JP5386988B2 - Manufacturing method of ferro-coke for metallurgy - Google Patents
Manufacturing method of ferro-coke for metallurgy Download PDFInfo
- Publication number
- JP5386988B2 JP5386988B2 JP2009000573A JP2009000573A JP5386988B2 JP 5386988 B2 JP5386988 B2 JP 5386988B2 JP 2009000573 A JP2009000573 A JP 2009000573A JP 2009000573 A JP2009000573 A JP 2009000573A JP 5386988 B2 JP5386988 B2 JP 5386988B2
- Authority
- JP
- Japan
- Prior art keywords
- coke
- carbon material
- iron ore
- ferro
- binder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000571 coke Substances 0.000 title claims description 89
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 238000005272 metallurgy Methods 0.000 title claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 190
- 239000003575 carbonaceous material Substances 0.000 claims description 108
- 229910052742 iron Inorganic materials 0.000 claims description 95
- 239000011230 binding agent Substances 0.000 claims description 32
- 238000000465 moulding Methods 0.000 claims description 25
- 238000000197 pyrolysis Methods 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 12
- 238000002844 melting Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 7
- 238000005469 granulation Methods 0.000 claims description 5
- 230000003179 granulation Effects 0.000 claims description 5
- 239000003610 charcoal Substances 0.000 claims 2
- 238000004939 coking Methods 0.000 claims 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 238000002156 mixing Methods 0.000 description 28
- 239000003245 coal Substances 0.000 description 27
- 238000000034 method Methods 0.000 description 21
- 239000008187 granular material Substances 0.000 description 13
- 238000009775 high-speed stirring Methods 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 230000007547 defect Effects 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000002994 raw material Substances 0.000 description 6
- 239000011449 brick Substances 0.000 description 5
- 238000004898 kneading Methods 0.000 description 5
- 239000011338 soft pitch Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 230000004927 fusion Effects 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000012256 powdered iron Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
Images
Landscapes
- Coke Industry (AREA)
Description
本発明は、石炭と鉄鉱石との混合物を成型して乾留して製造する冶金用フェロコークスの製造方法に関する。 The present invention relates to a method for producing ferro-coke for metallurgy, in which a mixture of coal and iron ore is molded and subjected to dry distillation.
原料石炭に粉鉄鉱石を配合し、この混合物を通常の室炉式コークス炉で乾留してフェロコークスを製造する技術としては、(a)石炭と粉鉄鉱石との粉混合物を室炉式コークス炉に装入する方法、(b)石炭と鉄鉱石を冷間、すなわち室温で成型し、その成型物を室炉式コークス炉に装入する方法などが検討されてきた(例えば、非特許文献1参照。)。しかし通常の室炉式コークス炉は珪石煉瓦で構成されているので、鉄鉱石を装入した場合に鉄鉱石が珪石煉瓦の主成分であるシリカと反応し、低融点のファイヤライト(2FeO・SiO2)が生成して珪石煉瓦の損傷を招く。このため室炉式コークス炉でフェロコークスを製造する技術は、工業的には実施されていない。 The technology for producing ferro-coke by blending powdered iron ore with raw coal and producing this ferro-coke by dry-distilling this mixture in a normal chamber-type coke oven is as follows. A method of charging into a furnace, (b) a method of forming coal and iron ore cold, that is, at room temperature, and charging the molded product into a chamber-type coke oven have been studied (for example, non-patent literature). 1). However, since ordinary furnace-type coke ovens are composed of silica brick, when iron ore is charged, iron ore reacts with silica, which is the main component of silica brick, and low melting point firelite (2FeO · SiO 2 ) is generated and causes damage to the quartz brick. For this reason, the technique which manufactures ferro-coke with a chamber-type coke oven is not implemented industrially.
上記問題を回避するため、乾留後のコークスに鉄含有物質を含浸させて高反応性コークス(フェロコークス)を製造する方法が提案されている(例えば、特許文献1参照。)。この方法では、コークス中に鉄含有物質を含浸させるのが困難であり、内部まで鉄の濃度を上昇させるには時間がかかり、生産性を大幅に低下させてしまう。またハンドリング時の衝撃で含浸させた鉄含有物がはがれ落ちてしまい、効果が低下する等の問題が残されている。 In order to avoid the above problem, a method has been proposed in which coke after dry distillation is impregnated with an iron-containing substance to produce highly reactive coke (ferro coke) (see, for example, Patent Document 1). In this method, it is difficult to impregnate the coke with the iron-containing substance, and it takes time to increase the iron concentration to the inside, and the productivity is greatly reduced. Moreover, the iron-containing material impregnated by the impact at the time of handling peels off, and the problem that an effect falls, etc. remains.
近年、室炉式コークス製造法に替わるコークス製造方法として、連続式成型コークス製造法が開発されている。連続式成型コークス法では、乾留炉として、珪石煉瓦ではなくシャモット煉瓦にて構成される竪型シャフト炉を用い、石炭を冷間で所定の大きさに成型後、シャフト炉に装入し、循環熱媒ガスを用いて加熱することにより成型炭を乾留し、成型コークスを製造する。資源埋蔵量が豊富で安価な非微粘結炭を多量に使用しても、通常の室炉式コークス炉と同等の強度を有するコークスが製造可能なことが確認されているが、使用する石炭の粘結性が高い場合にはシャフト炉内で成型炭が軟化融着し、シャフト炉操業が困難になると共に変形や割れ等のコークス品質低下を招く。 In recent years, a continuous molding coke manufacturing method has been developed as a coke manufacturing method replacing the chamber furnace type coke manufacturing method. In the continuous molding coke method, a vertical shaft furnace composed of chamotte bricks instead of silica bricks is used as the carbonization furnace, and coal is molded into a predetermined size in the cold, and then charged into the shaft furnace for circulation. The coal is carbonized by heating with a heat medium gas to produce a molded coke. It has been confirmed that even if a large amount of non-slightly caking coal that is abundant in resource reserves and inexpensive is used, it is possible to produce coke that has the same strength as a normal chamber-type coke oven. When the caking property is high, the coal is softened and fused in the shaft furnace, which makes it difficult to operate the shaft furnace and causes deterioration of coke quality such as deformation and cracking.
連続式コークス製造法でのシャフト炉内での融着抑制のために、石炭に鉄鉱石を全体量の15〜40%となるように添加し、冷間で成型物を製造し、シャフト炉に装入する方法が提案されている(例えば、特許文献2参照。)。この方法では、鉄鉱石には粘結性がないので、冷間の状態で成型物を製造するために高価なバインダーを添加する必要がある。そこで、原料としての石炭と鉄鉱石あるいは鉄原料を、加熱した熱間の状態で塊成型物に成型する方法も提案されている(例えば、特許文献3、特許文献4参照。)。
In order to suppress fusion in the shaft furnace in the continuous coke production method, iron ore is added to the coal so as to be 15 to 40% of the total amount, and a molded product is produced coldly. A method of charging has been proposed (see, for example, Patent Document 2). In this method, since iron ore has no caking property, it is necessary to add an expensive binder to produce a molded product in a cold state. Then, the method of shape | molding the coal as a raw material and iron ore, or an iron raw material to a lump molding in the state between the heated heat | fever is proposed (for example, refer
しかしながら、上記特許文献2〜4において、石炭と、鉄鉱石あるいは鉄原料とでは、乾留時における熱的挙動が異なることから、乾留後の強度低下が大きいという問題が残されている。 However, in the said patent documents 2-4, since the thermal behavior at the time of dry distillation differs between coal and an iron ore or an iron raw material, the problem that the strength fall after dry distillation is large remains.
鉄鉱石と炭材との成型物を乾留してフェロコークスを製造する際、還元率の上昇とともに炭材が鉱石の還元に使用されるため、フェロコークス中に欠陥構造が発生し強度低下が顕著となる。また、成型物の乾留中に成型物同士の融着を抑制する必要があるので、鉱石比率が50mass%以下のフェロコークスを製造する場合には炭材として難溶融性炭材を配合する必要が生じる。難溶融性炭材はフェロコークスの強度向上に寄与しないため、難溶融性炭材を用いる場合は特に、高い還元率を維持しながらフェロコークスの強度を確保するのは困難である。 When ferro-coke is produced by dry distillation of iron ore and carbonaceous material, the carbonaceous material is used to reduce the ore as the reduction rate increases, so a defect structure is generated in the ferro-coke and the strength is significantly reduced. It becomes. Moreover, since it is necessary to suppress fusion | bonding of molded products during dry distillation of a molded product, when manufacturing ferro-coke whose ore ratio is 50 mass% or less, it is necessary to mix | blend a hardly-melting carbon material as a carbon material. Arise. Since the hardly fusible carbon material does not contribute to improving the strength of the ferro coke, it is difficult to ensure the strength of the ferro coke while maintaining a high reduction rate, particularly when the hardly fusible carbon material is used.
したがって本発明の目的は、このような従来技術の課題を解決し、炭材と鉄鉱石とからなる成型物を乾留してフェロコークスを製造する際に、鉄鉱石の還元が進行してもフェロコークス強度の低下が抑制される、冶金用フェロコークスの製造方法を提供することにある。 Therefore, the object of the present invention is to solve such problems of the prior art and to produce ferro-coke by dry distillation of a molded product made of carbonaceous material and iron ore, even if the reduction of iron ore proceeds. An object of the present invention is to provide a method for producing metallurgical ferro-coke in which a reduction in coke strength is suppressed.
本発明はかかる事情に鑑みてなされたものであって、フェロコークス強度向上に寄与しない難溶融性炭材と鉄鉱石とを混合して造粒物とすることにより、主に難溶融性炭材に鉄鉱石還元に伴う欠陥構造を発生させ、フェロコークス強度向上に寄与する軟化溶融を示す易溶融性炭材には欠陥構造を極力発生させないことにより高強度の冶金用フェロコークスを得るものである。 The present invention has been made in view of such circumstances, and is mainly made of a hardly fusible carbon material by mixing a hardly fusible carbon material that does not contribute to the improvement of ferrocoke strength and an iron ore into a granulated product. It is possible to obtain high-strength ferro-coke for metallurgical metallurgy by generating a defect structure associated with iron ore reduction and generating a defect structure as much as possible in a readily meltable carbon material that exhibits softening and melting that contributes to improving ferrocoke strength .
このような課題を解決するための本発明の特徴は以下の通りである。
(1)炭材と鉄鉱石とからなる成型物を乾留してフェロコークスを製造する方法であって、前記炭材がギーセラープラストメータで測定される最高流動度が2ddpm未満である難溶融性炭材と最高流動度が2ddpm以上の易溶融性炭材とからなり、前記難溶融性炭材と前記鉄鉱石とを混合して造粒物とし、該造粒物と前記易溶融性炭材とを混合して成型物を製造することを特徴とする冶金用フェロコークスの製造方法。
(2)難溶融性炭材と鉄鉱石とバインダーとをミキサーに投入して攪拌し、前記難溶融性炭材と前記鉄鉱石との造粒物とし、さらに前記ミキサーに易溶融性炭材とバインダーとを投入して攪拌して成型物を製造することを特徴とする(1)に記載の冶金用フェロコークスの製造方法。
(3)難溶融性炭材と鉄鉱石とバインダーとを造粒機で造粒物とし、該造粒物と易溶融性炭材とバインダーとをミキサーに投入して攪拌して成型物を製造することを特徴とする(1)に記載の冶金用フェロコークスの製造方法。
The features of the present invention for solving such problems are as follows.
(1) A method of producing ferro-coke by dry-distilling a molded product composed of a carbon material and iron ore, wherein the carbon material has a maximum fluidity of less than 2 ddpm as measured by a Gieseler plastometer. It consists of a carbon material and a readily meltable carbon material having a maximum fluidity of 2 ddpm or more, and mixes the hardly meltable carbon material and the iron ore into a granulated material, and the granulated material and the easily meltable carbon material A method for producing ferro-coke for metallurgical use, characterized in that a molded product is produced by mixing with a metal.
(2) A hard-melting carbon material, iron ore, and a binder are put into a mixer and stirred to form a granulated product of the hard-melting carbon material and the iron ore. The method for producing ferro-coke for metallurgy according to (1), wherein a molded product is produced by adding and stirring a binder.
(3) A hardly meltable carbon material, iron ore, and a binder are granulated with a granulator, and the granulated material, the easily meltable carbon material, and the binder are put into a mixer and stirred to produce a molded product. The manufacturing method of the ferro-coke for metallurgical products as described in (1) characterized by performing.
本発明によれば、難溶融性炭材を用いてフェロコークスを製造する場合であっても、高強度のフェロコークスが得られる。 According to the present invention, even when ferrocoke is produced using a hardly fusible carbon material, high strength ferrocoke can be obtained.
これにより、フェロコークスを高炉で使用した場合に、CO2ガスとの反応より発生する粉の発生を抑制し、フェロコークス使用による圧力損失の上昇を抑制しつつ、フェロコークスとCO2ガスとの反応速度の増大により熱保存帯温度を低下させることができ、高炉の還元材比を低減することが可能となる。 As a result, when ferro-coke is used in a blast furnace, the generation of powder generated by reaction with CO 2 gas is suppressed, and the increase in pressure loss due to the use of ferro-coke is suppressed, while ferro-coke and CO 2 gas are The heat storage zone temperature can be lowered by increasing the reaction rate, and the reducing material ratio of the blast furnace can be reduced.
本発明は、炭材と鉄鉱石とからなる成型物を乾留してフェロコークスを製造する方法であって、炭材が難溶融性炭材と易溶融性炭材とからなり、鉄鉱石が難溶融性炭材と混合された状態で易溶融性炭材と混合して成型物を成型して乾留して冶金用フェロコークスを製造する。すなわち、鉄鉱石を難溶融性炭材に混ぜ、易溶融性炭材とはできるだけ混ざらないようにするものである。難溶融性炭材表面と鉄鉱石とを混合して造粒物とすることにより、鉄鉱石の還元により生成する欠陥構造は難溶融性炭材の周辺に発生し、フェロコークス強度を発現させる軟化溶融を示す易溶融性炭材内部には欠陥構造を発生させないフェロコークスとなる。これによりフェロコークス内の鉄鉱石の還元が進行してもフェロコークスの強度低下が抑制可能である。 The present invention is a method for producing ferro-coke by dry distillation of a molded product composed of a carbon material and iron ore, wherein the carbon material is composed of a hardly fusible carbon material and a readily fusible carbon material, and the iron ore is difficult. A ferro-coke for metallurgy is manufactured by mixing with an easily meltable carbon material in a state of being mixed with a meltable carbon material, forming a molded product, and subjecting it to dry distillation. That is, the iron ore is mixed with the hardly-meltable carbon material so as not to be mixed with the easily-meltable carbon material as much as possible. By mixing the hard-melting carbon material surface and iron ore into a granulated product, the defect structure generated by reduction of the iron ore occurs around the hard-melting carbon material and softens to develop ferro-coke strength Ferro-coke which does not generate a defect structure inside the easily meltable carbon material showing melting. Thereby, even if the reduction | restoration of the iron ore in ferro coke advances, the intensity | strength fall of ferro coke can be suppressed.
なお、難溶融性炭材とは、ギーセラープラストメータで測定される最高流動度(MF)が2ddpm未満である石炭等の炭材であり、易溶融性炭材とは最高流動度(MF)が2ddpm以上の難溶融性炭材よりも溶融しやすい石炭等の炭材である。 In addition, a hardly meltable carbon material is a carbon material such as coal having a maximum fluidity (MF) measured by a Gisela plastometer of less than 2 ddpm, and a readily meltable carbon material is a maximum fluidity (MF). Is a coal material such as coal that is easier to melt than a hardly-fusible carbon material of 2 ddpm or more.
難溶融性炭材と鉄鉱石とを混合して造粒物として、フェロコークスを製造するには、以下のA)、B)のような方法を用いることができる。鉄鉱石と混合された難溶融性炭材の造粒物と、易溶融性炭材とを混合して混練した混練物を成型工程で成型し、得られた成型物を乾留してフェロコークスを製造する
A)、まず、難溶融性炭材と鉄鉱石と少量のバインダーとを予め高速攪拌型ミキサーに投入して攪拌し、鉄鉱石と難溶融性炭材とを混合する。さらに易溶融性炭材とバインダーとを高速攪拌型ミキサーに投入して攪拌して混練し、混練物を得る。
B)、まず、ディスクペレタイザーのような造粒機を用いて難溶融性炭材と鉄鉱石と少量のバインダーを混合して混合粒子の造粒物を製造してから、易溶融性炭材とバインダーとともに高速攪拌ミキサーに投入して攪拌して混練し、混練物を得る。
混練物はダブルロール成型機のような成型機を用いて成型し、成型物を製造する。
In order to produce a ferro-coke as a granulated product by mixing a hardly fusible carbon material and iron ore, the following methods A) and B) can be used. A granulated product of a hardly fusible carbon material mixed with iron ore and a kneaded material mixed and kneaded with an easily fusible carbon material are molded in a molding process, and the resulting molded product is dry-distilled to produce ferro-coke. A) to manufacture, first, a hard-to-melt carbonaceous material, iron ore, and a small amount of a binder are put into a high-speed stirring mixer in advance and stirred to mix the iron ore and the hard-to-melt carbonaceous material. Furthermore, an easily meltable carbon material and a binder are put into a high-speed stirring mixer and stirred and kneaded to obtain a kneaded product.
B) First, using a granulator such as a disk pelletizer, a hardly meltable carbon material, iron ore, and a small amount of binder are mixed to produce a granulated product of mixed particles. The mixture is put into a high-speed stirring mixer together with the binder and stirred and kneaded to obtain a kneaded product.
The kneaded product is molded using a molding machine such as a double roll molding machine to produce a molded product.
図1に上記A)の場合の本発明の一実施形態であるフロー図を示す。 FIG. 1 is a flowchart showing an embodiment of the present invention in the case of A).
難溶融性炭材1と微粉鉄鉱石2とは、バインダー3とともに高速攪拌ミキサー7に投入し攪拌する。高速攪拌ミキサー7内で難溶融性炭材1と微粉鉄鉱石2とが混合されて造粒物が製造される。この造粒物と易溶融性炭材5、さらにバインダー6を高速攪拌ミキサー7に投入し攪拌する。以上が混練工程である。混練工程で得られた攪拌物を成型工程で成型する。例えば高圧成型機8を用いて成型し、成型物9を得る。この成型物9を乾留してフェロコークスを得る。この場合は、高速攪拌ミキサーだけで混練までの工程を行なうことができ、比較的低コストでフェロコークスを製造することができる。
The hardly
図2に、従来の製造方法で製造されたフェロコークスと、上記A)の方法で製造されたフェロコークスとの比較を示す。フェロコークスの製造において、鉄鉱石の配合率が50mass%以下の場合、成型物を乾留すると成型物同士の融着が起こる恐れが高いため、炭材には易溶融性炭材として粘結炭や微粘炭の他に非粘炭を代表とする難溶融性炭材を配合する必要があり、通常フェロコークス中の炭材と鉄鉱石(金属鉄)の配置は図2(a)のようになる。フェロコークスの強度向上には、易溶融性炭材5が寄与し、成型物同士の融着防止には難溶融性炭材1が寄与する。鉄鉱石の還元が進行して金属鉄となると、金属鉄周辺に多くの欠陥が生成し、フェロコークス強度の低下を招くと考えられる。そこで、鉄鉱石と難溶融性炭材を完全混合した後、易溶融性炭材を添加することで、図2(b)に示すように難溶融性炭材1に鉄鉱石2が濃縮し、易溶融性炭材5には鉄鉱石の存在する割合が小さい。したがって、鉄鉱石2の還元に伴う欠陥構造の生成を難溶融性炭材1周辺にとどめることが可能であり、易溶融性炭材5には還元に伴う欠陥の発生は起きにくいと考えられる。このように考えると、図2(b)のフェロコークスでは鉱石の還元に伴うフェロコークスの強度低下は減じられると推察される。
FIG. 2 shows a comparison between ferro-coke produced by the conventional production method and ferro-coke produced by the method A). In the production of ferro-coke, when the blending ratio of iron ore is 50 mass% or less, there is a high risk of fusion between the molded products when the molded product is dry-distilled. It is necessary to mix a hard-melting carbon material represented by non-hard coal in addition to the micro-thick coal, and the arrangement of the carbon material and iron ore (metallic iron) in the normal ferro-coke is as shown in Fig. 2 (a). Become. The easily
図2(b)においては、難溶融性炭材1に鉄鉱石2が存在する割合が高いが、易溶融性炭材5と鉄鉱石2との混在が少し認められる。易溶融性炭材5と鉄鉱石2との混在をさらに減らすためには、上記B)の方法を用いることが望ましい。
In FIG. 2 (b), although the ratio of the
図3に上記B)の場合の本発明の一実施形態であるフロー図を示す。 FIG. 3 is a flowchart showing an embodiment of the present invention in the case of the above B).
難溶融性炭材1と微粉鉄鉱石2とは、バインダー3とともにディスクペレタイザー4等の造粒機を用いて混合することで難溶融性炭材1と微粉鉄鉱石2との造粒物を製造する。この造粒物と易溶融性炭材5、さらにバインダー6を高速攪拌ミキサー7に投入し攪拌する。以上が混練工程である。混練工程で得られた攪拌物を成型工程で成型する。例えば高圧成型機8を用いて成型し、成型物9を得る。この成型物9を乾留してフェロコークスを得る。高速攪拌ミキサー7での攪拌において造粒物が壊れないように、高速攪拌ミキサー7での攪拌温度で劣化しないようなバインダーを用いて造粒物を固めることが好ましい。造粒物が壊れないように、高速攪拌ミキサーの回転速度や攪拌時間を減らして調整することも可能である。
The hardly
図4に、従来の製造方法で製造されたフェロコークスと、上記B)の方法で製造されたフェロコークスとの比較を示す。通常フェロコークス中の炭材と鉄鉱石(金属鉄)の配置は図4(a)のようになる。図4(b)に示すように鉄鉱石2を難溶融性炭材1周辺に配置させることで、鉄鉱石2の還元に伴う欠陥構造の生成を難溶融性炭材1周辺にとどめることが可能であり、易溶融性炭材5には還元に伴う欠陥の発生は起きにくいと考えられる。図4(b)では、図2(b)よりも易溶融性炭材5と鉄鉱石2との混在が少なく、よりいっそう鉱石の還元に伴うフェロコークスの強度低下が減じられると推察される。
FIG. 4 shows a comparison between the ferrocoke produced by the conventional production method and the ferrocoke produced by the method B). The arrangement of carbonaceous materials and iron ore (metallic iron) in normal ferro-coke is as shown in FIG. By arranging the
図1に示すフローと同様の方法で難溶融性炭材と鉄鉱石との造粒物を易溶融性炭材と混合して製造した場合(難溶融性炭材と鉄鉱石を造粒:図2(b)の場合)と、難溶融性炭材、易溶融性炭材および鉄鉱石を単純に混合して製造した場合(単純混合:図2(a)の場合)の、フェロコークス強度と還元率との比較を行った。 When a granulated product of a hardly fusible carbon material and iron ore is mixed with a readily fusible carbon material by the same method as the flow shown in Fig. 1 (granulating the hardly fusible carbon material and iron ore: Fig. 2 (b)), and ferro-coke strength when manufactured by simply mixing a hardly fusible carbon material, a readily fusible carbon material and iron ore (simple mixing: in the case of FIG. 2 (a)) Comparison with the reduction rate was performed.
原料石炭には平均最大反射率が0.7%、最高流動度(MF)が20ddpm、粒径3mm以下の微粘炭(易溶融性炭材)と、平均最大反射率が1.7%、最高流動度(MF)が0ddpm、粒径1mm以下の非粘炭(難溶融性炭材)を50mass%ずつ配合した配合炭を用いた。鉄鉱石は粒径0.1mm以下に粉砕したペレットフィードを用い、30mass%配合とした(易溶融性炭材/難溶融性炭材/鉄鉱石の質量比率は35/35/30)。バインダーには石炭系軟ピッチを用い、内数で5mass%添加した。これらの原料を混合してカップサイズ6cc(30mm×25mm×15mm)の成型物を成型した。成型物の乾留は900℃で2時間とした。 The raw material coal has an average maximum reflectance of 0.7%, a maximum fluidity (MF) of 20 ddpm, a slightly viscous coal having a particle size of 3 mm or less (an easily meltable carbon material), an average maximum reflectance of 1.7%, A blended coal containing 50 mass% of non-viscous coal (refractory carbon material) having a maximum fluidity (MF) of 0 ddpm and a particle size of 1 mm or less was used. The iron ore was mixed with 30 mass% using a pellet feed pulverized to a particle size of 0.1 mm or less (mass ratio of easily fusible carbon material / hardly fusible carbon material / iron ore is 35/35/30). Coal-based soft pitch was used as the binder, and 5 mass% was added as the inner number. These raw materials were mixed to form a molded product having a cup size of 6 cc (30 mm × 25 mm × 15 mm). The dry distillation of the molding was performed at 900 ° C. for 2 hours.
「単純混合」のフェロコークスは、石炭、鉄鉱石、バインダー(石炭系軟ピッチ)を攪拌型ミキサーで単純に均等になるように混合し、ダブルロール成型機で成型して6ccの大きさの成型物とし、乾留して製造した。 “Simple mixing” ferro-coke mixes coal, iron ore, and binder (coal-based soft pitch) simply and evenly with a stirrer mixer, and molds with a double roll molding machine to form a size of 6cc. And was produced by dry distillation.
「難溶融性炭材と鉄鉱石を造粒」のフェロコークスは、難溶融性炭材と鉄鉱石とに少量のバインダー(石炭系軟ピッチ)を添加して高速攪拌型ミキサーで160℃で混合した。その後易溶融性炭材と残りの石炭系軟ピッチを添加して、鉄鉱石と難溶融性炭材の混合時間よりも短時間でさらに混合した。バインダーは2回に分けて投入した。バインダーは3mass%分を鉄鉱石と難溶融性炭材の混合に、残りの2mass%分を易溶融性炭材の配合時に添加した。そして得られた混合物をダブルロール成型機で6ccに成型した。成型物を乾留してフェロコークスを製造した。 Ferro-coke "granulates hardly fusible carbon and iron ore" adds a small amount of binder (coal-based soft pitch) to the hardly fusible carbon and iron ore and mixes at 160 ° C with a high-speed stirring mixer. did. Thereafter, the easily meltable carbon material and the remaining coal-based soft pitch were added and further mixed in a shorter time than the mixing time of the iron ore and the hardly meltable carbon material. The binder was added in two portions. The binder was added in an amount of 3 mass% to the mixture of iron ore and the hardly fusible carbon material, and the remaining 2 mass% was added at the time of blending the easily meltable carbon material. The obtained mixture was molded into 6 cc with a double roll molding machine. Ferro-coke was produced by dry distillation of the molded product.
フェロコークスの強度と還元率の測定結果を図5に示す。 The measurement results of the strength and reduction rate of ferro-coke are shown in FIG.
「難溶融性炭材と鉄鉱石を造粒」のフェロコークスは、「単純混合」のフェロコークスに比較して、鉱石還元率は変化せず、フェロコークス強度は0.4ポイント程度上昇した。 The ferro-coke of “granulated hardly fusible carbon and iron ore” did not change the ore reduction rate and the ferro-coke strength increased by about 0.4 points compared to the ferro-coke of “simple mixing”.
以上のように、従来の「単純混合」で製造したフェロコークスと比較して、「難溶融性炭材と鉄鉱石を造粒」して製造したフェロコークスは、高強度を有するものであった。 As described above, ferro-coke produced by “granulating hardly fusible carbonaceous material and iron ore” compared with conventional ferro-coke produced by “simple mixing” has high strength. .
図3に示すフローと同様の方法で難溶融性炭材と鉄鉱石との造粒物を易溶融性炭材と混合して製造した場合(難溶融性炭材と鉄鉱石を造粒:図4(b)の場合)と、難溶融性炭材、易溶融性炭材および鉄鉱石を単純に混合して製造した場合(単純混合:図4(a)の場合)の、フェロコークス強度と還元率との比較を行った。 When a granulated product of a hardly fusible carbon material and iron ore is mixed with a readily fusible carbon material by the same method as the flow shown in FIG. 3 (granulating the hardly fusible carbon material and iron ore: Fig. 4 (b)) and ferro-coke strength when manufactured by simply mixing a hardly fusible carbon material, a readily fusible carbon material and iron ore (simple mixing: in the case of FIG. 4 (a)) Comparison with the reduction rate was performed.
原料石炭、鉄鉱石は実施例1と同様のものを用いた。バインダーには有機バインダーを用いた。 The same raw material coal and iron ore as in Example 1 were used. An organic binder was used as the binder.
「単純混合」のフェロコークスは、石炭、鉄鉱石、バインダー(石炭系軟ピッチ)を攪拌型ミキサーで単純に均等になるように混合し、ダブルロール成型機で成型して6cc(30mm×25mm×15mm)の大きさの成型物とし、乾留して製造した。 "Simple mixing" ferro-coke mixes coal, iron ore and binder (coal-based soft pitch) simply and evenly with a stirrer mixer, and molds with a double roll molding machine to 6cc (30mm x 25mm x 15 mm) in size and produced by dry distillation.
「難溶融性炭材と鉄鉱石を造粒」のフェロコークスは、難溶融性炭材と鉄鉱石とに少量のバインダー(有機バインダー)を添加してディスクペレタイザーで混合造粒して造粒物を製造した。難溶融性炭材と鉄鉱石との造粒物の粒径は1〜5mmとした。この造粒物と易溶融性炭材とを、残りのバインダーともに攪拌型ミキサーで160℃で混合した。バインダーは3mass%分を鉄鉱石と難溶融性炭材の造粒時に、残りの2mass%分を易溶融性炭材の配合時に添加した。そして得られた混合物をダブルロール成型機で成型した。成型物のカップサイズは6cc(30mm×25mm×15mm)であった。成型物を乾留してフェロコークスを製造した。 Ferro-coke "granulates hardly fusible carbon and iron ore" is a granulated product by adding a small amount of binder (organic binder) to the hardly fusible carbon and iron ore, and mixing and granulating with a disk pelletizer. Manufactured. The particle size of the granulated product of the hardly fusible carbon material and iron ore was 1 to 5 mm. The granulated material and the easily meltable carbon material were mixed together with the remaining binder at 160 ° C. with a stirring mixer. 3 mass% of the binder was added at the time of granulating the iron ore and the hardly-meltable carbonaceous material, and the remaining 2 mass% was added at the time of blending the easily-meltable carbonaceous material. And the obtained mixture was shape | molded with the double roll molding machine. The cup size of the molded product was 6 cc (30 mm × 25 mm × 15 mm). Ferro-coke was produced by dry distillation of the molded product.
フェロコークスの強度と還元率の測定結果を図6に示す。 The measurement results of the strength and reduction rate of ferro-coke are shown in FIG.
「難溶融性炭材と鉄鉱石を造粒」のフェロコークスは、「単純混合」のフェロコークスに比較して、鉱石還元率は変化せず、フェロコークス強度は1ポイント程度上昇した。 The ferro-coke of “granulated hardly fusible carbon and iron ore” did not change the ore reduction rate and the ferro-coke strength increased by about 1 point compared to the ferro-coke of “simple mixing”.
以上のように、従来の「単純混合」で製造したフェロコークスと比較して、「難溶融性炭材と鉄鉱石を造粒」して製造したフェロコークスは、高強度を有するものであった。 As described above, ferro-coke produced by “granulating hardly fusible carbonaceous material and iron ore” compared with conventional ferro-coke produced by “simple mixing” has high strength. .
次に、フェロコークス強度に及ぼす難溶融性炭材と鉄鉱石との造粒物の大きさの影響について調査した。難溶融性炭材と鉄鉱石との造粒物の粒径を1〜3mm、1〜5mm、1〜7mmで変化させてフェロコークスを製造し、強度の測定を行なった。本実施例における難溶融性炭材と鉄鉱石との造粒物の製造条件では、製造される最大粒径が7mmであり1〜3mmおよび1〜5mmの造粒物は篩により調製して得たものである。図7に測定結果を単純混合の場合の結果と併せて示す。粒径1〜3mmの造粒物の歩留まりは約60mass%であったが、この大きさの造粒物を添加すると、単純混合に比較して乾留後強度は約2.5ポイント上昇した。粒径1〜7mmでは、単純混合に比較して乾留後強度は低下した。粗大な造粒物は乾留後に構造欠陥となりやすいため強度が低下したものと推察される。 Next, the effect of the size of the granulated material of hardly fusible carbonaceous material and iron ore on the ferrocoke strength was investigated. Ferro-coke was manufactured by changing the particle size of the granulated product of the hardly fusible carbon material and iron ore from 1 to 3 mm, 1 to 5 mm, and 1 to 7 mm, and the strength was measured. In the production conditions of the granulated product of the hardly fusible carbon material and iron ore in this example, the maximum particle size to be produced is 7 mm, and the granulated products of 1 to 3 mm and 1 to 5 mm are obtained by preparing with a sieve It is a thing. FIG. 7 shows the measurement results together with the results of simple mixing. The yield of the granulated product having a particle size of 1 to 3 mm was about 60 mass%. However, when a granulated product of this size was added, the strength after dry distillation increased by about 2.5 points compared to simple mixing. When the particle size was 1 to 7 mm, the strength after dry distillation decreased compared to simple mixing. It is assumed that the coarse granulated product is likely to have a structural defect after dry distillation, so that the strength is reduced.
1 難溶融性炭材
2 鉄鉱石
3 バインダー
4 ペレタイザー
5 易溶融性炭材
6 バインダー
7 高速攪拌ミキサー
8 高圧成型機
9 成型物
DESCRIPTION OF
Claims (2)
前記炭材がギーセラープラストメータで測定される最高流動度が2ddpm未満である難溶融性炭材と最高流動度が2ddpm以上の易溶融性炭材とからなり、
難溶融性炭材と鉄鉱石とバインダーとをミキサーに投入して攪拌して、粒径が1〜5mmの造粒物とし、
さらに前記ミキサーに易溶融性炭材とバインダーとを投入して攪拌して成型物を製造することを特徴とする冶金用フェロコークスの製造方法。 It is a method for producing ferro-coke by dry distillation of a molding made of carbonaceous material and iron ore,
The charcoal material is composed of a hardly fusible carbon material having a maximum fluidity of less than 2 ddpm measured with a Gisela plastometer and a readily meltable carbon material having a maximum fluidity of 2 ddpm or more.
A hard-melting carbon material, iron ore, and a binder are put into a mixer and stirred to obtain a granulated product having a particle size of 1 to 5 mm .
Further , a ferro-coke manufacturing method for metallurgy, characterized in that an easily meltable carbon material and a binder are put into the mixer and stirred to produce a molded product.
前記炭材がギーセラープラストメータで測定される最高流動度が2ddpm未満である難溶融性炭材と最高流動度が2ddpm以上の易溶融性炭材とからなり、
難溶融性炭材と鉄鉱石とバインダーとを造粒機で、粒径が1〜5mmの造粒物とし、
該造粒物と易溶融性炭材とバインダーとをミキサーに投入して攪拌して成型物を製造することを特徴とする冶金用フェロコークスの製造方法。 It is a method for producing ferro-coke by dry distillation of a molding made of carbonaceous material and iron ore,
The charcoal material is composed of a hardly fusible carbon material having a maximum fluidity of less than 2 ddpm measured with a Gisela plastometer and a readily meltable carbon material having a maximum fluidity of 2 ddpm or more.
With a granulator, a hard-melting carbonaceous material, iron ore, and a binder, and a granulated product having a particle size of 1 to 5 mm ,
Granulation product and method for producing a ferro-coking 冶 gold you characterized in that the easily meltable carbonaceous material and a binder and stirred to put in the mixer to produce the molded article.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009000573A JP5386988B2 (en) | 2009-01-06 | 2009-01-06 | Manufacturing method of ferro-coke for metallurgy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009000573A JP5386988B2 (en) | 2009-01-06 | 2009-01-06 | Manufacturing method of ferro-coke for metallurgy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010159314A JP2010159314A (en) | 2010-07-22 |
JP5386988B2 true JP5386988B2 (en) | 2014-01-15 |
Family
ID=42576726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009000573A Active JP5386988B2 (en) | 2009-01-06 | 2009-01-06 | Manufacturing method of ferro-coke for metallurgy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5386988B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5491795B2 (en) * | 2009-07-31 | 2014-05-14 | 株式会社神戸製鋼所 | Method for producing massive shaped body for iron making raw material and iron ore-containing coke |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4267390B2 (en) * | 2003-08-07 | 2009-05-27 | 新日本製鐵株式会社 | Method for producing ferro-coke for blast furnace |
JP2005053986A (en) * | 2003-08-07 | 2005-03-03 | Nippon Steel Corp | Method for producing ferrocoke for blast furnace |
JP5386839B2 (en) * | 2008-03-21 | 2014-01-15 | Jfeスチール株式会社 | Manufacturing method of ferro-coke for metallurgy |
JP5386840B2 (en) * | 2008-03-21 | 2014-01-15 | Jfeスチール株式会社 | Manufacturing method of ferro-coke for metallurgy |
JP5386838B2 (en) * | 2008-03-21 | 2014-01-15 | Jfeスチール株式会社 | Ferro-coke for metallurgy |
-
2009
- 2009-01-06 JP JP2009000573A patent/JP5386988B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010159314A (en) | 2010-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4487564B2 (en) | Ferro-coke manufacturing method | |
JP4556525B2 (en) | Blast furnace operation method | |
JPH0665579A (en) | Method for compounding raw material of coal briquet for producing metallurgical formed coke | |
JP5411615B2 (en) | Manufacturing method of carbonized material agglomerates | |
JP4603628B2 (en) | Blast furnace operation method using carbon-containing unfired pellets | |
JP5017966B2 (en) | Ferro-coke manufacturing method | |
JP5386838B2 (en) | Ferro-coke for metallurgy | |
JP5386839B2 (en) | Manufacturing method of ferro-coke for metallurgy | |
JP5017967B2 (en) | Ferro-coke manufacturing method | |
JP5386988B2 (en) | Manufacturing method of ferro-coke for metallurgy | |
JP2004285134A (en) | Process for producing raw material for metallurgical furnace | |
JP5017969B2 (en) | Ferro-coke raw material molding and method for producing ferro-coke | |
JP5365043B2 (en) | Ferro-coke manufacturing method | |
JP5386840B2 (en) | Manufacturing method of ferro-coke for metallurgy | |
JP5763308B2 (en) | Ferro-coke manufacturing method | |
JP2006028593A (en) | Method for operating blast furnace | |
KR101300170B1 (en) | Briquette and manufacturing method for the same | |
JP5470855B2 (en) | Manufacturing method of ferro-coke for metallurgy | |
CN104745797A (en) | Material distributing method for sintering of chromite fine powder pellets | |
JP4892928B2 (en) | Ferro-coke manufacturing method | |
JP5386835B2 (en) | Ferro-coke manufacturing method | |
JP5028946B2 (en) | Ferro-coke raw material molding and method for producing ferro-coke | |
JP5386864B2 (en) | Ferro-coke manufacturing method | |
JP2008120973A (en) | Process for producing blast furnace coke | |
JP2007119601A (en) | Method for producing ferrocoke |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110824 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130625 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130826 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130910 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130923 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5386988 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |