[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5365043B2 - Ferro-coke manufacturing method - Google Patents

Ferro-coke manufacturing method Download PDF

Info

Publication number
JP5365043B2
JP5365043B2 JP2008082519A JP2008082519A JP5365043B2 JP 5365043 B2 JP5365043 B2 JP 5365043B2 JP 2008082519 A JP2008082519 A JP 2008082519A JP 2008082519 A JP2008082519 A JP 2008082519A JP 5365043 B2 JP5365043 B2 JP 5365043B2
Authority
JP
Japan
Prior art keywords
coke
ferro
coal
iron
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008082519A
Other languages
Japanese (ja)
Other versions
JP2009235221A (en
Inventor
孝思 庵屋敷
英和 藤本
泉 下山
喜代志 深田
広行 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008082519A priority Critical patent/JP5365043B2/en
Publication of JP2009235221A publication Critical patent/JP2009235221A/en
Application granted granted Critical
Publication of JP5365043B2 publication Critical patent/JP5365043B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coke Industry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel method for producing ferro coke for preventing deformation or thermal cracking of a molded product in a carbonization process and improving an original form yield on the carbonization furnace outlet side and handling strength in production of ferro coke. <P>SOLUTION: When ferro coke is produced by carbonizing a molded material prepared by molding a molding raw material containing coal 30, an iron source raw material 31 and a binder, a carbonized molded material is sieved by a sieve 4 to separate a product ferro coke and coke powder containing metallic iron from each other, and the coke powder containing the metallic iron is used as the molding raw material of the molded material. Preferably, the grain size of the coke powder containing the metallic iron is 6 mm or less, 0.5-8 mass% of the coke powder is used based on the total amount of the coal 30 and the iron source raw material 31, and the molded material is carbonized by using a vertical shaft kiln 3. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、鉄鉱石等の鉄源原料と、石炭とを原料として冶金用のフェロコークスを製造するフェロコークスの製造方法に関する。   The present invention relates to a ferro-coke manufacturing method for manufacturing ferro-coke for metallurgy using iron source materials such as iron ore and coal as raw materials.

高炉の操業を効率よく行うために、石炭をコークス炉で乾留してコークスを製造し、コークスを高炉に投入することが行われている。高炉内でのコークスには、高炉内の通気をよくするためのスペーサーの役割、還元材としての役割、熱源としての役割などがある。近年、コークスの反応性を向上させるという観点から、石炭に鉄鉱石を混合して冶金用のフェロコークスを得る技術が知られている。   In order to efficiently operate the blast furnace, coal is carbonized in a coke oven to produce coke, and the coke is thrown into the blast furnace. Coke in the blast furnace has a role of a spacer for improving ventilation in the blast furnace, a role as a reducing material, a role as a heat source, and the like. In recent years, from the viewpoint of improving the reactivity of coke, a technique for obtaining ferro-coke for metallurgy by mixing iron ore with coal is known.

鉄鉱石等の鉄源原料と、石炭とを原料として、通常の室炉式コークス炉で乾留してフェロコークスを製造する技術としては、(a)石炭と粉鉄鉱石の混合物を室炉式コークス炉に装入する方法、(b)石炭と鉄鉱石を冷間、すなわち室温で成型し、その成型物を室炉式コークス炉に装入する方法などが検討されてきた(例えば、非特許文献1参照。)。しかし、通常の室炉式コークス炉は珪石煉瓦で構成されているので、鉄鉱石を装入した場合に鉄鉱石が珪石煉瓦の主成分であるシリカと反応し、低融点のファイアライトが生成して珪石煉瓦の損傷を招く。このため室炉式コークス炉でフェロコークスを製造する技術は、工業的に実施されていない。   As a technology for producing ferro-coke by dry distillation in a normal chamber furnace coke oven using iron source materials such as iron ore and coal as raw materials, (a) a mixture of coal and fine iron ore is used as a chamber furnace coke. A method of charging into a furnace, (b) a method of forming coal and iron ore cold, that is, at room temperature, and charging the molded product into a chamber-type coke oven have been studied (for example, non-patent literature). 1). However, since ordinary furnace-type coke ovens are composed of silica brick, when iron ore is charged, iron ore reacts with silica, which is the main component of silica brick, and a low melting point firelight is produced. Cause damage to the quartz brick. For this reason, the technique which manufactures ferro-coke by a chamber furnace type coke oven is not implemented industrially.

