[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5368819B2 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP5368819B2
JP5368819B2 JP2009029751A JP2009029751A JP5368819B2 JP 5368819 B2 JP5368819 B2 JP 5368819B2 JP 2009029751 A JP2009029751 A JP 2009029751A JP 2009029751 A JP2009029751 A JP 2009029751A JP 5368819 B2 JP5368819 B2 JP 5368819B2
Authority
JP
Japan
Prior art keywords
vane
sliding
cylinder
rotor
double bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009029751A
Other languages
Japanese (ja)
Other versions
JP2010185357A (en
Inventor
真一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009029751A priority Critical patent/JP5368819B2/en
Publication of JP2010185357A publication Critical patent/JP2010185357A/en
Application granted granted Critical
Publication of JP5368819B2 publication Critical patent/JP5368819B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/263HFO1234YF
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/90Improving properties of machine parts
    • F04C2230/91Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)
  • Rotary Pumps (AREA)

Description

本発明は、例えば冷凍空調機器に用いられる圧縮機、特に冷媒として、組成中に炭素の二重結合を有するハロゲン化炭化水素、組成中に炭素の二重結合を有する炭化水素、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む混合物、のいずれかを用いる圧縮機に関する。   The present invention relates to a compressor used in, for example, a refrigerating and air-conditioning apparatus, particularly as a refrigerant, a halogenated hydrocarbon having a carbon double bond in the composition, a hydrocarbon having a carbon double bond in the composition, and a carbon in the composition. The present invention relates to a compressor using any one of a halogenated hydrocarbon having a double bond and a mixture containing at least one of hydrocarbons having a carbon double bond in the composition.

カーエアコンの分野では、低GWP(地球温暖化係数)冷媒としてテトラフルオロプロペン(例えば、2,3,3,3-テトラフルオロプロペン-1-ene、以下「HFO−1234yf(CF3CF=CH2)」という)が有力視されている。   In the field of car air conditioners, tetrafluoropropene (for example, 2,3,3,3-tetrafluoropropene-1-ene, hereinafter referred to as “HFO-1234yf (CF3CF = CH2)” as a low GWP (global warming potential) refrigerant. ) Is considered promising.

定置式の空気調和機では、HFC(ハイドロフルオロカーボン)冷媒の代替策が見えないのが現状であるが、炭素の二重結合を有する炭化水素やHFCをベースにして不燃化したもの(例えば二重結合を有する化合物や臭素やヨウ素や酸素などを組み合わせたもの)等が提案されている。   In stationary air conditioners, there is currently no alternative to HFC (hydrofluorocarbon) refrigerants, but incombustible based on hydrocarbons or HFCs with carbon double bonds (for example, double A compound having a bond or a combination of bromine, iodine, oxygen, or the like) has been proposed.

ところで、密閉容器内に、塩素とフッ素を含まない炭化水素系化合物の冷媒を圧縮する圧縮機およびこの圧縮機を駆動する電動機と、この冷媒と相溶性を有する冷凍機油とを収容する密閉型圧縮機において、5wt%以内の内部離型剤を含有し、あるいは射出成形もしくは押し出し成形時の成形型に離型剤を塗布して製造された直鎖型のPPS樹脂、レゾール型のフェノール樹脂、フッ素樹脂(PTFE、ETFE、FEP、PFA)、PA樹脂、PI樹脂、PBT樹脂、PET樹脂の群から選択される少なくとも1種類よりなる絶縁用構成部材を具備し、炭化水素系化合物の冷媒は、R170(エタン)、R290(プロパン)、R600(n−ブタン)、R600a(I−ブタン)、R1150(エチレン)、R1270(プロピレン)の群から選択される1種類以上の冷媒からなる密閉形電動圧縮機が提案されている(例えば、特許文献1参照)。なお、PPS樹脂はポリフェニレンスルフィド、PTFEはポリテトラフルオロエチレン、ETFEはエチレンフッ化エチレン共重合体、FEPはフロロエチレンプロピレン共重合体、PFAはペルフロロアルコキシフッ素樹脂、PA樹脂はポリアミド、PI樹脂はポリイミド、PBT樹脂はポリブチレンテレフタレート、PET樹脂はポリエチレンテレフタレートである。   By the way, a hermetic compressor which contains a compressor for compressing a refrigerant of a hydrocarbon compound not containing chlorine and fluorine, an electric motor for driving the compressor, and refrigerating machine oil compatible with the refrigerant in a sealed container. The machine contains an internal mold release agent of 5 wt% or less, or is produced by applying a mold release agent to a mold during injection molding or extrusion molding, linear PPS resin, resol type phenol resin, fluorine It comprises an insulating structural member made of at least one selected from the group consisting of resin (PTFE, ETFE, FEP, PFA), PA resin, PI resin, PBT resin, and PET resin, and the hydrocarbon compound refrigerant is R170. (Ethane), R290 (propane), R600 (n-butane), R600a (I-butane), R1150 (ethylene), R1270 (propylene) A hermetic electric compressor composed of one or more refrigerants selected from a group has been proposed (see, for example, Patent Document 1). PPS resin is polyphenylene sulfide, PTFE is polytetrafluoroethylene, ETFE is ethylene fluoroethylene copolymer, FEP is fluoroethylenepropylene copolymer, PFA is perfluoroalkoxy fluororesin, PA resin is polyamide, PI resin is polyimide The PBT resin is polybutylene terephthalate, and the PET resin is polyethylene terephthalate.

また、圧縮機をGWP150以下の低GWP冷媒に適合させることにより、地球温暖化への影響を十分抑制するために、圧縮要素の摺動部材を軟質基材に硬質粒子が分散している材料で構成するとともに、摺動部材の表層部に傾斜層を設けて表面を硬質基材リッチにすることにより、油膜形成能力が高くなり、GWPが150以下でR134a(1,1,1,2-テトラフルオロエタン)より極性が高い冷媒雰囲気における摺動部材の磨耗を十分抑制することができるようにして、低GWP冷媒用の圧縮機を得られるようにしたものも提案されている。そして、冷媒としては、R134aより極性が高くかつGWPが150以下であればよく、HFCをベースにして不燃化したもの、例えば二重結合を有する化合物や臭素やヨウ素や酸素などを組み合わせたものでも良いとされている。また、混合冷媒で少なくとも一つがR134aより極性が高いものを含むものであってもよいということも提案されている(例えば、特許文献2参照)。   Also, in order to sufficiently suppress the impact on global warming by adapting the compressor to a low GWP refrigerant of GWP 150 or lower, the sliding member of the compression element is made of a material in which hard particles are dispersed in a soft base material. In addition, by providing an inclined layer on the surface layer portion of the sliding member to make the surface rich with a hard base material, the oil film forming ability is enhanced, and the GWP is 150 or less and R134a (1,1,1,2-tetra There has also been proposed a compressor capable of sufficiently suppressing the wear of the sliding member in a refrigerant atmosphere having a polarity higher than that of fluoroethane so as to obtain a compressor for a low GWP refrigerant. The refrigerant only needs to be higher in polarity than R134a and have a GWP of 150 or less, such as a non-combustible material based on HFC, such as a combination of a compound having a double bond, bromine, iodine, oxygen, or the like. It is good. It has also been proposed that at least one of the mixed refrigerants may include a refrigerant having a higher polarity than R134a (see, for example, Patent Document 2).

特開2000−274360号公報(図1)JP 2000-274360 A (FIG. 1) 特開2008−2368号公報(図1)Japanese Patent Laying-Open No. 2008-2368 (FIG. 1)

炭素の二重結合を有する物質は、安定性に課題があり、分解および重合の可能性がある。一般に重合の条件となるものは、高温・高圧や触媒である。   A substance having a carbon double bond has a problem in stability, and has a possibility of decomposition and polymerization. Generally, polymerization conditions are high temperature, high pressure and catalyst.

炭素の二重結合を有する物質を冷媒とし、圧縮機として例えばスライディングベーン圧縮機を用いた場合、その圧縮要素の摺動部であるベーン摺動部において、金属相互の直接接触による高温が発生して、炭素の二重結合を有する物質の分解および重合の懸念があり、これらを抑制する対策が必要である。   When a substance having a carbon double bond is used as a refrigerant and a sliding vane compressor is used as a compressor, for example, a high temperature is generated due to direct contact between metals in a vane sliding portion which is a sliding portion of the compression element. Therefore, there is a concern about decomposition and polymerization of a substance having a carbon double bond, and measures to suppress these are necessary.

本発明の技術的課題は、金属相互の直接接触による高温の発生を抑えて、炭素の二重結合を有する物質の分解および重合を抑制できるようにすることにある。   The technical problem of the present invention is to suppress the generation of a high temperature due to direct contact between metals and to suppress the decomposition and polymerization of a substance having a carbon double bond.

本発明に係る圧縮機は、下記の構成からなるものである。すなわち、摺動部材を有し冷媒を圧縮する圧縮要素と、圧縮要素を駆動する電動要素とを備え、冷媒として、組成中に炭素の二重結合を有するハロゲン化炭化水素、組成中に炭素の二重結合を有する炭化水素、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む混合物、のいずれかを用いてなる圧縮機において、圧縮要素の摺動部材の摺接部、又は摺動部材が摺接する相手部材の摺接部の、少なくとも一方における表面は、非金属の被膜でコーティングされ、コーティングされた摺接部は、コーティングの状態で、表面の粗度(Rz)がRz=1.0以下、硬度(HmV)がHmV=2000〜3000である。 The compressor according to the present invention has the following configuration. That is, a compression element that has a sliding member and compresses the refrigerant, and an electric element that drives the compression element. The refrigerant is a halogenated hydrocarbon having a carbon double bond in the composition, and a carbon in the composition. A hydrocarbon having a double bond, a halogenated hydrocarbon having a carbon double bond in the composition, or a mixture containing at least one of a hydrocarbon having a carbon double bond in the composition is used. In the compressor, at least one surface of the sliding contact portion of the sliding member of the compression element or the sliding contact portion of the mating member to which the sliding member slides is coated with a non-metallic film, and the coated sliding contact portion is in a state before coating, the roughness of the surface (Rz) is Rz = 1.0 or less, the hardness (HmV) is HmV = 2000~ 30 00.

本発明に係る圧縮機においては、圧縮要素の摺動部材の摺接部、又は摺動部材が摺接する相手部材の摺接部の、少なくとも一方における表面を非金属で構成しているので、金属相互の直接接触による摩擦が低減されて、高温の発生を抑えることができ、また摺接部の金属表面も活性化され難くなる。このため、冷媒として、組成中に炭素の二重結合を有するハロゲン化炭化水素、組成中に炭素の二重結合を有する炭化水素、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む混合物、のいずれかを用いた場合でも、摺動部における冷媒の化学反応による分解や重合が抑制される。また、スラッジの発生が抑制され、圧縮機の故障や冷凍回路内の詰まりを防止し、長期にわたる信頼性を得ることが可能となる。   In the compressor according to the present invention, the surface of at least one of the sliding contact portion of the sliding member of the compression element or the sliding contact portion of the mating member with which the sliding member slides is made of a non-metal. Friction due to mutual direct contact is reduced, generation of high temperature can be suppressed, and the metal surface of the sliding contact portion is hardly activated. Therefore, as a refrigerant, a halogenated hydrocarbon having a carbon double bond in the composition, a hydrocarbon having a carbon double bond in the composition, a halogenated hydrocarbon having a carbon double bond in the composition, or a composition Even when any of the mixture containing at least one of hydrocarbons having a carbon double bond is used, decomposition and polymerization due to a chemical reaction of the refrigerant in the sliding portion are suppressed. In addition, the generation of sludge is suppressed, and it is possible to prevent a compressor failure and clogging in the refrigeration circuit and to obtain long-term reliability.

本発明が適用される圧縮機の全体構成を示す縦断面図である。It is a longitudinal section showing the whole compressor composition to which the present invention is applied. 図1のA−A線矢視断面図である。It is AA arrow sectional drawing of FIG.

実施形態1.
以下、図示実施形態により本発明を説明する。
図1は本発明が適用される圧縮機すなわちスライディングベーン圧縮機の全体構成を示す縦断面図である。図2は図1のA−A線矢視断面図である。
Embodiment 1. FIG.
The present invention will be described below with reference to illustrated embodiments.
FIG. 1 is a longitudinal sectional view showing an overall configuration of a compressor to which the present invention is applied, that is, a sliding vane compressor. FIG. 2 is a cross-sectional view taken along line AA in FIG.

本実施形態のスライディングベーン圧縮機200は、図1のように密閉容器20内が高圧の縦型のものである。密閉容器20内の下部には、圧縮要素101が収納されている。密閉容器20内の上部で圧縮要素101の上方には、圧縮要素101を駆動する電動要素102が収納されている。圧縮容器20内の底部には、圧縮要素101の各摺動部を潤滑するための冷凍機油30が貯留されている。   The sliding vane compressor 200 of the present embodiment is a vertical type in which the inside of the sealed container 20 is high-pressure as shown in FIG. A compression element 101 is housed in the lower part of the sealed container 20. An electric element 102 for driving the compression element 101 is accommodated above the compression element 101 in the upper part of the sealed container 20. Refrigerating machine oil 30 for lubricating each sliding portion of the compression element 101 is stored at the bottom of the compression container 20.

これを更に詳述すると、圧縮要素101は、シリンダー1と、ローター2と、ベーン3と、主軸受4と、副軸受5と、駆動軸6とで構成される。   More specifically, the compression element 101 includes a cylinder 1, a rotor 2, a vane 3, a main bearing 4, a sub bearing 5, and a drive shaft 6.

内部に圧縮室が形成されるシリンダー1は、図2のように外周が平面的に見て略円形で、内部に平面的に見て略円形の空間であるシリンダー室1aを備えたリング状を呈している。シリンダー室1aは、軸方向両端が開口している。シリンダー1は、図1のように側方より見て所定の軸方向の高さを有している。   The cylinder 1 in which the compression chamber is formed has a ring shape with a cylinder chamber 1a which is a substantially circular space when viewed from the top as shown in FIG. Presents. The cylinder chamber 1a is open at both axial ends. The cylinder 1 has a predetermined axial height when viewed from the side as shown in FIG.

このシリンダー1は、主軸受4と副軸受5との間にボルトで固定され、シリンダー室1aは、主軸受4と副軸受5により閉塞されるようになっている。   The cylinder 1 is fixed with a bolt between the main bearing 4 and the sub bearing 5, and the cylinder chamber 1a is closed by the main bearing 4 and the sub bearing 5.

主軸受4は、吐出弁(図示せず)を備えている。なお、この吐出弁は、主軸受4、副軸受5のいずれか一方、又は両方に付けてもよいものである。   The main bearing 4 includes a discharge valve (not shown). This discharge valve may be attached to either one or both of the main bearing 4 and the auxiliary bearing 5.

駆動軸6は、主軸受4と副軸受5によって摺動(回動)自在に支持されている。この駆動軸6には、円柱状のローター2が軸着されている。ローター2には、ベーン溝2aが形成され、ベーン溝2aには、ベーン3が摺動自在に収納されている。このベーン3は、背圧室2bの圧力と、ローター2の回転による遠心力とによって、シリンダー室1aの内周面に押し付けられている。そして、ベーン3は、ローター2と共に回転し、隣り合うベーン3の間に吸入室10と圧縮室11が形成されるようになっている。そして、吸入室10は、シリンダー1に設けられた吸入口12に連通し、圧縮室11は、主軸受4に設けられた吐出弁(図示せず)に連通している。   The drive shaft 6 is slidably supported by the main bearing 4 and the sub bearing 5. A cylindrical rotor 2 is attached to the drive shaft 6. A vane groove 2a is formed in the rotor 2, and a vane 3 is slidably accommodated in the vane groove 2a. The vane 3 is pressed against the inner peripheral surface of the cylinder chamber 1 a by the pressure of the back pressure chamber 2 b and the centrifugal force generated by the rotation of the rotor 2. The vane 3 rotates together with the rotor 2, and a suction chamber 10 and a compression chamber 11 are formed between the adjacent vanes 3. The suction chamber 10 communicates with a suction port 12 provided in the cylinder 1, and the compression chamber 11 communicates with a discharge valve (not shown) provided in the main bearing 4.

主軸受4には、その外側(電動要素102側)に吐出マフラー7が取り付けられている。主軸受4の吐出弁から吐出される高温・高圧の吐出ガスは、一旦、吐出マフラー7に入り、その後、吐出マフラー7から密閉容器20内に放出される。なお、副軸受5側に吐出マフラー7を持つ場合もある。   A discharge muffler 7 is attached to the main bearing 4 on the outer side (electric element 102 side). The high-temperature and high-pressure discharge gas discharged from the discharge valve of the main bearing 4 once enters the discharge muffler 7 and is then discharged from the discharge muffler 7 into the sealed container 20. In some cases, a discharge muffler 7 may be provided on the auxiliary bearing 5 side.

密閉容器20の横には、冷凍サイクルからの低圧の冷媒ガスを吸入し、液冷媒が戻る場合に液冷媒が直接、シリンダー1のシリンダー室1aに吸入されるのを抑制する吸入マフラー21が設けられている。吸入マフラー21は、シリンダー1の吸入口12に吸入管22を介して接続されている。吸入マフラー21の本体は、溶接等によって密閉容器20の側面に固定されている。   A suction muffler 21 is provided on the side of the sealed container 20 to suck in low-pressure refrigerant gas from the refrigeration cycle and prevent liquid refrigerant from being directly sucked into the cylinder chamber 1a of the cylinder 1 when the liquid refrigerant returns. It has been. The suction muffler 21 is connected to the suction port 12 of the cylinder 1 via the suction pipe 22. The main body of the suction muffler 21 is fixed to the side surface of the sealed container 20 by welding or the like.

次に、電動要素102の構成について説明する。
電動要素102は、固定子13と回転子14とを備える。固定子13は、密閉容器20の内周面に嵌め合いして固定されている。回転子14は、固定子13の内側に空隙を介して配置されている。
Next, the configuration of the electric element 102 will be described.
The electric element 102 includes a stator 13 and a rotor 14. The stator 13 is fitted and fixed to the inner peripheral surface of the sealed container 20. The rotor 14 is disposed inside the stator 13 via a gap.

密閉容器20には、電力の供給源である電源に接続する端子(ガラス端子)24が、溶接により固定されている。図1の例では、密閉容器20の上面に端子24が設けられている。端子24には、電動要素102からのリード線23が接続される。   A terminal (glass terminal) 24 connected to a power source as a power supply source is fixed to the sealed container 20 by welding. In the example of FIG. 1, a terminal 24 is provided on the upper surface of the sealed container 20. A lead wire 23 from the electric element 102 is connected to the terminal 24.

次に、本実施形態のスライディングベーン圧縮機の動作について説明する。
端子24、リード線23から電動要素102の固定子13に電力が供給されることにより、回転子14が回転する。すると、回転子14に固定された駆動軸6が回転し、それに伴い、ローター2がシリンダー1のシリンダー室1a内で回転する。この回転による遠心力と背圧室2bの圧力によって、ベーン3はベーン溝2aから突出し、その先端3aがシリンダー室1aの内周面に摺接しながらローター2と共に回転する。ローター2の回転に伴って、冷媒は、吸入口12から吸入室10に吸入され、その後、圧縮室11で圧縮されて吐出弁そして吐出マフラー7を経て密閉容器20内に吐出される。更に冷媒は、電動要素102を通過して密閉容器20の上面にある吐出管25より密閉容器20外へ吐出される。
Next, the operation of the sliding vane compressor of this embodiment will be described.
When electric power is supplied from the terminal 24 and the lead wire 23 to the stator 13 of the electric element 102, the rotor 14 rotates. Then, the drive shaft 6 fixed to the rotor 14 rotates, and accordingly, the rotor 2 rotates in the cylinder chamber 1a of the cylinder 1. The vane 3 protrudes from the vane groove 2a by the centrifugal force due to this rotation and the pressure in the back pressure chamber 2b, and the tip 3a rotates with the rotor 2 while being in sliding contact with the inner peripheral surface of the cylinder chamber 1a. As the rotor 2 rotates, the refrigerant is sucked into the suction chamber 10 from the suction port 12, and then compressed in the compression chamber 11 and discharged into the sealed container 20 through the discharge valve and the discharge muffler 7. Further, the refrigerant passes through the electric element 102 and is discharged out of the sealed container 20 through the discharge pipe 25 on the upper surface of the sealed container 20.

スライディングベーン圧縮機200が前記運転動作を行う場合、部材相互が摺動する摺動部が以下に示すように複数ある。
(a)第1の摺動部:シリンダー室1aの内周面とベーン3の先端3a
(b)第2の摺動部:ローター2のベーン溝2aとベーン3の側面部(両側面)3b
(c)第3の摺動部:主軸受4の内周面と駆動軸6の主軸部6a
(d)第4の摺動部:副軸受5の内周面と駆動軸6の副軸部6b
When the sliding vane compressor 200 performs the above operation, there are a plurality of sliding portions where the members slide with each other as shown below.
(A) First sliding part: inner peripheral surface of cylinder chamber 1a and tip 3a of vane 3
(B) Second sliding portion: vane groove 2a of rotor 2 and side surface portions (both side surfaces) 3b of vane 3
(C) Third sliding part: inner peripheral surface of main bearing 4 and main shaft part 6a of drive shaft 6
(D) Fourth sliding portion: the inner peripheral surface of the auxiliary bearing 5 and the auxiliary shaft portion 6b of the drive shaft 6

つまり、圧縮要素101に設けられて摺動部を構成する部材は、シリンダー1、ローター2、ベーン3、主軸受4、副軸受5、及び駆動軸6である。   That is, the members provided in the compression element 101 and constituting the sliding portion are the cylinder 1, the rotor 2, the vane 3, the main bearing 4, the auxiliary bearing 5, and the drive shaft 6.

先ず、第1の摺動部であるシリンダー室1aの内周面とベーン3の先端3aにおいては、ベーン3の表面に炭素系のDLC-Si(シリコン含有ダイヤモンドライクカーボン)コーティング(非金属の一例)を施した構成となっている。このため、シリンダー室1aの内周面とベーン3の先端3aとの間の摺動は、金属相互の直接的な接触を避けることができ、高温条件となりにくく、また金属表面も活性化され難いので、冷媒の分解や重合を抑制することができる。   First, a carbon-based DLC-Si (silicon-containing diamond-like carbon) coating (an example of a nonmetal) is applied to the surface of the vane 3 at the inner peripheral surface of the cylinder chamber 1a which is the first sliding portion and the tip 3a of the vane 3. ). For this reason, the sliding between the inner peripheral surface of the cylinder chamber 1a and the tip 3a of the vane 3 can avoid direct contact between metals, is not likely to be in a high temperature condition, and the metal surface is not easily activated. Therefore, the decomposition and polymerization of the refrigerant can be suppressed.

DLC-Siコーティングは、シリコンを含有したアモルファスカーボンであり、表層硬度(HmV)はHmV=2000〜2500、膜厚tはt=3μm程度である。   The DLC-Si coating is amorphous carbon containing silicon, the surface layer hardness (HmV) is HmV = 2000-2500, and the film thickness t is about t = 3 μm.

コーティングが施される基材となる前記摺動部を構成する部材、つまりシリンダー1、ローター2、ベーン3、主軸受4、副軸受5、又は駆動軸6は、コーティング後の摺動特性向上の観点から、その表面の粗度(Rz)がRz=1.0以下、その硬度(HmV)が
HmV=2000〜3000となるように構成されている。
The members constituting the sliding portion that is the base material to be coated, that is, the cylinder 1, the rotor 2, the vane 3, the main bearing 4, the auxiliary bearing 5, or the drive shaft 6 are improved in the sliding characteristics after coating. From the viewpoint, the surface roughness (Rz) is Rz = 1.0 or less, and the hardness (HmV) is HmV = 2000 to 3000.

第2の摺動部であるローター2のベーン溝2aとベーン3の側面部(両側面)3bにおいても、前述のベーン3の表面にDLC-Siコーティングを施すことにより、金属相互の直接的な接触を避けることができ、高温条件となりにくく、また金属表面も活性化されにくいので、冷媒の分解や重合を抑制することができる。   The DLC-Si coating is applied to the surface of the vane 3 in the vane groove 2a of the rotor 2 which is the second sliding portion and the side surface portions (both side surfaces) 3b of the vane 3, so Contact can be avoided, high temperature conditions are unlikely, and the metal surface is not easily activated, so that decomposition and polymerization of the refrigerant can be suppressed.

第3の摺動部である主軸受4の内周面と駆動軸6の主軸部6a、及び第4の摺動部である副軸受5の内周面と駆動軸6の副軸部6bにおいても、駆動軸6の表面にリン酸マンガン皮膜を形成することで、金属相互の直接的な接触を避けることができる。これにより、高温条件となり難く、また金属表面も活性化され難くなるので、冷媒の分解や重合を抑制することができる。なお、駆動軸6における主軸受4および副軸受5と接触のない周面に、リン酸マンガン皮膜を形成してもよい。   In the inner peripheral surface of the main bearing 4 that is the third sliding portion and the main shaft portion 6 a of the drive shaft 6, and the inner peripheral surface of the auxiliary bearing 5 that is the fourth sliding portion and the auxiliary shaft portion 6 b of the drive shaft 6. However, by forming a manganese phosphate film on the surface of the drive shaft 6, direct contact between metals can be avoided. This makes it difficult for high temperature conditions to occur and also makes it difficult for the metal surface to be activated, so that decomposition and polymerization of the refrigerant can be suppressed. A manganese phosphate coating may be formed on the peripheral surface of the drive shaft 6 that is not in contact with the main bearing 4 and the auxiliary bearing 5.

前記のように構成することで、スライディングベーン圧縮機200内の全ての摺動部において、金属相互の直接的な接触を防ぎ、圧縮要素101の部品として用いられている鉄系材料が、組成中に炭素の二重結合を有する冷媒の重合や分解の触媒として働くことを防止することができる。このため、スラッジを生成し難くなり、スライディングベーン圧縮機200の故障や冷凍回路内の詰まりが抑制され、長期に亘る信頼性を得ることが可能となる。   By configuring as described above, in all sliding portions in the sliding vane compressor 200, direct contact between metals is prevented, and the iron-based material used as a component of the compression element 101 is in composition. It can be prevented that it acts as a catalyst for polymerization or decomposition of a refrigerant having a carbon double bond. For this reason, it becomes difficult to generate sludge, the failure of the sliding vane compressor 200 and the clogging in the refrigeration circuit are suppressed, and long-term reliability can be obtained.

実施形態2.
前述の実施形態1においては、4箇所の摺動部の全てに対し、それぞれ金属相互の接触を避けるようにすることで、組成中に炭素の二重結合を有する冷媒の重合や分解に対する鉄系材料の触媒効果も抑制するようにしたものを例に挙げて説明したが、本発明はこれに限るものでなく、一部の摺接部、又は摺接部の少なくとも一方における表面を、非金属で構成することで、前述の実施形態1と同様の作用、効果を期待できるものである。ここでは、第1の摺動部であるシリンダー室の内周面とベーンの先端に係る実施形態2について前述の図1及び図2を用いて説明する。
Embodiment 2. FIG.
In the first embodiment described above, all of the four sliding portions avoid contact with each other, so that the iron system against polymerization and decomposition of a refrigerant having a carbon double bond in the composition. Although the present invention has been described by taking as an example an example in which the catalytic effect of the material is also suppressed, the present invention is not limited to this, and the surface of a part of the sliding contact portion or at least one of the sliding contact portions is non-metallic. With this configuration, the same actions and effects as those of the first embodiment can be expected. Here, Embodiment 2 relating to the inner peripheral surface of the cylinder chamber, which is the first sliding portion, and the tip of the vane will be described with reference to FIGS. 1 and 2 described above.

前述の実施形態1では、ベーン3の先端3aにDLC-Si(シリコン含有ダイヤモンドライクカーボン)コーティングを施した例について説明したが、ベーン3に施すコーティングの材料としては、その他にDLC(ダイヤモンドライクカーボン)、CrN(窒化クロム)、TiN(窒化チタン)、TiCN(炭窒化チタン)、TiAlN(窒化チタンアルミ)、WC(タングステンカーバイト)、VC(バナジウムカーバイド)等の使用が可能である。この場合も、ベーン3の先端3aの摺動面に金属が露出しないため、これらのコーティングにおいても前述の実施形態1と同様に、組成中に炭素の二重結合を有する冷媒の分解や重合を抑制する効果が得られる。   In the first embodiment described above, the example in which the tip 3a of the vane 3 is coated with DLC-Si (silicon-containing diamond-like carbon) has been described. However, as a material for the coating applied to the vane 3, DLC (diamond-like carbon) is also used. ), CrN (chromium nitride), TiN (titanium nitride), TiCN (titanium carbonitride), TiAlN (titanium nitride aluminum), WC (tungsten carbide), VC (vanadium carbide) and the like can be used. Also in this case, since the metal is not exposed on the sliding surface of the tip 3a of the vane 3, in these coatings, as in the first embodiment, the refrigerant having a carbon double bond in the composition is decomposed or polymerized. The effect of suppressing is acquired.

また、ベーン3においては、前述のように金属の表面を非金属のコーティングで覆ってもよいが、それ以外に例えばベーン3そのものをセラミック系の材料で構成してもよい。材質としては、SiC(シリコンカーバイド)、ZrO2(二酸化ジルコニウム)、Al2O3(酸化アルミニウム)、Si3N4(窒化ケイ素)等があり、これらを用いることで、ベーン3の摺動面に金属が露出しないため、前述の実施形態1と同様に、組成中に炭素の二重結合を有する冷媒の重合や分解に対する鉄系材料の触媒効果も抑制することができる。 Further, in the vane 3, the metal surface may be covered with a non-metallic coating as described above, but the vane 3 itself may be made of a ceramic material, for example. Materials include SiC (silicon carbide), ZrO 2 (zirconium dioxide), Al 2 O 3 (aluminum oxide), Si 3 N 4 (silicon nitride), etc. By using these, the sliding surface of the vane 3 Since the metal is not exposed to the metal, the catalytic effect of the iron-based material on the polymerization and decomposition of the refrigerant having a carbon double bond in the composition can be suppressed as in the first embodiment.

このように、ベーン3の表面に金属面が露出しないようにすることで、組成中に炭素の二重結合を有する冷媒の分解や重合を抑制、冷媒の重合や分解に対する鉄系材料の触媒効果の抑制が可能となるが、この手法はベーン3が摺接する相手部材、ここではシリンダー室1aの内周面においても適用できるものである。すなわち、シリンダー室1aの内周面を含む表面にDLC-Si、DLC、CrN、TiN、TiCN、TiAlN、WC、VC等のコーティングを施す。これにより、シリンダー室1aの内周面の摺動面に金属が露出しないため、前述の実施形態1と同様の効果、つまり組成中に炭素の二重結合を有する冷媒の分解や重合の抑制が可能となる。   In this way, by preventing the metal surface from being exposed on the surface of the vane 3, the decomposition and polymerization of the refrigerant having a carbon double bond in the composition is suppressed, and the catalytic effect of the iron-based material on the polymerization and decomposition of the refrigerant. However, this method can also be applied to the mating member with which the vane 3 is slidably contacted, here, the inner peripheral surface of the cylinder chamber 1a. That is, the surface including the inner peripheral surface of the cylinder chamber 1a is coated with DLC-Si, DLC, CrN, TiN, TiCN, TiAlN, WC, VC or the like. Thereby, since the metal is not exposed on the sliding surface of the inner peripheral surface of the cylinder chamber 1a, the same effect as that of the first embodiment described above, that is, the decomposition of the refrigerant having a carbon double bond and the suppression of the polymerization are suppressed. It becomes possible.

また、シリンダー1においても、前述のように金属の表面を非金属系のコーティングで覆う手法以外に、シリンダー1そのものをセラミック系の材料で構成してもよい。材質としては、SiC、ZrO2、Al2O3、Si3N4等が適用可能であり、これらを用いることで、シリンダー室1aの摺動面に金属が露出しないため、実施形態1と同様に、組成中に炭素の二重結合を有する冷媒の重合や分解に対する鉄系材料の触媒効果も抑制することができる。 In the cylinder 1 as well, the cylinder 1 itself may be made of a ceramic material other than the method of covering the metal surface with a non-metallic coating as described above. As materials, SiC, ZrO 2 , Al 2 O 3 , Si 3 N 4, etc. can be applied. By using these, the metal is not exposed on the sliding surface of the cylinder chamber 1 a, so that it is the same as in the first embodiment. In addition, the catalytic effect of the iron-based material on the polymerization and decomposition of the refrigerant having a carbon double bond in the composition can also be suppressed.

実施形態3.
ここでは、第2の摺動部であるローターのベーン溝とベーンの側面部に係る実施形態3について前述の図1及び図2を用いて説明する。
Embodiment 3. FIG.
Here, Embodiment 3 according to the vane groove of the rotor which is the second sliding portion and the side surface portion of the vane will be described with reference to FIGS. 1 and 2 described above.

前述したベーン3の側面部(両側面)3bに、DLC、CrN、TiN、TiCN、TiAlN、WC、VC等のコーティングを施すことにより、第2の摺動部においても、ベーン3の摺動面である側面部(両側面)3bに金属が露出することを防止することができる。このため、前述の実施形態1と同様に、組成中に炭素の二重結合を有する冷媒の分解や重合を抑制する効果が得られる。また、ベーン3の材質を、SiC、ZrO2、Al2O3、Si3N4等のセラミックとすることで、第2の摺動部においてもベーン3の摺動面に金属が露出するのを防ぐことができて、前述の実施形態1と同様に、組成中に炭素の二重結合を有する冷媒の重合や分解に対する鉄系材料の触媒効果も抑制することができる。 By applying the coating of DLC, CrN, TiN, TiCN, TiAlN, WC, VC, etc. to the side surface (both sides) 3b of the vane 3 described above, the sliding surface of the vane 3 is also applied to the second sliding portion. It is possible to prevent the metal from being exposed to the side surface portions (both side surfaces) 3b. For this reason, the effect which suppresses decomposition | disassembly and superposition | polymerization of the refrigerant | coolant which has a carbon double bond in a composition like the above-mentioned Embodiment 1 is acquired. Further, by using a material such as SiC, ZrO 2 , Al 2 O 3 , or Si 3 N 4 as the material of the vane 3, the metal is exposed on the sliding surface of the vane 3 even in the second sliding portion. As in the first embodiment, the catalytic effect of the iron-based material on the polymerization and decomposition of the refrigerant having a carbon double bond in the composition can also be suppressed.

このように、ベーン3の表面に金属面が露出しないようにすることで、組成中に炭素の二重結合を有する冷媒の分解や重合を抑制、冷媒の重合や分解に対する鉄系材料の触媒効果の抑制が可能となるが、この手法はベーン3が摺接する相手部材、ここではローター2のベーン溝2aにおいても適用できるものである。すなわち、ローター2のベーン溝2aを含む表面にDLC-Si、DLC、CrN、TiN、TiCN、TiAlN、WC、VC等のコーティングを施す。これにより、ローター2のベーン溝2aの摺動面に金属が露出しないため、前述の実施形態1と同様の効果、つまり組成中に炭素の二重結合を有する冷媒の分解や重合の抑制が可能となる。   In this way, by preventing the metal surface from being exposed on the surface of the vane 3, the decomposition and polymerization of the refrigerant having a carbon double bond in the composition is suppressed, and the catalytic effect of the iron-based material on the polymerization and decomposition of the refrigerant. However, this method can also be applied to the mating member with which the vane 3 is in sliding contact, here, the vane groove 2 a of the rotor 2. That is, the surface including the vane groove 2a of the rotor 2 is coated with DLC-Si, DLC, CrN, TiN, TiCN, TiAlN, WC, VC, or the like. Thereby, since the metal is not exposed on the sliding surface of the vane groove 2a of the rotor 2, the same effect as that of the first embodiment, that is, the decomposition of the refrigerant having a carbon double bond in the composition and the suppression of the polymerization are possible. It becomes.

また、ローター2においても、前述のように金属の表面を非金属系のコーティングで覆う手法以外に、ローター2そのものをセラミック系の材料で構成してもよい。材質としては、SiC、ZrO2、Al2O3、Si3N4等が適用可能であり、これらを用いることで、ローター2の摺動面に金属が露出しないため、実施形態1と同様に、組成中に炭素の二重結合を有する冷媒の重合や分解に対する鉄系材料の触媒効果も抑制することができる。 In the rotor 2 as well, the rotor 2 itself may be made of a ceramic material in addition to the method of covering the metal surface with a non-metallic coating as described above. As materials, SiC, ZrO 2 , Al 2 O 3 , Si 3 N 4, etc. can be applied. By using these, the metal is not exposed on the sliding surface of the rotor 2. The catalytic effect of the iron-based material on the polymerization and decomposition of the refrigerant having a carbon double bond in the composition can also be suppressed.

なお、前述の各本実施形態では、単気筒のスライディングベーン圧縮機200を例に挙げて説明したが、多気筒のスライディングベーン圧縮機や、その他の密閉容器内に圧縮要素と電動要素とを備える、例えばスクロール圧縮機にも本発明を適用できることは言うまでもない。   In each of the above-described embodiments, the single-cylinder sliding vane compressor 200 has been described as an example, but a multi-cylinder sliding vane compressor or other sealed container includes a compression element and an electric element. Needless to say, the present invention can be applied to, for example, a scroll compressor.

1 シリンダー(相手部材)、2 ローター(相手部材)、2a ベーン溝(相手部材の摺接部)、3 ベーン(摺動部材)、3a ベーンの先端(摺動部材の摺接部)、3b ベーンの両側面(摺動部材の摺接部)、101 圧縮要素、102 電動要素、200 スライディングベーン圧縮機(圧縮機)。   1 cylinder (mating member), 2 rotor (mating member), 2a vane groove (sliding contact part of the mating member), 3 vane (sliding member), 3a tip of the vane (sliding contact part of the sliding member), 3b vane Both side surfaces (sliding contact portion of sliding member), 101 compression element, 102 electric element, 200 sliding vane compressor (compressor).

Claims (4)

摺動部材を有し冷媒を圧縮する圧縮要素と、該圧縮要素を駆動する電動要素とを備え、前記冷媒として、組成中に炭素の二重結合を有するハロゲン化炭化水素、組成中に炭素の二重結合を有する炭化水素、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む混合物、のいずれかを用いてなる圧縮機において、
前記圧縮要素の前記摺動部材の摺接部、又は前記摺動部材が摺接する相手部材の摺接部の、少なくとも一方における表面は、非金属の被膜でコーティングされ、
前記コーティングされた摺接部は、コーティング前の状態で、表面の粗度(Rz)がRz=1.0以下、硬度(HmV)がHmV=2000〜3000であることを特徴とする圧縮機。
A compression element that has a sliding member and compresses the refrigerant; and an electric element that drives the compression element. The refrigerant includes a halogenated hydrocarbon having a carbon double bond in the composition, and a carbon in the composition. A hydrocarbon having a double bond, a halogenated hydrocarbon having a carbon double bond in the composition, or a mixture containing at least one of a hydrocarbon having a carbon double bond in the composition is used. In the compressor,
The surface of at least one of the sliding contact portion of the sliding member of the compression element or the sliding contact portion of the mating member with which the sliding member is in sliding contact is coated with a non-metallic film,
The coated sliding contact portion has a surface roughness (Rz) of Rz = 1.0 or less and a hardness (HmV) of HmV = 2000 to 3000 in a state before coating.
前記被膜は、DLC(ダイヤモンドライクカーボン)、DLC−Si(シリコン含有ダイヤモンドライクカーボン)、CrN(窒化クロム)、TiN(窒化チタン)、TiCN(炭窒化チタン)、TiAlN(窒化チタンアルミ)、WC(タングステンカーバイド)、VC(バナジウムカーバイド)、のいずれかでなることを特徴とする請求項1記載の圧縮機。 The coating is composed of DLC (diamond-like carbon), DLC-Si (silicon-containing diamond-like carbon), CrN (chromium nitride), TiN (titanium nitride), TiCN (titanium carbonitride), TiAlN (titanium nitride aluminum), WC ( tungsten carbide), VC (vanadium carbide), compressor according to claim 1 Symbol mounting characterized by comprising either a. 前記圧縮要素は、シリンダーと、前記シリンダーの室内を回転するローターと、前記ローターのベーン溝内に収納されて該ローターの回転による遠心力と背圧により前記シリンダーの内周面に摺接しながら前記ベーン溝内を摺動するベーンとを備えており、
前記摺動部材とは、前記ベーンであり、これが摺接する前記相手部材とは、前記シリンダーであり、これらの摺接部とは、ベーン先端面とシリンダー内周面であることを特徴とする請求項1又は請求項記載の圧縮機。
The compression element includes a cylinder, a rotor that rotates in the chamber of the cylinder, and is housed in a vane groove of the rotor, and is in sliding contact with an inner peripheral surface of the cylinder by centrifugal force and back pressure due to rotation of the rotor. A vane sliding in the vane groove,
The sliding member is the vane, and the mating member with which the sliding member contacts is the cylinder, and the sliding contact portions are a vane tip surface and a cylinder inner peripheral surface. The compressor according to claim 1 or 2 .
前記圧縮要素は、シリンダーと、前記シリンダーの室内を回転するローターと、前記ローターのベーン溝内に収納されて該ローターの回転による遠心力と背圧により前記シリンダーの内周面に摺接しながら前記ベーン溝内を摺動するベーンとを備えており、
前記摺動部材とは、前記ベーンであり、これが摺接する前記相手部材とは、前記ローターであり、これらの摺接部とは、ベーン両側面とベーン溝内面であることを特徴とする請求項1又は請求項記載の圧縮機。
The compression element includes a cylinder, a rotor that rotates in the chamber of the cylinder, and is housed in a vane groove of the rotor, and is in sliding contact with an inner peripheral surface of the cylinder by centrifugal force and back pressure due to rotation of the rotor. A vane sliding in the vane groove,
The sliding member is the vane, and the mating member with which the sliding member is slidably contacted is the rotor, and these slidable contact portions are vane side surfaces and vane groove inner surface. The compressor according to claim 1 or 2 .
JP2009029751A 2009-02-12 2009-02-12 Compressor Expired - Fee Related JP5368819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009029751A JP5368819B2 (en) 2009-02-12 2009-02-12 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009029751A JP5368819B2 (en) 2009-02-12 2009-02-12 Compressor

Publications (2)

Publication Number Publication Date
JP2010185357A JP2010185357A (en) 2010-08-26
JP5368819B2 true JP5368819B2 (en) 2013-12-18

Family

ID=42766162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009029751A Expired - Fee Related JP5368819B2 (en) 2009-02-12 2009-02-12 Compressor

Country Status (1)

Country Link
JP (1) JP5368819B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5379115B2 (en) * 2010-12-13 2013-12-25 株式会社神戸製鋼所 Reciprocating compressor
JP6967353B2 (en) * 2017-02-15 2021-11-17 三菱重工サーマルシステムズ株式会社 Air conditioner and air conditioning system
CN109026693B (en) * 2018-08-31 2023-10-03 珠海格力电器股份有限公司 Pump body assembly, compressor and air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558889U (en) * 1992-01-14 1993-08-03 株式会社リケン Rotary compressor
JP3664511B2 (en) * 1994-12-27 2005-06-29 東芝キヤリア株式会社 Refrigerant, refrigerant compressor and refrigeration system
JP2008267251A (en) * 2007-04-19 2008-11-06 Sanden Corp Compressor

Also Published As

Publication number Publication date
JP2010185357A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
JP5294719B2 (en) Rotary compressor
JP6089912B2 (en) Refrigerant compressor
US9169839B2 (en) Scroll compressor
US20140314607A1 (en) Refrigerant compressor
JP3918814B2 (en) Fluid machinery
JP5001018B2 (en) Scroll type fluid machine
JP5368819B2 (en) Compressor
JP4932793B2 (en) Refrigeration cycle equipment
WO2006035680A1 (en) Slide member and fluid machine
JP2010002099A (en) Refrigerating cycle device
JP5132711B2 (en) Vane, rolling piston type single-stage rotary hermetic compressor, water heater, and vane manufacturing method
JP2011252475A (en) Rotary compressor
JP2010255449A (en) Rotary compressor
JP4616140B2 (en) Hermetic compressor and water heater
JP2010255448A (en) Rotary compressor
JP2006275280A (en) Sliding member and fluid machine
JP5525863B2 (en) Scroll type fluid machine
JP2006009576A (en) Scroll compressor
JP2012007883A (en) Refrigerating cycle device and method for manufacturing the same
JP2007085208A (en) Rotary compressor
JP2006016992A (en) Fluid machine
JP2010116810A (en) Rotary compressor
JP2023147120A (en) shaft seal
JP2007198289A (en) Fluid machine
JP2021014811A (en) Scroll type fluid machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130816

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130913

R150 Certificate of patent or registration of utility model

Ref document number: 5368819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees