, making the formation of pits uniform during electrolytic treatment and finely distributing the pits. The preferable content of Si is in the range of 0.03 to 0.15%. If it is less than 0.03%, the distribution of the compound becomes non-uniform, and unetched portions are generated during the electrolytic treatment, thus preventing the formation of pits. Make uniform. If it exceeds 0.15%, a coarse compound is produced, and precipitation of simple Si is likely to occur, and the uniformity of the roughened structure is lowered.

Feは、Al−Fe系金属間化合物を生成し、またSiと共存してAl−Fe−Si系金属間化合物を生成し、これらの化合物の分散により、再結晶組織が微細化され、これらの化合物がピット発生の起点となって電解処理時にピットの形成を均一にし且つピットを微細に分布させる。Feの好ましい含有量は0.2〜0.7%の範囲であり、0.2%未満では化合物の分布が不均一となって、電解処理時に未エッチング部が発生し、ピットの形成を不均一にする。0.7%を超えると、粗大な化合物が生成し、粗面化構造の均一性が低下する。   Fe produces an Al—Fe-based intermetallic compound, and coexists with Si to produce an Al—Fe—Si-based intermetallic compound. The dispersion of these compounds refines the recrystallized structure. The compound serves as a starting point of pit generation, uniformizing pit formation during the electrolytic treatment, and finely distributing the pits. A preferable content of Fe is in the range of 0.2 to 0.7%. If the content is less than 0.2%, the distribution of the compound becomes non-uniform, and unetched portions are generated during the electrolytic treatment, thus preventing formation of pits. Make uniform. If it exceeds 0.7%, a coarse compound is produced, and the uniformity of the roughened structure is lowered.

Mgは、大部分がアルミニウムに固溶して、強度および耐熱軟化性を向上させるよう機能する。また、Mgは、Mg−Si系化合物(MgSi)を形成して、粗面化構造の均一性を低下させる単体Siの析出を抑制するよう作用する。強度とは、印刷版用支持体としての常温における引張り強さのことであり、耐熱軟化性は、耐バーニング性ともいわれ、280℃程度の温度で加熱された後の0.2%耐力のことであり、90MPa以上が実用上望ましい範囲である。Mgの好ましい含有量は0.05〜0.5%の範囲であり、0.05%未満ではその効果が十分でなく、0.5%を超えると、MgSiの析出が多くなり、面質が低下する。Mgのより好ましい含有範囲は0.06%以上0.10%未満である。 Most of Mg functions as a solid solution in aluminum to improve strength and heat softening resistance. Further, Mg acts to suppress the precipitation of simple Si, which reduces the uniformity of the roughened structure by forming a Mg—Si compound (Mg 2 Si). Strength is the tensile strength at normal temperature as a printing plate support, and heat softening resistance is also called burning resistance, and is 0.2% proof stress after heating at a temperature of about 280 ° C. 90 MPa or more is a practically desirable range. The preferable content of Mg is in the range of 0.05 to 0.5%. If the content is less than 0.05%, the effect is not sufficient. If the content exceeds 0.5%, the precipitation of Mg 2 Si increases. Quality declines. A more preferable content range of Mg is 0.06% or more and less than 0.10%.

Mgを含有するアルミニウム合金においては、とくに均質化処理、熱間圧延時の加熱などの熱処理によりMg酸化物(MgO系酸化物)を主体とする酸化皮膜が形成され易く、この酸化皮膜は活性且つポーラスであるため、電解粗面化処理において処理液との濡れ性が良くなり粗面化が促進される。この効果を得るためには、アルミニウム合金板表面から0.2μm深さまでの表層部のMg濃度が平均Mg濃度の5〜50倍であることが望ましい。50倍を超えると、粗面化が過剰に進行してピットが不均一になり易い。   In an aluminum alloy containing Mg, an oxide film mainly composed of Mg oxide (MgO-based oxide) is easily formed by a heat treatment such as homogenization treatment or heating during hot rolling. Since it is porous, wettability with the treatment liquid is improved in the electrolytic surface roughening treatment, and the surface roughening is promoted. In order to obtain this effect, it is desirable that the Mg concentration in the surface layer portion from the aluminum alloy plate surface to a depth of 0.2 μm is 5 to 50 times the average Mg concentration. If it exceeds 50 times, the roughening proceeds excessively and the pits tend to be non-uniform.

また、固溶しているMgは粗面化を促進し、Mg−Si系化合物(MgSi)の析出は、粗面化構造の均一性を低下させる単体Siの析出を抑制する。アルミニウム合金板のマトリックス中に析出しているMg量は、平均Mg濃度の50%以下であることが好ましく、Mgの固溶と析出がこの比率の場合、好ましい粗面化を達成することが可能となる。 Further, Mg in solid solution promotes roughening, and the precipitation of Mg—Si compound (Mg 2 Si) suppresses the precipitation of simple Si that reduces the uniformity of the roughened structure. The amount of Mg precipitated in the matrix of the aluminum alloy plate is preferably 50% or less of the average Mg concentration, and when the solid solution and precipitation of Mg are in this ratio, a preferable roughening can be achieved. It becomes.

Tiは、鋳塊組織を微細にし、また結晶粒を微細化し、その結果、電解処理時のピット形成を均一にして、印刷版としての処理を行ったときのストリークの発生を防止する。Tiの好ましい含有量は0.003〜0.05%の範囲であり、0.003%未満ではその効果が小さく、0.05%を超えて含有すると、Al−Ti系の粗大な化合物が生成して粗面化構造が不均一となり易い。なお、鋳塊組織の微細化のために、TiとともにBを添加する場合には、Tiを0.01%以下の範囲で含有させるのが好ましい。   Ti refines the ingot structure and refines the crystal grains. As a result, pit formation during the electrolytic treatment is made uniform, and streaks are prevented when processing as a printing plate is performed. The preferable content of Ti is in the range of 0.003 to 0.05%. If the content is less than 0.003%, the effect is small, and if it exceeds 0.05%, a coarse Al-Ti compound is formed. As a result, the roughened structure tends to be uneven. In addition, when adding B with Ti for refinement | miniaturization of an ingot structure | tissue, it is preferable to contain Ti in 0.01% or less of range.

