JP4925247B2 - Aluminum alloy plate for lithographic printing plate and method for producing the same - Google Patents
Aluminum alloy plate for lithographic printing plate and method for producing the same Download PDFInfo
- Publication number
- JP4925247B2 JP4925247B2 JP2005248682A JP2005248682A JP4925247B2 JP 4925247 B2 JP4925247 B2 JP 4925247B2 JP 2005248682 A JP2005248682 A JP 2005248682A JP 2005248682 A JP2005248682 A JP 2005248682A JP 4925247 B2 JP4925247 B2 JP 4925247B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- plate
- lithographic printing
- alloy plate
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims description 46
- 238000007639 printing Methods 0.000 title claims description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000013078 crystal Substances 0.000 claims description 26
- 238000005096 rolling process Methods 0.000 claims description 22
- 238000005098 hot rolling Methods 0.000 claims description 19
- 239000006104 solid solution Substances 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 11
- 238000000265 homogenisation Methods 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 238000005097 cold rolling Methods 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 238000000137 annealing Methods 0.000 claims description 5
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- 229910052745 lead Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 239000002344 surface layer Substances 0.000 claims description 2
- 238000007788 roughening Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 229910000765 intermetallic Inorganic materials 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 206010016807 Fluid retention Diseases 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 229910018191 Al—Fe—Si Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910018084 Al-Fe Inorganic materials 0.000 description 1
- 229910018192 Al—Fe Inorganic materials 0.000 description 1
- 229910018575 Al—Ti Inorganic materials 0.000 description 1
- 229910002551 Fe-Mn Inorganic materials 0.000 description 1
- 229910018643 Mn—Si Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Printing Plates And Materials Therefor (AREA)
Description
本発明は、平版印刷版用アルミニウム合金板、とくに電気化学的エッチング処理により表面を均一に粗面化することができるとともに、優れた強度と耐熱軟化性をそなえた平版印刷版用アルミニウム合金板、およびその製造方法に関する。 The present invention relates to an aluminum alloy plate for a lithographic printing plate, in particular, an aluminum alloy plate for a lithographic printing plate that can be uniformly roughened by electrochemical etching treatment, and has excellent strength and heat-softening property, And a manufacturing method thereof.
平版印刷版(オフセット印刷版を含む)の支持体としては、一般にアルミニウム合金板が使用されており、支持体については、感光膜の密着性向上と非画像部の保水性向上の観点から粗面化処理が行われる。粗面化処理法としては、従来、ボールグレイニング、ブラシグレイニング、ワイヤーグレイニングなどの機械的粗面化法が行われていたが、近年、製版適性や印刷性能が優れていること、コイル材での連続処理が可能なことなどから、支持体用アルミニウム合金板の表面を電気化学的エッチング処理により粗面化する手法が急速に発展している。 In general, an aluminum alloy plate is used as a support for lithographic printing plates (including offset printing plates), and the support is rough from the viewpoint of improving the adhesion of the photosensitive film and improving the water retention of the non-image area. Processing is performed. Conventionally, as the surface roughening method, mechanical surface roughening methods such as ball graining, brush graining, and wire graining have been carried out. Since a continuous treatment with a material is possible, a method for roughening the surface of an aluminum alloy plate for a support by an electrochemical etching process has been rapidly developed.
電気化学的エッチング処理は、電解液として、塩酸または塩酸を主体とする電解液(以下、塩酸系電解液)や硝酸または硝酸を主体とする電解液(以下、硝酸系電解液)を用いるもので、比較的均一な電解粗面化が得られるA1050(アルミニウム純度99.5%)相当材が支持体として適用されており、支持体の上に塗布される感光層を適切に選択することによって10万枚にも及ぶ鮮明な印刷物を得ることが可能となる。 The electrochemical etching treatment uses an electrolytic solution mainly composed of hydrochloric acid or hydrochloric acid (hereinafter referred to as a hydrochloric acid-based electrolytic solution) or an electrolytic solution mainly composed of nitric acid or nitric acid (hereinafter referred to as a nitric acid-based electrolytic solution). A material equivalent to A1050 (aluminum purity 99.5%), which can obtain a relatively uniform electrolytic surface roughening, is applied as a support, and 10 can be obtained by appropriately selecting a photosensitive layer coated on the support. It is possible to obtain tens of thousands of clear printed materials.
また、印刷版の耐刷性の向上のために、アルミニウム合金板を支持体とする印刷版を通常の方法で露光、現像処理した後、高温で加熱処理(バーニング処理)することにより画像部を強化することが行われている。バーニング処理は、通常、加熱温度200〜290℃、加熱時間3〜9分の条件で行われているから、バーニング処理時に支持体の強度が低下することのない耐熱性(耐バーニング性)が求められている。 In addition, in order to improve the printing durability of the printing plate, the printing plate having an aluminum alloy plate as a support is exposed and developed by a normal method, and then heat-treated at a high temperature (burning treatment). Strengthening has been done. Since the burning treatment is usually performed under the conditions of a heating temperature of 200 to 290 ° C. and a heating time of 3 to 9 minutes, heat resistance (burning resistance) is required so that the strength of the support does not decrease during the burning treatment. It has been.
さらに、最近では、印刷技術の進歩に伴って印刷速度が速くなり、印刷機の版胴の両側に機械的に固定される印刷版に加わる応力が増大したことに対応して、支持体に対する強度要求が大きくなっており、支持体強度が不足すると、その固定部分が変形または破損して印刷ずれなどの支障が生じるため、前記の耐バーニング性とともに、支持体強度の向上が不可欠となっている。 In addition, recently, with the advance of printing technology, the printing speed has increased and the strength against the support has increased in response to the increased stress applied to the printing plates that are mechanically fixed to both sides of the printing press cylinder. When the demand is increasing and the support strength is insufficient, the fixed portion is deformed or damaged, resulting in troubles such as printing misalignment. Therefore, it is indispensable to improve the strength of the support along with the above-mentioned burning resistance. .
このような要求を満たすために、A1050相当材をベースとして添加成分を調整したアルミニウム合金支持体が提案されており、発明者らの一部も、先に、A1050相当材をベースとして特定量のMg、Znを共存させることにより、強度、耐熱性に優れ、電気化学的粗面化法により均一なピットが形成され、良好な感光膜との密着性および保水性を得ることができる平版印刷版用アルミニウム合金板を提案した(特許文献1参照)。
本発明は、上記提案のものをさらに改良するためになされたものであり、その目的は、電気化学的粗面化処理によりさらに均一なピットが形成され一層優れた感光膜との密着性、保水性を得ることを可能とする平版印刷版用アルミニウム合金板およびその製造方法を提供することにある。 The present invention has been made to further improve the above-mentioned proposal, and its purpose is to form more uniform pits by electrochemical surface roughening treatment, and to provide better adhesion with a photosensitive film, water retention An object of the present invention is to provide an aluminum alloy plate for a lithographic printing plate and a method for producing the same.
上記の目的を達成するための請求項1による平版印刷版用アルミニウム合金板は、Mg:0.1〜1.5%(質量%、以下同じ)、Zn:0.05%を越え0.5%以下、Fe:0.1〜0.6%、Si:0.03〜0.15%、Cu:0.0001〜0.10%、Ti:0.0001〜0.05%を含み、さらにPb、In、SnおよびGaから選ばれた1種以上の元素を、総量が0.005〜0.05%の範囲内で含有し、Mg含有量とZn含有量との関係を4×Zn%−1.4%≦Mg%≦4×Zn%+0.6%に規定し、残部アルミニウムおよび不純物からなる組成を有するアルミニウム合金板で、Fe固溶量が20〜600ppmであることを特徴とする。 To achieve the above object, an aluminum alloy plate for a lithographic printing plate according to claim 1 has Mg: 0.1 to 1.5% (mass%, hereinafter the same) , Zn: more than 0.05% and 0.5% %: Fe: 0.1-0.6%, Si: 0.03-0.15%, Cu: 0.0001-0.10%, Ti: 0.0001-0.05% , One or more elements selected from Pb, In, Sn and Ga are contained within a total amount of 0.005 to 0.05 %, and the relationship between the Mg content and the Zn content is 4 × Zn% -1.4% ≦ Mg% ≦ 4 × Zn% + 0.6%, an aluminum alloy plate having a composition composed of the remaining aluminum and impurities, wherein the Fe solid solution amount is 20 to 600 ppm. .
請求項2による平版印刷版用アルミニウム合金板は、請求項1において、さらにMn:0.05%を越え0.3%以下を含有することを特徴とする。 An aluminum alloy plate for a lithographic printing plate according to claim 2 is characterized in that, in claim 1, Mn: more than 0.05% and 0.3% or less is further contained.
請求項3による平版印刷版用アルミニウム合金板は、請求項1または2において、板表面からみた圧延方向に直交する方向の平均結晶粒長が100μm以下であり、板表面からみた圧延方向と平行する方向の平均結晶粒長が、前記圧延方向に直交する方向の平均結晶粒長の2〜20倍であることを特徴とする。 An aluminum alloy plate for a lithographic printing plate according to claim 3 is the aluminum alloy plate according to claim 1 or 2, wherein the average crystal grain length in the direction orthogonal to the rolling direction as viewed from the plate surface is 100 μm or less, and is parallel to the rolling direction as viewed from the plate surface. The average crystal grain length in the direction is 2 to 20 times the average crystal grain length in the direction orthogonal to the rolling direction.
請求項4による平版印刷版用アルミニウム合金板は、請求項1〜3のいずれかにおいて、270℃で7分間の熱処理後の0.2%耐力が120MPa以上であることを特徴とする。 The aluminum alloy plate for a lithographic printing plate according to claim 4 is characterized in that in any one of claims 1 to 3 , the 0.2% proof stress after heat treatment at 270 ° C. for 7 minutes is 120 MPa or more.
請求項5による平版印刷版用アルミニウム合金板の製造方法は、請求項1〜4のいずれかに記載の平版印刷版用アルミニウム合金板を製造する方法であって、請求項1または2に記載の組成を有するアルミニウム合金を造塊し、得られた鋳塊の圧延面表層を3〜15mm面削した後、20〜60℃/hrの昇温速度で450〜580℃の温度域に加熱して1hr以上保持する均質化処理を行い、その後、一旦常温まで降温し、ついで350〜500℃の温度に加熱して熱間圧延を開始し、終了温度を300〜380℃とし、終了時の厚さを5mm以下とする熱間圧延を行い、中間焼鈍を行うことなく冷間圧延することを特徴とする。 Method of manufacturing aluminum alloy plate for a lithographic printing plate according to claim 5 is the method for producing the aluminum alloy strip for lithographic printing plates according to claim 1, according to claim 1 or 2 An aluminum alloy having a composition is ingoted, and the rolled surface of the resulting ingot is chamfered by 3 to 15 mm, and then heated to a temperature range of 450 to 580 ° C. at a temperature increase rate of 20 to 60 ° C./hr. A homogenization treatment is performed for 1 hour or more, and then the temperature is once lowered to room temperature, and then heated to a temperature of 350 to 500 ° C. to start hot rolling, and the end temperature is set to 300 to 380 ° C. It is characterized by performing hot rolling to a thickness of 5 mm or less and performing cold rolling without performing intermediate annealing.
本発明によれば、電気化学的粗面化処理によりさらに均一なピットが形成され一層優れた感光膜との密着性、保水性を得ることができ、さらに改善された画像鮮明性および耐刷性を達成することを可能とする強度および耐熱軟化性に優れた平版印刷版用アルミニウム合金板およびその製造方法が提供される。 According to the present invention, more uniform pits are formed by the electrochemical surface roughening treatment, and it is possible to obtain better adhesion to the photosensitive film and water retention, and further improved image sharpness and printing durability. An aluminum alloy plate for a lithographic printing plate excellent in strength and heat softening resistance that makes it possible to achieve the above and a method for producing the same are provided.
本発明の平版印刷版用アルミニウム合金板における含有成分の意義および限定理由について説明すると、Mgは、大部分がアルミニウムに固溶して、強度および耐熱軟化性を向上させるよう機能する。強度とは、印刷版用支持体としての常温における引張り強さのことであり、160MPa以上が実用上好ましい範囲である。耐熱軟化性は、耐バーニング性ともいわれ、280℃程度の温度で加熱された後の0.2%耐力のことであり、90MPa以上が実用上望ましい範囲である。Mgの好ましい含有量は0.1〜1.5%の範囲であり、0.1%未満ではその効果が十分でなく、1.5%を越えると、粗面化処理におけるピットの均一性が低下し非画像部の汚れが生じ易くなる。 The significance and reasons for limitation of the components contained in the aluminum alloy plate for lithographic printing plates of the present invention will be described. Most of Mg functions as a solid solution in aluminum to improve strength and heat softening resistance. The strength is the tensile strength at normal temperature as a printing plate support, and 160 MPa or more is a practically preferable range. Heat softening resistance, also called burning resistance, is 0.2% proof stress after being heated at a temperature of about 280 ° C., and 90 MPa or more is a practically desirable range. The preferable content of Mg is in the range of 0.1 to 1.5%. If the content is less than 0.1%, the effect is not sufficient. If the content exceeds 1.5%, the uniformity of pits in the surface roughening treatment is insufficient. It becomes low and the stain | pollution | contamination of a non-image part tends to arise.
Znは、Mgと同様、大部分がアルミニウムに固溶するが、Mgのように強度および耐熱軟化性の向上に寄与することはなく、アルミニウム表面に形成される酸化皮膜に影響を与える。アルミニウム表面に形成される酸化皮膜には、室温に放置された場合に形成される酸化皮膜(自然酸化皮膜)と製造過程での熱処理時に形成される酸化皮膜があるが、Znはその両方に影響を与える。 Zn, like Mg, is mostly dissolved in aluminum, but does not contribute to the improvement of strength and heat-softening properties like Mg, and affects the oxide film formed on the aluminum surface. The oxide film formed on the aluminum surface includes an oxide film formed when left at room temperature (natural oxide film) and an oxide film formed during heat treatment in the manufacturing process, but Zn affects both. give.
すなわち、Mgを含有するアルミニウム合金においては、とくに均質化処理、熱間圧延時の加熱、中間焼鈍などの熱処理によりMg酸化物(MgO系酸化物)を主体とする酸化皮膜が形成され易く、この酸化皮膜は活性且つポーラスであるため、電解粗面化処理において処理液との濡れ性が良くなり粗面化が促進される反面、ピットが不均一になり易い。Znの含有は、この粗面化構造の不均一性を改善するものであり、Mg酸化物による活性化を抑制するよう機能する。Znの好ましい含有量は0.05%を越え0.5%以下の範囲であり、0.05%以下ではその効果が小さく、0.5%を越えて含有すると、Mg酸化物による活性化抑制効果が大きくなって粗面化が不均一となり、また、粗大な金属間化合物が生成し易くなって電解処理時に粗大なピットが形成され、粗面化の均一性がさらに阻害される。Znのより好ましい含有範囲は0.06〜0.5%である。 That is, in an aluminum alloy containing Mg, an oxide film mainly composed of Mg oxide (MgO-based oxide) is easily formed by heat treatment such as homogenization treatment, heating during hot rolling, and intermediate annealing. Since the oxide film is active and porous, the wettability with the treatment liquid is improved in the electrolytic surface-roughening treatment and the surface roughening is promoted, but the pits are likely to be non-uniform. The inclusion of Zn improves the unevenness of the roughened structure and functions to suppress activation by Mg oxide. The preferable content of Zn is in the range of more than 0.05% and less than 0.5%. The effect is small if it is less than 0.05%, and if it exceeds 0.5%, the activation suppression by Mg oxide is suppressed. The effect becomes large and the roughening becomes non-uniform, and a coarse intermetallic compound is easily generated, and coarse pits are formed during the electrolytic treatment, thereby further hindering the uniformity of the roughening. A more preferable content range of Zn is 0.06 to 0.5%.
Feは、Al−Fe系金属間化合物を生成し、またSiと共存してAl−Fe−Si系金属間化合物を生成し、これらの化合物の分散により、再結晶組織が微細化され、これらの化合物がピット発生の起点となって電解処理時にピットの形成を均一にし且つピットを微細に分布させる。一方、Feの固溶量はバーニング強度及び電解グレーニング性に影響する。Feの好ましい含有量は0.1〜0.6%の範囲であり、0.1%未満では化合物の分布が不均一となって、電解処理時のピットの形成を不均一にする。0.6%を越えると、粗大な化合物が生成し、粗面化構造の均一性が低下する。 Fe produces an Al—Fe-based intermetallic compound, and coexists with Si to produce an Al—Fe—Si-based intermetallic compound. The dispersion of these compounds refines the recrystallized structure. The compound serves as a starting point of pit generation, uniformizing pit formation during the electrolytic treatment, and finely distributing the pits. On the other hand, the solid solution amount of Fe affects the burning strength and the electrolytic graining property. The preferable content of Fe is in the range of 0.1 to 0.6%, and if it is less than 0.1%, the distribution of the compound becomes nonuniform, and the formation of pits during the electrolytic treatment becomes nonuniform. If it exceeds 0.6%, a coarse compound is produced, and the uniformity of the roughened structure is lowered.
Siは、Feと共存してAl−Fe−Si系金属間化合物を生成し、該化合物の分散により、再結晶組織が微細化され、これらの化合物がピット発生の起点となって電解処理時のピットの形成を均一にし且つピットを微細に分布させる。Siの好ましい含有量は0.03〜0.15%の範囲であり、0.03%未満では化合物の分布が不均一となって、電解処理時のピットの形成を不均一にする。0.15%を越えると、粗大化合物が生成し、また単体のSiの析出が生じ易くなって粗面化構造の均一性が低下する。 Si coexists with Fe to produce an Al—Fe—Si intermetallic compound, and the dispersion of the compound refines the recrystallized structure, and these compounds serve as starting points for pit generation during the electrolytic treatment. Uniform formation of pits and fine distribution of pits. The preferable content of Si is in the range of 0.03 to 0.15%, and if it is less than 0.03%, the distribution of the compound becomes nonuniform, and the formation of pits during the electrolytic treatment becomes nonuniform. If it exceeds 0.15%, a coarse compound is produced, and precipitation of simple Si is likely to occur, and the uniformity of the roughened structure is lowered.
Cuは、アルミニウムに固溶し易く、0.0001〜0.10%の含有範囲でピットを微細化する効果を有する。0.10%を越えて含有すると、電解処理時のピットを粗大且つ不均一にし易くなる。なお、本発明において、前記のFeおよびSiの含有量を得るために採用される地金から混入されるCu量は5〜100ppm(0.0005〜0.01%)程度である。 Cu is easily dissolved in aluminum and has an effect of refining pits in a content range of 0.0001 to 0.10%. If the content exceeds 0.10%, the pits during the electrolytic treatment are likely to be coarse and non-uniform. In addition, in this invention, the amount of Cu mixed from the metal | base metal employ | adopted in order to obtain content of the said Fe and Si is about 5-100 ppm (0.0005-0.01%).
Tiは、鋳塊組織を微細にし、また結晶粒を微細化し、その結果、電解処理時のピット形成を均一にして、印刷版としての処理を行ったときのストリークの発生を防止する。Tiの好ましい含有量は0.0001〜0.05%の範囲であり、0.0001%未満ではその効果が小さく、0.05%を越えて含有すると、Al−Ti系の粗大な化合物が生成して粗面化構造が不均一となり易い。なお、鋳塊組織の微細化のために、TiとともにBを添加する場合には、Tiを0.01%以下の範囲で含有させるのが好ましい。 Ti refines the ingot structure and refines the crystal grains. As a result, pit formation during the electrolytic treatment is made uniform, and streaks are prevented when processing as a printing plate is performed. The preferable content of Ti is in the range of 0.0001 to 0.05%. If the content is less than 0.0001%, the effect is small. If the content exceeds 0.05%, a coarse Al-Ti compound is formed. As a result, the roughened structure tends to be non-uniform. In addition, when adding B with Ti for refinement | miniaturization of an ingot structure | tissue, it is preferable to contain Ti in 0.01% or less of range.
Mnは、強度および耐熱軟化性を向上させるよう機能する。Mnの好ましい含有量は0.05%を越え0.3%の範囲であり、0.05%以下ではその効果が小さく、0.3%を越えると、粗大なAl−Fe−Mn系あるいはAl−Fe−Mn−Si系の金属間化合物が生成し易く、電解処理時の粗面化が不均一となる。Mnのより好ましい含有範囲は0.06〜0.3%である。 Mn functions to improve strength and heat softening resistance. The preferable content of Mn is in the range of more than 0.05% and 0.3%, and the effect is small if it is 0.05% or less, and if it exceeds 0.3%, a coarse Al—Fe—Mn system or Al -Fe-Mn-Si-based intermetallic compounds are likely to be formed, and the surface roughening during the electrolytic treatment becomes non-uniform. A more preferable content range of Mn is 0.06 to 0.3%.
本発明による平版印刷版用アルミニウム合金板においては、Mg含有量およびZn含有量は、4%×Zn%−1.4%≦Mg%≦4×Zn%+0.6%の関係を満足ことが望ましく、この関係を満足するMgおよびZnを含有させることにより、電解処理時のピット形成をより均一にし、優れた粗面化構造を得ることができる。4×Zn%−1.4%>Mg%では、Mg量に対してZn量が過剰となるため、Mg酸化物による活性化抑制効果が大きくなって電解処理時のピット形成が不均一となり、粗面形成が不均一となり易い。Mg%>4×Zn%+0.6%の場合には、Mg量に対してZn量が過少であるため、Mg酸化物による活性化抑制作用が小さく、この場合にも、電解処理時のピット形成が不均一となり、粗面形成が不均一となり易い。 In the aluminum alloy plate for lithographic printing plates according to the present invention, the Mg content and the Zn content satisfy the relationship of 4% × Zn% −1.4% ≦ Mg% ≦ 4 × Zn% + 0.6%. Desirably, by including Mg and Zn that satisfy this relationship, pit formation during the electrolytic treatment can be made more uniform, and an excellent roughened structure can be obtained. When 4 × Zn% −1.4%> Mg%, the Zn amount is excessive with respect to the Mg amount, so the effect of suppressing activation by the Mg oxide is increased, and the pit formation during the electrolytic treatment becomes uneven. Rough surface formation tends to be uneven. In the case of Mg%> 4 × Zn% + 0.6%, the Zn content is too small relative to the Mg content, so the activation suppressing action by Mg oxide is small. Formation is uneven and rough surface formation tends to be uneven.
本発明においては、また、Fe固溶量を20〜600ppmとすることにより、バーニング強度を維持し、電解処理においてより均一なエッチピットを形成することができる。Fe固溶量が20ppm未満ではバーニング強度の低下が生じ、Fe固溶量が600ppmを越えると、析出が不十分となるため、電解グレーニングにおいてピットパターンが不均一となり、平版印刷用支持体として適したアルミニウム合金板が得難くなる。 In the present invention, by setting the Fe solid solution amount to 20 to 600 ppm, the burning strength can be maintained, and more uniform etch pits can be formed in the electrolytic treatment. If the Fe solid solution amount is less than 20 ppm, the burning strength is reduced. If the Fe solid solution amount exceeds 600 ppm, the precipitation becomes insufficient, so that the pit pattern is not uniform in electrolytic graining, and is used as a support for lithographic printing. It becomes difficult to obtain a suitable aluminum alloy sheet.
さらに、板表面から見た結晶粒径を特定することによって、面質ムラやストリークスなどの電解グレーニング後の外観不良発生を抑制することができる。すなわち、板表面から見た圧延方向に直交する方向の平均結晶粒長を100μm以下とし、板表面から見た圧延方向と平行な方向の平均結晶粒長を圧延方向と直交する方向の平均結晶粒長の2〜20倍とする。板表面から見た圧延方向に直行する方向の平均結晶粒長が100μmを越えると面質ムラが生じるようになる。圧延方向に平行な方向の平均結晶粒長が圧延方向に直交する方向の平均結晶粒長の2倍未満では印刷版用支持体として強度不足となり、20倍を越えるとストリークスが生じる。 Furthermore, by specifying the crystal grain size seen from the plate surface, it is possible to suppress the appearance defects after electrolytic graining such as uneven surface quality and streak. That is, the average crystal grain length in the direction orthogonal to the rolling direction viewed from the plate surface is 100 μm or less, and the average crystal grain length in the direction parallel to the rolling direction viewed from the plate surface is the average crystal grain in the direction orthogonal to the rolling direction. 2 to 20 times the length. When the average crystal grain length in the direction perpendicular to the rolling direction as viewed from the plate surface exceeds 100 μm, surface quality unevenness occurs. If the average crystal grain length in the direction parallel to the rolling direction is less than twice the average crystal grain length in the direction orthogonal to the rolling direction, the strength becomes insufficient as a support for a printing plate, and if it exceeds 20 times, streak occurs.
