[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5380172B2 - 誘導加熱調理器 - Google Patents

誘導加熱調理器 Download PDF

Info

Publication number
JP5380172B2
JP5380172B2 JP2009145348A JP2009145348A JP5380172B2 JP 5380172 B2 JP5380172 B2 JP 5380172B2 JP 2009145348 A JP2009145348 A JP 2009145348A JP 2009145348 A JP2009145348 A JP 2009145348A JP 5380172 B2 JP5380172 B2 JP 5380172B2
Authority
JP
Japan
Prior art keywords
temperature
data series
thermal power
cooking
top plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009145348A
Other languages
English (en)
Other versions
JP2011003391A (ja
Inventor
勝春 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Corp
Toshiba Consumer Electronics Holdings Corp
Toshiba Home Appliances Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Consumer Electronics Holdings Corp, Toshiba Home Appliances Corp filed Critical Toshiba Corp
Priority to JP2009145348A priority Critical patent/JP5380172B2/ja
Publication of JP2011003391A publication Critical patent/JP2011003391A/ja
Application granted granted Critical
Publication of JP5380172B2 publication Critical patent/JP5380172B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Induction Heating Cooking Devices (AREA)

Description

本発明は、トッププレート上で加熱される被加熱物より輻射される赤外線を検知する赤外線センサと、トッププレートの温度を検知する温度センサとを備えた誘導加熱調理器に関する。
誘導加熱調理器において、被加熱物より輻射される赤外線を検知する赤外線センサと、トッププレートの温度を検知する温度センサとを備えたものは、例えば特許文献1に開示されている。特許文献1では、赤外線センサ及び温度センサの検知出力に基づいて鍋などの加熱容器の温度を算出しているが、以下のような問題があった。例えば、フライパンを用いて調理する場合、最初に予熱を行うとフライパンの温度は急上昇するので、それに伴いトッププレート上面の温度も上昇するが、下面側の温度はそれほど上昇しない。これは、トッププレートの材質が、熱伝導率が悪く且つ熱容量が大きいガラスであることに起因する。
この場合、フライパンの材質は光沢のあるステンレス製等であるため、輻射率が悪く、温度が上昇しても赤外線の輻射エネルギーは少ない。一方、トッププレートの上面は鍋底に近接しているため、熱伝導によって温度が上昇する。そして、ガラスの輻射率は大きいので、フライパンよりも多くの赤外線がトッププレートの上面より輻射され、フライパンからの輻射エネルギーと共にトッププレートの分光透過率に従い透過して、下方に位置する赤外線センサに到達する。
フライパンの板厚が薄く熱容量が小さい場合は、空焚き状態になると30秒〜60秒程度で温度が急上昇するので、トッププレート上面からの赤外線輻射エネルギーも急激に増加する。例えば特許文献1には、赤外線センサの出力と、接触式温度センサの出力との差分を演算することで、トッププレートの昇温で発生する赤外線を確実にキャンセルでき、鍋の底面温度を正確に検出できる、との記載がある(段落[0048])。
特開2006−318925号公報
しかしながら、特許文献1のように赤外線センサの出力と、接触式温度センサの出力との差分を演算することは、トッププレートを介して輻射される赤外線のエネルギー分を無視することに等しい。したがって、実際の温度検知精度は極めて悪いと推定される。
以下、問題点をより具体的に説明する。図12に示すVpu,Vpt,Vbは、それぞれトッププレートの下面,上面近傍,フライパン下面からの赤外線輻射エネルギーを示し、赤外線センサに入力されるエネルギーVtoは(=Vpu+Vpt+Vb)となる。図12(c)において、エネルギーVpt,Vbは、図13に示す分光特性を示すトッププレートを透過して赤外線センサに入射するため、エネルギーVpuより小さい値となる。(Vpt>Vb)となるのは、ステンレス製であるフライパンの輻射率が小さいことによる。
図14(a)は、鍋底の板厚が厚い(熱容量大)フライパンと、鍋底の板厚が薄い(熱容量小)フライパンとを加熱した場合の電力変化をP1,P2で示している。また、図14(b)には、同様に鍋底の板厚が厚いものと薄いものとをそれぞれ加熱した場合の、鍋底(Tb1,Tb2)及びトッププレート下面(Tpu1,Tpu2)の温度変化を示す。そして、図14(c)は、同様の加熱ケースについて、赤外線センサの検知出力の変化をVto1,Vto2として示す。
フライパン調理時に予熱を行う場合などのように鍋底の温度が急上昇する場合、図12(a)に示すようにトッププレート上面の温度は急上昇するが、下面の温度は上昇しない。これは上述のように、トッププレートがガラス製で熱伝導率が悪く、熱容量も大きいことに起因する。一方、フライパンは輻射率が小さいため温度が上昇しても輻射される赤外線は少ないが、トッププレートの上面は鍋底に近接しているので熱伝導により温度が上昇し、上面から輻射される赤外線も急激に増加する。特許文献1のような従来技術では、このようにトッププレートを介した赤外線の輻射エネルギーを考慮していないため、温度検知精度が悪いと言える。
より詳細に説明すると、図12(b),(c)は、図12(a)におけるケース(2),(5)にそれぞれ対応し、図14の時刻t1,t5におけるフライパンの鍋底温度Tb,トッププレートの上面温度Tpt及び下面温度Tpu,これらの温度に対応する赤外線センサの検出値Vb,Vpt,Vpuを示す。鍋底温度Tbは、何れも250℃とする。トッププレートの温度が低い図12(b)の場合、赤外線センサの総検出値Vtoは(20mV+4mV+10mV=)34mVとなるはずだが、従来方式ではVpu=10mVを差し引いているため検出値Vo2=24mVとなり、これが検出温度250℃に相当する。
一方、トッププレートの温度が高い図12(c)の場合、赤外線センサの総検出値VtOは(20mV+50mV+300mV=)370mVとなるはずだが、従来方式ではVpu=300mVを差し引くため検出値Vo5=70mVとなり、これは検出温度310℃に相当する。したがって、60℃の誤差を生じることになる。
また、赤外線センサの総検出値Vtoは、トッププレート下面からの輻射エネルギーに対応するVpuが占める割合が非常に大きい。従来技術では、Vpuに相当する値をサーミスタで検知した温度から推定しており、その推定自体が不正確であった。すなわち、誘導加熱では、図15に示すように、鍋底における誘導電流の分布状態にバラツキがあるため、温度分布のバラツキも大きくなる。すると、トッププレートの温度分布のバラツキも大きくなるから、赤外線センサの検知結果とサーミスタが検知するトッププレート下面の温度とが異なる。更に、トッププレートの下面側では冷却風が循環しているので、トッププレート下面の温度とサーミスタが検知する温度との間にも差が生じる。
そして、検出値Vptはトッププレート上面温度Tptにより変化し、検出値Vbは鍋の輻射率により変化する。つまり、従来は、双方とも誤差が大きい(Vto−Vpu)に基づいて鍋底温度を検出していることになるから検出誤差が非常に大きい。以下に具体例で説明する。
図16は、フライパンを空焚き状態にした場合のトッププレート下面温度Tpuと赤外線センサの検出値Vとの関係を示している。検出値Vpuは、下面温度Tpuに基づいて指数関数的に上昇する。検出値Vgo(=Vpu+Vpt)は、検出値Vptが温度Tptに上昇に伴い増加するので、それが検出値Vpuに上乗せされた特性となる。また、総検出値Vtoは、鍋底温度Tbが加熱開始初期段階でトッププレートの温度が低い場合でも高温になるから、温度Tbに基づいた略一定の検出値Vbが検出値Vgoに上乗せされた特性となる。
加熱を開始すると、鍋底温度Tb,トッププレート上面温度Tpt,同下面温度Tpuの順に上昇するので、加熱初期には、総検出値VtoにVbが占める割合が大きくなるが、時間が経過してトッププレートの温度が上昇すると、Vgoが占める割合が大きくなる。図12(c)のケースでは、総検出値Vtoは370mVであり、従来方式では、Tpu=220℃に対応して出力されるVpu=300mVを減じてVo5=70mVとなる。この場合に、Tpu=210℃と温度を10℃低く検出したとすると、Vpu=260mVとなって、Vo5=110mVとなる。この値は、検出温度300℃に相当する。すなわち、従来方式では、トッププレート下面の温度に10℃の検出誤差があると、鍋底温度の検出誤差が50℃となる。
また、フライパンの鍋底が塗装されている場合は、鍋底からの輻射熱が増加するため、光沢があるステンレス製の場合に比較すると、Vbは約3倍の60mV程度になる。すると、図12(c)のケースでは、総検出値Vtoは410mVとなり、従来方式でVpu=300mVを減じるとVo5=110mVとなる。すなわち、検出温度300℃に相当するから、やはり鍋底温度の検出誤差が50℃となる。
本発明は上記事情に鑑みてなされたものであり、その目的は、赤外線センサと温度センサとの双方を用いて鍋底温度を検出する場合に、検出精度を向上させることができる誘導加熱調理器を提供することにある。
上記目的を達成するため、請求項1記載の誘導加熱調理器は、被加熱物が載置されるトッププレートと、
前記被加熱物を加熱コイルにより誘導加熱する加熱手段と、
前記トッププレート及び前記被加熱物より輻射される赤外線を検知する赤外線センサと、
前記トッププレートの温度を検知する温度センサと、
温度上昇期間において、記加熱手段による火力を比例制御するためのデータテーブル又は演算式からなり、前記温度センサの検知出力をパラメータとして温度上昇制御データ系列を設定すると共に、前記赤外線センサの検知出力に応じて、前記設定された温度上昇制御データ系列に従う火力の設定値を決定する制御部とを備え
前記制御部は、前記温度センサの検知出力が、火力を最大にする温度上昇制御データ系列のパラメータ値を超えると、前記温度センサの検知出力に応じて前記加熱手段による火力を制御するための温度制御データ系列を設定することを特徴とする。
斯様に構成すれば、制御部は、加熱が開始されて温度が上昇する期間では、被加熱物の温度に近い温度センサの検知出力に応じて温度上昇制御データ系列を選択設定する。そして、特許文献1のようにトッププレート下面からの輻射エネルギーに対応する赤外線センサの検知出力を減じることで、当該検知出力に含まれている情報を利用せずに排除することなく、上記検知出力に応じて設定した温度上昇制御データ系列に従う設定値を決定するので、被加熱物の熱容量が小さい場合でも、温度の上昇度合いを高精度に制御できる。
請求項1記載の誘導加熱調理器によれば、トッププレート及び被加熱物より輻射される赤外線を検知する赤外線センサと、トッププレートの温度を検知する温度センサとを用いて、温度上昇期間における加熱制御をより高精度に実行できるので、被加熱物が過昇温度状態になることを確実に防止できる。
第1実施例であり、火力制御装置が行う誘導加熱制御を示すフローチャート 加熱制御に用いるデータ系列の一例を示す図 キッチンキャビネットに加熱調理器が組み込まれた状態の外観斜視図 トッププレートを外した状態で示す調理器本体の平面図 表示部の表示状態を示す図 誘導加熱調理器の縦断側面図 制御系の構成を示す機能ブロック図 第2実施例を示す図1相当図 図2相当図 図9のデータ系列(10)のバリエーションを示す図 2つの温度センサより得られる検知出力の取り扱い例を一覧で示す図 従来技術を説明する、(a)は加熱調理器のトッププレートの下面,上面の温度分布、(b),(c)はトッププレートの下面,上面,フライパン下面からの赤外線輻射エネルギーを示す図 トッププレートの分光特性を示す図 フライパンの鍋底板厚が厚いものと薄いものとを加熱した場合、(a)は火力(電力)変化、(b)は鍋底及びトッププレート下面の温度変化、(c)は赤外線センサの検知出力の変化を示す図 フライパンを誘導加熱する場合の温度分布及び電流分布を示す図 フライパンを空焚き状態にした場合のトッププレート下面温度Tpuと赤外線センサの検出値Vとの関係を示す図
(第1実施例)
以下、システムキッチンに組み込まれる誘導加熱調理器に適用した第1実施例について、図1〜図7を参照しながら説明する。図3は、キッチンキャビネット1に、加熱調理器2が組み込まれた状態の外観斜視図であり、図4は、トッププレートを外した状態で示す調理器本体3の平面図である。加熱調理器2の調理器本体3は、キャビネット1に設けられた開口4に落とし込み状態に組み込まれている。この調理器本体3の下部には、図3に示すロースタ部5が設けられている。
前記調理器本体3は、図4に示すように、上面が開口しており、内部の手前側に加熱手段としての二つの誘導加熱コイル8、9が設けられ、また中央奥部に別の加熱手段として例えばラジエントヒータからなるヒータ10が設けられている。また、この調理器本体3内には、表示回路基板11が配設されており、この表示回路基板11には、多数の加熱強度表示用の発光ダイオードからなる表示器群12A、12Bが実装されていると共に、例えば蛍光表示管からなる表示器15A,15Bが実装されている。
さらに、図3、図5に示すように、前記調理器本体3の上面には、誘導加熱コイル8、9及びヒータ10を上方から覆うように、耐熱ガラス製の透視可能なトッププレート16が配置される。このトッププレート16において、左右の誘導加熱コイル8、9及びヒータ10の上方に対応する部位はそれぞれ円形模様の調理器載置表示部17、18、19が設けられている。
図5は、以下に述べる表示部から光が放出されて、トッププレート16上の各表示部が浮かび上がったように光表示されている状態を示している。トッププレート16の裏面において、調理器載置表示部17、18の前側には、前記表示器群12A、12Bの上方に位置して調理条件表示部12AH、12BHが塗装膜に形成された抜き孔により設けられ、表示器15A、15Bの上方に位置して調理条件表示部15AH、15BHが同様に抜き孔により設けられている。なお、これらの各調理条件表示部12AH、12BH,15AH、15BHは、それぞれ対応する表示器によって下方から照明表示されることで、透視可能なトッププレート16を介してその上面から図5に示すように目視できる。
また、トッププレート16の前縁部(調理器本体3より前方へ張り出した部分)の下面には、入力案内用表示部20AH〜27AH、20BH〜27BHが同様に抜き孔により設けられている。これら入力案内用表示部20AH〜27AH、20BH〜27BHは、本体3の内部に配置される図示しない発光体からの発光により浮かび上がるように光表示される。なお、発光体が消灯しているときには、トッププレート16上面から内部はほぼ見えない状態(いわゆるブラックアウト状態)となる。
前記右側の入力案内用表示部20AH〜27AHと、左側の入力案内用表示部20BH〜27BHとは、それぞれ基本的に同じ構成であり、また、右側の入力案内用表示部20AH〜27AH下方部、及び左側の入力案内用表示部20BH〜27BH下方部に設けられた操作部などの構成についても、基本的に同じであるので、右側の入力案内用表示部20AH〜27AH下方部の操作部などについて以下説明する。
入力案内用表示部20AHは加熱調理のスタート/切り用、入力案内用表示部21AHはメニュー選択用、入力案内用表示部22AHは加熱強度や加熱時間のアップ設定用、入力案内用表示部23AHは同ダウン設定用、入力案内用表示部24AH〜27AHは加熱強度設定用である。また、これら入力案内用表示部20AH〜27AHの下方には、ユーザが手指により接触操作したことを静電容量の変化により検出する操作部20AT〜27ATが設けられている(図7参照)。
図6は、加熱調理器2の縦断側面図である。冷却ダクト30の内部には、シールドケース31が配置されている。このシールドケース31は、誘導加熱コイル8の中心部から下方に延びると、吹出口30aの直下位置にて水平方向(図6では左方)に折れ曲がった断面ほぼL字状の容器となっている。シールドケース31の奥部には、赤外線センサ32が受光部(赤外線フィルタ32a)を水平方向(図6では右方)に向けた状態で配置されている。赤外線センサ32は、前記赤外線フィルタ32a,赤外線検出部32b,図示しない信号処理回路を一体的に備えたユニットで構成されている。また、シールドケース31の内部で吹出口30aの直下位置に対応する部分には、集光反射部33が配置されている。集光反射部33は、赤外線センサ32と一体となったユニットを構成して、シールドケース31の内部に配置されている。
シールドケース31のうち、集光反射部33の上方に位置する部分には開口部34が形成されており、例えばフライパンなどの調理器具35から放射された赤外線が、開口部34を通って集光反射部33に向かうようになっている。
トッププレート16の下面には、例えばチタンなどの金属系材料をスパッタ法により成膜してなる薄膜36が設けられており、赤外線や可視光が透過しないように構成されている。そして、トッププレート16の下面で、開口部34が密着した部分の内部、即ち、赤外線センサ32の視野面には、薄膜36が成膜されておらず、透明な赤外線透過窓37となっている。これにより、調理器具35から放射された赤外線が効率良く赤外線透過窓37を透過するようになっている。
このような構成において、集光反射部33は、トッププレート16(赤外線透過窓37)を介して調理器具35から放射された赤外線をほぼ水平方向に反射して赤外線センサ32に集光させる(図6中、破線で示す光路参照)。
ところで、このように透明な赤外線透過窓37を設けると、当該赤外線透過窓37を通して誘導加熱調理器2の内部が見えてしまう。また、当該赤外線透過窓37を透過した可視光が赤外線センサ32に到達してしまい温度検出に影響を及ぼすおそれがある。そこで、開口部34内部において赤外線透過窓37に対向する部分に、赤外線透過フィルタ38が設けられている。赤外線透過フィルタ36は、赤外線フィルタ32aより広い範囲の波長透過領域(帯域Wよりも広い範囲の波長領域)を有し、且つ、可視光を透過させない特性を有する部材で構成されている。即ち、調理器具35から集光反射部33を介して赤外線センサ32に至る赤外線の光路の途中に赤外線フィルタが二重に配置された構成となっている。尚、赤外線透過フィルタ36は、帯域Vと帯域Wの両方の帯域を含む波長透過領域を有するように構成してもよい。
また、トッププレート16の下面において、誘導加熱コイル8の内周側と、誘導加熱コイル8が巻回されている部分の上方に位置する部位とには、例えばサーミスタなどで構成される温度センサ39a,39bが配置されている。これらの温度センサ39a,39bは、トッププレート16下面の温度を検知する。
図7は、制御系の構成を示す機能ブロック図である。火力制御装置(制御部)41は、調理器本体3の内部に設けられており、マイクロコンピュータによって構成されている。火力制御装置41には、トッププレート16の下方に配置されている操作部(操作手段)20T〜27Tから操作信号が入力されると共に、赤外線センサ32,温度センサ39からの温度検知信号が各センサに対応する検知部32c,39cを介して入力されている。
そして、火力制御装置41は、これらの入力並びに予め記憶された制御プログラムに基づいて、表示部12H,15H,20H〜27Hの作動を制御すると共にインバータ(高周波電流供給手段)42を制御し、誘導加熱コイル8(及び9)にインバータ42を介して高周波電流を供給して制御する。例えば、ユーザが操作部20T〜27Tを操作することで、調理メニューを選択し、調理条件を設定すると、対応する表示部12H,15H,20H〜27Hの表示を制御すると共に対応する加熱制御を行う。
誘導加熱コイル8には、共振コンデンサ43が直列に接続されている。これらのコイル8またはコンデンサ43は、調理器具35の材質に応じて出力調整を行なうため、コイル8の巻数が可変となるように(例えば、多段コイル構成)、又はコンデンサ43の容量が可変となるように構成しても良い。インバータ42には、商用交流電源44を、整流回路45を介して直流に変換したものが駆動用電源として供給されている。また、商用交流電源44は、図7では図示を省略しているヒータ10にも、図示しない通電制御部を介して供給されている。
また、整流回路45の入力側と、インバータ42の出力側とには、夫々電流トランス46,47が配置されており、それらの検知信号は火力制御装置41に与えられている。そして、火力制御装置41は、加熱調理器2への入力電流ipとインバータ42の出力電流(コイル電流)icとを検出するようになっている。尚、以上において、誘導加熱コイル8及び9,インバータ42,共振コンデンサ43は、加熱手段48を構成している。
次に、本実施例の作用について図1及び図2を参照して説明する。図2は、火力制御装置41が内部のメモリにデータテーブルとして記憶保持している、温度上昇制御データ系列(但し、データ系列(10’)を除く)の一例を示すものである。図2の横軸は、データ系列(10’)に利用するトッププレート16の下面温度Tpuの目盛り(上軸)と共に、データ系列(1)〜(9)に利用する赤外線センサ32の出力電圧Vto[mV]の目盛り(下軸)を示しており、縦軸は、誘導加熱の火力出力P[kW]である。そして、データ系列(1)〜(9)は、25℃から25℃刻みで上昇する下面温度Tpuをパラメータとする温度上昇制御データの系列を示している。
この場合、データ系列(1)〜(9)の火力減衰率(直線の傾き)は、光沢があるステンレス製鍋の底の温度が、例えば250℃に到達した場合に輻射される赤外線エネルギーに応じて、赤外線センサ32が出力する電圧Vb=20mVに相当するように設定されている。尚、データ系列(1)〜(9)は、下面温度Tpuについて、大まかな値を離散的に示しているが、実際に使用するデータは、下面温度Tpuをより詳細に切り分けたものとなる。
例えば、データ系列(1)では、下面温度Tpu=25℃の場合、出力電圧Vto=10mVに達すると火力Pを初期値3kWから低下させ、出力電圧Vto=30mVに達すると、火力Pを最低出力である200Wに設定するようになっている。また、データ系列(6)では、下面温度Tpu=150℃の場合、出力電圧Vto=140mVに達すると火力Pを初期値3kWから低下させ、出力電圧Vtoが160mVに達すると、火力Pを最低出力200Wに設定する。そして、下面温度Tpuが変化する場合は、それに応じて使用するデータ系列をダイナミックに変更する。
これらのデータ系列の内、データ系列(9)が上限として設定されている。すなわち、出力電圧Vtoがデータ系列(9)より大きくなると、データ系列(9)の傾きに従って火力Pが減少し、出力電圧Vtoが360mVになると火力P(出力)は0kWになる。よって、鍋底温度はそれ以上に上昇することがないのでデータ系列(9)が上限となる。
尚、この上限値の設定方法としては、その他例えば、データ系列(9)よりも右側に位置する図示しないデータ系列を更に設定し、下面温度Tpuが、上述したステンレス製鍋の底の温度が250℃になっている場合に対応する温度で傾きが垂直となるデータ系列を設定すれば、そのデータ系列が上限となる。この上限は任意に設定可能であり、例えば下面温度Tpu=150℃に対応するデータ系列(6)の傾きを垂直に設定すれば、当該データ系列(6)が上限になる。
また、これらのデータ系列(1)〜(9)については、通常の調理手順に従う場合は、フライパン等の調理器具35の温度を上昇させる期間に使用される。この「温度を上昇させる期間」とは、赤外線センサ32の検出値が温度上昇データ系列の上限値(データ系列(9))に到達するまでの期間を意味し、例えばデータ系列(1)〜(9)については、フライパン等の調理器具35の予熱,揚げ物調理における油が適温となるまでの加熱,或いは、揚げ物調理において調理物を投入した際に低下した油の温度の回復など、温度を上昇させる必要がある場合に火力を上昇させて、調理器具35の温度を素早く短時間で目標温度に到達させる期間である。そして、データ系列(1)〜(9)は、赤外線センサ32の検知出力に応じて火力Pを比例制御するためのデータ系列となっている。
また、データ系列(10’)[温度制御データ]は、温度センサ39が検知する温度Tpuに応じて加熱調理を行う場合に使用する火力データであり、上記検知出力に応じて火力Pを比例制御するためのデータ系列となっている。このデータ系列(10’)は、調理器具35の温度が過剰に上昇することを防止するため、火力の上限値を制御するデータであり、データ系列(9)より右側に位置させることで、例えば透明な赤外線透過窓37が汚れた場合に赤外線がうまく検出できなかった場合などに過剰な温度上昇を防止する機能(過昇温防止機能)をなす。すなわち、データ系列(10’)の火力上限値を、データ系列(9)の火力上限値よりも高く設定することで、安全な調理が可能となる。
図1は、火力制御装置41が行う誘導加熱制御を示すフローチャートである。先ず、温度センサ39の出力電圧に基づきトッププレート16の下面温度Tpuを検出し(ステップS1)、続いて、赤外線センサ32の出力電圧Vto(図2の下側横軸)を検出する(ステップS2)。そして、温度上昇火力設定値PS1を、上記温度Tpu及び出力電圧Vtoに応じて、図2に示すデータ系列に基づき設定する(ステップS3)。すなわち、温度Tpuに応じてデータ系列(1)〜(9)の何れかを選択し、選択したデータ系列上で、出力電圧Vtoに応じて加熱火力PS1を設定する。
例えば、温度Tpuを100℃として検出した場合は、図2中のデータ系列(4)が選択される。そして、赤外線センサ32の出力電圧Vtoが80mVから85mVに変化すると、その変化に応じて、データ系列(4)に基づく火力設定値PS1が1.5kWから0.8kWに変更される。すなわち、ステップS6に示すように、現状の火力Pが、ステップS3で目標値として設定された火力PS1に対して差がある場合は、現状の火力PをPS1に一致させるように制御する。
尚、上述した例は、赤外線センサ32の出力電圧Vtoが変化しても温度Tpuが変化しない場合を想定したが、実際には、出力電圧Vtoが上昇すれば同時に温度Tpuも上昇する。したがって、実際の火力PS1は、データ系列(4)において火力1.5kWに相当するデータから若干斜め右下にずれて、出力電圧Vto(85mV)の延長線上に位置する1.5kW〜0.8kWの間に設定されることになる。
すなわち、調理器具35を徐々に加熱して行く通常の調理では、初期段階で調理器具35の温度が上昇すると、温度Tpu及び赤外線センサ32の出力電圧Vtoが上昇する。図2を参照して説明すると、火力設定値PS1は、温度Tpuが低いデータ系列の火力が大きい位置から、火力が小さい位置、すなわち右斜め下に向かって緩やかに移動する。そして、温度Tpuが220℃に到達すると、調理器具35の温度がそれ以上に上昇しないように、火力設定値PS1は、上限値として設定されたデータ系列(9)に沿って下降して行く。
一方、調理器具35を加熱している最中に調理器具35内に調理物が投入されると、調理器具35の温度が一気に低下する。この時、トッププレート16の下面温度Tpuはあまり変化しないが、赤外線センサ32の出力電圧Vtoは一気に減少するから、温度Tpuに基づくデータ系列に沿って火力設定値が一気に上昇するように制御される。
続いて、温度Tpu(図2の上側横軸)が、データ系列(9)に対応する220℃以上か否かを判断し(ステップS4)、温度Tpuが220℃以上であれば、調理器具35の過昇温防止機能として作用するデータ系列(10’)に従って制御される。これば、温度Tpuが高くなればデータ系列(10’)に基づき火力設定値を低下させることで、ステップS5に示すg(Tpu)を関数とするもので比例制御することに対応する。
この動作は、赤外線センサ32の検出出力に基づきデータ系列(9)において過昇温防止を図る上限値を超えて、トッププレート16の下面温度Tpuがより高く上昇することで、赤外線検出が適切に機能しないケースに対応する。この場合は、温度Tpuだけをパラメータとするデータ系列(10’)により火力を制御する。
以上のように本実施例によれば、火力制御装置41は、調理器具35の温度が上昇する期間に、温度センサ39の検知出力に応じて加熱手段48による火力を制御するためのデータ系列(1)〜(9)を設定すると共に、赤外線センサ32の検知出力(トッププレート16の下面からの輻射エネルギーに対応する赤外線センサ32の検出出力Vpuを排除しない、全体の検出出力Vto)に応じて、データ系列(1)〜(9)の内から前記設定されたデータ系列に従う火力設定値を決定するようにした。したがって、特許文献1のように赤外線センサ32の検知出力を減じて当該検知出力に含まれている情報を利用せずに排除することなく、上記検知出力に応じて設定したデータ系列(1)〜(9)の設定値を変化させるので、調理器具35の熱容量が小さい場合でも、温度の上昇度合いを高精度に制御でき、過昇温度状態になることを確実に防止できる。
また、火力制御装置41は、温度センサ39の検知出力に応じて加熱手段48による火力を制御するためのデータ系列(10’)も併せて設定するので、調理器具35の状況並びに温度センサ39の検知出力に応じて比例制御を行うことで、制御及び調理性能の信頼性を向上させることができる。
また、火力制御装置41は、データ系列(9)と、データ系列(10’)とをそれぞれ上限値に設定したので、赤外線センサ32の検出出力,及び温度センサ39の検出出力の双方により過昇温防止機能を作用させることができ、温度監視を2重に行うことができる。特に、温度センサ39により検知される温度がデータ系列(9)に対応する温度Tpu(220℃)よりも高い場合はデータ系列(10’)に移行できるように、前者の火力出力上限値よりも後者の火力出力上限値を高く設定した。これにより、赤外線センサ32により赤外線が適切に検出できなかった場合でも、次善の過昇温防止機能として温度センサ39に基づき制御できるから、更に安全な調理が可能となる。
そして、データ系列(1)〜(9)を、それぞれ赤外線センサ32の検知出力に応じて火力Pを比例制御するデータとして設定したので、例えばフライパン調理の際に調理器具35の温度が急上昇することが想定される場合でも、過昇温防止機能を高い精度で実現できる。
(第2実施例)
図8ないし図11は第2実施例を示すものであり、第1実施例と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。図9は、火力制御装置41が内部のメモリにデータテーブルとして記憶保持している、予熱制御データ系列(但し、データ系列(10)を除く)の一例を示すものである。図9の横軸は、トッププレート16の下面温度Tpuと共に、赤外線センサ32の出力電圧Vto[mV]の対数目盛を示しており、縦軸は、誘導加熱の火力出力P[kW]である。そして、データ系列(1)〜(9)は、25℃から25℃刻みで上昇する下面温度Tpuをパラメータとする予熱制御データ[温度上昇制御データ]の系列を示している。
この場合、データ系列(1)〜(9)の火力減衰率(直線の傾き)は、光沢があるステンレス製鍋の底の温度が、例えば250℃に到達した場合に輻射される赤外線エネルギーに応じて、赤外線センサ32が出力する電圧Vb=20mVに相当するように設定されている。尚、データ系列(1)〜(9)は、下面温度Tpuについて、大まかな値を離散的に示しているが、実際に使用するデータは、下面温度Tpuをより詳細に切り分けたものとなる。
例えば、データ系列(1)では、下面温度Tpu=25℃の場合、出力電圧Vto=10mVに達すると火力Pを初期値3kWから低下させ、出力電圧Vto=30mVに達すると、火力Pを最低出力である200Wに設定するようになっている。また、データ系列(6)では、下面温度Tpu=150℃の場合、出力電圧Vto=140mVに達すると火力Pを初期値3kWから低下させ、出力電圧Vtoが160mVに達すると、火力Pを最低出力200Wに設定する。そして、予熱中に、下面温度Tpuが変化する場合は、それに応じて使用するデータ系列をダイナミックに変更する。
データ系列(9)よりも右側に位置する図示しないデータ系列については、下面温度Tpuが、上述したステンレス製鍋の底の温度が250℃になっている場合に対応する温度で傾きが垂直に設定されていると、そのデータ系列が上限として設定されることになる。この上限は任意に設定可能であり、例えば下面温度Tpu=150℃に対応するデータ系列(6)の傾きを「0」に設定すれば、当該データ系列(6)が上限になる。これらのデータ系列(1)〜(9)については、通常の調理手順に従う場合は、フライパン等の調理器具35を予熱するため温度を上昇させる期間に使用される。そして、データ系列(1)〜(9)は、赤外線センサ32の検知出力に応じて火力Pを比例制御するためのデータ系列となっている。
また、データ系列(10)[温度制御データ系列]は、温度センサ39が検知する温度Tpuに応じて加熱調理を行う場合に使用する火力データであり、上記検知出力に応じて火力Pを比例制御するためのデータ系列となっている。そして図3は、データ系列(10)を、ユーザによる調理設定に応じて変化させる場合のバリエーションを示している。すなわち、図9に示すデータ系列(10)は一例であり(図10中の(11a)に対応する)、実際にはユーザによる調理メニューの設定に応じて、図10に示すデータ系列の何れか1つが選択される。
これらは、およそ4つの群に分けられており、データ系列(1〜3)の第1群は、例えば加熱温度が140℃〜160℃程度となる「とろとろオムレツ」や「ホットケーキ」などの調理に対応する。データ系列(4〜6)の第2群は、例えば加熱温度が170℃〜190℃程度となる「ハンバーグ」などの調理に対応し、データ系列(7〜14)の第3群は、例えば加熱温度が200℃〜220℃程度となる「ステーキ」などの調理に対応する。そして、データ系列(12a〜14a)の第4群は、例えば加熱温度が220℃〜270℃程度となる「野菜炒め」などの調理に対応する。また、「揚げ物」調理の場合は、加熱温度が140℃〜20℃程度となるので、第1群,第2群の双方に跨ることになる。
つまり、予熱が完了して調理器具35の温度が安定した後に加熱調理を行う場合は、主にデータ系列(10)等を使用することになるが、加熱調理の途中に具材等が追加投入されて調理器具35の温度が一時的に低下すると、データ系列(1)〜(9)を用いた制御に戻る場合がある。尚、これらのデータ系列(1)〜(10)等は、データテーブルとして予め記憶保持するものに限らず、演算式(関数)を用いて算出しても良い。
図8は、火力制御装置41が行う誘導加熱制御を示すフローチャートである。先ず、温度センサ39の出力電圧に基づきトッププレート16の下面温度Tpuを検出し(ステップS11)、続いて、赤外線センサ32の出力電圧Vto(図9の下側横軸)を検出する(ステップS12)。そして、予熱火力PS1を、上記温度Tpu及び出力電圧Vtoに応じて、図9に示すデータ系列に基づき設定する(ステップS13)。すなわち、温度Tpuに応じてデータ系列(1)〜(9)の何れかを選択し、選択したデータ系列上で、出力電圧Vtoに応じて加熱火力PS1を設定する。
続いて、温度Tpuに応じて、図9に示すデータ系列(10)に基づき、加熱調理を行うための火力PS2を設定する(ステップS14)。それから、実際に出力されている火力Pに相当する電力値を検出する(ステップS15)。以降のステップS16〜S18は、予熱時並びに加熱時に共通の制御となる。すなわち、ステップS15で検出した火力Pと、予熱火力PS1又は加熱火力PS2との大小を比較し(ステップS16)、[P<PS1:PS2]であれば火力Pを増加させ(ステップS17)、[P>PS1:PS2]であれば火力Pを減少させる(ステップS18)。そして、[P=PS1:PS2]であれば、そのままステップS1に戻る。以上のようにして、図9に示す制御データ系列に応じて予熱制御並びにその後の加熱制御を行うことができる(上述のように、加熱制御から予熱制御に移行する場合がある)。
上述した作用について、図9に示す負荷線Ls2,Ls4を参照して説明する。これらの負荷線Ls2,Ls4は、調理器具35の温度が上昇するのに伴い調理器具35からの放熱量が増加するので、右上がりの傾きを有している。この場合の「放熱」は、主に例えば野菜などの被調理物に熱を奪われたり、調理器具35自体の加熱(温度上昇)や、調理器具35からの放熱等により、調理器具35の底から熱が奪われることで生じる。したがって、実際の負荷線は2次曲線的に変化するが、図9では近似的に直線で示している。
例えば「野菜炒め」調理を行うことを想定すると、調理の初期段階において野菜に水分が多く含まれている状態では、負荷線の傾きは急峻に立っているが、調理が進むと野菜に含まれる水分が減少し、調理器具35の底から熱が奪われ難くなる。すると、負荷線はLs2のようになり、更に調理が進めば負荷線はLs4のように変化する。そして、火力Pは、負荷線とデータ系列(1)〜(10)との交点で決まる。
負荷線がLs2の状態では、データ系列(10)との交点であるPs2に到達する以前に、下面温度Tpu=125℃であればデータ系列(5)とPs2’で交差するので、赤外線センサ32の出力電圧Vtoの上昇に応じて火力Pを低下させる。
一方、負荷線がLs2の状態において下面温度Tpu=150℃である場合でも、データ系列(6)には移行しない。これは、負荷線がLs2の延長線とデータ系列(6)との交点である火力設定値PAが、上限値となるデータ系列(10)を超えているため、火力設定値がデータ系列(10)に従う比例制御データに移行されるからである。つまり、図9の横軸(上側)で、温度Tpu=150℃に対応したデータ系列(10)の火力設定値PBが動作点となる。
そして、負荷線がLs2の状態においてデータ系列(10)との交点であるPs2に到達すれば、データ系列(10)は上限値であるから、火力制御はデータ系列(10)に移行され、図9の横軸(上側)の下面温度Tpuに基づいて、データ系列(10)に従う比例制御が実行される。
負荷線がLs4に移行し、下面温度Tpu=150℃に上昇すると、データ系列(6)とPs4で交差する。この状態から更に調理が進めば、負荷線の傾きはLs4より小さくなる。一方、調理器具35に新たに野菜が追加投入されると、負荷線の傾きは立つように変化する。
以上のように調理の進行状況に応じて負荷線の傾きが変化する過程で、下面温度Tpuとの関係により負荷線がデータ系列(10)と交差する状態になると、加熱制御は、温度センサ39の検知出力である下面温度Tpuのみに応じてデータ系列(10)に基づき行われるようになる。すなわち、図9中において、データ系列(10)を境界として右上部の領域となるデータ系列は火力制御に利用されることはなく、全ての制御はデータ系列(10)を境界とする左下の領域に亘るデータに基づいて行われる。
また、図11は、ステップS1で下面温度Tpuを取得する場合に、2つの温度センサ39a,39bより得られる検知出力をどのように取り扱うかを一覧で示している。すなわち、ユーザが選択した調理メニューの種類や調理の進行状況に応じて、それらの処理を変化させる。
例えば調理メニューが「フライパン調理」である場合、予熱を行っている期間は、温度センサ39a,39bの検知出力のうち検知温度が低い方を採用する。そして、予熱後は、サブメニューが例えば「ステーキ」であれば検知温度が低い方を採用し、サブメニューが例えば「カツレツ」であれば検知温度が高い方を採用する。また、調理メニューが「野菜炒め」であれば一貫して検知温度が高い方を採用し、「玉子焼き」であれば一貫して検知温度が低い方を採用する。
すなわち、「フライパン調理:ステーキ」の場合は、一般にフライパンに引く油の量が少なくフライパンの温度が上昇し易いので、予熱時には検知温度が低い方に従ってデータ系列(1)〜(9)を選択設定する。そして、予熱が完了して調理を行う場合には、逆に検知温度が高い方に従ってデータ系列(10)に基づく制御データを設定する。また、「フライパン調理:カツレツ」の場合は、一般にフライパンに引く油の量が多くフライパンの温度が上昇し難い。故に、予熱時並びに予熱後に調理を行う場合の何れも、検知温度が低い方に従ってデータ系列(1)〜(9)を選択設定し、またデータ系列(10)に基づく制御データを設定する。
また、「野菜炒め」の場合は、調理が高温で行われるので、予熱時並びに予熱後に調理を行う場合の何れも、検知温度が高い方に従ってデータ系列(1)〜(10)を選択設定等する。「玉子焼き」の場合は、調理が比較的低温で行われ、且つ調理器具35の底面全体が均一に加熱される状態が望ましいため、2つの温度センサ39a,39bの検知出力を平均した値を採用する。
以上のように第2実施例によれば、火力制御装置41は、予熱時のように調理器具35の温度が上昇する期間に、温度センサ39の検知出力に応じて加熱手段48による火力を制御するためのデータ系列(1)〜(9)を設定すると共に、赤外線センサ32の検知出力(トッププレート16下面からの輻射エネルギーに対応する赤外線センサ32の検知出力を減じて排除しない全体の赤外線出力)に応じて、データ系列(1)〜(9)のうち、前記設定されたデータ系列に従う火力設定値を決定するようにした。したがって、特許文献1のように赤外線センサ32の検知出力を減じて当該検知出力に含まれている情報を利用せずに排除することなく、上記検知出力に応じて設定したデータ系列(1)〜(9)の設定値を変化させるので、調理器具35の熱容量が小さい場合でも、温度の上昇度合いを高精度に制御でき、過昇温度状態になることを確実に防止できる。
また、火力制御装置41は、温度センサ39の検知出力に応じて加熱手段48による火力を制御するためのデータ系列(10)も併せて設定するので、予熱が終了し、トッププレート16の上面,下面の温度が比較的安定した状態で調理を行う場合は、温度センサ39の検知出力に応じて比例制御を行うことで、制御精度,調理性能を向上させることができる。
また、火力制御装置41は、データ系列(1)〜(9)と、データ系列(10)とにそれぞれ上限値を設定する場合に、前者の火力出力Pの上限値を後者の上限値以上に設定するので、調理器具35が例えば光沢のあるステンレス製である場合でも、過昇温防止機能を高い精度で実現できる。
そして、データ系列(1)〜(9)と、データ系列(10)とを、それぞれ赤外線センサ32の検知出力,温度センサ39の検知出力に応じて火力Pを比例制御するデータとして設定したので、例えばフライパン調理の予熱時に調理器具35の温度が急上昇することが想定される場合でも、過昇温防止機能を高い精度で実現できる。また、予熱の終了後、トッププレート16の上面,下面の温度が比較的安定した状態で調理を行う場合も、温度センサ39の検知出力に応じて比例制御により制御精度,調理性能を向上させることができる。
さらに、火力制御装置41は、データ系列(10)を調理条件に対応させて複数用意し、操作部20AT〜27ATを介して設定された調理条件に応じて何れか1つを選択するので、フライパン調理や揚げ物調理などが選択された場合に、それぞれの調理の形態に応じて最適な比例制御を行うためのデータ系列を設定できる。
加えて、火力制御装置41は、温度センサ39a,39bより出力される検知結果の平均値を採用するか、又は前記検知結果の何れかを選択したものに応じて、データ系列(1)〜(9)を設定し、また、上記検知結果について温度が最低を示すもの,温度が最高を示すもの,或いは前記検知結果の平均値の何れかに基づいてデータ系列(10)に従う制御データを決定する。
すなわち、誘導加熱では、図15に示したように、調理器具35の鍋底に流れる誘導電流の分布にむらがあるため、鍋底の温度分布にもむらが生じる。また、鍋底の形状に凹凸がある場合には、温度センサ39の検知結果がばらつくことがある。そこで、温度センサ39a,39bより出力される検知結果について温度が最低を示すものを採用すれば、過昇温を防止する観点では、安全側に制御できる。また、上記検知結果について温度が最高を示すものを採用すれば、データ系列に基づく制御データの変化速度を速くすることができる。例えば「野菜炒め」のように高火力で調理する場合は、より高い火力を設定することができる。また、上記検知結果について平均値を採用すれば、「玉子焼き」のように加熱温度に精度が必要とされる制御に好適である。
本発明は上記し又は図面に記載した実施例にのみ限定されるものではなく、以下のような変形又は拡張が可能である。
複数の温度センサの検知出力の取り扱いは、図11に示すものに限らず、個別の設計に応じて適宜変更して良い。
温度センサは、1つのみでも、若しくは3つ以上設けても良い。
誘導加熱コイルについても、1つだけ、若しくは3つ以上設けても良い。
データ系列(10)について、調理メニューごとにバリエーションを設けることは、必要に応じて行えばよい。また、各データ系列は、必ずしも比例制御を行うデータに限ることはなく、適宜変更して良い。
調理器具35はフライパンに限ることなく、その他の鍋などである場合も同様に適用できる。
図面中、2は加熱調理器(誘導加熱調理器)、8,9は誘導加熱コイル、12H,15Hは調理条件表示部、16はトッププレート、20AT〜27ATは操作部、32は赤外線センサ、35は調理器具(被加熱物)、39は温度センサ、41は火力制御装置(制御部)、42はインバータ、48は加熱手段を示す。

Claims (4)

  1. 被加熱物が載置されるトッププレートと、
    前記被加熱物を加熱コイルにより誘導加熱する加熱手段と、
    前記トッププレート及び前記被加熱物より輻射される赤外線を検知する赤外線センサと、
    前記トッププレートの温度を検知する温度センサと、
    温度上昇期間において、記加熱手段による火力を比例制御するためのデータテーブル又は演算式からなり、前記温度センサの検知出力をパラメータとして温度上昇制御データ系列を設定すると共に、前記赤外線センサの検知出力に応じて、前記設定された温度上昇制御データ系列に従う火力の設定値を決定する制御部とを備え
    前記制御部は、前記温度センサの検知出力が、火力を最大にする温度上昇制御データ系列のパラメータ値を超えると、前記温度センサの検知出力に応じて前記加熱手段による火力を制御するための温度制御データ系列を設定することを特徴とする誘導加熱調理器。
  2. 調理条件を設定操作するための操作部と、
    この操作部を介して設定された調理条件を表示する表示部とを備え、
    前記制御部は、前記温度制御データ系列を、前記調理条件に対応させて複数用意し、前記操作部を介して設定された調理条件に応じて何れか1つを選択することを特徴とする請求項1記載の誘導加熱調理器。
  3. 前記温度センサを複数個備え、
    前記制御部は、前記複数の温度センサより出力される検知結果について温度が最低を示すもの,温度が最高を示すもの,或いは前記検知結果の平均値の何れかに基づいて、前記温度制御データ系列に従う設定値を決定することを特徴とする請求項1又は2記載の誘導加熱調理器。
  4. 前記温度センサを複数個備え、
    前記制御部は、前記複数の温度センサより出力される検知結果の平均値を採用するか、又は前記検知結果の何れかを選択したものに応じて、前記温度上昇制御データ系列を設定することを特徴とする請求項1から3の何れか1項に記載の誘導加熱調理器。
JP2009145348A 2009-06-18 2009-06-18 誘導加熱調理器 Active JP5380172B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009145348A JP5380172B2 (ja) 2009-06-18 2009-06-18 誘導加熱調理器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009145348A JP5380172B2 (ja) 2009-06-18 2009-06-18 誘導加熱調理器

Publications (2)

Publication Number Publication Date
JP2011003391A JP2011003391A (ja) 2011-01-06
JP5380172B2 true JP5380172B2 (ja) 2014-01-08

Family

ID=43561207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009145348A Active JP5380172B2 (ja) 2009-06-18 2009-06-18 誘導加熱調理器

Country Status (1)

Country Link
JP (1) JP5380172B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062188A (ja) * 2011-09-14 2013-04-04 Toshiba Corp 誘導加熱調理器
JP7269083B2 (ja) * 2019-04-18 2023-05-08 株式会社ミクニ 赤外線検出ユニット及び加熱調理装置
JP7269127B2 (ja) * 2019-08-05 2023-05-08 株式会社ミクニ 赤外線検出ユニット及び加熱調理装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3968311B2 (ja) * 2003-01-20 2007-08-29 株式会社東芝 誘導加熱調理器
JP4809135B2 (ja) * 2006-06-09 2011-11-09 三菱電機株式会社 加熱調理器
JP5194710B2 (ja) * 2007-10-22 2013-05-08 パナソニック株式会社 加熱調理器
JP2008262933A (ja) * 2008-08-06 2008-10-30 Matsushita Electric Ind Co Ltd 誘導加熱調理器

Also Published As

Publication number Publication date
JP2011003391A (ja) 2011-01-06

Similar Documents

Publication Publication Date Title
WO2021077583A1 (zh) 控制方法、烹饪器具、烹饪系统及计算机可读存储介质
JP6117720B2 (ja) 誘導加熱調理器
CN102711301B (zh) 感应加热烹调器
CN104199495A (zh) 烹饪温度自动调节装置及方法
JP2012204314A (ja) 誘導加熱調理器
JP5380172B2 (ja) 誘導加熱調理器
JP4421392B2 (ja) 加熱調理器
JP5308830B2 (ja) 誘導加熱調理器
JP5022784B2 (ja) 誘導加熱調理器
JP5380171B2 (ja) 誘導加熱調理器
JP2013062188A (ja) 誘導加熱調理器
CN103650635B (zh) 感应加热烹调器
JP5624392B2 (ja) 誘導加熱調理器
JP2012022853A (ja) 誘導加熱調理器
JP2012204315A (ja) 誘導加熱調理器
JP2012178241A (ja) 誘導加熱調理器
JP2012160303A (ja) 誘導加熱調理器
JP5241575B2 (ja) 誘導加熱調理器
CN114484525A (zh) 一种灶具及其控制方法
JP5979990B2 (ja) 誘導加熱調理器
JP2011003390A (ja) 誘導加熱調理器
JP2012178242A (ja) 誘導加熱調理器
JP2013254617A (ja) 誘導加熱調理器
JP5795931B2 (ja) 誘導加熱調理器
JP3837345B2 (ja) 加熱調理器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5380172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02