Gaは、表層部に濃縮させることにより、電解処理時のピットを微細化し、ピット形成の均一性を高めるよう機能し、所望のピットパターンを得ることが可能となる。Gaの好ましい含有量は30〜300ppmの範囲であり、30ppm未満ではその効果が小さく、300ppmを超えて含有すると、粗面化構造が不均一となり易い。濃縮度は、表面から0.2μm深さまでの表層部のGa濃度が平均Ga濃度の2〜20倍であることが望ましい。   By concentrating Ga in the surface layer portion, the pits at the time of electrolytic treatment are refined and function to improve the uniformity of pit formation, and a desired pit pattern can be obtained. The preferable content of Ga is in the range of 30 to 300 ppm. When the content is less than 30 ppm, the effect is small, and when the content exceeds 300 ppm, the roughened structure tends to be uneven. As for the degree of concentration, it is desirable that the Ga concentration in the surface layer portion from the surface to a depth of 0.2 μm is 2 to 20 times the average Ga concentration.

Cuは、アルミニウムに固溶し易く、0.05%以下の含有でピットを微細化する効果を有する。0.05%を超えて含有すると、電解処理時のピットを粗大且つ不均一にし易くなり、未エッチング部が発生し易くなる。なお、本発明において、前記のFeおよびSiの含有量を得るために採用される地金から混入されるCu量は5〜100ppm(0.0005〜0.01%)程度である。   Cu easily dissolves in aluminum, and has an effect of refining pits with a content of 0.05% or less. If it exceeds 0.05%, the pits at the time of electrolytic treatment are likely to be coarse and non-uniform, and unetched portions are likely to occur. In addition, in this invention, the amount of Cu mixed from the metal | base metal employ | adopted in order to obtain content of the said Fe and Si is about 5-100 ppm (0.0005-0.01%).

不可避的不純物については、通常市販されているアルミニウム地金に含まれる不可避的不純物の範囲であれば、本発明の効果を損なうことはない。例えば、Ni:50ppm程度、V:200ppm程度、Cr:50ppm程度、Zr:40ppm程度、Mn:50ppm程度、B:10ppm程度、Zn:50ppm程度は許容される。   As for inevitable impurities, the effects of the present invention are not impaired as long as they are in the range of inevitable impurities contained in a commercially available aluminum ingot. For example, Ni: about 50 ppm, V: about 200 ppm, Cr: about 50 ppm, Zr: about 40 ppm, Mn: about 50 ppm, B: about 10 ppm, Zn: about 50 ppm are allowed.

本発明による平版印刷版用アルミニウム合金板の製造は、前記の成分組成を有するアルミニウム合金の鋳塊を連続鋳造などにより造塊し、得られた鋳塊を均質化処理後、熱間圧延、冷間圧延することにより行われるが、特徴とするところは、熱間粗圧延と熱間仕上げ圧延からなる熱間圧延工程において、熱間粗圧延における圧延開始温度、圧延終了温度、粗圧延から仕上げ圧延に移行するまでの保持時間、熱間仕上げ圧延の終了温度を特定し、熱間仕上げ圧延後、コイルとして巻き取った時の再結晶粒を制御することにより、熱間仕上げ圧延後、中間焼鈍を行うことなく冷間圧延のみで所定の厚さの板材とする点にある。   The production of an aluminum alloy plate for a lithographic printing plate according to the present invention involves ingot-making an ingot of an aluminum alloy having the above component composition by continuous casting or the like, and homogenizing the obtained ingot, followed by hot rolling, Although it is performed by hot rolling, the feature is in the hot rolling process consisting of hot rough rolling and hot finish rolling, rolling start temperature in hot rough rolling, rolling end temperature, rough rolling to finish rolling. After the hot finish rolling, intermediate annealing is performed by controlling the recrystallization grains when the coil is wound as a coil after the hot finish rolling is specified. There exists in the point made into the board | plate material of predetermined thickness only by cold rolling, without performing.

まず、前記の組成を有するアルミニウム合金の鋳塊の圧延面表層を面削して、ストリークスの原因となる不均一な組織を除去した後、500〜610℃の温度域で1時間以上の均質化処理を行う。この均質化処理により、過飽和に固溶しているFe、Siを均一に析出させ、電解処理時に形成されるエッチングピットが微細な円形となり耐刷性が向上する。均質化処理温度が500℃未満では、Fe、Siの析出が十分でなく、ピットパターンが不均一になり易い。610℃を越える温度で均質化処理を行うと、Feの固溶量が増大するため、結果的にピット発生の起点となる微細な析出物が減少する。均質化処理の保持時間が1hr未満では、Fe、Siの析出が不十分となりピットパターンが不均一となり易い。   First, the surface of the rolled surface of the ingot of the aluminum alloy having the above composition is chamfered to remove a non-uniform structure causing streaks, and then homogenized for 1 hour or more in a temperature range of 500 to 610 ° C. Process. By this homogenization treatment, Fe and Si dissolved in supersaturation are uniformly deposited, and the etching pits formed during the electrolytic treatment become fine circles, and the printing durability is improved. When the homogenization temperature is less than 500 ° C., the precipitation of Fe and Si is not sufficient, and the pit pattern tends to be non-uniform. When the homogenization treatment is performed at a temperature exceeding 610 ° C., the amount of Fe dissolved increases, and as a result, fine precipitates that are the starting point of pit generation are reduced. If the holding time of the homogenization treatment is less than 1 hr, the precipitation of Fe and Si is insufficient and the pit pattern tends to be non-uniform.

熱間圧延は、通常、熱間圧延ラインにおいて、粗圧延スタンドで熱間粗圧延を行った後、圧延材を仕上げ圧延スタンドに移行して、仕上げ圧延スタンドで熱間仕上げ圧延を行い、熱間圧延材としてコイルに巻き取ることにより行われるが、本発明においては、熱間粗圧延を400〜520℃で開始し、400℃以上の温度で終了して、熱間粗圧延終了後、仕上げスタンドに移行して熱間仕上げ圧延を開始する前に、熱間粗圧延材を60〜300秒間保持して熱間粗圧延材の表面を再結晶させる。また、当該熱間粗圧延終了後、熱間仕上げ圧延開始前の保持により、前記Mg、Gaの前記濃縮度を得ることができる。すなわち、板表面から0.2μm深さまでの表層部のMgおよびGa濃度を平均MgおよびGa濃度のそれぞれ5〜50倍および2〜20倍に調整することができる。   Hot rolling is usually performed in a hot rolling line after hot rough rolling in a rough rolling stand, and then the rolled material is transferred to a finishing rolling stand and hot finishing rolling is performed in a finishing rolling stand. In the present invention, the hot rough rolling starts at 400 to 520 ° C., ends at a temperature of 400 ° C. or higher, and finishes the hot rough rolling. The hot rough rolled material is held for 60 to 300 seconds and the surface of the hot rough rolled material is recrystallized before the hot finish rolling is started. Moreover, the said enrichment of Mg and Ga can be obtained by the holding | maintenance before the hot finish rolling start after completion | finish of the said hot rough rolling. That is, the Mg and Ga concentrations in the surface layer portion from the plate surface to a depth of 0.2 μm can be adjusted to 5 to 50 times and 2 to 20 times the average Mg and Ga concentrations, respectively.

熱間粗圧延の開始温度が400℃未満では、材料の変形抵抗が大きく圧延パス回数が増加して生産性を低下させる。520℃を超える温度では、圧延中に粗大な再結晶粒が生成して筋状の不均一組織となり易い。熱間粗圧延の終了温度が400℃未満では、熱間粗圧延終了後の保持による再結晶が不十分となり、均一な表層組織が得難くなるとともに、前記MgおよびGaの濃縮度が得難くなる。また、熱間粗圧延終了後熱間仕上げ圧延開始前の保持時間が60秒未満では、再結晶が不十分となり、均一な表層組織が得難くなる。また、表層部のMgおよびGa濃度と平均MgおよびGa濃度との差が小さく、所定の濃縮度が得難くなる。300秒を超える時間保持すると、再結晶粒が成長して部分的に粗大な再結晶粒が生成し、熱間圧延終了段階で微細な再結晶粒が得難くなるとともに、前記MgおよびGaの濃縮度が得難くなる。   If the starting temperature of hot rough rolling is less than 400 ° C., the deformation resistance of the material is large, and the number of rolling passes is increased, thereby reducing productivity. When the temperature exceeds 520 ° C., coarse recrystallized grains are generated during rolling, and a streak-like non-uniform structure tends to be formed. When the end temperature of hot rough rolling is less than 400 ° C., recrystallization due to holding after the end of hot rough rolling becomes insufficient, and it becomes difficult to obtain a uniform surface layer structure and it is difficult to obtain the concentration of Mg and Ga. . Further, if the holding time after the hot rough rolling is completed and before the hot finish rolling is started is less than 60 seconds, the recrystallization is insufficient and it is difficult to obtain a uniform surface structure. Further, the difference between the Mg and Ga concentration in the surface layer part and the average Mg and Ga concentration is small, and it becomes difficult to obtain a predetermined concentration. If the time exceeding 300 seconds is maintained, recrystallized grains grow and partially coarse recrystallized grains are generated, and it becomes difficult to obtain fine recrystallized grains at the end of hot rolling, and the concentration of Mg and Ga The degree becomes difficult to obtain.

ついで、熱間仕上げ圧延を行い、熱間仕上げ圧延を330℃以上の温度で終了してコイ
ルとして巻き取る。熱間仕上げ圧延の終了温度が330℃未満では、再結晶が部分的にしか生ぜず、ストリークの原因となる。熱間仕上げ圧延の終了温度は370℃以下が好ましく、熱間仕上げ圧延の終了温度が370℃を超えると、再結晶粒が粗大となり、ストリークが生じ易くなる。
Next, hot finish rolling is performed, and the hot finish rolling is finished at a temperature of 330 ° C. or higher and wound as a coil. When the finish temperature of hot finish rolling is less than 330 ° C., recrystallization occurs only partially, causing streaks. The finish temperature of hot finish rolling is preferably 370 ° C. or less. When the finish temperature of hot finish rolling exceeds 370 ° C., recrystallized grains become coarse and streaks are likely to occur.

上記の熱間圧延を行った後、コイルとして巻き取ることによって、熱間仕上げ圧延材の表層部の圧延方向と直交する方向における平均再結晶粒径を50μm以下とすることができ、熱間仕上げ圧延後、中間焼鈍を行うことなく冷間圧延のみで所定の厚さの板材とすることが可能となり、生産性の向上とそれに伴って製造コストの低減が達成でき、且つ冷間圧延後の最終圧延材において、表層部の圧延材の圧延方向と直交する方向における平均再結晶粒径を50μm以下として、印刷板の面質ムラを防止することができる。   After performing the above hot rolling, the average recrystallized grain size in the direction orthogonal to the rolling direction of the surface layer portion of the hot finish rolled material can be reduced to 50 μm or less by winding up as a coil. After rolling, it becomes possible to make a plate material of a predetermined thickness only by cold rolling without performing intermediate annealing, and it is possible to achieve improvement in productivity and concomitant reduction in manufacturing cost, and the final after cold rolling In the rolled material, the average recrystallized grain size in the direction orthogonal to the rolling direction of the rolled material in the surface layer portion can be set to 50 μm or less to prevent unevenness in the surface quality of the printing plate.

平版印刷版は、運搬時の変形、印刷機にセットするときの張力および印刷中における版切れなどに耐え得るように、適切な強度特性をそなえていることが必要である。このような強度特性を付与するには、合金組成以外に、熱間圧延後の冷間圧延の圧下率が重要であり、冷間圧延時の加工度を80%以上とすることが望ましい。冷間圧延時の加工度が80%未満では、印刷版(印刷版用支持体)に十分な強度が与えられず、変形や版切れなどが生じ易くなる。印刷版に必要な強度特性を付与するためには、冷間圧延後の印刷板において、引張強さを190MPa以上とすることが望ましい。   The lithographic printing plate needs to have appropriate strength characteristics so that it can withstand deformation during transportation, tension when set in a printing machine, plate breakage during printing, and the like. In order to impart such strength characteristics, in addition to the alloy composition, the reduction ratio of cold rolling after hot rolling is important, and it is desirable that the workability during cold rolling be 80% or more. If the degree of processing during cold rolling is less than 80%, sufficient strength is not given to the printing plate (printing plate support), and deformation and plate breakage are likely to occur. In order to impart the necessary strength characteristics to the printing plate, it is desirable that the tensile strength of the printing plate after cold rolling is 190 MPa or more.

また、冷間圧延後の最終圧延材において、板面の圧延方向と直角方向における算術平均粗さRaを0.03〜0.5μmとすることにより、耐インキ汚れ性を向上させる効果を得ることができる。Raが0.03μm未満では、印刷版として適用した場合、湿し水の保水量が急激に減少するおそれがあり、画像部のインキが非画像部上に移動し易くなって耐インキ汚れ性が低下する。Raが0.5μmを超えると、ブランケット胴の汚れが生じるおそれがある。耐インキ汚れ性を向上させるためには、十分な保水量を保持し得る表面粗さを有していることが必要で、そのために粗面化仕上げ面の算術平均粗さは0.03〜0.5μmの範囲とするのが好ましく、0.2〜0.4μmとするのがさらに好ましい。   Moreover, in the final rolled material after cold rolling, the effect of improving ink stain resistance is obtained by setting the arithmetic average roughness Ra in the direction perpendicular to the rolling direction of the plate surface to 0.03 to 0.5 μm. Can do. When Ra is less than 0.03 μm, when applied as a printing plate, the amount of dampening water retained may be drastically reduced, and the ink in the image area can easily move onto the non-image area, resulting in ink stain resistance. descend. If Ra exceeds 0.5 μm, the blanket cylinder may become dirty. In order to improve the ink stain resistance, it is necessary to have a surface roughness capable of maintaining a sufficient water retention amount. For this reason, the arithmetic average roughness of the roughened finished surface is 0.03 to 0. The thickness is preferably in the range of 0.5 μm, more preferably 0.2 to 0.4 μm.

板面の圧延方向と直角方向における算術平均粗さRaを0.03〜0.5μmとするためには、外径250〜700mmで圧延方向と垂直方向における表面粗さRaが0.03〜0.6μmのワークロール(WR)を用いて最終冷間圧延を行い、合金組成に応じて、最終冷間加工度、圧延速度、圧延油の性状、圧延油の供給量を調整することが必要である。   In order to set the arithmetic average roughness Ra in the direction perpendicular to the rolling direction of the plate surface to 0.03 to 0.5 μm, the surface roughness Ra in the direction perpendicular to the rolling direction is 0.03 to 0 with an outer diameter of 250 to 700 mm. It is necessary to perform final cold rolling using a 6 μm work roll (WR) and adjust the final cold work degree, rolling speed, rolling oil properties, and rolling oil supply amount according to the alloy composition. is there.

本発明のアルミニウム合金板においては、最終冷間圧延後の圧延板表面のアルミパウダー量が0.1〜3.0mg/mに調整されていることが好ましい。アルミパウダーは、最終冷間圧延中にアルミニウム合金圧延材から生じた圧延後の板表面に残存するアルミニウム合金の粉体であり、Mgを含有する本発明のアルミニウム合金の場合には、アルミパウダー量が0.1mg/m未満では、最終冷間圧延後にコイルとして巻き取られた時、コイル内の擦れ傷防止効果が十分でなく、3.0mg/mを超えると、脱脂過程においてアルミパウダーが十分に除去されず板面に残留し、電解粗面化処理時に、アルミパウダーが残留している部分のピット形成が不十分または不均一となり、電解グレーニング後に未エッチング部やムラ模様による外観不良が生じる原因となる。また、過剰なアルミパウダーはライン汚染の原因ともなる。 In the aluminum alloy sheet of the present invention, the amount of aluminum powder on the surface of the rolled sheet after the final cold rolling is preferably adjusted to 0.1 to 3.0 mg / m 2 . The aluminum powder is a powder of an aluminum alloy remaining on the surface of the rolled sheet generated from the aluminum alloy rolled material during the final cold rolling, and in the case of the aluminum alloy of the present invention containing Mg, the amount of aluminum powder If it is less than 0.1 mg / m 2 , when wound as a coil after the final cold rolling, the effect of preventing scratches in the coil is insufficient, and if it exceeds 3.0 mg / m 2 , aluminum powder is used in the degreasing process. Is not sufficiently removed and remains on the plate surface, and during the electrolytic surface roughening treatment, the pit formation is insufficient or uneven in the portion where the aluminum powder remains, and the appearance due to unetched parts and uneven patterns after electrolytic graining It causes a defect. Excessive aluminum powder can also cause line contamination.

最終冷間圧延後における板表面のアルミパウダー量を上記の範囲に調整するためには、前記成分への調整とともに、組成に応じて最終冷間圧延加工度、圧延油の性状、圧延油の供給量を調整することが必要である。とくに、最終冷間圧延の圧延油の粘度は重要で、粘度1〜6cStの圧延油を使用するのが好ましい。粘度が1cSt未満では、圧延ロールと圧延材との間に導入される圧延油量が少なくなって潤滑不良が生じ、過剰なアルミパウダーが生じ易くなる。粘度が6cStを超えると、圧延ロールと圧延材との間に導入される圧延油量が過剰となって、アルミパウダーの発生が少なくなる傾向がある。なお、アルミパウダー量は、板表面の残留摩耗粉の定量分析として、板表面の一定面積を溶剤で浸した脱脂綿で拭き取り、脱脂綿中のアルミニウム含有量を測定する方法により測定することができる。   In order to adjust the amount of aluminum powder on the surface of the plate after the final cold rolling to the above range, in addition to adjustment to the above components, the final cold rolling degree of processing, the properties of the rolling oil, the supply of the rolling oil according to the composition It is necessary to adjust the amount. In particular, the viscosity of the rolling oil in the final cold rolling is important, and it is preferable to use a rolling oil having a viscosity of 1 to 6 cSt. If the viscosity is less than 1 cSt, the amount of rolling oil introduced between the rolling roll and the rolled material is reduced, resulting in poor lubrication, and excessive aluminum powder is likely to occur. When the viscosity exceeds 6 cSt, the amount of rolling oil introduced between the rolling roll and the rolled material becomes excessive, and the generation of aluminum powder tends to be reduced. In addition, the amount of aluminum powder can be measured as a quantitative analysis of residual wear powder on the surface of the plate by wiping with a cotton wool dipped in a certain area of the surface of the plate and measuring the aluminum content in the cotton wool.

また、最終冷間圧延における圧延油としては、アルミニウム合金中のMg含有量(Mg
%)と最終冷間圧延において使用する圧延油の粘度ρとの関係が、ρ≦2×Mg%+4を満足する圧延油を用いるのが好ましい。ρ>(2×Mg+4)では、変形抵抗が小さく、また、圧延ロールと圧延材との間に導入される圧延油量が多くなるため、粗大なピットが過剰に形成され易くなる。
In addition, as rolling oil in the final cold rolling, Mg content in the aluminum alloy (Mg
%) And the viscosity ρ of the rolling oil used in the final cold rolling is preferably a rolling oil satisfying ρ ≦ 2 × Mg% + 4. When ρ> (2 × Mg + 4), the deformation resistance is small, and the amount of rolling oil introduced between the rolling roll and the rolled material increases, so that coarse pits are easily formed excessively.

本発明においては、最終冷間圧延後のアルミニウム合金板の表面において、直径(円相当直径)が30μm以上のオイルピットの数を50個/mm以下に調整することにより、電解粗面化処理において形成されるエッチングピットをより均一にすることができる。本発明のアルミニウム合金はMgを含有するため、直径30μm以上の大きなオイルピットは、電解グレーニング後も粗大なピットとして残留し易く、このような粗大なピットが50個/mmを超えると、電解粗面化処理で形成されるエッチングピットが不均一となり易い。 In the present invention, on the surface of the aluminum alloy sheet after the final cold rolling, the number of oil pits having a diameter (equivalent circle diameter) of 30 μm or more is adjusted to 50 pieces / mm 2 or less, whereby an electrolytic surface roughening treatment is performed. The etching pits formed in the step can be made more uniform. Since the aluminum alloy of the present invention contains Mg, large oil pits having a diameter of 30 μm or more tend to remain as coarse pits even after electrolytic graining. When such coarse pits exceed 50 pieces / mm 2 , Etching pits formed by the electrolytic surface roughening treatment tend to be non-uniform.

直径(円相当直径)が30μm以上のオイルピットの数を50個/mm以下に調整するためには、最終冷間圧延加工度、圧延ロール面の形態、圧延油の性状、圧延油の供給量を調整することが必要である。本発明のように、Mgを含有し、変形抵抗が比較的大きいアルミニウム合金の場合には、最終冷間圧延においてロール面粗度が算術平均粗さRa:0.2〜0.5μmの圧延ロールを用い、粘度1〜6cStの圧延油を使用して冷間圧延を行うことが望ましい。 In order to adjust the number of oil pits having a diameter (equivalent circle diameter) of 30 μm or more to 50 / mm 2 or less, the final cold rolling degree, the form of the rolling roll surface, the properties of the rolling oil, the supply of the rolling oil It is necessary to adjust the amount. In the case of an aluminum alloy containing Mg and having a relatively large deformation resistance as in the present invention, a roll having a roll surface roughness of arithmetic average roughness Ra: 0.2 to 0.5 μm in the final cold rolling. It is desirable to perform cold rolling using a rolling oil having a viscosity of 1 to 6 cSt.

ロール面粗度が算術平均粗さRaで0.5μmを超えると、接触弧長内での局部的な面圧が高くなり、油膜が切れて金属接触領域が増大するため潤滑不良が生じ易くなる。Raが0.2μm未満では、圧延ロールと圧延材との間に導入される圧延油量が過剰となり大きなオイルピットの数が増加する。圧延油の粘度が1cSt未満では、圧延ロールと圧延材との間に導入される圧延油量が少なくなって潤滑不良が生じ易く、6cStを超えると、圧延ロールと圧延材との間に導入される圧延油量が過剰となり大きなオイルピットの数が増加する。なお、オイルピットについては、アルミニウム合金板の表面を脱脂洗浄後、走査電子顕微鏡(SEM)を用いて、500倍の倍率で表面を観察し、切断法によりオイルピットの数および分布量を測定することができる。   When the roll surface roughness exceeds 0.5 μm in arithmetic average roughness Ra, the local surface pressure within the contact arc length increases, the oil film is cut and the metal contact area increases, and lubrication failure is likely to occur. . If Ra is less than 0.2 μm, the amount of rolling oil introduced between the rolling roll and the rolled material becomes excessive, and the number of large oil pits increases. If the viscosity of the rolling oil is less than 1 cSt, the amount of rolling oil introduced between the rolling roll and the rolled material is reduced, and lubrication is likely to occur. If the viscosity exceeds 6 cSt, the rolling oil is introduced between the rolling roll and the rolled material. The amount of rolling oil becomes excessive and the number of large oil pits increases. For the oil pits, the surface of the aluminum alloy plate is degreased and cleaned, and then the surface is observed at a magnification of 500 times using a scanning electron microscope (SEM), and the number and distribution of oil pits are measured by a cutting method. be able to.

以下、本発明の実施例を比較例と対比して説明し、本発明の効果を実証する。これらの実施例は、本発明の好ましい一実施態様を示すものであり、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects of the present invention. These examples show one preferred embodiment of the present invention, and the present invention is not limited thereto.

実施例1、比較例1
表1に示す組成を有するアルミニウム合金を溶解、鋳造し、得られた鋳塊の圧延面を5mm/片面づつ面削して厚さ500mmとし、各鋳塊について、表2に示す条件で均質化処理、熱間圧延を行い、熱間仕上げ圧延で所定の板厚として、コイルに巻き取った。熱間圧延後、中間焼鈍を施すことなしに冷間圧延を行い、板厚を0.3mmの冷間圧延材とした。なお、表1〜2において、本発明の条件を外れたものには下線を付した。
Example 1 and Comparative Example 1
Aluminum alloy having the composition shown in Table 1 is melted and cast, and the rolled surface of the obtained ingot is chamfered by 5 mm / one side to a thickness of 500 mm, and each ingot is homogenized under the conditions shown in Table 2. It processed and hot-rolled, and it wound up by the coil as predetermined plate | board thickness by hot finish rolling. After the hot rolling, cold rolling was performed without performing intermediate annealing to obtain a cold rolled material having a plate thickness of 0.3 mm. In Tables 1 and 2, those outside the conditions of the present invention are underlined.

Figure 0005314396
Figure 0005314396

Figure 0005314396
Figure 0005314396

冷間圧延材を試験材として、以下の方法で、圧延材の表層部の圧延方向と直交する方向における平均再結晶粒径を測定し、表層部におけるGaおよびMgの濃縮度、Mg析出率を評価した。結果を表3に示す。なお、表3において、本発明の条件を外れたものには下線を付した。   Using the cold rolled material as a test material, the average recrystallized grain size in the direction perpendicular to the rolling direction of the surface layer portion of the rolled material is measured by the following method, and the concentration of Ga and Mg in the surface layer portion and the Mg precipitation rate are measured. evaluated. The results are shown in Table 3. In Table 3, those outside the conditions of the present invention are underlined.

平均再結晶粒径の測定:試験材の表面を脱脂洗浄後、鏡面研磨した後、パーカー氏液で陽極酸化し、光学顕微鏡の偏光モードで結晶粒観察を行って、圧延方向と直交する方向の結晶粒径を切断法により求めた。   Measurement of the average recrystallized grain size: After degreasing and cleaning the surface of the test material, mirror polishing, anodizing with Parker's solution, observing crystal grains in the polarization mode of an optical microscope, The crystal grain size was determined by a cutting method.

表層部におけるGaおよびMgの濃縮度の測定:表層部のGaおよびMg濃度と内部のGaおよびMg濃度の比較は、2次イオン質量分析(SIMS)によりGaおよびMgの深さ分析(デプスプロファイル測定)を行い、表面の最も高いGaおよびMg濃度のカウント数と、内部のアルミ素地中からのカウント数との比により求めた。
Mg析出率の測定:図1に示すようなフェノール残渣分析法によって総金属間化合物中のMg量を調べ、{(総金属間化合物中のMg量(wt%))/(平均Mg量(wt%))}×100(%)を求めた。
Measurement of the concentration of Ga and Mg in the surface layer part: Comparison of Ga and Mg concentration in the surface layer part and Ga and Mg concentration in the inner part is based on depth analysis of Ga and Mg (depth profile measurement by secondary ion mass spectrometry (SIMS)). ) And the ratio of the count number of the highest Ga and Mg concentration on the surface to the count number from the inner aluminum substrate was obtained.
Measurement of Mg precipitation rate: The amount of Mg in the total intermetallic compound was examined by a phenol residue analysis method as shown in FIG. 1, and {(Mg amount in total intermetallic compound (wt%)) / (average Mg amount (wt %))} × 100 (%).

Figure 0005314396
Figure 0005314396

また、試験材(冷間圧延材)について引張強さを測定し、以下の方法により、ムラ模様、ストリークスの有無を観察し、未エッチング部の発生についての評価、エッチピットの均一性の評価を行った。結果を表4に示す。なお、表4において、本発明の条件を外れたものには下線を付した。   In addition, the tensile strength of the test material (cold rolled material) is measured, and the following methods are used to observe the presence or absence of uneven patterns and streaks, to evaluate the occurrence of unetched parts, and to evaluate the uniformity of etch pits. Went. The results are shown in Table 4. In Table 4, those outside the conditions of the present invention are underlined.

冷間圧延材を、脱脂(溶液:5%水酸化ナトリウム、温度:60℃、時間:10秒)−中和処理(溶液:10%硝酸、温度:20℃、時間:30秒)−交流電解粗面化処理(溶液:2.0%塩酸、温度:25℃、周波数:50Hz、電流密度:60A/dm、時間:20秒)―デスマット処理(溶液:5%水酸化ナトリウム、温度:60℃、時間:5秒)−陽極酸化処理(溶液:30%硫酸―温度:20℃、時間:60秒)し、水洗、乾燥して、一定の大きさに切り取り試験片とした。 Degrease the cold rolled material (solution: 5% sodium hydroxide, temperature: 60 ° C., time: 10 seconds) -neutralization treatment (solution: 10% nitric acid, temperature: 20 ° C., time: 30 seconds) -AC electrolysis Roughening treatment (solution: 2.0% hydrochloric acid, temperature: 25 ° C., frequency: 50 Hz, current density: 60 A / dm 2 , time: 20 seconds) -desmut treatment (solution: 5% sodium hydroxide, temperature: 60 (° C., time: 5 seconds) -anodic oxidation treatment (solution: 30% sulfuric acid-temperature: 20 ° C., time: 60 seconds), washed with water, dried, cut into a certain size to obtain a test piece.

各試験片について、ムラ模様、ストリークスの有無を観察した。また、走査電子顕微鏡(SEM)を用いて、500倍の倍率で表面を観察し、視野の面積が0.04mmとなるよう写真を撮影し、得られた写真から未エッチング部の発生、エッチングピットの均一性を評価した。 About each test piece, the presence or absence of a nonuniform pattern and streak was observed. In addition, using a scanning electron microscope (SEM), the surface was observed at a magnification of 500 times, and a photograph was taken so that the area of the visual field was 0.04 mm 2. Pit uniformity was evaluated.

ムラ模様の有無の観察:試験片の表面にムラ模様が目視で観察されるものは不良(×)、ムラ模様が観察されないものは(○)として評価した。
ストリークの有無の観察:試験片の表面にストリークが目視で観察されるものは不良(×)、ストリークが観察されないものは(○)として評価した。
未エッチング(未エッチ)部の発生についての評価:未エッチング部が20%を超えるものは不良(×)、10%を超え20%以下のものは(○)、10%以下のものは(◎)とした。
エッチピット(ピット)の均一性の評価:円相当直径が10μmを越える大きなピットが全ピットに対して面積率で10%を超えるものは不良(×)、5%を超え10%以下のものは(○)、5%以下のものは(◎)とした。
Observation of presence / absence of uneven pattern: A case where the uneven pattern was visually observed on the surface of the test piece was evaluated as bad (×), and a case where the uneven pattern was not observed was evaluated as (◯).
Observation of the presence or absence of streak: A case where the streak was visually observed on the surface of the test piece was evaluated as bad (x), and a case where no streak was observed was evaluated as (◯).
Evaluation of occurrence of unetched (unetched) portion: unetched portion exceeding 20% is defective (x), 10% exceeding 20% (◯), 10% or less (◎ ).
Evaluation of uniformity of etch pits (pits): Large pits with an equivalent circle diameter exceeding 10 μm are defective (×) when the area ratio exceeds 10% of all pits, and those exceeding 5% and less than 10% (◯) 5% or less is (◎).

引張強さ:冷間圧延材からJIS−5号試験片を採取して引張試験を行い、引張強さ
が200MPaを超えるものは(◎)、190MPaを超え200MPa未満のものは(○)、190MPa未満のものは不良(×)として評価した。
Tensile strength: A JIS-5 test piece was taken from the cold-rolled material and subjected to a tensile test. A sample having a tensile strength exceeding 200 MPa (◎), a component exceeding 190 MPa and less than 200 MPa (◯), 190 MPa Those less than were evaluated as bad (x).

Figure 0005314396
Figure 0005314396

表4にみられるように、本発明に従う試験材1〜4、試験材12および13はいずれも、ムラ模様、ストリークを生じることがなく、電解処理後のエッチング性に優れ、全面に均一なエッチングピットが形成されている。   As can be seen from Table 4, all of the test materials 1 to 4 and the test materials 12 and 13 according to the present invention are free from uneven patterns and streaks, have excellent etching properties after electrolytic treatment, and are uniformly etched over the entire surface. A pit is formed.

これに対して、試験材5はMg量が多いため板材の面質が劣り、試験材6はGa量が少ないため十分な粗面化が得られず、ピットの均一性も低下した。試験材7はGa量が多いため、粗面化処理において未エッチ部が生じた。   On the other hand, since the test material 5 has a large amount of Mg, the surface quality of the plate material is inferior, and the test material 6 has a small amount of Ga, so that sufficient roughening cannot be obtained and the uniformity of the pits is also lowered. Since the test material 7 had a large amount of Ga, an unetched portion was generated in the surface roughening treatment.

試験材8は、熱間粗圧延終了後、熱間仕上げ圧延開始までの保持時間が長いため、再結晶粒が成長して部分的に粗大な再結晶粒が生成し、熱間圧延終了段階で微細な再結晶粒が得られないとともに、所定のGaおよびMgの濃縮度が得られず、また、試験材9は、熱間粗圧延終了後、熱間仕上げ圧延開始までの保持時間が短いため、再結晶が不十分となって、板材の表層部に均一な再結晶組織が得られないともに、所定のGaおよびMgの濃縮度が得られず、ともにムラ模様、ストリークが生じた。   Since the test material 8 has a long holding time from the end of hot rough rolling to the start of hot finish rolling, the recrystallized grains grow to generate partially coarse recrystallized grains. Fine recrystallized grains cannot be obtained, and a predetermined concentration of Ga and Mg cannot be obtained, and the test material 9 has a short holding time from the end of hot rough rolling to the start of hot finish rolling. Insufficient recrystallization resulted in failure to obtain a uniform recrystallized structure in the surface layer portion of the plate material, and failure to obtain a predetermined concentration of Ga and Mg, resulting in uneven patterns and streaks.

試験材10は熱間仕上げ圧延の終了温度が低く、再結晶が十分に行われず非再結晶部が生じたため、ムラ模様、ストリークが生じ、電解処理時のピットの均一性も劣るものとなった。試験材11は均質化処理温度が低いため、Fe、Siの析出が十分でなく、電解処理時のピットパターンが不均一となり、未エッチング部も生じた。   The test material 10 had a low finish temperature of hot finish rolling, and since recrystallization was not sufficiently performed and non-recrystallized portions were generated, uneven patterns and streaks occurred, and the uniformity of pits during electrolytic treatment was poor. . Since the test material 11 had a low homogenization temperature, the precipitation of Fe and Si was not sufficient, the pit pattern during the electrolytic treatment became non-uniform, and an unetched part also occurred.

試験材14は、冷間加工度が低いため、引張強さは190MPa未満であり、印刷版として必要な強度が付与されず、変形や版切れが予想されるものである。   Since the test material 14 has a low degree of cold work, the tensile strength is less than 190 MPa, the strength necessary for a printing plate is not imparted, and deformation and plate breakage are expected.

Mg析出率の測定の測定方法を示すフローチャートである。It is a flowchart which shows the measuring method of a measurement of Mg precipitation rate.

Claims (4)

Si:0.03〜0.15%(質量%、以下同じ)、Fe:0.2〜0.7%、Mg:0.05〜0.5%、Ti:0.003〜0.05%、Ga:30〜300ppmを含有し、許容されるZn含有量を50ppm以下とし、残部アルミニウムおよび不可避的不純物からなる組成を有するアルミニウム合金板であって、表層部の圧延方向と直交する方向における平均再結晶粒径が50μm以下、表面から0.2μm深さまでの表層部のMg濃度が平均Mg濃度の5〜50倍、表面から0.2μm深さまでの表層部のGa濃度が平均Ga濃度の2〜20倍であることを特徴とする平版印刷版用アルミニウム合金板。 Si: 0.03-0.15% (mass%, the same applies hereinafter), Fe: 0.2-0.7%, Mg: 0.05-0.5%, Ti: 0.003-0.05% , Ga: 30 to 300 ppm , an allowable Zn content of 50 ppm or less , an aluminum alloy plate having a composition composed of the balance aluminum and unavoidable impurities, the average in the direction orthogonal to the rolling direction of the surface layer portion The recrystallized grain size is 50 μm or less, the Mg concentration in the surface layer portion from the surface to a depth of 0.2 μm is 5 to 50 times the average Mg concentration, and the Ga concentration in the surface layer portion from the surface to a depth of 0.2 μm is 2 times the average Ga concentration. An aluminum alloy plate for a lithographic printing plate characterized by being -20 times. Cu:0.05%以下(0%を含まず、以下同じ)を含有することを特徴とする請求項1記載の平版印刷版用アルミニウム合金板。 The aluminum alloy plate for a lithographic printing plate according to claim 1, wherein Cu: 0.05% or less (not including 0%, the same shall apply hereinafter) is contained. マトリックス中に析出しているMg量が、平均Mg濃度の50%以下であることを特徴とする請求項1または2記載の平版印刷版用アルミニウム合金板。 The aluminum alloy plate for a lithographic printing plate according to claim 1 or 2, wherein the amount of Mg precipitated in the matrix is 50% or less of the average Mg concentration. 190MPa以上の引張強さをそなえていることを特徴とする請求項1〜3のいずれかに記載の平版印刷版用アルミニウム合金板。 The aluminum alloy plate for a lithographic printing plate according to any one of claims 1 to 3, which has a tensile strength of 190 MPa or more.
JP2008306063A 2008-05-08 2008-12-01 Aluminum alloy plate for lithographic printing plates Active JP5314396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008306063A JP5314396B2 (en) 2008-05-08 2008-12-01 Aluminum alloy plate for lithographic printing plates

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008122040 2008-05-08
JP2008122040 2008-05-08
JP2008306063A JP5314396B2 (en) 2008-05-08 2008-12-01 Aluminum alloy plate for lithographic printing plates

Publications (2)

Publication Number Publication Date
JP2009293123A JP2009293123A (en) 2009-12-17
JP5314396B2 true JP5314396B2 (en) 2013-10-16

Family

ID=41541563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008306063A Active JP5314396B2 (en) 2008-05-08 2008-12-01 Aluminum alloy plate for lithographic printing plates

Country Status (1)

Country Link
JP (1) JP5314396B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012057185A (en) * 2010-09-03 2012-03-22 Fujifilm Corp Aluminum alloy plate for lithographic printing plate and method of manufacturing the same
JP2013174018A (en) * 2013-04-11 2013-09-05 Kobe Steel Ltd Method for producing high-strength aluminum alloy sheet for printing plate of automatic plate making

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305819A (en) * 2005-04-27 2006-11-09 Konica Minolta Medical & Graphic Inc Substrate for lithographic printing plate material, and lithographic printing plate material
JP2007070674A (en) * 2005-09-06 2007-03-22 Fujifilm Holdings Corp Aluminum alloy sheet for planographic printing plate, and manufacturing method therefor
JP4925246B2 (en) * 2005-08-30 2012-04-25 富士フイルム株式会社 Aluminum alloy plate for lithographic printing plate and method for producing the same
JP5116267B2 (en) * 2005-08-30 2013-01-09 富士フイルム株式会社 Method for producing aluminum alloy plate for lithographic printing plate
JP4925248B2 (en) * 2005-08-30 2012-04-25 富士フイルム株式会社 Aluminum alloy plate for lithographic printing plate and method for producing the same
JP4925247B2 (en) * 2005-08-30 2012-04-25 富士フイルム株式会社 Aluminum alloy plate for lithographic printing plate and method for producing the same

Also Published As

Publication number Publication date
JP2009293123A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
JP4740896B2 (en) Method for producing aluminum alloy plate for lithographic printing plate
JP4318587B2 (en) Aluminum alloy plate for lithographic printing plates
JP5210103B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP3693485B2 (en) Manufacturing method of aluminum alloy base plate for lithographic printing plate
JP4939325B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP5149582B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP4181596B2 (en) High-strength aluminum alloy plate for printing plates
JP4925246B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP5314396B2 (en) Aluminum alloy plate for lithographic printing plates
US20090252642A1 (en) Aluminum alloy sheet for lithographic printing plate and method of producing the same
JP4181597B2 (en) High-strength aluminum alloy plate for printing plates
JP5116267B2 (en) Method for producing aluminum alloy plate for lithographic printing plate
JP4925247B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
US8118951B2 (en) Aluminum alloy sheet for lithographic printing plate
US20080289731A1 (en) Method of producing aluminum alloy sheet for lithographic printing plate
JP2007070674A (en) Aluminum alloy sheet for planographic printing plate, and manufacturing method therefor
JP4925248B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP5886619B2 (en) Method for producing aluminum alloy plate for lithographic printing plate
JP4110353B2 (en) Aluminum alloy base plate for lithographic printing plate and method for producing the same
JP3983611B2 (en) Method for producing aluminum alloy plate for printing plate
JP5209918B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP3600081B2 (en) Element of aluminum alloy support for PS plate and method for producing aluminum alloy support for PS plate
JP4593593B2 (en) Aluminum alloy plate for printing plate and method for producing the same
JP4064259B2 (en) Aluminum alloy plate for lithographic printing plate and method for producing the same
JP2008272941A (en) Manufacturing method of aluminum alloy plate for lithographic printing plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5314396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250