本発明による平版印刷版用アルミニウム合金板には、Pb、In、SnおよびGaのうちの1種以上を、総量で0.005〜0.05%添加することにより、電解グレーニング性をさらに向上させることができ、少ない電気量で所望のピットパターンを得ることができる。Pb、In、Sn及びGaからなる群から選択された1種以上の元素の総量が0.005%より少ない場合はその効果が十分でなく、0.05%を越えるとピットの形状が崩れ易くなる。 The aluminum alloy plate for a lithographic printing plate according to the present invention further improves electrolytic graining properties by adding 0.005 to 0.05% of one or more of Pb, In, Sn and Ga in a total amount. The desired pit pattern can be obtained with a small amount of electricity. If the total amount of one or more elements selected from the group consisting of Pb, In, Sn, and Ga is less than 0.005%, the effect is not sufficient, and if it exceeds 0.05%, the shape of the pit tends to collapse. Become.
本発明による平版印刷版用アルミニウム合金板の製造は、前記アルミニウム合金の鋳塊を連続鋳造などにより造塊し、得られた鋳塊を均質化処理後、熱間圧延、冷間圧延することにより行われる。 The production of an aluminum alloy plate for a lithographic printing plate according to the present invention is performed by ingot-making the aluminum alloy ingot by continuous casting or the like, and homogenizing the obtained ingot, followed by hot rolling and cold rolling. Done.
均質化処理時の鋳塊の昇温速度は20〜60℃/hrが好ましく、前記所定の固溶状態を得るために効果的に作用する。20℃/hr未満では、析出量が増加し、固溶量が大幅に減少するうえ、加熱に時間を要するため経済的でない。60℃/hrを超える昇温速度では、加熱が速すぎて析出が進行せず所定の固溶状態が得難くなる。 The temperature rising rate of the ingot during the homogenization treatment is preferably 20 to 60 ° C./hr, and acts effectively to obtain the predetermined solid solution state. If it is less than 20 ° C./hr, the amount of precipitation increases, the amount of solid solution decreases significantly, and it takes time for heating, which is not economical. At a temperature increase rate exceeding 60 ° C./hr, heating is too fast and precipitation does not proceed, making it difficult to obtain a predetermined solid solution state.
均質化処理は、450〜580℃の温度で1hr以上保持する条件で行うのが好ましく、この均質化処理により、過飽和に固溶しているFe、Siの固溶量を調整させることで、電解処理時に形成されるエッチングピットが微細な円形となり耐刷性が向上する。均質化処理温度が450℃未満では、Fe、Siの固溶が十分でないため、ピットパターンが不均一になり易く、またバーニング強度が低下する。580℃を越える温度で均質化処理を行うと、Feの固溶量が過度に増大するため、ピットパターンが不均一になる。均質化処理の保持時間が1hr未満では、長手及び幅方向でのFe、Siの固溶状態が不均一となりピットパターンが不均一となる。 The homogenization treatment is preferably carried out under the condition that the temperature is maintained at 450 to 580 ° C. for 1 hour or longer. By this homogenization treatment, the amount of Fe and Si dissolved in supersaturation is adjusted, so that Etching pits formed at the time of processing become a fine circle, and printing durability is improved. When the homogenization temperature is less than 450 ° C., the solid solution of Fe and Si is not sufficient, so that the pit pattern is likely to be non-uniform and the burning strength is lowered. When the homogenization process is performed at a temperature exceeding 580 ° C., the amount of solid solution of Fe increases excessively, so that the pit pattern becomes non-uniform. If the holding time of the homogenization treatment is less than 1 hr, the solid solution state of Fe and Si in the longitudinal and width directions is not uniform, and the pit pattern is not uniform.
均質化処理後、一旦常温に降温することにより、Fe及びSiの析出を制御し、目標とする固溶状態を得ることができる。 After the homogenization treatment, the temperature is once lowered to room temperature, whereby the precipitation of Fe and Si can be controlled to obtain a target solid solution state.
鋳塊の圧延面表層は、片面について3〜15mmづつ面削するのが好ましい。3mm/片面未満では、鋳塊表層付近の粗大な結晶粒(粗大晶)が除去され難く、面削面が不均一な組織となるため、ストリークスの原因となる。面削量が15mm/片面を越えると得率が低下するため非経済的である。 The rolled surface of the ingot is preferably chamfered every 3 to 15 mm on one side. If it is less than 3 mm / single side, coarse crystal grains (coarse crystals) in the vicinity of the ingot surface layer are difficult to remove, and the chamfered surface has a non-uniform structure, which causes streak. If the amount of chamfering exceeds 15 mm / single side, the yield decreases, which is uneconomical.
熱間圧延は350℃〜500℃の温度で開始するのが好ましい。350℃未満では、変形抵抗が大きいため1回当たりの加工度を大きくすることができず、圧延のパス回数が多くなり経済的でない。500℃を越える温度で熱間圧延を開始すると、熱間圧延中に粗大な再結晶粒が生じて筋状の不均一組織によるストリークが生じ易くなる。 Hot rolling is preferably started at a temperature of 350 ° C to 500 ° C. If it is less than 350 ° C., since the deformation resistance is large, the degree of work per one time cannot be increased, and the number of rolling passes increases, which is not economical. When hot rolling is started at a temperature exceeding 500 ° C., coarse recrystallized grains are generated during hot rolling, and streaks due to streak-like non-uniform structures tend to occur.
熱間圧延の終了温度は300〜380℃が好ましい。300℃未満では再結晶が部分的にしか生じず、非再結晶部分がストリークスの原因となる。また最終冷間圧延後の歪蓄積量が増大するため再結晶温度が低下し、バーニング強度が低下する。380℃を越えると、再結晶は全面に生じるが粗大化するためストリークスの原因となる。熱間圧延の終了時の板厚は5mm以下が好ましい。5mm以上では、熱間圧延時の圧下率が不十分で歪導入量が少なくなるため再結晶粒が粗大化し易くなる。 The end temperature of hot rolling is preferably 300 to 380 ° C. Below 300 ° C., recrystallization occurs only partially, and the non-recrystallized portion causes streak. In addition, since the amount of strain accumulation after the final cold rolling increases, the recrystallization temperature decreases and the burning strength decreases. If the temperature exceeds 380 ° C., recrystallization occurs on the entire surface, but becomes coarse and causes streak. The plate thickness at the end of hot rolling is preferably 5 mm or less. If it is 5 mm or more, the reduction ratio during hot rolling is insufficient and the amount of strain introduced is reduced, so that the recrystallized grains are likely to be coarsened.
熱間圧延後の冷間圧延は、当該アルミニウム合金板を平版印刷用支持体として適用した場合に、支持体を版胴に巻き付けるときのくわえ切れを防止する強度を与えるとともに、熱間圧延中もしくは熱間圧延直後に生成された結晶粒の圧延方向に平行な方向の長さを調整するために行われる。好ましい圧延加工度は50〜98%の範囲であり、50%未満では、版胴に巻き付ける時のくわえ切れを防止するのに十分な強度を与えることが難しく、98%を越えると、熱間圧延後に生成された結晶粒が圧延方向に平行な方向に長く伸び過ぎて、ストリークスが発生し易くなる。なお、冷間圧延後、表面に特殊模様を刻設した圧延ロールを使用して仕上げ冷間圧延を行い、例えば、算術平均粗さRa:0.15〜0.30μm、圧延直角方向の凹凸の平均長さRSm:50μm以下、最大谷深さRv:1μm以下、最大高さRz:1.5〜2.5μmの表面粗さを有するアルミニウム合金板とすることもできる。 Cold rolling after hot rolling gives strength to prevent gripping when the support is wound around a plate cylinder when the aluminum alloy plate is applied as a support for lithographic printing, and during hot rolling or This is performed in order to adjust the length of the crystal grains generated immediately after hot rolling in the direction parallel to the rolling direction. The preferable degree of rolling work is in the range of 50 to 98%, and if it is less than 50%, it is difficult to give sufficient strength to prevent the gripping when it is wound around the plate cylinder, and if it exceeds 98%, hot rolling is performed. The crystal grains generated later extend too long in the direction parallel to the rolling direction, and streaks are likely to occur. In addition, after cold rolling, finish cold rolling is performed using a rolling roll with a special pattern engraved on the surface. An aluminum alloy plate having an average length RSm of 50 μm or less, a maximum valley depth Rv of 1 μm or less, and a maximum height Rz of 1.5 to 2.5 μm can also be used.
上記の組成と製造工程の組み合わせにより、前記所定のFe固溶量、特定された結晶粒長が得られ、270℃で7分間の熱処理後の0.2%耐力が120MPa以上の強度特性が達成される。この強度特性は、印刷版支持体として重要なものであり、120MPa未満では、印刷時に版の固定部分に変形あるいは破損が生じ易く、印刷ずれなどの原因となる。 The combination of the above composition and the manufacturing process provides the predetermined Fe solid solution amount and the specified crystal grain length, and the 0.2% proof stress after heat treatment at 270 ° C. for 7 minutes is 120 MPa or more. Is done. This strength characteristic is important as a printing plate support, and if it is less than 120 MPa, the fixed portion of the plate is likely to be deformed or damaged during printing, which causes printing misalignment.
以下、本発明の実施例を比較例と対比して説明し、本発明の効果を実証する。これらの実施例は、本発明の好ましい一実施態様を示すものであり、本発明はこれらに限定されるものではない。 Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects of the present invention. These examples show one preferred embodiment of the present invention, and the present invention is not limited thereto.
実施例1、比較例1
表1に示す組成を有するアルミニウム合金を溶解、鋳造し、鋳塊を35℃/hrの昇温速度で550℃の温度に加熱し、この温度に3hr保持した後、常温まで降温した。その後、鋳塊の圧延面を5mm/片面づつ面削して厚さ500mmとした。
Example 1 and Comparative Example 1
An aluminum alloy having the composition shown in Table 1 was melted and cast, and the ingot was heated to a temperature of 550 ° C. at a temperature rising rate of 35 ° C./hr, held at this temperature for 3 hours, and then cooled to room temperature. Thereafter, the rolled surface of the ingot was chamfered by 5 mm / single side to a thickness of 500 mm.
ついで、鋳塊を熱間圧延開始温度の469℃まで加熱し、板厚3mmまで熱間圧延し、353℃の温度で熱間圧延を終了した。熱間圧延後、中間焼鈍を施すことなしに冷間圧延を行って板厚を0.3mmとした。 The ingot was then heated to a hot rolling start temperature of 469 ° C., hot rolled to a plate thickness of 3 mm, and hot rolling was completed at a temperature of 353 ° C. After hot rolling, cold rolling was performed without intermediate annealing, and the plate thickness was set to 0.3 mm.
得られたアルミニウム合金板(試験材)について、以下の方法により、Fe固溶量を測定した。結果を表1に示す。また、結晶粒長を測定し、耐バーニング性を評価した。結果を表2に示す。なお、表1において、前記Mg含有量とZn含有量の関係を満足するものは○、満足しないものは×で示した。また、表1〜2において、結晶長さは板表面から見た圧延方向と平行な方向の結晶粒長(GL)、結晶幅は圧延方向と直交する方向の結晶粒長(GT)、比はこれらの比(GL/GT)を示す。 About the obtained aluminum alloy plate (test material), the amount of Fe solid solution was measured by the following method. The results are shown in Table 1. Further, the grain length was measured to evaluate the burning resistance. The results are shown in Table 2. In Table 1, those satisfying the relationship between the Mg content and the Zn content are indicated by ◯, and those not satisfying are indicated by ×. In Tables 1 and 2, the crystal length is the crystal grain length (GL) in the direction parallel to the rolling direction as viewed from the plate surface, the crystal width is the crystal grain length (GT) in the direction orthogonal to the rolling direction, and the ratio is These ratios (GL / GT) are shown.
Fe固溶量の測定:アルミニウム合金板を熱フェノールに溶解し、ろ液中のFe量を定量して行った。尚、詳細は「軽金属Vol.50(2000)518−526」に記載されている「湿式化学分析による固溶量の測定」に従った。
結晶粒長の測定:アルミニウム合金板の表面を脱脂洗浄後、鏡面研磨した後、パーカー氏液で陽極酸化し、光学顕微鏡の偏光モードで結晶粒観察を行って、圧延方向に直交または平行な方向の結晶粒長を切断法により求めた。
Measurement of Fe solid solution amount: An aluminum alloy plate was dissolved in hot phenol, and the amount of Fe in the filtrate was quantified. The details were in accordance with “Measurement of solid solution amount by wet chemical analysis” described in “Light metal Vol. 50 (2000) 518-526”.
Measurement of crystal grain length: After degreasing and cleaning the surface of the aluminum alloy plate, mirror polishing, anodizing with Parker's solution, observing crystal grains in the polarization mode of an optical microscope, direction perpendicular or parallel to the rolling direction The crystal grain length was determined by a cutting method.
耐バーニング性の評価:耐熱軟化性の指標として便宜的にアルミニウム板を270℃に保持した大気炉にて7分間加熱した後、引張試験を行って0.2%耐力を測定し、支持体としての耐バーニング性を評価した。なお、耐力の測定は、アルミニウム合金板の圧延方向と平行な方向(L方向)について行い、270℃で7分間加熱後の0.2%耐力は120MPa以上を合格(○)、120MPa未満を不合格とした。 Burning resistance evaluation: As an index of heat resistance softening resistance, for convenience, the aluminum plate was heated for 7 minutes in an atmospheric furnace maintained at 270 ° C. and then subjected to a tensile test to measure 0.2% proof stress. The burning resistance of was evaluated. The proof stress was measured in the direction parallel to the rolling direction of the aluminum alloy sheet (L direction), and the 0.2% proof stress after heating at 270 ° C. for 7 minutes passed 120 MPa or more (O), and less than 120 MPa was not acceptable. Passed.
また、得られたアルミニウム合金板を、脱脂(溶液:5%水酸化ナトリウム、温度:60℃、時間:10秒)−中和処理(溶液:10%硝酸、温度:20℃、時間:30秒)−交流電解粗面化処理(溶液:2.0%塩酸、温度:25℃、周波数:50Hz、電流密度:60A/dm2、時間:20秒)―デスマット処理(溶液:5%水酸化ナトリウム、温度:60℃、時間:5秒)−陽極酸化処理(溶液:30%硫酸―温度:20℃、時間:60秒)し、水洗、乾燥して、一定の大きさに切り取り試験材とした。 Further, the obtained aluminum alloy plate was degreased (solution: 5% sodium hydroxide, temperature: 60 ° C., time: 10 seconds) -neutralization treatment (solution: 10% nitric acid, temperature: 20 ° C., time: 30 seconds). ) -AC electrolytic surface roughening treatment (solution: 2.0% hydrochloric acid, temperature: 25 ° C., frequency: 50 Hz, current density: 60 A / dm 2 , time: 20 seconds) —desmut treatment (solution: 5% sodium hydroxide) , Temperature: 60 ° C., time: 5 seconds) -anodic oxidation treatment (solution: 30% sulfuric acid-temperature: 20 ° C., time: 60 seconds), washed with water, dried, cut into a certain size and used as a test material .
各試験材について、ムラ模様、ストリークスの有無を観察した。また、走査電子顕微鏡(SEM)を用いて、500倍の倍率で表面を観察し、視野の面積が0.04mm2となるよう写真を撮影し、得られた写真からつぎの評価を行った。結果を表2に示す。 Each test material was observed for the presence of uneven patterns and streaks. Further, using a scanning electron microscope (SEM), the surface was observed at a magnification of 500 times, a photograph was taken so that the area of the visual field was 0.04 mm 2, and the following evaluation was performed from the obtained photograph. The results are shown in Table 2.
ムラ模様の有無の観察:試験材表面に強いムラ模様が目視で観察されるものを不良(×)、弱いムラ模様しか観察されないものを良好(○)、ムラ模様が観察されないものを優良(◎)として評価した。
ストリークスの有無の観察:試験材表面にストリークが目視で観察されるものを不良(×)、ストリークが観察されないものを良好(○)として評価した。
未エッチング部の発生についての評価:未エッチング部が20%を越えるものは不良(×)、15〜20%のものは良好(○)、15%未満のものは優良(◎)とした。
エッチピットの均一性の評価:円相当直径が10μmを越える大きなピットが全ピットに対して面積率で10%を越えるものは不良(×)、5〜10%のものは良好(○)、5%未満のものは優良(◎)20%未満のものは良好(○)とした。
Observation of the presence or absence of uneven patterns: If a strong uneven pattern is visually observed on the surface of the test material, it is defective (X), if only a weak uneven pattern is observed is good (○), and if no uneven pattern is observed, it is excellent (◎ ).
Observation of the presence or absence of streak: Evaluation was made on the surface of the test material where streak was visually observed as defective (x) and when no streak was observed as good (◯).
Evaluation of generation of unetched portion: Unetched portion exceeding 20% was judged as bad (x), 15 to 20% was judged good (◯), and less than 15% was judged good (優).
Evaluation of etch pit uniformity: Large pits with an equivalent circle diameter exceeding 10 μm are defective (×) when the area ratio exceeds 10% with respect to all pits, and those with 5 to 10% are good (◯), 5 Less than% is excellent (◎) and less than 20% is good (良好).
表2にみられるように、本発明に従う試験材1〜5はいずれも、耐バーニング性に優れており、ムラ模様、ストリークスを生じることがなく、電解処理後のエッチング性に優れ、全面に均一なエッチングピットが形成されている。 As can be seen in Table 2, all of the test materials 1 to 5 according to the present invention are excellent in burning resistance, have no uneven pattern and streak, have excellent etching properties after electrolytic treatment, and are on the entire surface. Uniform etching pits are formed.
実施例2、比較例2
表1に示す組成Aのアルミニウム合金を溶解、鋳造し、均質化処理、鋳塊の圧延面の面削、熱間圧延を表3に示す条件で行い、熱間圧延後、中間焼鈍を施すことなしに表3に示す板厚まで冷間圧延を行った。なお、均質化処理後は一旦常温まで冷却した。
Example 2 and Comparative Example 2
An aluminum alloy having composition A shown in Table 1 is melted, cast, homogenized, face milled on the rolled surface of the ingot, and hot-rolled under the conditions shown in Table 3, and subjected to intermediate annealing after hot rolling. Without rolling, cold rolling was performed to the plate thicknesses shown in Table 3. In addition, after homogenization treatment, it was once cooled to room temperature.
得られたアルミニウム合金板(試験材)について、実施例1と同じ方法により、Fe固溶量を測定した。結果を表3に示す。また、結晶粒長を測定し、耐バーニング性を評価した。結果を表4に示す。 About the obtained aluminum alloy plate (test material), the amount of Fe solid solution was measured by the same method as in Example 1. The results are shown in Table 3. Further, the grain length was measured to evaluate the burning resistance. The results are shown in Table 4.
また、得られたアルミニウム合金板を、実施例1と同様に電解粗面化処理し、水洗、乾燥して、一定の大きさに切り取って試験材とし、実施例1と同じ方法でムラ模様、ストリークスの有無を観察し、また、未エッチング部の発生についての評価、エッチピットの均一性の評価を行った。結果を表4に示す。 In addition, the obtained aluminum alloy plate was subjected to electrolytic surface-roughening treatment in the same manner as in Example 1, washed with water, dried, cut into a certain size, and used as a test material. The presence or absence of streaks was observed, the occurrence of unetched portions and the uniformity of etch pits were evaluated. The results are shown in Table 4.
表4にみられるように、本発明に従う試験材19〜20はいずれも、耐バーニング性に優れており、ムラ模様、ストリークスを生じることがなく、電解処理後のエッチング性に優れ、全面に均一なエッチングピットが形成されている。 As can be seen from Table 4, all of the test materials 19 to 20 according to the present invention are excellent in burning resistance, have no uneven pattern and streak, have excellent etching properties after electrolytic treatment, and are entirely covered. Uniform etching pits are formed.
Claims (5)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005248682A JP4925247B2 (en) | 2005-08-30 | 2005-08-30 | Aluminum alloy plate for lithographic printing plate and method for producing the same |
PCT/JP2006/316437 WO2007026574A1 (en) | 2005-08-30 | 2006-08-16 | Aluminum alloy plate for surface printing plate and method for production thereof |
US11/990,905 US20090252642A1 (en) | 2005-08-30 | 2006-08-16 | Aluminum alloy sheet for lithographic printing plate and method of producing the same |
CN2006800319491A CN101253279B (en) | 2005-08-30 | 2006-08-16 | Aluminum alloy plate for surface printing plate and method for production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005248682A JP4925247B2 (en) | 2005-08-30 | 2005-08-30 | Aluminum alloy plate for lithographic printing plate and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007063587A JP2007063587A (en) | 2007-03-15 |
JP4925247B2 true JP4925247B2 (en) | 2012-04-25 |
Family
ID=37926119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005248682A Active JP4925247B2 (en) | 2005-08-30 | 2005-08-30 | Aluminum alloy plate for lithographic printing plate and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4925247B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5116267B2 (en) * | 2005-08-30 | 2013-01-09 | 富士フイルム株式会社 | Method for producing aluminum alloy plate for lithographic printing plate |
JP4740896B2 (en) * | 2007-05-24 | 2011-08-03 | 富士フイルム株式会社 | Method for producing aluminum alloy plate for lithographic printing plate |
JP5314396B2 (en) * | 2008-05-08 | 2013-10-16 | 富士フイルム株式会社 | Aluminum alloy plate for lithographic printing plates |
CN113106308B (en) * | 2021-03-04 | 2022-09-02 | 中铝材料应用研究院有限公司 | Fine-grain homogeneous mirror-surface aluminum alloy rolled plate strip and preparation method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61146598A (en) * | 1984-12-20 | 1986-07-04 | Furukawa Alum Co Ltd | Supporter for lithographic printing plate and its manufacture |
JP2544215B2 (en) * | 1989-12-06 | 1996-10-16 | スカイアルミニウム株式会社 | Method for producing aluminum alloy base plate for printing plate support |
JP3662959B2 (en) * | 1993-12-13 | 2005-06-22 | 日本軽金属株式会社 | Method for producing aluminum alloy base plate for electrolytic roughened lithographic printing plate |
JP3642915B2 (en) * | 1997-04-30 | 2005-04-27 | 日本軽金属株式会社 | Aluminum alloy base plate with excellent surface treatment appearance |
JPH11181558A (en) * | 1997-12-22 | 1999-07-06 | Furukawa Electric Co Ltd:The | Production of aluminum alloy sheet for low and positive pressure can body |
JP3893031B2 (en) * | 2001-04-25 | 2007-03-14 | 株式会社神戸製鋼所 | Aluminum alloy plate for printing plate and method for producing the same |
JP4318587B2 (en) * | 2003-05-30 | 2009-08-26 | 住友軽金属工業株式会社 | Aluminum alloy plate for lithographic printing plates |
-
2005
- 2005-08-30 JP JP2005248682A patent/JP4925247B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007063587A (en) | 2007-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4740896B2 (en) | Method for producing aluminum alloy plate for lithographic printing plate | |
JP4318587B2 (en) | Aluminum alloy plate for lithographic printing plates | |
JP5210103B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
JP4939325B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
JP4925246B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
JP4181596B2 (en) | High-strength aluminum alloy plate for printing plates | |
JP5149582B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
US20090252642A1 (en) | Aluminum alloy sheet for lithographic printing plate and method of producing the same | |
JP4925247B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
JP5116267B2 (en) | Method for producing aluminum alloy plate for lithographic printing plate | |
JP4925248B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
JP5314396B2 (en) | Aluminum alloy plate for lithographic printing plates | |
JPH11115333A (en) | Aluminum alloy plate for printing plate and manufacture thereof | |
JP3177079B2 (en) | Method for producing a lithographic printing plate support | |
JP2007070674A (en) | Aluminum alloy sheet for planographic printing plate, and manufacturing method therefor | |
JP2008144201A (en) | High-strength aluminum alloy plate for printing plate | |
US20080289731A1 (en) | Method of producing aluminum alloy sheet for lithographic printing plate | |
JP2982093B2 (en) | Method for producing a lithographic printing plate support | |
US8118951B2 (en) | Aluminum alloy sheet for lithographic printing plate | |
JP3983611B2 (en) | Method for producing aluminum alloy plate for printing plate | |
JP4110353B2 (en) | Aluminum alloy base plate for lithographic printing plate and method for producing the same | |
JP4064258B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
JP4064259B2 (en) | Aluminum alloy plate for lithographic printing plate and method for producing the same | |
JP3600081B2 (en) | Element of aluminum alloy support for PS plate and method for producing aluminum alloy support for PS plate | |
JP2005231159A (en) | Aluminum alloy plate for lithographic printing plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20070129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070129 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110420 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120201 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120203 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150217 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4925247 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |