[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5308369B2 - 両面インプリント装置の被転写体位置決め方法および両面インプリント装置 - Google Patents

両面インプリント装置の被転写体位置決め方法および両面インプリント装置 Download PDF

Info

Publication number
JP5308369B2
JP5308369B2 JP2010026250A JP2010026250A JP5308369B2 JP 5308369 B2 JP5308369 B2 JP 5308369B2 JP 2010026250 A JP2010026250 A JP 2010026250A JP 2010026250 A JP2010026250 A JP 2010026250A JP 5308369 B2 JP5308369 B2 JP 5308369B2
Authority
JP
Japan
Prior art keywords
stamper
center
camera
stage
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010026250A
Other languages
English (en)
Other versions
JP2011165264A (ja
Inventor
慎次郎 石井
孝 樽光
礼健 志澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010026250A priority Critical patent/JP5308369B2/ja
Publication of JP2011165264A publication Critical patent/JP2011165264A/ja
Application granted granted Critical
Publication of JP5308369B2 publication Critical patent/JP5308369B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

この発明は、両面インプリント装置の被転写体位置決め方法および両面インプリント装置に関し、詳しくは、表面に微細な凹凸を有するスタンパ(モールド)により中心開口を有する被転写体(例えば、ディスク基板)の表裏を加圧して被転写体の表裏両面にスタンパの凹凸形状を転写する両面インプリント装置において、被転写体(ディスク基板)にアライメントマークを設けることなく、カメラー台で被転写体と上下のスタンパとを高精度に位置決めすることが可能な両面インプリント装置の被転写体位置決め方法および両面インプリント装置に関する。
近年、半導体集積回路は、急速に微細化と高集積化が進み、その微細加工に応えるためにパターン転写技術が利用され、高精度のパターン転写技術を実現するフォトリソグラフィ装置の高精度化が進められてきた。しかし、微細加工の方法が光露光の波長に近づくにつれて、リソグラフィ技術も限界にきている。そのため、さらなる微細化、高集積化技術としてリソグラフィ技術に代わり、荷電粒子線装置の一種である電子線描画装置が用いられるようになってきた。
電子線描画装置による電子線を用いた回路パターンの形成は、今までのi線,エキシマレーザー等の光源を用いた一括露光方法による回路パターン形成とは異なり、マスタパターンを個別に描画していく方法を採る。そのために、描画するパターンが多ければ多いほど露光 (描画)に時間がかかり、回路パターン形成に時間を要する欠点がある。
電子線描画では、パターンの微細化、高集積度が飛躍的に高まるにつれて、その分、回路パターンの形成時間も級数的に長くなり、スループットが著しく落ちることが懸念されている。そこで、電子ビーム描画装置の描画の高速化のために、各種形状のマスタを組み合わせ、それらに一括して電子ビームを照射して複雑な形状の電子ビームを形成する一括図形照射法の開発が最近では進められている。しかし、これは、パターンの微細化が可能ではあるが、電子線描画装置を大型化せざるを得ない欠点のほか、マスタ位置をより高精度に制御する機構が必要になるなど、装置コストが高くなる問題がある。
これに対して、微細なパターン形成を低コストで行うことができるインプリント技術が現在注目されている。これは、基板上に形成したいパターンと同じパターンの凹凸を有するスタンパ(モールド)を被転写体表面に型押した後にスタンパを剥離することで所定のパターンを転写する技術である。これにより25nm以下の微細構造を転写により被転写体表面に形成することが可能である。
このようなインプリント技術は、大容量記録媒体の記録ビット形成、さらに半導体集積回路における回路パターン形成等への応用が現在検討されている。
大容量記録媒体のディスク基板上や半導体集積回路基板上にインプリント技術により微細なパターンを形成する際には、被転写体表面に形成された樹脂薄膜層に対してスタンパを型押しすることになるが、この型押し前には、スタンパ(これに形成された凹凸パターン)と被転写体の相対的な位置を高精度に合わせる必要がある。この高精度の位置合わせは、通常、それぞれにアライメントマークを設けることで行われている。
例えば、スタンパ表面と被転写体表面のそれぞれにアライメントマークを設け、光学的手法でスタンパと被転写体のそれぞれのアライメントマークを観察してスタンパと被転写体との位置を合わせる技術がすでに公知になっている(特許文献1)。
しかしながら、例えば、磁気記録媒体用のディスク基板のように、被転写体にアライメントマークを設けることが困難な場合もある。
そこで、ディスク基板側にアライメントマークを設けずに、磁気記録媒体用のディスク基板を位置合わせをする方法として、例えば、ディスク基板(被転写体)の中心にある円形開口とスタンパの円形アライメントマークとを同時に撮像して中心開口の端部の位置から中心位置を対称演算処理により求めて、スタンパ(これに形成された凹凸パターン)の中心とディスク基板(被転写体)との位置合わせをする方法が知られている(特許文献2)。
これとは別に、両面転写用の一対のスタンパを高精度に位置決めすることのできる方法として、一方のスタンパに位置決め孔を有し、他方のスタンパには、この位置決め孔に嵌合する位置決めピンを設ける技術も知られている (特許文献3)。
特許文献1〜3の各文献に示されるように、インプリント技術は、ナノメートルレベルの微細なパターンをアライメントマークを利用して簡便にスタンパとディスク基板(被転写体)とを位置決めしてスタンパの凹凸パターンを転写できる技術として現在注目されてはいるが、被転写体にアライメントマークを設けることが困難な場合や、アライメントマークを形成することが好ましくない場合など、適用する製品によっては問題が残っている。
特開2005−116978号公報 特開2008−041852号公報 特開2009−028996号公報
スタンパの凹凸パターンを被転写体の所定のパターン形成領域に転写するためには、スタンパと被転写体との高精度な位置合わせが要求される。これらのアライメントを高精度に実施するには光学的手法が望ましいが、一般的なアライメント手法では、被転写体とスタンパの両者にアライメントマークを設けるか、被転写体の端部位置を検出する必要がある。
そこで、磁気ディスクメディアのディスク基板のように被転写体の両面に微細パターンを転写する場合には、上下のスタンパと被転写体の位置合わせを行わなければならず、上下にアライメントマークや端部を検出するカメラを用意するか、被転写体を反転する反転機構を用意して、一方のスタンパと被転写体の位置合わせを行った後、被転写体を反転し、他方のスタンパと位置合わせを行うなどの処理が必要になる。
この点、特許文献2の技術は、被転写体に対して片面インプリントをするものであるので、そのまま両面インプリントに適用する訳にはいかない。特許文献2のようにスタンパを上下のいずれかに1箇所に設けた場合には、両面インプリントするには前記したようにディスク基板を反転させる反転機構が必要になる関係で高精度な位置合わせを行うには時間がかかる問題がある。また、上下にスタンパを設けた場合にはディスク基板と上下のスタンパの位置合わせをそれぞれに行わなければならなくなる。
例えば、ディスク基板の中心位置を求めて一方のスタンパとディスク基板を位置合わせした後、ディスク基板の中心位置を求めて他方のスタンパとディスク基板の位置合わせを行うことになるが、これには、上下それぞれにディスク基板の中心位置を求める複数台のカメラが必要になる。
これに対して特許文献3の技術は、ディスク基板と一対のスタンパとを高精度に位置決めすることは可能であるが、スタンパの位置決めピンを通す孔をディスク基板上に用意することが必要になる。しかも、各スタンパに設けられた位置決めピンと位置決め孔、ディスク基板上に開けられた孔とが機械的に接触する。その関係で位置合わせ精度が孔とピンの精度に依存し、それぞれの接触部を傷つける問題がある。その結果、ディスク基板やスタンパにダメージを与えてしまうことにもなり、しかも、ディスク基板に孔を設けることが困難な場合もある。
この発明の目的は、このような従来技術の問題点を解決するものであって、被転写体にアライメントマークを設けることなく、カメラー台で被転写体と上下のスタンパとを高精度に位置決めすることが可能な両面インプリント装置の被転写体位置決め方法および両面インプリント装置を提供することにある。
このような目的を達成するためのこの発明の両面インプリント装置の被転写体位置決め方法の構成は、中心に円形開口を有する被転写体の表裏の背面にそれぞれ配置された透光性を有する第1スタンパと、第2のスタンパとによりそれぞれに形成された凹凸パターンを被転写体に転写する両面インプリント装置の被転写体位置決め方法において、
凹凸パターンに対する被転写体位置決めのためのアライメントマークを第1スタンパおよび第2のスタンパがそれぞれ有し、第1のスタンパがXYステージに載置され、XYステージの第1のスタンパの下側にカメラが設けられていて、
ハンドリングロボットによりチャックされた被転写体を第1のスタンパから所定距離離れた上部に配置する被転写体配置ステップと、カメラにより第1スタンパのアライメントマークを撮像してカメラの視野上におけるアライメントマークの座標値を得る座標値算出ステップと、カメラにより第1スタンパを介して被転写体の円形開口のエッジを撮像してカメラの視野上における円形開口のエッジの座標に基づいて被転写体の中心と第1スタンパのアライメントマークとのずれ量を算出するずれ量算出ステップと、このずれ量に応じて被転写体と第1のスタンパの凹凸パターンの中心との位置合わせをする第1の位置合わせステップと、ハンドリングロボットによるチャックを解除して第1の位置合わせステップにより位置合わせがなされた被転写体を第1のスタンパ上に載置する被転写体載置ステップと、カメラを第2スタンパの下に配置してカメラにより第2スタンパのアライメントマークを第1のスタンパと円形開口とを介して撮像してこのアライメントマークの座標に基づいて被転写体の中心あるいは第1のスタンパの凹凸パターンの中心と第2のスタンパの凹凸パターンの中心との位置合わせをする第2の位置合わせステップとからなるものである。
また、この発明の両面インプリント装置の構成は、前記の両面インプリント装置の被転写体位置決め方法を使用した両面インプリント装置にある。
このように、この発明は、一台のカメラの視野において透明な第1スタンパのアライメントマークを撮像してアライメントマークの座標値を得て、さらに被転写体の円形開口のエッジを第1スタンパを介して撮像して被転写体の中心座標値を得て、これらの間のずれ量を算出し、さらに、このずれ量を補正して第1のスタンパ上に被転写体を載置した上で、第2スタンパのアライメントマークを透明な第1スタンパと被転写体の円形開口とを介して撮像することで、第1のスタンパにおいてこれに形成された凹凸パターンの中心あるいは被転写体の中心を第2のスタンパに形成された凹凸パターンの中心に位置合わせをするものである。
これにより、ディスク基板等の被写体にアライメントマークを設けることなく、カメラ一台で被転写体と上下のスタンパの凹凸パターンとを高精度に位置決めすることが可能になる。
図1は、この発明の両面インプリント装置の被転写体位置決め方法を適用した両面インプリント装置の概要説明図である。 図2は、ハンドリングロボットによるディスクメディアの吸着チャック状態の断面説明図である。 図3(a)は、アライメントカメラによる下スタンパのアライメントポイントマークの撮影状態の説明図、図3(b)は、その撮像画像の説明図、図3(c)は、撮像される1画面の画素配列に基づく座標値の説明図である。 図4は、スタンパパターンに対するディスクメディア位置決め処理のフローチャートである。 図5(a)は、ディスクメディアの中心開口のX軸方向左側エッジの撮像をする説明図、図5(b)は、その撮像画像の説明図、図5(c)は、ディスクメディアの右側エッジを撮像する説明図、図5(d)は、その撮像画像の説明図である。 図6(a)〜(d)は、ディスクメディアの中心算出処理の説明図である。 図7(a)は、上スタンパパターンと下スタンパパターンとの位置決めについての説明図、図7(b)は、上スタンパのアライメントマークの撮像画像の説明図、図7(c)は、上スタンパパターンの中心算出処理の説明図である。 図8(a)は、下スタンパのアライメントマークと、ディスクメディア、そして上スタンパのアライメントマークの位置関係の断面説明図、図8(b)は、図8(a)の位置関係を斜めからみた斜視説明図である。
図1において、10は、両面インプリント装置であって、1は、ディスクメディア(被転写体)2をハンドリングするハンドリングロボットであり、ハンドリングロボット1には昇降・回転アーム1aが設けられている。
この昇降・回転アーム1aの先端側には吸着チャック1bが垂下して設けられ、昇降・回転アーム1aは、水平面内で回転可能でかつ上下に昇降する。
2は、中心部に円形の中心開口2a(図2参照)を持つ被転写体としてのディスクメディアである。この中心開口2aの中心は、通常ディスクメディア2の中心に一致している。そこで、中心開口2aの中心をディスクメディア2の中心として以下では算出して上下スタンパの凹凸パターンに対するディスクメディアの位置決めが行われる。
通常は、ハンドリングロボット1の図面左側に光硬化性のレジスト(感光性樹脂層)をディスクメディア2に塗布する塗布装置が配置されているが、これについては図示していない。したがって、ディスクメディア2の表裏両面には硬化前のレジスト(感光性樹脂層)が塗布されている。ハンドリングロボット2は、昇降・回転アーム1aを左側から右側に回転させて図示する状態に設定する。
3は透明体の下スタンパ3であって、下スタンパ3には、下スタンパ3に形成されたパターンの中心位置に対応してアライメントポイントマーク(十字マーク)3aが設けられている。この十字マーク3aは、後述する図8に示すように、中心開口2aより小さい大きさの十字形として形成されている。
図2は、ハンドリングロボット1によるディスクメディア2の吸着状態の断面説明図である。
吸着チャック1bは、ディスクメディア2の中心開口2aの周囲の内周エッジを真空チャックする。そのため、内周エッジに沿って設けられた円周溝を有している。これにより負圧吸着してディスクメディア2をチャックする。そこで、吸着チャック1bの吸着面1cと内周エッジの側面2bとの間には段差ができる。これにより下側の内周エッジ2cの部分が吸着面1cから突出し、このことでディスクメディア2の内周エッジの撮像が可能になる。