近年、室炉式コークス製造方法にかわるコークス製造方法として、連続式成型コークス製造法が開発されている。連続式成型コークス製造法では、乾留炉として、珪石煉瓦ではなくシャモット煉瓦にて構成される竪型シャフト炉を用い、石炭を冷間で所定の大きさに成型後、シャフト炉に装入し、循環熱媒ガスを用いて加熱することにより成型炭を乾留し、成型コークスを製造する。資源埋蔵量が豊富で安価な非微粘結炭を多量に使用しても、通常の室炉式コークス炉と同等の強度を有するコークスが製造可能なことが確認されているが、使用する石炭の粘結性が高い場合には、シャフト炉内で成型炭が軟化融着し、シャフト炉操業が困難になると共に変形や割れ等のコークス品質低下を招く。   In recent years, a continuous molding coke manufacturing method has been developed as a coke manufacturing method replacing the chamber furnace coke manufacturing method. In the continuous molding coke manufacturing method, a vertical shaft furnace composed of chamotte bricks instead of silica bricks is used as a carbonization furnace, coal is molded into a predetermined size in the cold, and then charged into the shaft furnace. The coal is carbonized by heating using a circulating heat medium gas to produce a molded coke. It has been confirmed that even if a large amount of non-slightly caking coal that is abundant in resource reserves and inexpensive is used, it is possible to produce coke that has the same strength as a normal chamber-type coke oven. When the caking property is high, the coal is softened and fused in the shaft furnace, which makes it difficult to operate the shaft furnace and causes deterioration of coke quality such as deformation and cracking.

連続式成型コークス製造法でのシャフト炉内での融着抑制のために、石炭に鉄鉱石を全体量の15〜40質量%となるように添加し、冷間で成型物を製造し、シャフト炉に装入する方法が提案されている(例えば、特許文献1参照。)。この方法では、鉄鉱石に粘結性がないため、冷間の状態で成型物を製造するためにバインダーを多く添加する必要があり、石炭と鉄鉱石を加熱した熱間の状態で塊成型物に成型する方法も提案されている(例えば、特許文献2参照。)。   In order to suppress fusion in the shaft furnace in the continuous molding coke manufacturing method, iron ore is added to the coal so as to be 15 to 40% by mass of the total amount, and the molded product is manufactured cold, and the shaft A method of charging into a furnace has been proposed (see, for example, Patent Document 1). In this method, since iron ore is not caustic, it is necessary to add a large amount of binder in order to produce a molded product in a cold state, and a lump molded product in a heated state in which coal and iron ore are heated. There has also been proposed a method of molding into (see, for example, Patent Document 2).

上記のように石炭と鉄鉱石とを混合した成型物を熱処理して、成型コークス(フェロコークス)を製造する際に、変形や割れ等のコークス品質低下を押さえるために、成型物を乾留する際のヒートパターンの検討が行われ、成型物の温度に応じた最適な加熱速度設計方法が提案されている(例えば、特許文献3、特許文献4参照。)。
燃料協会「コークス技術年報」 1958年、p.38 特開平6−65579号公報 特開2004−217914号公報 特開昭52−23103号公報 特開平7−102260号公報
When heat-treating a mixture of coal and iron ore as described above to produce molded coke (ferro-coke), in order to suppress deterioration of coke quality such as deformation and cracking, Thus, an optimum heating rate design method according to the temperature of the molded product has been proposed (see, for example, Patent Document 3 and Patent Document 4).
Fuel Association "Coke Technology Annual Report" 1958, p. 38 JP-A-6-65579 JP 2004-217914 A JP-A-52-23103 JP-A-7-102260

上述のようにフェロコークスの製造には、塊成化する成型工程と、その後、塊成化された成型物を乾留してフェロコークスの製品を得る工程とがある。フェロコークスを製造するに際して、乾留工程における成型物の変形や熱割れを抑制させることは、乾留炉出側での原形歩留まりを高めると共にハンドリング強度をも向上させることになり、重要な課題である。   As described above, the production of ferro-coke includes a molding process for agglomeration and a process for obtaining a ferro-coke product by dry distillation of the agglomerated molded product. When manufacturing ferro-coke, suppressing deformation and thermal cracking of the molded product in the carbonization process is an important issue because it increases the yield of the original shape on the exit side of the carbonization furnace and also improves the handling strength.

したがって本発明の目的は、このような従来技術の課題を解決し、フェロコークスを製造するに際して、乾留工程における成型物の変形や熱割れを抑制させ、乾留炉出側での原形歩留まり、ハンドリング強度を向上させることのできる新たなフェロコークスの製造方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art and suppress deformation and thermal cracking of the molded product in the dry distillation process when producing ferro-coke, and the original yield on the outlet side of the dry distillation furnace, handling strength. It is an object to provide a new ferro-coke manufacturing method capable of improving the quality.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)石炭、鉄源原料およびバインダーを含む成型用原料を成型した成型物を乾留してフェロコークスを製造する際に、
乾留した成型物を篩い分けして、製品フェロコークスと金属鉄を含むコークス粉とに分離し、該金属鉄を含むコークス粉を前記成型物の成型用原料として用いることを特徴とするフェロコークスの製造方法。
(2)金属鉄を含むコークス粉の粒径が6mm以下であることを特徴とする(1)に記載のフェロコークスの製造方法。
(3)石炭と鉄源原料との合計量に対して、0.5質量%〜8質量%の金属鉄を含むコークス粉を、成型用原料として用いることを特徴とする(1)または(2)に記載のフェロコークスの製造方法。
(4)竪型シャフト炉を用いて成型物を乾留することを特徴とする(1)ないし(3)のいずれかに記載のフェロコークスの製造方法。
The features of the present invention for solving such problems are as follows.
(1) When producing a ferro-coke by dry-distilling a molding obtained by molding a molding raw material containing coal, an iron source raw material and a binder,
The ferro-coke of the ferro-coke is characterized in that the molded product obtained by dry distillation is sieved and separated into product ferro-coke and coke powder containing metallic iron, and the coke powder containing metallic iron is used as a raw material for molding the molded product. Production method.
(2) The method for producing ferro-coke as described in (1), wherein the particle size of the coke powder containing metallic iron is 6 mm or less.
(3) Coke powder containing 0.5% by mass to 8% by mass of metallic iron with respect to the total amount of coal and iron source material is used as a molding material (1) or (2) ) The manufacturing method of the ferro-coke as described in.
(4) The method for producing ferro-coke according to any one of (1) to (3), wherein the molded product is subjected to dry distillation using a vertical shaft furnace.

本発明によれば、金属鉄を含むコークス粉を成型用原料に用いることによって、乾留工程における還元率の上昇により炭材が鉄鉱石の還元に使用されることが押さえられ、フェロコークス中に発生する欠陥構造を抑制し、乾留後の強度低下が防ぐことができる。   According to the present invention, by using coke powder containing metallic iron as a raw material for molding, it is suppressed that the carbonaceous material is used for reduction of iron ore due to an increase in the reduction rate in the dry distillation process, and is generated in ferro-coke. It is possible to suppress the defect structure that occurs, and to prevent a decrease in strength after dry distillation.

また、竪型シャフト炉を用いて乾留することにより、通常室炉式コークス製造法と異なり、連続的な乾留が可能となり、さらに、何らかのトラブルが発生した際、緊急停止が可能となり、操業方法に柔軟性が生じる。   In addition, carbonization using a vertical shaft furnace enables continuous carbonization unlike the normal chamber furnace coke production method.Furthermore, when any trouble occurs, emergency stop is possible, and the operation method is Flexibility arises.

さらに、製品フェロコークスは粉状部が除去されているので、高炉内の通気性を良好に維持できる。   Furthermore, since the product ferro-coke has the powdery part removed, the air permeability in the blast furnace can be maintained well.

以下、図面に基づいて本発明のフェロコークスの製造方法の一実施形態を説明する。図1はフェロコークスの製造設備を示す概略図である。石炭30および鉄源原料31は粉砕機(図示せず。)にて所定の粒度以下に粉砕された後、所定の割合で配合される。例えば石炭は3mm以下に、鉄源原料は0.5mm以下に粉砕される。そして、例えば石炭60〜90質量%、鉄源原料10〜40質量%の割合で配合される。鉄源原料31としては、主に鉄鉱石が使用されるが、鉄鉱石の替わりに高炉ダスト、転炉ダスト、圧延スラッジなどの製鉄所内で副生する鉄源原料を用いてもよい。本実施形態においては、鉄源原料31として鉄鉱石を用いるものとする。   Hereinafter, an embodiment of a method for producing ferro-coke of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a ferro-coke manufacturing facility. The coal 30 and the iron source material 31 are pulverized to a predetermined particle size or less by a pulverizer (not shown), and then blended at a predetermined ratio. For example, coal is crushed to 3 mm or less, and iron source material is crushed to 0.5 mm or less. And it mix | blends in the ratio of 60-90 mass% of coal, and 10-40 mass% of iron source raw materials, for example. Although iron ore is mainly used as the iron source material 31, iron source materials that are by-produced in the ironworks such as blast furnace dust, converter dust, and rolling sludge may be used instead of iron ore. In the present embodiment, iron ore is used as the iron source material 31.

配合された石炭、鉄鉱石は攪拌機1に投入される。攪拌機1には、バインダータンク6よりバインダーが添加される。バインダーには通常使用されるSOP(軟ピッチ)、中ピッチ、PDA(プロパン脱瀝アスファルト)、ASP(アスファルトピッチ)などが使用され、1種類もしくは2種類以上を併用して使用することもできる。   The blended coal and iron ore are put into the stirrer 1. A binder is added to the stirrer 1 from a binder tank 6. As the binder, SOP (soft pitch), medium pitch, PDA (propane desulfurized asphalt), ASP (asphalt pitch), or the like, which are usually used, are used, and one kind or two or more kinds can be used in combination.

図2に、攪拌機1部分をより詳細に示す。攪拌機1は、成型用原料が装入される容器本体9と、この容器本体9の内部に設けられて成型用原料を攪拌する攪拌羽根10と、を有する。石炭および鉄鉱石の分散性を考えると、スクリュー式の攪拌機よりも高速回転する攪拌羽根10で攪拌する攪拌機1を用いることが望ましい。容器本体9の周囲には、加熱部として高温オイルまたは高圧水蒸気が流れ込むジャケット11が設けられる。ジャケット11は、成型用原料が120℃〜240℃の範囲になるように容器本体9を加熱する。攪拌されて得られた混合原料は、排出部12から排出される。   FIG. 2 shows the agitator 1 portion in more detail. The stirrer 1 includes a container main body 9 in which a forming raw material is charged, and a stirring blade 10 provided inside the container main body 9 for stirring the forming raw material. Considering the dispersibility of coal and iron ore, it is desirable to use a stirrer 1 that stirs with a stirring blade 10 that rotates at a higher speed than a screw stirrer. A jacket 11 through which high-temperature oil or high-pressure steam flows is provided as a heating unit around the container body 9. The jacket 11 heats the container body 9 so that the molding material is in the range of 120 ° C to 240 ° C. The mixed raw material obtained by stirring is discharged from the discharge unit 12.

バインダーは、石炭および鉄鉱石を攪拌機1に投入すると同時に、もしくは攪拌の最中にバインダータンク6から添加される。   The binder is added from the binder tank 6 at the same time that the coal and iron ore are charged into the stirrer 1 or during stirring.

図1に示されるように、攪拌機1から排出された混合原料は、高圧成型機であるダブルロール成型機2で高圧成型される。ダブルロール成型機2は攪拌機1からの排出直後に混合原料を成型する。このため、ダブルロール成型機2の成型温度は攪拌機1の攪拌温度に近いものである。ダブルロール成型機2自体は、必ずしも加熱機構を有する必要はない。   As shown in FIG. 1, the mixed raw material discharged from the stirrer 1 is high-pressure molded by a double roll molding machine 2 which is a high-pressure molding machine. The double roll molding machine 2 molds the mixed raw material immediately after discharging from the stirrer 1. For this reason, the molding temperature of the double roll molding machine 2 is close to the stirring temperature of the stirrer 1. The double roll molding machine 2 itself does not necessarily have a heating mechanism.

図3に、ダブルロール成型機2をより詳細に示す。ダブルロール成型機2は、互いに反対方向に回転する一対の成型ロール13を有し、一対の成型ロール13の接触箇所で混合原料が加圧成型される。図4に、成型ロール13の斜視図を示す。図4に示されるように、成型ロール13の外周面には凹み14が形成されていて、凹み14の形状の成型物32が成型される。成型物のサイズは特に限定されるものではなく、3〜95cm3程度、好ましくは6〜60cm3程度である。高炉での使用状態によって、必要とされる成型サイズは異なる。 FIG. 3 shows the double roll molding machine 2 in more detail. The double roll molding machine 2 has a pair of molding rolls 13 that rotate in directions opposite to each other, and the mixed raw material is pressure-molded at a contact point between the pair of molding rolls 13. FIG. 4 is a perspective view of the molding roll 13. As shown in FIG. 4, a recess 14 is formed on the outer peripheral surface of the molding roll 13, and a molding 32 having the shape of the recess 14 is molded. The size of the molded product is not particularly limited, and is about 3 to 95 cm 3 , preferably about 6 to 60 cm 3 . The required molding size varies depending on the state of use in the blast furnace.

図1に示されるように、ダブルロール成型機2で成型された成型物は、竪型シャフト炉3で乾留され、竪型シャフト炉3の炉下部より排出される。排出方法は特に限定させるものではないが、乾留されたフェロコークスは金属鉄を含むため、炉下部において再酸化を受けないように、十分に低い温度まで冷却する必要があるので、低酸素濃度雰囲気もしくは窒素雰囲気で80℃程度まで冷却することが好ましい。乾留されたフェロコークスは、竪型シャフト炉3下部より排出され、篩い4でフェロコークスと、金属鉄を含むコークス粉とに分離され、篩い上は製品フェロコークスとしてフェロコークス搬送ライン7から貯留槽5に搬送される。篩い下の金属鉄を含むコークス粉は、高炉内に搬送されると炉内の通気性を悪化させる原因となり、高炉操業に支障をきたす恐れがある。そこで本発明では、金属鉄を含むコークス粉をコークス粉搬送ライン8から攪拌機1へ搬送し、成型用原料として再利用する。金属鉄を含むコークス粉をフェロコークスの成型用原料として再利用することにより、高炉内の通気性の悪化を抑制すると共にフェロコークスの強度を向上させることができる。石炭と鉄鉱石の成型物を乾留した場合、乾留の進行に伴い、炭材が鉄鉱石の還元に使用され鉄鉱石の還元率も上昇し、結果としてフェロコークス中に欠陥構造を生じる。本発明では、乾留の際に発生する金属鉄を含むコークス粉を成型用原料として再利用することで、成型物が初めから所定量の金属鉄を含むため、乾留に伴う炭材の使用が押さえられ、フェロコークス中に発生する欠陥構造を抑制することができる。篩い4の篩い目は特に限定されるものではないが、製品として使用できるフェロコークスが篩い上に残る篩い目が好ましく、そのサイズは成型物の成型サイズによって異なる。好ましくは粒径10mm以下が篩い下となるような篩い目、さらに好ましくは粒径6mm以下の未成型物が篩い下となるような篩い目がよい。   As shown in FIG. 1, the molded product molded by the double roll molding machine 2 is dry-distilled in the vertical shaft furnace 3 and discharged from the lower part of the vertical shaft furnace 3. Although the discharge method is not particularly limited, it is necessary to cool to a sufficiently low temperature so as not to undergo reoxidation in the lower part of the furnace because the ferro-coke that has been carbonized contains metallic iron. Or it is preferable to cool to about 80 degreeC by nitrogen atmosphere. The carbonized ferro-coke is discharged from the lower part of the vertical shaft furnace 3 and separated into ferro-coke and coke powder containing metallic iron by the sieve 4, and the sieve is stored as a product ferro-coke from the ferro-coke conveyance line 7 in the storage tank. 5 is conveyed. Coke powder containing metallic iron under sieving may deteriorate air permeability in the furnace when it is transported into the blast furnace, which may hinder blast furnace operation. Therefore, in the present invention, coke powder containing metallic iron is conveyed from the coke powder conveyance line 8 to the stirrer 1 and reused as a forming raw material. By reusing coke powder containing metallic iron as a raw material for forming ferro-coke, deterioration of air permeability in the blast furnace can be suppressed and the strength of ferro-coke can be improved. When coal and iron ore moldings are carbonized, as the carbonization proceeds, the carbonaceous material is used to reduce the iron ore and the iron ore reduction rate increases, resulting in a defective structure in the ferro-coke. In the present invention, the coke powder containing metallic iron generated during dry distillation is reused as a raw material for molding, so that the molded product contains a predetermined amount of metallic iron from the beginning. Therefore, it is possible to suppress the defect structure generated in the ferro-coke. Although the sieve mesh of sieve 4 is not particularly limited, a sieve mesh in which ferrocoke that can be used as a product remains on the sieve is preferable, and the size varies depending on the molding size of the molded product. Preferably, the sieve is such that the particle size is 10 mm or less, and more preferably the unmolded product having a particle size of 6 mm or less is the sieve.

成型用原料として再利用される金属鉄を含むコークス粉は、攪拌機1に添加されるが、その添加量は石炭30および鉄源原料31に対し、0.5〜8質量%程度、好ましくは1〜5質量%程度である。金属鉄を含むコークス粉の添加量が石炭および鉄源原料に対し、0.5質量%未満では金属鉄の添加効果がなく、石炭と鉄鉱石のみの成型物で製造したフェロコークスと同様の結果となる。一方、金属鉄を含むコークス粉が8質量%より多い添加量では、同じバインダー添加量で製造した場合の成型物のハンドリング強度が低くなり、乾留後のフェロコークス強度も低くなる場合があり好ましくない。   Coke powder containing metallic iron that is reused as a forming raw material is added to the stirrer 1, and the addition amount is about 0.5 to 8% by mass, preferably 1 with respect to the coal 30 and the iron source raw material 31. About 5% by mass. When the amount of coke powder containing metallic iron is less than 0.5% by mass relative to the coal and iron source material, there is no effect of adding metallic iron, and the same results as ferro-coke produced with a molded product of only coal and iron ore It becomes. On the other hand, when the amount of coke powder containing metallic iron is more than 8% by mass, the handling strength of the molded product when it is produced with the same binder addition amount is lowered, and the ferro-coke strength after dry distillation may be lowered, which is not preferable. .

乾留工程における成型物の変形や熱割れを抑制させ、乾留炉出側での原形歩留まり、ハンドリング強度を向上させるために、実験的にフェロコークスを製造し、その品質評価を行った。   Ferro-coke was experimentally manufactured and its quality was evaluated in order to suppress deformation and thermal cracking of the molded product in the carbonization process and to improve the original yield and handling strength on the exit side of the carbonization furnace.

フェロコークスは以下の方法で製造した。まず、フェロコークス用原料の調整を行い、石炭はジョークラッシャーで粒径3mm以下(−3mm)に調整したものを使用し、この石炭に粒径0.5mm以下(−0.5mm)にロールミルで粉砕した鉄鉱石を30質量%の割合で配合した。石炭には平均最大反射率が0.70%の微粘炭(石炭1)と平均最大反射率が1.70%の非粘炭(石炭2)を50質量%ずつ配合した配合炭を用いた。鉄鉱石にはカラジャス鉱石を用いた。鉄鉱石の性状を表1に、石炭の性状を表2示す。   Ferro-coke was produced by the following method. First, the raw material for ferro-coke was adjusted, and the coal was adjusted to a particle size of 3 mm or less (-3 mm) with a jaw crusher, and this coal was adjusted to a particle size of 0.5 mm or less (-0.5 mm) with a roll mill. The pulverized iron ore was blended at a ratio of 30% by mass. Coal blended with 50 wt% each of cohesive coal (Coal 1) with an average maximum reflectance of 0.70% and non-coking coal (Coal 2) with an average maximum reflectance of 1.70% was used. . Carajas ore was used as iron ore. Table 1 shows the properties of iron ore and Table 2 shows the properties of coal.

Figure 0005365043
Figure 0005365043

Figure 0005365043
Figure 0005365043

上記の石炭および鉄鉱石を攪拌機に投入し、加熱攪拌し、原料排出直前に軟ピッチを5質量%添加した。さらに攪拌を続け180℃で混合原料を排出した。排出した混合原料をダブルロール成型機により6cm3の成型物に成型し、図5に示す熱風加熱炉を備えた電気抵抗加熱型竪型乾留炉の炉上部から装入し、最高到達温度900℃で3時間程度乾留し、フェロコークスを得た(金属鉄含有コークス粉添加量0質量%に相当)。 The above coal and iron ore were charged into a stirrer, heated and stirred, and 5% by mass of soft pitch was added immediately before the raw material was discharged. Furthermore, stirring was continued and the mixed raw material was discharged at 180 ° C. The discharged mixed raw material is molded into a 6 cm 3 molded product by a double roll molding machine, and charged from the upper part of the electric resistance heating vertical distillation furnace equipped with a hot air heating furnace shown in FIG. For about 3 hours to obtain ferro-coke (corresponding to 0 mass% added metal iron-containing coke powder).

次に、乾留したフェロコークスを6mmの篩目の篩いで塊状のフェロコークスと金属鉄を含むコークス粉とに篩い分け、金属鉄を含むコークス粉を成型用原料のうち石炭、鉄鉱石の合計量に対し、それぞれ、0.5質量%、5質量%、8質量%、12質量%添加し、上記と同様に成型した。成型物は、同様に最高到達温度900℃で3時間程度乾留し、フェロコークスを得た。   Next, dry-distilled ferro-coke is sieved into 6-mm sieve sieves into bulk ferro-coke and coke powder containing metallic iron, and the coke powder containing metallic iron is the total amount of coal and iron ore among the raw materials for molding. On the other hand, 0.5% by mass, 5% by mass, 8% by mass, and 12% by mass were added and molded in the same manner as described above. Similarly, the molded product was carbonized at a maximum temperature of 900 ° C. for about 3 hours to obtain ferro-coke.

それぞれの場合について、I型ドラム試験装置(内径130mmΦ×700mmの筒状)を用いて、成型物の強度とフェロコークスの強度とを測定した。1分間に20回転の回転速度で、成型物の強度は、30回転させた後の6mm以上の残存率(DI30/6)により、フェロコークスについては、600回転させた後の6mm以上の残存率(DI600/6)により強度評価を行った。図6に成型物の強度を、図7にフェロコークスの強度の測定結果を示す。   In each case, the strength of the molded product and the strength of the ferro-coke were measured using a type I drum test apparatus (cylindrical shape having an inner diameter of 130 mmΦ × 700 mm). At a rotational speed of 20 revolutions per minute, the strength of the molded product is 6 mm or more after 30 revolutions (DI30 / 6). For ferro-coke, the residual rate after 6 revolutions is 6 mm or more. The strength was evaluated according to (DI600 / 6). FIG. 6 shows the strength of the molded product, and FIG. 7 shows the measurement results of the strength of ferro-coke.

図6によれば、金属鉄を含むコークス粉を添加し、成型した成型物の強度は、未添加の成型物に比べ、添加量の増加と共に若干減少する傾向にあるが、8質量%まではハンドリング強度として十分であることが分かる。また、図7によれば、乾留後のフェロコークス強度は、金属鉄を含むコークス粉の添加量が5質量%までは強度が向上する傾向にあり、8質量%添加で未添加と同等の強度であることが分かる。   According to FIG. 6, the strength of a molded product obtained by adding coke powder containing metallic iron and molding tends to slightly decrease with an increase in the amount of addition compared to a molded product without addition, but up to 8% by mass. It can be seen that the handling strength is sufficient. In addition, according to FIG. 7, the ferro-coke strength after dry distillation tends to improve when the amount of coke powder containing metallic iron is up to 5% by mass, and the strength equivalent to that without addition when 8% by mass is added. It turns out that it is.

以上のように、フェロコークス製造の乾留工程で生じる金属鉄を含むコークス粉を成型用原料として再利用することにより、乾留工程における成型物の変形や熱割れを抑制させ、乾留炉出側での原形歩留まり、ハンドリング強度を向上させることができることが分かった。   As described above, by reusing the coke powder containing metallic iron produced in the dry distillation process of ferro-coke production as a raw material for molding, deformation and thermal cracking of the molded product in the dry distillation process are suppressed, It was found that the original yield and the handling strength can be improved.

フェロコークスの製造設備を示す概略図。Schematic which shows the manufacturing equipment of ferro-coke. 攪拌機部分の説明図。Explanatory drawing of a stirrer part. ダブルロール成型機の説明図。Explanatory drawing of a double roll molding machine. ダブルロール成型機の成型ロールの斜視図。The perspective view of the forming roll of a double roll forming machine. 熱風加熱炉を備えた電気抵抗加熱型竪型乾留炉の説明図。Explanatory drawing of the electrical resistance heating type vertical dry distillation furnace provided with the hot air heating furnace. 成型物の強度に及ぼす金属鉄含有コークス粉添加量の影響を示すグラフ。The graph which shows the influence of the amount of metal iron containing coke powder addition on the intensity | strength of a molding. フェロコークスの強度に及ぼす金属鉄含有コークス粉添加量の影響を示すグラフ。The graph which shows the influence of the amount of metal iron containing coke powder additions on the strength of ferro-coke.

符号の説明Explanation of symbols

1 高速攪拌機
2 ダブルロール成型機
3 竪型シャフト炉
4 篩い
5 貯留槽
6 バインダータンク
7 フェロコークス搬送ライン
8 コークス粉搬送ライン
9 容器本体
10 攪拌羽根
11 ジャケット
12 排出部
13 成型ロール
14 凹み
15 電気炉
16 熱風炉
17 反応管
18 バケットコンベア
19 タールポット
20 燃焼炉
21 成型物装入
22 フェロコークス排出
23 炉頂ガス
30 石炭
31 鉄源原料
32 成型物
DESCRIPTION OF SYMBOLS 1 High-speed stirrer 2 Double roll molding machine 3 Vertical shaft furnace 4 Sieve 5 Storage tank 6 Binder tank 7 Ferro-coke conveyance line 8 Coke powder conveyance line 9 Container body 10 Stirring blade 11 Jacket 12 Discharge part 13 Molding roll 14 Depression 15 Electric furnace 16 Hot Blast Furnace 17 Reaction Tube 18 Bucket Conveyor 19 Tarpot 20 Combustion Furnace 21 Molded Material Charge 22 Ferro Coke Discharge 23 Furnace Top Gas 30 Coal 31 Iron Source Raw Material 32 Molded Material

Claims (3)

石炭、鉄源原料およびバインダーを含む成型用原料を成型した成型物を乾留してフェロコークスを製造する際に、
乾留した成型物を篩い分けして、製品フェロコークスと金属鉄を含むコークス粉とに分離し、
前記石炭と前記鉄源原料との合計量に対して、0.5〜8質量%の前記金属鉄を含むコークス粉を前記成型用原料として用いることを特徴とするフェロコークスの製造方法。
When producing ferro-coke by dry-distilling a molded product obtained by molding a molding material containing coal, iron source material and binder,
Sieving the dry-molded molding, separating it into product ferro-coke and coke powder containing metallic iron,
The total amount of the iron source material and the coal, the production method of Ferro coke which comprises using coke powder containing the metal iron 0.5-8% by weight as before KiNaru type raw material.
金属鉄を含むコークス粉の粒径が6mm以下であることを特徴とする請求項1に記載のフェロコークスの製造方法。   The method for producing ferro-coke according to claim 1, wherein the particle size of the coke powder containing metallic iron is 6 mm or less. 竪型シャフト炉を用いて成型物を乾留することを特徴とする請求項1または請求項に記載のフェロコークスの製造方法。 The method for producing ferro-coke according to claim 1 or 2 , wherein the molded product is subjected to dry distillation using a vertical shaft furnace.
JP2008082519A 2008-03-27 2008-03-27 Ferro-coke manufacturing method Active JP5365043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008082519A JP5365043B2 (en) 2008-03-27 2008-03-27 Ferro-coke manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008082519A JP5365043B2 (en) 2008-03-27 2008-03-27 Ferro-coke manufacturing method

Publications (2)

Publication Number Publication Date
JP2009235221A JP2009235221A (en) 2009-10-15
JP5365043B2 true JP5365043B2 (en) 2013-12-11

Family

ID=41249583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008082519A Active JP5365043B2 (en) 2008-03-27 2008-03-27 Ferro-coke manufacturing method

Country Status (1)

Country Link
JP (1) JP5365043B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037963A (en) * 2009-08-10 2011-02-24 Jfe Steel Corp Manufacturing method for ferro-coke
KR20120123482A (en) * 2010-03-03 2012-11-08 제이에프이 스틸 가부시키가이샤 Process for producing ferro coke for metallurgy
JP5763308B2 (en) * 2010-07-28 2015-08-12 Jfeスチール株式会社 Ferro-coke manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5011956B2 (en) * 2005-11-28 2012-08-29 Jfeスチール株式会社 Ferro-coke and method for producing sintered ore
JP5011955B2 (en) * 2005-11-30 2012-08-29 Jfeスチール株式会社 Ferro-coke manufacturing method
JP4935133B2 (en) * 2006-03-17 2012-05-23 Jfeスチール株式会社 Ferro-coke and method for producing sintered ore
JP4853090B2 (en) * 2006-04-12 2012-01-11 Jfeスチール株式会社 Ferro-coke manufacturing method and apparatus

Also Published As

Publication number Publication date
JP2009235221A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
EP2678121B1 (en) Pelletization and calcination of green coke
JP2011084734A (en) Method for producing ferro coke
JP4487564B2 (en) Ferro-coke manufacturing method
JP4556525B2 (en) Blast furnace operation method
JP5365043B2 (en) Ferro-coke manufacturing method
JP5365044B2 (en) Ferro-coke manufacturing method
JP2007246786A (en) Ferrocoke and method for producing sintered ore
JP2008056777A (en) Manufacturing method of molded product of raw material for ferrocoke and ferrocoke
JP5386838B2 (en) Ferro-coke for metallurgy
JP2006028593A (en) Method for operating blast furnace
JP5549227B2 (en) Method for producing pre-reduced sintered ore and blast furnace operating method using the same
JP5386839B2 (en) Manufacturing method of ferro-coke for metallurgy
JP6333770B2 (en) Method for producing ferronickel
JP4996103B2 (en) Manufacturing method of carbonized material agglomerates
JP4532313B2 (en) Manufacturing method of carbonized material agglomerates
JP5470855B2 (en) Manufacturing method of ferro-coke for metallurgy
JP2005344181A (en) Agglomerate including carbonaceous material and its manufacturing method
JP5386988B2 (en) Manufacturing method of ferro-coke for metallurgy
JP4892928B2 (en) Ferro-coke manufacturing method
KR101550669B1 (en) Cokes and manufacturing method for cokes
JP5386835B2 (en) Ferro-coke manufacturing method
JP5842843B2 (en) Ferro-coke manufacturing method
JP2009227783A (en) Method for producing ferrocoke for metallurgy
JP2004204287A (en) Method for manufacturing reduced metal
JP2011037963A (en) Manufacturing method for ferro-coke

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130826

R150 Certificate of patent or registration of utility model

Ref document number: 5365043

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250