なお、内周エッジ2cの部分の輪郭をより明確にするために、吸着面1cの表面を鏡面仕上げにしておくとよい。
これにより後述する中心開口2aの周囲の内周エッジ2b〜2eの撮像画像をアライメントカメラ5により得ることができる。
図1に戻り、下スタンパ3は、実際にはガラス板、石英板等の透光性テーブル上に載置されている。このテーブルは、XYステージ4の4角に設けた支柱4a〜4dに固定され、その上に下スタンパ3がクランパを介して着脱可能にテーブルに固定載置されるが、この発明の位置決め方法は、このテーブルには直接関係してこないので、ここではガラス板、石英板等の透光性テーブルは省略し、図示していない。
下スタンパ3の中心部下側におけるXYステージ4の中央部には、焦点切換レンズ機構6を有するアライメントカメラ5が設けられている。アライメントカメラ5は、撮像素子、照明光源が一体化された撮像装置(カメラ)である。なお、焦点切換レンズ機構6には、フォーカス位置を切換えることが可能なフォーカス切換レンズが内蔵されている。
7は、XYステージ4が図面右側の点線枠の転写位置4eまで移動したときに、その上部に配置される上スタンパであり、Zステージ8に垂下して取付けられている。なお、Zステージ8は、昇降機構14を介して装置フレーム(図示せず)に固定されていて、上下方向に昇降する。
上スタンパ7には、中心開口2aより内側に入る空間領域に配置されるように上スタンパ7の中心位置の外側にリング状のアライメントマーク(リングマーク)7aが設けられている。このリングマーク7aは、後述する図8に示すように、中心開口2aより小さい径のリングであって、リングマーク7aの中心は、下スタンパ7に形成されたパターンの中心に一致している。
この下スタンパ7についても上スタンパ3と同様に、実際にはガラス板、石英板等のテーブルがZステージ8の4角に設けた支柱8a〜8dに固定されていて、その上に上スタンパ7がクランパを介して着脱可能ガラス板、石英板のテーブルに固定されて載置されているが、前記したようにこのテーブルは省略してある。なお、このテーブルは、上スタンパ7と同様に透光性である必要はない。
15は、ガイドレールであって、XYステージ4が上スタンパ7の下の転写位置4eまでX軸方向に移動するときのガイドをする。図示するように、X軸方向は図面左右方向に対応し、Y軸方向は図面前後方向に対応している。
9は、データ処理・制御装置であって、データ処理・制御装置9には、内部にMPU91と、メモリ92、入出力インタフェース93、バス94等を有し、メモリ92に記憶されたプログラムをMPU91が実行して以下に説明する各種の制御をする。
メモリ92には、ディスクメディア粗位置決めプログラム92a、下スタンパ位置決め・ディスク載置プログラム92b、上スタンパに対する位置決めプログラム92c、ディスク中心座標算出プログラム92d、エッジ頂点座標算出プログラム92e、転写プログラム92f等が記憶され、そして作業領域92g等が設けられている。
11は、駆動制御回路であり、データ処理・制御装置9の制御下でハンドリングロボット1、XYステージ4、そしてZステージ8をそれぞれに所定の位置に移動させる駆動をする。
ハンドリングロボット1は、上昇/下降可能な可動機構を内蔵していて駆動制御回路11の駆動により昇降・回転アーム1aを昇降させてチャックしたディスクメディア2を上スタンパ7の撮像位置に移動させる。これにより、上スタンパ7のフォーカス位置でディスクメディアの内周エッジの撮影を可能にする。また、駆動制御回路11の駆動により下スタンパ3の転写位置にディスクメディア2が載置された状態で下スタンパ3をXYステージ4を介して上スタンパ7の下に位置付ける。
12は、アライメントカメラ制御回路であって、データ処理・制御装置9の制御下でアライメントカメラ5によりディスクメディア2の内周エッジと下スタンパ3の十字マーク3a、そして上スタンパ7のリングマーク7aの画像をそれぞれ撮像し、得られた1画面分の映像(画像)をA/D変換してデジタル値としてシリアルに入出力インタフェース93に送出する。
13は、フォーカス切換回路であって、データ処理・制御装置9の制御下で焦点切換レンズ機構6を駆動して下スタンパ3側と上スタンパ7側のいずれかに焦点合わせをする焦点切換えを行う。
焦点切換レンズ機構6は、レンズをロードすることで、上スタンパ7の装着位置 (上スタンパ7の高さ)にフォーカスを切換えるものであり、レンズをアンロードすることにより下スタンパ3の装着位置 (下スタンパ3の高さ)にフォーカスが切換わる。
なお、フォーカス切換回路13と焦点切換レンズ機構6とによりこの実施例のフォーカス切換機構が構成されている。
図3(a)は、アライメントカメラによる下スタンパの十字マーク3aの撮影状態の説明図、図3(b)は、その撮像画像の説明図、そして図3(c)は、撮像される1画面の画素配列に基づく座標値の説明図である。また、図4は、スタンパパターンに対するディスクメディア位置決め処理のフローチャートである。
以下、図3,図4を参照して十字マーク3aの視野上の座標値を得る処理から順に説明する。
ディスクメディア位置決め割り込みスタートで、ディスクメディア粗位置決めプログラム92aがMPU91に実行される。
このプログラムの実行によりMPU91は、XYステージ4を駆動して吸着チャック1bにチャックされたディスクメディア2の中心開口2aの内側に下スタンパ3の十字マーク3aが入るようにXYステージ4を粗位置決め(プリアライメント)し、同時にディスクメディア2の高さを上スタンパ7の位置に設定する(ステップ101)。なお、チャックされたディスクメディア2の中心開口2aの中心の位置データと上スタンパ7の位置(高さ)のデータは、メモリ92のパラメータ領域(図示せず)に記憶されていて、これらのデータを読出してステップ101の処理が行われる。
ところで、ハンドリングロボット1の昇降・回転アーム1aの長さは一定であるので、このステップ101の粗位置決めは、中心開口2aの内側に下スタンパ3の十字マーク3aが入る位置をXYステージ4の初期位置としてこれに対応させることができる。XYステージ4がすでに初期位置に設定されている場合には粗位置決めは不要である。この場合には、ステップ101の粗位置決めは、単にディスクメディア2の高さを上スタンパ7の位置に設定するだけの処理となる。
前記の初期状態ではフォーカス切替機構は、アンロードとなっていて、アライメントカメラ5のフォーカス位置が下スタンパ3の位置に合わせられている。そこで、アライメントカメラ5により十字マーク3aを撮像して視野5a上の撮像画素数に基づいて十字マーク3aのクロス点のXYの座標値(X0,Y0)を算出してメモリ92の作業領域92gに記憶する(ステップ102)。
図3(a)は、このときのアライメントカメラ5による十字マーク3aの撮影状態を示している。そして、図3(b)は、このときの撮像画像である。
図3(a)の矩形枠は、アライメントカメラ5で撮像された1画面の視野5aであり、この視野5aは、図3(c)に示すように、例えば、1600×1200ドットの大きさである。ここで、1600×1200ドットの視野5aの中心となる中心画素位置(視野中心)Oの座標は(800,600)である。
なお、視野5aの原点は、左上端を座標(0,0)として右下を座標(1600,1200)とする。
十字マーク3aのクロス点のXYの座標値(X0,Y0)は、撮像画像が濃淡画像となるので輪郭強調処理をしてその後に算出する。また、フォーカス切替機構がフォーカス切換レンズをロードした状態となっているときには、ステップ102においてアンロードにアライメントカメラ5を制御してから十字マーク3aを撮像することになる。
次に、MPU91は、フォーカス切替機構を制御して、フォーカス切換レンズをロードし、アライメントカメラ5のフォーカス位置を上スタンパ7の位置に切換える(ステップ103)。
ここで、ディスクメディア粗位置決めプログラム92aの実行を終了して、MPU91は、下スタンパ位置決め・ディスク載置プログラム92bをコールして次に実行する。
MPU91の下スタンパ位置決め・ディスク載置プログラム92bの実行により、まずディスク中心座標算出プログラム92dがコールされてMPU91に実行される。
ディスク中心座標算出プログラム92dがMPU91により実行されると、MPU91は、このプログラムに従ってXYステージ4の移動量を現在位置(粗位置決め位置)からディスクメディア2の中心開口2aの半径分(=D/2mm)に設定する(ステップ104)。ただし、Dは、中心開口2aの直径である。中心開口2aの径を、例えば、12mmφとすると、この場合の移動量は、XYステージ4が現在位置(粗位置決め位置)から6mmにシフトすることになる。
次に、MPU91は、半径分のXYステージ4の移動順序を粗位置決め位置を基準にして左側、右側、上側、下形の順に設定する(ステップ105)。
次に、MPU91によりXYステージ4が半径分の移動量の指定された撮像位置に移動させる(ステップ106)。最初は、粗位置決め位置から左側へXYステージ4がシフトする。
この位置で下スタンパ3を介して中心開口2aの左側の縁(内周エッジ)を撮影することでそのエッジ画像を採取して、撮影された二次元画像をデータ処理・制御装置9のメモリ92の作業領域92gに記憶する(ステップ107)。
図5(a)は、このときの撮影状態を示している。そして、図5(b)に示す2bがこのとき撮像された中心開口2aのX軸方向における左側縁(内周エッジ)の画像である。
次に、MPU91は、エッジ頂点座標算出プログラム92eをコールし、作業領域92gにある撮像画像から視野5a内での内周エッジの頂点の画像座標(X1,Y1)を検出してメモリ92の作業領域92gに記憶する(ステップ108)。
ここでのアライメントカメラ5により撮像されるディスクメディア2の内周エッジの画像は、濃淡画像であって、輪郭線が十分に出ていない。そこで、エッジ頂点座標算出プログラム92eの処理として輪郭強調処理をしてエッジの輪郭画像を生成した後に、例えば、X軸方向の座標値をソートして一番小さい座標として頂点座標(X1,Y1)を得るものである。以下のエッジ頂点座標算出も同じである。
図6(a)は、このときのエッジの頂点の画像座標検出の説明図である。
撮像された左側内周エッジ2bの画像データにおいて、矩形枠(視野5a)内でX座標が最左端に位置する画素位置の座標(X1,Y1)を左側内周エッジ2bの頂点位置として検出する。
そして、左右上下の4箇所の内周エッジの頂点座標を検出したかの判定をして(ステップ109)、ここで最初はNOとなるので、ステップ105へと戻り、MPU91は、XYステージ4の移動方向をX軸方向右側にして、ステップ106でXYステージ4をX軸方向に左側のシフト位置からDmmだけ右にシフトさせる(ステップ106)。このときの左側のシフト位置からDmmは、ステップ104の現在位置(粗位置決めの位置)からD/2mmの位置に当たる。
次に、MPU91によりアライメントカメラ5が制御されて、下スタンパ3を介して中心開口2aの右側縁(内周エッジ)を撮影することでそのエッジ画像を採取して、撮影された二次元画像をデータ処理・制御装置9のメモリ92にある作業領域92gに記憶する(ステップ107)。
図5(c)は、このときの撮影状態を示している。図5(d)の2cが中心開口2aのX方向において右側縁(内周エッジ)の画像である。
次に、MPU91は、エッジ頂点座標算出プログラム92eをコールし、作業領域92gにある撮影画像からエッジの頂点の視野5a内での画像座標(X2,Y2)を検出して作業領域92に記憶する(ステップ108) 。
図6(b)は、このときのエッジの頂点の画像座標検出の説明図である。
撮像された右側の内周エッジ2cの画像データにおいて、矩形枠(視野5a)内でX座標が最右端に位置する画素位置の座標(X2,Y2)を右側内周エッジ2cの頂点位置として検出する。なお、座標(X2,Y2)は、X軸方向の座標値をソートして一番大きい座標として得ることになる。
次に、ステップ109の判定を行い、ここで再びNOとなり、ステップ105へと戻り、ステップ105において、十字マーク3aを撮像した現在位置(粗位置決めの位置)にXYステージ4を戻して、MPU91は、XYステージ4をY軸方向にD/2mmだけ上にシフトさせる(ステップ105)。
次に、MPU91によりアライメントカメラ5が制御されて、下スタンパ3を介して中心開口2aの上側縁(内周エッジ)を撮影することでそのエッジ画像を採取して、撮影された二次元画像をデータ処理・制御装置9のメモリ92の作業領域92gに記憶する(ステップ107)。
図6(c)は、このときに撮像された画像を示している。2dが中心開口2aのY方向において上側縁(内周エッジ)である。
次に、MPU91は、エッジ頂点座標算出プログラム92eをコールし、作業領域92gにある撮影画像からエッジの頂点の視野5a内での画像座標(X3,Y3)を検出してメモリ92の作業領域92gに記憶する(ステップ108)。
撮像された上側エッジ2dの画像データにおいて、矩形枠(視野5a)内でY座標が最上端に位置する画素位置の座標(X3,Y3)を上側エッジ2dの頂点位置として検出する。なお、座標(X3,Y3)は、Y軸方向の座標値をソートして一番小さい座標として得ることになる。
そして、次のステップ109の判定でNOとなり、ステップ105へと戻り、ステップ105において、MPU91は、XYステージ4をY軸方向にDmmだけ下にシフトさせる(ステップ105)。
次に、MPU91によりアライメントカメラ5が制御されて、下スタンパ3を介して中心開口2aの下側縁(内周エッジ)を撮影することでそのエッジ画像を採取して、撮影された二次元画像をデータ処理・制御装置9のメモリ92にある作業領域92gに記憶する(ステップ107)。
図6(d)は、このときに撮像された画像を示している。2eが中心開口2aのY方向において下側縁(内周エッジ)である。
次に、MPU91は、エッジ頂点座標算出プログラム92eをコールし、作業領域92gにある撮影画像からエッジの頂点の視野5a内での画像座標(X4,Y4)を検出して作業領域92に記憶する(ステップ108) 。
撮像された下側エッジ2eの画像データにおいて、矩形枠(視野5a)内でY座標が最下端に位置する画素位置の座標(X4,Y4)を下側エッジ2eの頂点位置として検出する。なお、座標(X4,Y4)は、Y軸方向の座標値をソートして一番大きい座標として得ることになる。
ここで、エッジ頂点座標算出プログラム92eの実行が終了して、この時点でMPU91の処理は下スタンパ位置決め・ディスク載置プログラム92bにリターンする。
ステップ105からステップ109の循環において4箇所の各頂点座標が算出されると、次のステップ109の判定でYESとなるので、下スタンパ位置決め・ディスク載置プログラム92bの実行に入り、MPU91は、次に、視野5a上におけるディスクメディア2の中心座標を算出する。
中心座標の算出は、視野5aの中心画素位置Oの座標(800,600)から4箇所の各頂点座標のずれ量を算出することで行われる。
図6(a)と図6(b)とに示す中心画素位置Oの位置は、粗位置決め位置から左右に6mmシフトしているので、X軸方向ではそれぞれ中心開口2aの径に対応する12mm分移動している。また、図6(c)と図6(d)に示す中心画素位置Oの位置は、Y軸方向ではそれぞれ中心開口2aの径に対応する12mm分移動している。
そこで、粗位置決め位置がディスクメディア2の中心に実質的に一致していると仮定したときにはX軸方向とY軸方向における各頂点座標の位置が図6(a)〜図6(d)各図の中心画素位置Oの座標とそれぞれに一致するはずである。このときにはディスクメディア2の中心と中心画素位置Oとのずれはない。
このときには、XYステージ4が6mm左右、上下にシフトしたときの中心画素位置Oの位置は、直径12mmの中心開口2aのエッジの頂点上にあるからである。そこで、図6(a)〜図6(d)では、中心画素位置Oを基準としてこれとX軸方向とY軸方向の各頂点位置とのずれ量が中心画素位置Oに対するディスクメディア2の中心のずれ量として算出できる。
図6(a)における中心開口2aの左側内周エッジ2bの中心画素位置Oに対するずれ量をΔX1とすると、ΔX1=X1−800になる。また、図6(b)における中心開口2aの右側内周エッジ2cの中心画素位置Oに対するずれ量をΔX2とするとΔX2=X2−800になる。
そこで、中心画素位置O(視野中心)からのX軸方向のずれ量ΔXは、ΔX=(ΔX1+ΔX2)/2となる。すなわち、図6(a)と図6(b)の場合には、ΔX1が負になり、ΔX2が正になるので、ΔX1とΔX2の差の半分がずれ量となる。このようなケースは、ディスクメディア2の中心開口2aの径が12mmより大きい場合である。ΔX1の絶対値が大きいときにはディスクメディア2の中心は、左側、すなわち、負側にずれている。これに対してΔX2が大きいときにはディスクメディア2の中心は、右側、すなわち、正側にずれていることになる。そこで、これらの差の平均値分により中心画素位置Oに対するディスクメディア2の中心がずれが算出できる。
中心開口2aの径が12mmより小さい場合には、図6(a)の左側内周エッジ2bは、中心画素位置Oの座標800を超えて右側となり、図6(b)の右側内周エッジ2cは、中心画素位置Oの座標800未満の左側になる。その結果、前記とは逆にΔX1が正になり、ΔX2が負になる。そこで、これらの差の平均値分、中心画素位置Oに対してディスクメディア2の中心がずれていることになる。
また、ディスクメディア2が左側(負側)にシフトしているときには図6(b)の右側内周エッジ2cは、中心画素位置Oの座標800未満の左側になる。その結果、ΔX1が負とΔX2がともに負になる。そこで、これらの和の平均値分、中心画素位置Oに対して負側(図面左側)にディスクメディア2の中心がずれていることになる。
さらに、ディスクメディア2が右側(正側)にシフトしているときには図6(b)の右側内周エッジ2cは、中心画素位置Oの座標800を超えて右側になる。その結果、ΔX1が正とΔX2がともに正になる。そこで、これらの和の平均値分、中心画素位置Oに対して正側(図面右側)にディスクメディア2の中心がずれていることになる。
なお、ここでは、図2(c)に示す画素配列の座標からして中心画素位置Oに対して右側が正で左側が負となり、上側が負で下側が正となる。
同様に、 図6(c)と図6(d)においてY軸方向のずれ量ΔYは、図6(c)と図6(d)において中心画素位置OからのY軸方向のずれ量ΔY1,ΔY2とすると、ΔY1=Y3−600,ΔY2=Y4−600により算出され、中心画素位置O(視野中心)からのY軸方向のずれ量ΔYは、ΔY=(ΔY1+ΔY2)/2となる。ずれ量が両者ともに正のとき等は、Y軸方向も前記X軸方向の算出の仕方と同じであり、X1がY1に、そしてX2がY2に置き換わるだけである。
次に前記の4箇所の頂点からディスク中心座標と下スタンパ3とのずれ量dX,dYを算出する。
さらに、中心画素位置Oに対するずれ量ΔX,ΔYがΔX=(ΔX1+ΔX2)/2と(ΔY1+ΔY2)/2とにより算出されると、次にステップ102により得られた十字マーク3aの座標値(X0,Y0)と中心画素位置Oからのずれ量ΔdX,ΔdYを算出する(ステップ110)。
これにより、中心画素位置Oを介して得られるディスクメディア2の中心のずれ量ΔX,ΔYと十字マーク3aのずれ量ΔdX,ΔdYとによりこれらの間のずれ量dX,dYを次の式により算出することができる。
dX=ΔdX−ΔX
dY=ΔdY−ΔY
次に、算出されたディスク中心座標と下スタンパ3の十字マーク3aとのずれ量dX,dYをXYステージ4の移動量に換算してこのずれ量に応じてXYステージ4の位置を補正してディスク中心座標と下スタンパ3に形成されたパターンの中心との位置合わせをする(ステップ111)。
次に、ハンドリングロボット1の昇降・回転アーム1aを降下させて下スタンパ3の表面にディスクメディア2の下面が密着した時点でハンドリングロボット1によるディスクメディア2の吸着を解除して下スタンパ3の上にディスクメディア2を載置する(ステップ112)。そして、MPU91は、上スタンパ7に対する位置決めプログラム92cをコールする。
上スタンパに対する位置決めプログラム92cの実行によりMPU91は、下スタンパ3と上スタンパ7との位置決めをする。
図7(a)は、上スタンパパターンと下スタンパパターンとの位置決めについての説明図、図7(b)は、上スタンパ7のリングマーク7aの撮像画像の説明図、図7(c)は、上スタンパパターンの中心算出処理の説明図である。
図1に戻り、ここで、MPU91が上スタンパに対する位置決めプログラム92cの実行により、XYステージ4を図面左側の点線位置へと移動させて、上スタンパ7の中心の下の基準位置にアライメントカメラ5を位置決めする(ステップ113)。
このとき、下スタンパ3上にはディスクメディア2が載置されている。さらに、この基準位置への位置決めにより上スタンパ7のリングマーク7aが下スタンパ3とディスクメディア2の中心開口2aを通して撮像できる位置関係にアライメントカメラ5を位置付ける。
そして、MPU91は、透光性のある下スタンパ3とディスクメディア2の中心開口2aを通して上スタンパ7のリングマーク7aを撮影する(ステップ114)。
このときには、ステップ103ですでにフォーカス切換レンズをロードし、アライメントカメラ5のフォーカス位置が上スタンパ7の位置に合わせされているのでフォーカス切換の必要はない。ただし、フォーカス切換が必要なときには、ここで、フォーカス切換移行を制御してフォーカス切換レンズをロードすることが必要になる。
図7(a)は、このときのアライメントカメラ5による撮像画像の状態を示している。
図7(b)は、このとき撮像されたアライメントカメラ5のリングマーク7aの画像である。
リングマーク7aによる上スタンパ7の凹凸パターンの中心位置算出は、MPU91がここでエッジ頂点座標算出プログラム92eをコールして実行することで行われる。
図7(a)に示す左右上下の4方向における各頂点位置の座標(Xa,Ya),(Xb,Yb),(Xc,Yc),(Xd,Yd)を4分割した各エッジの頂点を検出することで算出する(ステップ115)。
ここで、上スタンパに対する位置決めプログラム92cにリターンして、このプログラムの実行によりMPU91は、左右の頂点を結ぶ直線と上下の頂点を結ぶ直線との交点として
撮像画素数に基づいてリングマーク7aの中心座標(Xp,Yp)を算出する(ステップ116)。
次に、上スタンパ7の中心座標(Xp,Yp)とステップ102で記憶した下スタンパの十字マーク3aの座標値とのずれ量を算出する(ステップ117)。
このずれ量をXYステージ4の移動量に換算して、このずれ量に応じてXYステージ4の位置を補正して下スタンパ3に形成されたパターンの中心を上スタンパ7に形成されたパターンの中心に位置合わせをする(ステップ118)。
図8(a)は、下スタンパ3の十字マーク(アライメントマーク)3aと、ディスクメディア2、上スタンパ7のリングマーク(アライメントマーク)7aの位置関係の断面説明図、そして図8(b)は、図8(a)の位置関係を斜めからみた斜視説明図である。
図8(a)に示すように、十字マーク3aの大きさもリングマーク7aの大きさもディスクメディア2の中心開口2aよりも小さいものである。そこで、フォーカス切換によりアライメントカメラ5の視野5aにおいて、それぞれの映像を採取して下スタンパ3の十字マーク3aと、ディスクメディア2の中心開口の中心、そして上スタンパ7のリングマーク7aを位置合せすることによりディスクメディア2と下スタンパ3上の凹凸パターン、そして上スタンパ7上の凹凸パターンがそれぞれの位置が合うように位置決めすることができる。
なお、ステップ110では左右上下の4点の各頂点の座標(X1,Y1)〜(X4,Y4)から中心座標を算出してこれをディスクメディア2の中心座標として算出しておき、ステップ118ではこれに上スタンパ7のリングマーク7aの中心を位置合わせるするようにしてもよい。図示するように、中心開口2aの径φbと、リングマーク7aの径φa、十字マーク3aの長さによる径φaとは、φb>φa>φa’という関係にある。
ところで、図8(a)に示すように、リングマーク7aの位置は、十字マーク3aとは異なる位置となっているので、上スタンパ7(その凹凸パターン)に対するディスクメディア2の位置決めの際には、下スタンパ3の十字マーク3aが邪魔にならなずにアライメントカメラ5においてリングマーク7aを撮像することができる。
そこで、図8に示すような位置決めが済むと、MPU91は、次に転写プログラム92fをコールして実行する。
これにより、Zステージ8が降下してディスクメディア2が上スタンパ7と下スタンパ3との間に挟まれ、さらに押圧されることでそれぞれのスタンパに形成されたパターンのディスクメディア2への両面転写が行われる(ステップ119)。
図示していないが、XYステージ4とZステージ8にはそれぞれにUV光源が設けられていて、上下スタンパの押圧とともにUV光源から光が照射されてディスクメディア2に転写されたパターンの硬化が行われ、その後に、上スタンパ7の上昇とともにから下スタンパ3側からディスクメディア2の裏面側剥がされ、その後、剥離機構により中心開口がチャックされて上スタンパ7側からディスクメディア2の表面側が剥がされる。
なお、この場合には、上スタンパ7は、透光性である必要がある。
ところで、ステップ102のアライメントカメラ5のフォーカス位置を上スタンパ7の位置に合わせる処理をせずに、最初からフォーカス切換レンズをアンロードとしておき、アライメントカメラ5のフォーカス位置を下スタンパ3の位置に合わせておいてもよい。
この場合は、ステップ102として、MPU91は、ハンドリングロボット1の昇降・回転アーム1aを降下させて下スタンパ3の表面から上1mm以内のところに吸着したディスクメディア2を位置付けて最初に下スタンパ3のフォーカス範囲に設定する。
これにより、ディスクメディア2の下面と下スタンパ3の表面とが同じフォーカス内に入り、中心開口2aの内周エッジと十字マーク3aとがフォーカス切換なしに撮像できる距離に配置される。その距離は、例えば、100μm〜500μmの距離である。粗位置決めは、下スタンパ3の十字マーク3aが中心開口2aの内部、できれば中心付近に位置するようにXYステージ4の位置を設定してハンドリングロボット1により保持されたディスクメディア2を下スタンパ3に対して位置決めすることができる。
また、このようにしてアライメントカメラ5を視野を大きく採ると中心開口2aの内周エッジと十字マーク3aとを同時に撮像することも可能になる。
これにより、ステップ106においてディスクメディア2の中心開口2aの左側内周エッジ2bと十字マーク3aとを同時に撮像し、ステップ109において中心開口2aの右側内周エッジ2cと十字マーク3aとを同時に撮像することができる。このようにすれば、視野5aの中心となる中心画素位置Oの座標(800,600)に換えて、直接十字マーク3aの座標値を基準として使用して、ディスクメディア2の中心と十字マーク3aの位置ずれ量を算出することが可能となる。
以上説明してきたが、実施例では、中心開口2aより内側に入る空間領域に配置されるように下スタンパ3上に十字マーク(アライメントポイントマーク)3aが設けられているが、実施例では、十字マーク3aと中心開口2aの内周エッジとをそれぞれ独立に撮像するようにしているので、両者を撮像したときのXYステージの移動距離を算出しておけば、必ずしも最初から中心開口2aより内側に入る空間領域に十字マーク3aを配置されるようにしなくてもよい。
また、実施例では、フォーカス切換レンズを2種類持つことで、フォーカス切換を行っているが、ディスクメディアのフォーカス位置を2箇所持つようなカメラを用いてもよい。さらに、アライメントカメラ5の上昇/下降機構を持つことで、フォーカス位置を切換てもよい。
実施例のステップ118におけるずれ量をXYステージ4の移動量に換算する処理は、各十字マーク3aの視野上の座標値を検出したときあるいは中心開口2aの左右上下のエッジの頂点座標を算出したときなど、その都度、視野上の座標値をXYステージ4上の座標値に換算してXYステージ4上の座標において各ずれ量をそれぞれ算出するようにしてもよい。
ところで、実施例ではエッジ頂点座標算出プログラム92eによりエッジの頂点位置の座標を4箇所検出して中心開口2a(ディスクメディア2)の中心座標を算出しているが、中心開口2aの頂点位置に対応する箇所に4箇所マークを設けて、これのマーク座標と検出することで中心開口2a(ディスクメディア2)の中心座標を算出するようにしてもよい。
さらに、実施例におけるディスクメディア2は、石英やシリコン等の基板上に樹脂層が形成されたものや、樹脂基板やフィルム等の直接パターン転写が可能なものを含むものである。また、ディスクメディアの内周エッジとは、ディスクメディアの中心部に穴が加工されているものであり、中心開口の内周エッジを検出し、検出したエッジからディスクメディアとスタンパの相対的な位置関係を求められばよい。なお、この発明では、下のスタンパは透明体であることが必要がある。
実施例の十字のマーク3aとリングマーク7aとは、それぞれスタンパに形成された凹凸パターンの中心座標が算出できる位置にあればよく、必ずしも各スタンパの中心に対応するような位置に設ける必要はない。さらに、十字のマーク3aとリングマーク7aは、スタンパに形成された凹凸パターンの中心座標が算出できるマークであればどのようなアライメントマークであってもよい。
そこで、実施例では、ステップ118において下スタンパ3の凹凸パターンの中心(十字マーク3a)と上スタンパ7の凹凸パターンの中心との位置合わせをしているが、これは、被転写体(ディスクメディア2)の中心とスタンパ7の凹凸パターンの中心との位置合わせをしてもよい。
さらに、実施例では、ディスク中心座標の算出について内周エッジの画像から4点の頂点を算出して中心を算出しているが、円の中心位置は、円周上を通る3点により算出できるので、移動位置を3点、としてもよい。1枚の撮影画像にある円弧から3点抽出も可能である。ディスク中心座標の算出は、異なる3方向にXYステージを移動して内周エッジの画像を3箇所で採取して3点における頂点の座標値を得て中心座標を算出する方がよい。
さらに、実施例では、XYステージを使用しているが、回転ステージ(θステージ)と半径方向に移動するステージ(Rステージ)とからなるRθステージあってもよい。
またさらに、実施例のディスク中心座標算出プログラムとエッジ頂点座標算出プログラムとは、それぞれ専用の演算処理回路ブロックを設けて処理することが可能である。
1…ハンドリングロボット、2…ディスクメディア、
3…下スタンパ、4…XYステージ、
5…アライメントカメラ、6…フォーカス切換レンズ、
7…上スタンパ、8…Zステージ、9…データ処理・制御装置、
10…両面インプリント装置、11…駆動制御回路、
12…アライメントカメラ制御回路、
13…フォーカス切換回路、
91…MPU、92…メモリ、
92a…ディスクメディア粗位置決めプログラム、
92b…下スタンパ位置決め・ディスク載置プログラム、
92c…上スタンパに対する位置決めプログラム、
92d…ディスク中心座標算出プログラム、
92e…エッジ頂点座標算出プログラム、
92f…転写プログラム、
92g…作業領域、93…入出力インタフェース、94…バス。

Claims (8)

  1. 中心に円形開口を有する被転写体の表裏の背面にそれぞれ配置された透光性を有する第1スタンパと、第2のスタンパとによりそれぞれに形成された凹凸パターンを前記被転写体に転写する両面インプリント装置の被転写体位置決め方法において、
    前記第1スタンパおよび第2のスタンパは、前記円形開口に対応する位置に設けられ、それぞれに前記凹凸パターンに対する前記被転写体位置決めのためのアライメントマークを有し、前記第1のスタンパがXYステージに載置され、前記XYステージの前記第1スタンパの下側にカメラが設けられていて、
    ハンドリングロボットによりチャックされた前記被転写体を前記第1のスタンパから所定距離離れた上部に配置する被転写体配置ステップと、
    前記カメラにより前記第1スタンパのアライメントマークを撮像して前記カメラの視野上における前記アライメントマークの座標値を得る座標値算出ステップと、
    前記カメラにより前記第1スタンパを介して前記被転写体の前記円形開口のエッジを少なくとも3箇所撮像し、前記撮像を各前記エッジに対して前記XYステージにより前記カメラを移動させて行い、前記カメラの視野上における前記円形開口のエッジの座標に基づいて前記被転写体の中心と前記第1スタンパのアライメントマークとのずれ量を算出するずれ量算出ステップと、
    前記ずれ量に応じて前記XYステージを移動させて前記被転写体と前記第1のスタンパの前記凹凸パターンの中心との位置合わせをする第1の位置合わせステップと、
    前記ハンドリングロボットによるチャックを解除して前記第1の位置合わせステップにより位置合わせがなされた前記被転写体を前記第1のスタンパ上に載置する被転写体載置ステップと、
    前記XYステージにより前記カメラを前記第2スタンパの下に配置して前記カメラにより前記第2スタンパのアライメントマークを前記第1のスタンパと前記円形開口とを介して撮像し、前記第2のスタンパのアライメントマークの座標に基づいて前記被転写体の中心あるいは前記第1のスタンパの前記凹凸パターンの中心と前記第2のスタンパの前記凹凸パターンの中心との位置合わせを、前記XYステージを移動させて行う第2の位置合わせステップとからなる両面インプリント装置の被転写体位置決め方法。
  2. 前記第1スタンパのアライメントマークと前記第2スタンパのアライメントマークとの大きさは、前記円形開口の径より小さいものであり、前記第2のスタンパは、Zステージ上に載置され、記第2の位置合わせステップは、前記XYステージを移動して前記被転写体が載置された前記第1のスタンパを前記第2のスタンパの下に位置づける請求項1記載の両面インプリント装置の被転写体位置決め方法。
  3. 前記被転写体はディスクメディアであり、前記第1スタンパのアライメントマークは、前記第1のスタンパ上に形成された前記凹凸パターンの中心の位置に設けられ、前記第2スタンパのアライメントマークは、前記第2のスタンパ上に形成された前記凹凸パターンの中心が算出できるように前記第2スタンパの中心位置の外側にリング状に形成されている請求項2記載の両面インプリント装置の被転写体位置決め方法。
  4. 前記ずれ量算出ステップは、前記ずれ量を前記カメラの視野における画素数に基づいて前記視野中心位置を基準としたずれ量として一旦算出し、この算出したずれ量を前記XYステージの移動量に変換して前記ずれ量とする請求項1乃至3のいずれか記載の両面インプリント装置の被転写体位置決め方法。
  5. 前記ずれ量算出ステップは、各前記エッジに対して前記XYステージによる前記カメラをX軸方向に前記第1のスタンパを前記円形開口の半径の距離分前後に及びY軸方向に前記円形開口の半径の半分の距離分前後のうち少なくとも3箇所に移動させて記円形開口のエッジを撮像して前記視野上における各エッジの頂点の座標を求めて前記中心位置の座標値を得る請求項1乃至4のいずれか記載の両面インプリント装置の被転写体位置決め方法。
  6. 前記カメラは、前記第1のスタンパの位置に焦点合わせをする焦点位置と前記第2のスタンパの位置に焦点合わせをする焦点切換え機構を備え、前記第1スタンパのアライメントマークを撮像するときには前記第1のスタンパの位置に前記カメラの焦点を合わせ、前記カメラにより前記第2スタンパのアライメントマークを撮像するときには前記第2のスタンパの位置に前記カメラの焦点を合わせる請求項1乃至5のいずれか記載の両面インプリント装置の被転写体位置決め方法。
  7. 前記XYステージは、Rθステージである請求項1記載の両面インプリント装置の被転写体位置決め方法。
  8. 請求項1乃至7のいずれか1項記載の両面インプリント装置の被転写体位置決め方法を使用した両面インプリント装置。
JP2010026250A 2010-02-09 2010-02-09 両面インプリント装置の被転写体位置決め方法および両面インプリント装置 Expired - Fee Related JP5308369B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010026250A JP5308369B2 (ja) 2010-02-09 2010-02-09 両面インプリント装置の被転写体位置決め方法および両面インプリント装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010026250A JP5308369B2 (ja) 2010-02-09 2010-02-09 両面インプリント装置の被転写体位置決め方法および両面インプリント装置

Publications (2)

Publication Number Publication Date
JP2011165264A JP2011165264A (ja) 2011-08-25
JP5308369B2 true JP5308369B2 (ja) 2013-10-09

Family

ID=44595769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010026250A Expired - Fee Related JP5308369B2 (ja) 2010-02-09 2010-02-09 両面インプリント装置の被転写体位置決め方法および両面インプリント装置

Country Status (1)

Country Link
JP (1) JP5308369B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6029268B2 (ja) * 2011-09-12 2016-11-24 キヤノン株式会社 インプリント装置、それを用いた物品の製造方法
CN103616797B (zh) * 2013-12-16 2017-01-11 苏州光越微纳科技有限公司 一种具有快速对准功能的新型纳米压印设备
TWI619145B (zh) * 2015-04-30 2018-03-21 佳能股份有限公司 壓印裝置,基板運送裝置,壓印方法以及製造物件的方法
JP6758967B2 (ja) * 2016-07-12 2020-09-23 キヤノン株式会社 インプリント装置、インプリント方法、及び物品の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4060513B2 (ja) * 1999-11-16 2008-03-12 松下電器産業株式会社 ディスクの位置決め方法
JP4735280B2 (ja) * 2006-01-18 2011-07-27 株式会社日立製作所 パターン形成方法
JP5061525B2 (ja) * 2006-08-04 2012-10-31 株式会社日立製作所 インプリント方法及びインプリント装置
JP5538681B2 (ja) * 2008-02-29 2014-07-02 富士フイルム株式会社 光インプリント用モールド及び光インプリント方法、並びに磁気記録媒体及びその製造方法

Also Published As

Publication number Publication date
JP2011165264A (ja) 2011-08-25

Similar Documents

Publication Publication Date Title
JP4393244B2 (ja) インプリント装置
JP4537061B2 (ja) ワークピースを機械的にマスクするための方法および装置
JP5342210B2 (ja) アライメント装置制御装置およびアライメント方法
US9274415B2 (en) Photomask, photomask set, exposure apparatus and exposure method
US10144156B2 (en) Imprint apparatus, imprint method, and method for producing device
JP6169218B2 (ja) インプリント装置、基板搬送装置、インプリント方法および物品の製造方法
JP3978140B2 (ja) 処理ツールにおいて基板上の欠陥を検出するための構成および方法
JP2009518863A (ja) 基板の両面パターニングする方法及びシステム
JP5308369B2 (ja) 両面インプリント装置の被転写体位置決め方法および両面インプリント装置
JP2023029858A (ja) デジタルリソグラフィシステムでのマルチ基板処理
JP2007225727A (ja) 基板露光装置および基板露光方法
TW200301538A (en) Substrate holding unit, exposure apparatus, and device manufacturing method
TWI461832B (zh) 製造光罩的方法
JP2016039182A (ja) インプリント装置、物品の製造方法及びインプリント方法
JP2007220987A (ja) 平面板の保持体
KR101438914B1 (ko) 전사방법 및 전사장치
KR102059758B1 (ko) 임프린트 장치 및 물품 제조 방법
CN109597283B (zh) 一种激光直接成像设备正反面成像对位误差的检测方法
JP5948102B2 (ja) 転写装置および転写方法
JP5793410B2 (ja) パターン形成装置
US20230341782A1 (en) Lithography information processing apparatus, lithography system, storage medium, lithography information processing method, and article manufacturing method
JP2021044296A (ja) インプリント方法、半導体装置の製造方法、及びインプリント装置
JP5826087B2 (ja) 転写方法および転写装置
KR20200110249A (ko) 기판 처리 장치 및 물품 제조 방법
JP2019201180A (ja) 付着物除去方法、成形装置、成形方法、および物品の製造方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110316

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110414

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees