[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5356593B2 - ポリエステル樹脂組成物からなる成形体 - Google Patents

ポリエステル樹脂組成物からなる成形体 Download PDF

Info

Publication number
JP5356593B2
JP5356593B2 JP2012277750A JP2012277750A JP5356593B2 JP 5356593 B2 JP5356593 B2 JP 5356593B2 JP 2012277750 A JP2012277750 A JP 2012277750A JP 2012277750 A JP2012277750 A JP 2012277750A JP 5356593 B2 JP5356593 B2 JP 5356593B2
Authority
JP
Japan
Prior art keywords
cellulose fiber
polyester resin
fine cellulose
resin composition
fiber composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012277750A
Other languages
English (en)
Other versions
JP2013151661A (ja
Inventor
基 小西
彰克 木村
正洋 藤岡
雅弘 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2012277750A priority Critical patent/JP5356593B2/ja
Publication of JP2013151661A publication Critical patent/JP2013151661A/ja
Application granted granted Critical
Publication of JP5356593B2 publication Critical patent/JP5356593B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

本発明は、ポリエステル樹脂組成物に関する。さらに詳しくは、日用雑貨品、家電部品、自動車部品等として好適に使用し得るポリエステル樹脂組成物、該ポリエステル樹脂組成物からなる成形体、及び該成形体の製造方法に関する。
従来、有限な資源である石油由来のプラスチック材料が多用されていたが、近年、環境に対する負荷の少ない技術が脚光を浴びるようになり、かかる技術背景の下、天然に多量に存在するバイオマスであるセルロース繊維を用いた材料が注目されている。
例えば、非特許文献1〜3には、セルロースナノウィスカーと呼ばれる針状の微細セルロース繊維を、トルエン、シクロヘキサン、クロロホルム等の有機溶媒中に分散させた分散液を用いて、ポリ乳酸とセルロースナノウィスカーとの複合材料を得ることが記載されている。このセルロースナノウィスカーは、原料セルロースを硫酸で加水分解した後、超音波処理することにより得られるが、そのままではアルコールや非水系溶媒などの有機溶媒中での分散性に劣るものである。よって、分散液を調製するにあたって、非特許文献1〜3では、セルロースナノウィスカーにフェニル基含有リン酸エステル等の陰イオン性界面活性剤を作用させて、その表面を改質(疎水化)することで有機溶媒中での安定分散を可能にしている。
また、本件出願人は、先に、ナノサイズの繊維径をもった微細セルロース繊維として、平均繊維径200nm以下且つカルボキシキ基含有量0.1〜2mmol/gのセルロース繊維を用いて、ポリ乳酸と混合することにより、高い弾性率、引張強度、及び透明性を有する複合材料が得られることを報告している(特許文献1参照)。この微細セルロース繊維は、木材パルプ等の天然セルロース繊維を、2,2,6,6−テトラメチル−1−ピペリジン−N−オキシル(TEMPO)触媒の下で酸化処理し、得られた酸化物の分散液をミキサー等で解繊処理することにより得られるもので、従来のナノファイバーと呼ばれる繊維よりも更に微小な繊維径を有する。
さらに、本件出願人は、前記微細セルロース繊維の有機溶媒や樹脂中での分散安定性が十分ではないことから、該微細セルロース繊維に、第1級〜3級アミン化合物、第4級アンモニウム化合物等の陽イオン界面活性剤を含む界面活性剤を吸着させて、微細セルロース繊維複合体を調製している。該微細セルロース繊維複合体は、有機溶媒や樹脂中での分散安定性に優れるため、ポリ乳酸等のプラスチック材料との複合に好適であり、高い機械的強度と透明性とを併せもった環境負荷低減型の複合材料を提供することが可能となる(特許文献2参照)。
特開2011−140632号公報 WO2011/071156号パンフレット
L.Heux,et al.,Langmuir,16(21),2000 C.Bonini,et al.,Langmuir,18(8),2002 L.Petersson,et al.,Composites Science and Technology,67,2007
しかし、近年、これらバイオマス製品を日用雑貨品、家電部品、自動車部品等のより広範な用途に使用することが期待されており、優れた透明性を有しながら、機械的強度に優れる、さらなるバイオマス製品が求められている。
本発明の課題は、透明性が良好で、かつ、機械的強度に優れ、環境に対する負荷の少ないポリエステル樹脂組成物、該ポリエステル樹脂組成物からなる成形体、及び該成形体の製造方法を提供することにある。
本発明者らは前記課題を鋭意検討した結果、特許文献1に記載の微細セルロース繊維に炭化水素基をアミド結合を介して連結させたものを、ポリエステル樹脂に配合することにより、透明性が良好で、かつ、機械的強度に加えて、熱安定性(高温での混練や成形における着色抑制など)にも優れる樹脂組成物が得られ、該樹脂組成物からなる熱成形品は透明性及び耐熱性に優れ、該樹脂組成物からなる射出成形体は機械的強度及び耐熱性に優れることを見出し、本発明を完成するに至った。
即ち、本発明は下記〔1〕〜〔5〕に関する。
〔1〕 ポリエステル樹脂、及び、微細セルロース繊維に炭化水素基がアミド結合を介して連結してなる、平均繊維径が0.1〜200nmの微細セルロース繊維複合体を含有してなるポリエステル樹脂組成物。
〔2〕 前記〔1〕記載のポリエステル樹脂組成物からなる熱成形品。
〔3〕 前記〔1〕記載のポリエステル樹脂組成物からなる射出成形体。
〔4〕 下記工程(1−1)〜(1−3)を含む前記〔2〕記載の熱成形品の製造方法。
工程(1−1):微細セルロース繊維に炭化水素基がアミド結合を介して連結してなる、平均繊維径が0.1〜200nmの微細セルロース繊維複合体及びポリエステル樹脂を含有する原料を溶融混練して、ポリエステル樹脂組成物を調製する工程
工程(1−2):工程(1−1)で得られたポリエステル樹脂組成物を押出成形又はプレス成形してシートを得る工程
工程(1−3):工程(1−2)で得られたシートを熱成形して熱成形品を得る工程
〔5〕 下記工程(2−1)〜(2−2)を含む前記〔3〕記載の射出成形体の製造方法。
工程(2−1):微細セルロース繊維に炭化水素基がアミド結合を介して連結してなる、平均繊維径が0.1〜200nmの微細セルロース繊維複合体及びポリエステル樹脂を含有する原料を溶融混練して、ポリエステル樹脂組成物を調製する工程
工程(2−2):工程(2−1)で得られたポリエステル樹脂組成物を金型内に射出成形する工程
本発明のポリエステル樹脂組成物は、透明性が良好で、実用上十分な機械的強度を有し、かつ熱安定性に優れることから、該樹脂組成物からなる熱成形品は透明性及び耐熱性に優れ、該樹脂組成物からなる射出成形体は機械的強度及び耐熱性に優れるという優れた効果を奏する。
図1は、実施例の熱成形品を調製した際に用いた金型を示す図である。
本発明のポリエステル樹脂組成物は、ポリエステル樹脂と平均繊維径が0.1〜200nmの微細セルロース繊維複合体を含有するものであって、該微細セルロース繊維複合体が微細セルロース繊維の表面に炭化水素基がアミド結合を介して連結されたものであることに特徴を有する。なお、本明細書において、「炭化水素基がアミド結合を介して」とは、アミド基の炭素原子がセルロース表面に結合し、窒素原子に炭化水素基が共有結合で結合した状態を意味する。
一般的に、天然セルロースの生合成においては、ミクロフィブリルと呼ばれるナノファイバーがまず形成され、これらが多束化することで高次な固体構造が構築される。本発明で用いられる微細セルロース繊維は、後述するように、これを原理的に利用して得られるものであり、天然由来のセルロース固体原料におけるミクロフィブリル間の強い凝集をもたらす表面間の強固な水素結合を弱めるために、その一部を酸化してカルボキシ基に変換することによって得られる。よって、セルロース表面に存在するカルボキシ基量(カルボキシ基含有量)が多い方が、より微小な繊維径として安定に存在することができ、また水中では、電気的な反発力によりミクロフィブリルの凝集が抑制されて、ナノファイバーの分散安定性がより増大する。しかしながら、前記微細セルロース繊維は、親水性のカルボキシ基が表面に存在するために、疎水性の有機溶媒や樹脂中での分散安定性が十分ではない。そこで、前記微細セルロース繊維が微小な繊維径を有したまま、有機溶媒や樹脂中で安定に分散するように鋭意検討した結果、驚くべきことに、表面のカルボキシ基を、炭化水素基を有するアミド基に置換することにより、得られた表面処理後の微細セルロース繊維(微細セルロース繊維複合体又は表面改質微細セルロース繊維ともいう)が有機溶媒や樹脂中での分散性が良好となり、樹脂に配合した場合には、透明性が良好で、機械的強度に優れ、さらには耐熱性にも優れる樹脂組成物が得られることが判明した。また、かかる特性の樹脂組成物を射出成形体や熱成形品等に成形した場合には、これらの成形体も前記特性を有することが判明した。その詳細な理由は不明であるが、微細セルロース繊維表面を、炭化水素基を有するアミド基に置換することで、微細セルロース繊維表面が疎水的になり、樹脂中の分散性が向上するためであると推察される。なお、本明細書において、「機械的強度」は後述の「引張弾性率」、「曲げ強度」により評価される特性のことを意味する。また、「耐熱性」は後述の「熱変形温度」、「貯蔵弾性率」により評価される特性のことを意味する。
〔ポリエステル樹脂組成物〕
[ポリエステル樹脂]
ポリエステル樹脂としては、当該分野において公知のものであれば特に限定はないが、生分解性を有していることが好ましく、生分解性ポリエステル樹脂が好ましい。具体的には、ポリヒドロキシブチレート、ポリカプロラクトン、ポリブチレンサクシネート、ポリブチレンサクシネート/アジペート、ポリエチレンサクシネート、ポリエチレンテレフタレート、ポリ乳酸樹脂、ポリリンゴ酸、ポリグリコール酸、ポリジオキサノン、ポリ(2−オキセタノン)等の脂肪族ポリエステル樹脂;ポリブチレンサクシネート/テレフタレート、ポリブチレンアジペート/テレフタレート、ポリテトラメチレンアジペート/テレフタレート等の脂肪族芳香族コポリエステル樹脂;デンプン、セルロース、キチン、キトサン、グルテン、ゼラチン、ゼイン、大豆タンパク、コラーゲン、ケラチン等の天然高分子と上記の脂肪族ポリエステル樹脂あるいは脂肪族芳香族コポリエステル樹脂との混合物等が挙げられる。これらのなかでも、加工性、経済性、入手性、及び物性に優れることから、ポリブチレンサクシネート及びポリ乳酸樹脂が好ましく、ポリ乳酸樹脂がより好ましい。なお、本明細書において「生分解性」とは、自然界において微生物によって低分子化合物に分解され得る性質のことであり、具体的には、JIS K6953(ISO14855)「制御された好気的コンポスト条件の好気的かつ究極的な生分解度及び崩壊度試験」に基づいた生分解性のことを意味する。
ポリ乳酸樹脂としては、市販されているポリ乳酸樹脂(例えば、三井化学社製:商品名 レイシアH−100、H−280、H−400、H−440等や、Nature Works社製:商品名 Nature Works PLA/NW3001D、NW4032D、トヨタ自動車社製:商品名 エコプラスチックU'z S−09、S−12、S−17等)の他、乳酸やラクチドから合成したポリ乳酸が挙げられる。強度や耐熱性の向上の観点から、光学純度90%以上のポリ乳酸樹脂が好ましく、例えば、比較的分子量が高く、また光学純度の高いNature Works社製ポリ乳酸樹脂(NW4032D等)が好ましい。
また、本発明において、ポリ乳酸樹脂として、ポリエステル樹脂組成物の強度と可撓性の両立、耐熱性及び透明性の向上の観点から、異なる異性体を主成分とする乳酸成分を用いて得られた2種類のポリ乳酸からなるステレオコンプレックスポリ乳酸を用いてもよい。
ステレオコンプレックスポリ乳酸を構成する一方のポリ乳酸〔以降、ポリ乳酸(A)と記載する〕は、L体90〜100モル%、D体を含むその他の成分0〜10モル%を含有する。他方のポリ乳酸〔以降、ポリ乳酸(B)と記載する〕は、D体90〜100モル%、L体を含むその他の成分0〜10モル%を含有する。なお、L体及びD体以外のその他の成分としては、2個以上のエステル結合を形成可能な官能基を持つジカルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトン等が挙げられ、また、未反応の前記官能基を分子内に2つ以上有するポリエステル、ポリエーテル、ポリカーボネート等であってもよい。
ステレオコンプレックスポリ乳酸における、ポリ乳酸(A)とポリ乳酸(B)の重量比〔ポリ乳酸(A)/ポリ乳酸(B)〕は、10/90〜90/10が好ましく、20/80〜80/20がより好ましく、40/60〜60/40がさらに好ましい。
また、本発明におけるポリ乳酸樹脂は、ポリ乳酸樹脂以外の生分解性ポリエステル樹脂やポリプロピレン等の非生分解性樹脂とポリ乳酸樹脂とのブレンドによるポリマーアロイとして含有されていてもよい。
ポリエステル樹脂における、ポリ乳酸樹脂の含有量は、好ましくは80重量%以上、より好ましくは90重量%以上、さらに好ましくは実質的に100重量%である。
また、ポリエステル樹脂の含有量は、特に限定されないが、ポリエステル樹脂組成物中、50重量%以上が好ましく、60重量%以上がより好ましく、70重量%以上がさらに好ましい。
[微細セルロース繊維複合体]
本発明で用いられる微細セルロース繊維複合体は、微細セルロース繊維に炭化水素基がアミド結合を介して連結していることを1つの特徴とする。
<微細セルロース繊維>
(平均繊維径)
本発明で用いられる微細セルロース繊維複合体を構成する微細セルロース繊維は、平均繊維径が、均一な繊維径を持つ微細セルロース繊維複合体を製造する観点から、好ましくは0.1nm以上、より好ましくは0.2nm以上、さらに好ましくは0.5nm以上、さらに好ましくは0.8nm以上、よりさらに好ましくは1nm以上である。また、前記ポリエステル樹脂に含有させてポリエステル樹脂組成物(複合材料ともいう)とした時の機械的強度を十分に向上させる観点から、好ましくは200nm以下、より好ましくは100nm以下、さらに好ましくは50nm以下、さらに好ましくは20nm以下、よりさらに好ましくは10nm以下である。また、均一な繊維径を持つ微細セルロース繊維複合体を樹脂に含有させて得られる複合材料の機械的強度を向上させる観点から、平均繊維径は好ましくは0.1〜200nm、より好ましくは0.2〜100nm、さらに好ましくは0.5〜50nm、さらに好ましくは0.8〜20nm、よりさらに好ましくは1〜10nmである。該平均繊維径が0.1nm以上であると、繊維径を揃えることが容易であり、また該平均繊維径が200nm以下であると、ポリエステル樹脂に配合した際の機械的強度の向上効果が良好である。なお、本明細書において、セルロース繊維の平均繊維径は、原子間力顕微鏡(AFM)を用いて測定することができ、具体的には後述の実施例に記載の方法により測定される。一般に、高等植物から調製されるセルロースナノファイバーの最小単位は6×6の分子鎖がほぼ正方形の形でパッキングされていることから、AFMによる画像で分析される高さを繊維の幅と見なすことができる。
(カルボキシ基含有量)
微細セルロース繊維のカルボキシ基含有量は、平均繊維径1〜200nmという微小な繊維径のセルロース繊維を安定的に得る上で重要な要素である。本発明においては、前記カルボキシ基含有量は、安定な微細化の観点から、好ましくは0.1mmol/g以上、より好ましくは0.4mmol/g以上、さらに好ましくは0.6mmol/g以上である。また、取り扱い性を向上させる観点から、好ましくは3mmol/g以下、より好ましくは2mmol/g以下、さらに好ましくは1.8mmol/g以下である。また、カルボキシ基含有量は、安定な微細化及び取り扱い性を向上させる観点から、好ましくは0.1〜3mmol/g、より好ましくは0.1〜2mmol/g、さらに好ましくは0.4〜2mmol/g、よりさらに好ましくは0.6〜1.8mmol/gである。本発明で用いられる微細セルロース繊維に、カルボキシ基含有量がかかる範囲外である微細セルロース繊維が、意図せずに不純物として含まれることもあり得る。なお、「カルボキシ基含有量」とは、微細セルロース繊維を構成するセルロース中のカルボキシ基の総量を意味し、具体的には後述の実施例に記載の方法により測定される。
(平均アスペクト比)
微細セルロース繊維の平均アスペクト比(繊維長/繊維径)は、前記ポリエステル樹脂に含有させて複合材料とした時の機械的強度を十分に向上させる観点から、好ましくは10以上、より好ましくは20以上、さらに好ましくは50以上、よりさらに好ましくは100以上である。また、ポリエステル樹脂中の分散性低下に伴う機械的強度の低下を抑制する観点から、好ましくは1000以下、より好ましくは500以下、さらに好ましくは400以下、よりさらに好ましくは350以下である。また、平均アスペクト比は、好ましくは10〜1000、より好ましくは20〜500、さらに好ましくは50〜400、よりさらに好ましくは100〜350である。平均アスペクト比が上記範囲にある微細セルロース繊維は、ポリエステル樹脂に配合した際に該樹脂中での分散性に優れ、機械的強度が高く、脆性破壊し難い樹脂組成物が得られる。なお、本明細書において、平均アスペクト比は、分散液中のセルロース繊維濃度と分散液の水に対する比粘度との関係から、下記式(1)によりセルロース繊維のアスペクト比を逆算して求める。なお、下記式(1)は、The Theory of Polymer Dynamics,M.DOI and D.F.EDWARDS,CLARENDON PRESS・OXFORD,1986,P312に記載の剛直棒状分子の粘度式(8.138)と、Lb×ρ=M/Nの関係式〔式中、Lは繊維長、bは繊維幅(セルロース繊維断面は正方形とする)、ρはセルロース繊維の濃度(kg/m)、Mは分子量、Nはアボガドロ数を表す〕から導き出されるものである。また、上記の粘度式(8.138)において、剛直棒状分子をセルロース繊維とする。下記式(1)中、ηSPは比粘度、πは円周率、lnは自然対数、Pはアスペクト比(L/b)、γ=0.8、ρは分散媒の密度(kg/m)、ρはセルロース結晶の密度(kg/m)、Cはセルロースの質量濃度(C=ρ/ρ)を表す。
Figure 0005356593
(結晶化度)
微細セルロース繊維の結晶化度は、前記ポリエステル樹脂に含有させて複合材料とした時の機械的強度を向上させる観点から、好ましくは30%以上、より好ましくは35%以上、さらに好ましくは40%以上、よりさらに好ましくは45%以上である。また、アミド化反応の反応効率を向上させる観点から、好ましくは95%以下、より好ましくは90%以下、さらに好ましくは85%以下、よりさらに好ましくは80%以下である。また、結晶化度は、ポリエステル樹脂組成物の機械的強度とアミド化反応の反応効率を向上させる観点から、好ましくは30〜95%、より好ましくは35〜90%、さらに好ましくは40〜85%、よりさらに好ましくは45〜80%である。なお、本明細書において、セルロースの結晶化度は、X線回折法による回折強度値からSegal法により算出したセルロースI型結晶化度であり、下記計算式(A)により定義される。
セルロースI型結晶化度(%)=[(I22.6−I18.5)/I22.6]×100 (A)
〔式中、I22.6は、X線回折における格子面(002面)(回折角2θ=22.6°)の回折強度、I18.5は,アモルファス部(回折角2θ=18.5°)の回折強度を示す〕
なお、セルロースI型とは天然セルロースの結晶形のことであり、セルロースI型結晶化度とは、セルロース全体のうち結晶領域量の占める割合のことを意味する。
<炭化水素基>
本発明における微細セルロース繊維複合体は、上記の微細セルロース繊維に、炭化水素基がアミド結合を介して連結されている。微細セルロース繊維を炭化水素基により表面修飾、即ち、微細セルロース繊維表面に既に存在するカルボキシ基を選択して、炭化水素基を有するアミド基に置換することで、ポリエステル樹脂と配合した時に該樹脂中での分散性に優れるものとなり、得られるポリエステル樹脂組成物が本来有する透明性を維持しながら、機械的強度及び耐熱性を向上させることができる。また、該炭化水素基を導入する際にアミド結合を介することで微細セルロース繊維の耐熱性が向上し、高温での混練に十分耐えることが可能になり、樹脂中での分散性が向上することで、ポリエステル樹脂組成物の機械的強度及び耐熱性が向上するものと考えられ、ひいては、該ポリエステル樹脂組成物からなる成形体の機械的強度及び耐熱性も向上すると推定される。
前記炭化水素基は、飽和炭化水素基及び不飽和炭化水素基のいずれでもよいが、副反応を抑制する観点及び安定性の観点から、飽和炭化水素基であることが好ましい。また、該炭化水素基は、直鎖状又は分岐状の炭化水素基であることが好ましい。炭化水素基の炭素数は、取り扱い性の観点から、1以上が好ましく、2以上がより好ましく、3以上がさらに好ましい。また、入手容易性の観点から、30以下が好ましく、18以下がより好ましく、12以下がさらに好ましく、8以下がよりさらに好ましい。また、炭化水素基の炭素数は、1〜30が好ましく、2〜18がより好ましく、2〜12がさらに好ましく、3〜8がよりさらに好ましい。即ち、好適な炭化水素基としては、炭素数が1の炭化水素基、あるいは、炭素数が好ましくは2〜30、より好ましくは2〜18、さらに好ましくは2〜12、よりさらに好ましくは3〜8の、飽和又は不飽和の、直鎖状又は分岐状の炭化水素基が挙げられる。
炭化水素基の具体例としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、オクタデシル基等が挙げられる。これらは、単独で又は2種以上が任意の割合でそれぞれアミド結合を介して連結されていてもよい。
微細セルロース繊維複合体における炭化水素基の平均結合量は、前記微細セルロース繊維に対して、炭化水素基の結合量の制御が容易であることから、好ましくは0.001mmol/g以上、より好ましくは0.005mmol/g以上、さらに好ましくは0.01mmol/g以上である。また、炭化水素基をアミド結合を介して連結させる際の反応性の観点から、好ましくは3mmol/g以下、より好ましくは2mmol/g以下、さらに好ましくは1mmol/g以下である。また、炭化水素基の平均結合量は、0.001〜3mmol/gが好ましく、0.005〜2mmol/gがより好ましく、0.01〜1mmol/gがさらに好ましい。
また、炭化水素基の導入率は、得られるポリエステル樹脂組成物の機械的強度の観点から、1〜100%が好ましく、3〜95%がより好ましく、5〜95%がさらに好ましい。なお、本発明において、炭化水素基の平均結合量(mmol/g)及び導入率(%)は、具体的には後述の実施例に記載の方法で求められる。
<微細セルロース繊維複合体の製造方法>
微細セルロース繊維複合体は、微細セルロース繊維にアミド基を介して炭化水素基を導入できるのであれば、特に限定なく公知の方法に従って製造することができる。例えば、予め調製された微細セルロース繊維に、アミド基を介して炭化水素基を導入する反応を行ってもよいし、微細セルロース繊維を調製する際に続けて、アミド基を介して炭化水素基を導入する反応を行ってもよい。なお、微細セルロース繊維は、公知の方法、例えば、特開2011−140632号公報に記載の方法により製造することができる。
好適な製造方法としては、例えば、下記工程(A)及び工程(B)を含む製造方法が挙げられる。
工程(A):天然セルロース繊維をN−オキシル化合物存在下で酸化して、カルボキシ基含有セルロース繊維を得る工程
工程(B):カルボキシ基含有セルロース繊維と、炭化水素基を有する第1級又は第2級アミンとを反応させる工程
なお、前記好適な製造方法としては、工程(A)の後に後述する微細化工程を行い、カルボキシ基含有微細セルロース繊維とした後に工程(B)を行う方法(第1の製造形態)、及び、工程(A)の後に工程(B)を行い、その後に微細化工程を行う方法(第2の製造形態)が挙げられる。
以下、前記「第1の製造形態」に基づいて、微細セルロース繊維複合体の製造方法を説明する。
<工程(A)>
工程(A)は、天然セルロース繊維をN−オキシル化合物存在下で酸化して、カルボキシ基含有セルロース繊維を得る工程である。
工程(A)では、まず、水中に天然セルロース繊維を分散させたスラリーを調製する。スラリーは、原料となる天然セルロース繊維(絶対乾燥基準:150℃にて30分間加熱乾燥させた後の天然セルロース繊維の質量)に対して約10〜1000倍量(質量基準)の水を加え、ミキサー等で処理することにより得られる。天然セルロース繊維としては、例えば、針葉樹系パルプ、広葉樹系パルプ等の木材パルプ;コットンリンター、コットンリントのような綿系パルプ;麦わらパルプ、バガスパルプ等の非木材系パルプ;バクテリアセルロース等が挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。天然セルロース繊維は、叩解等の表面積を高める処理が施されていてもよい。また、前記市販のパルプのセルロースI型結晶化度は、通常80%以上である。
(酸化処理工程)
次に、上記天然セルロース繊維を、N−オキシル化合物の存在下で酸化処理して、カルボキシ基含有セルロース繊維を得る(以下、単に「酸化処理」と称する場合がある)。
N−オキシル化合物としては、炭素数1又は2のアルキル基を有するピペリジンオキシル化合物、ピロリジンオキシル化合物、イミダゾリンオキシル化合物、及びアザアダマンタン化合物から選ばれる1種以上の複素環式のN−オキシル化合物が好ましい。これらの中では、反応性の観点から、炭素数1又は2のアルキル基を有するピペリジンオキシル化合物が好ましく、2,2,6,6−テトラアルキルピペリジン−1−オキシル(TEMPO)、4−ヒドロキシ−2,2,6,6−テトラアルキルピペリジン−1−オキシル、4−アルコキシ−2,2,6,6−テトラアルキルピペリジン−1−オキシル、4−ベンゾイルオキシ−2,2,6,6−テトラアルキルピペリジン−1−オキシル、4−アミノ−2,2,6,6−テトラアルキルピペリジン−1−オキシル等のジ−tert−アルキルニトロキシル化合物、4−アセトアミド−TEMPO、4−カルボキシ−TEMPO、4−ホスフォノキシ−TEMPO等が挙げられる。これらのピペリジンオキシル化合物の中では、2,2,6,6−テトラメチルピペリジン−1−オキシル(TEMPO)、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル、4−メトキシ−2,2,6,6−テトラメチルピペリジン−1−オキシルがより好ましく、2,2,6,6テトラメチルピペリジン−1−オキシル(TEMPO)がさらに好ましい。
N−オキシル化合物の量は、触媒量であればよく、天然セルロース繊維(絶対乾燥基準)に対して、好ましくは0.001〜10質量%、より好ましくは0.01〜9質量%、さらに好ましくは0.1〜8質量%、よりさらに好ましくは0.5〜5質量%である。
天然セルロース繊維の酸化処理においては、酸化剤を使用することができる。酸化剤としては、溶媒をアルカリ性域に調整した場合の溶解度や反応速度等の観点から、酸素又は空気、過酸化物、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸及びそれらのアルカリ金属塩又はアルカリ土類金属塩、ハロゲン酸化物、窒素酸化物等が挙げられる。これらの中でも、アルカリ金属次亜ハロゲン酸塩が好ましく、具体的には、次亜塩素酸ナトリウムや次亜臭素酸ナトリウムが例示される。酸化剤の使用量は、天然セルロース繊維のカルボキシ基置換度(酸化度)に応じて選択すればよく、また反応条件によって酸化反応収率が異なるため一概には決められないが、原料である天然セルロース繊維(絶対乾燥基準)に対し、約1〜100質量%となる範囲である。
また、酸化反応をより一層効率よく行うため、助触媒として、臭化ナトリウム、臭化カリウム等の臭化物や、ヨウ化ナトリウム、ヨウ化カリウム等のヨウ化物等を用いることができる。助触媒の量は、その機能を発揮できる有効量であればよく、特に制限はない。
酸化処理における反応温度は、反応の選択性、副反応の抑制の観点から、好ましくは50℃以下、より好ましくは40℃以下、更に好ましくは20℃以下であり、その下限は、好ましくは−5℃以上である。
また、反応系のpHは酸化剤の性質に合わせることが好ましく、例えば、酸化剤として次亜塩素酸ナトリウムを用いる場合、反応系のpHはアルカリ側とすることが好ましく、pH7〜13が好ましく、pH10〜13がより好ましい。また、反応時間は1〜240分間が望ましい。
上記酸化処理を行うことにより、カルボキシ基含有量が好ましくは0.1〜3mmol/gの範囲の、カルボキシ基含有セルロース繊維が得られる。
(精製工程)
前記酸化反応で得られるカルボキシ基含有セルロース繊維は、触媒として用いるTEMPO等のN−オキシル化合物や副生塩を含む。そのまま次工程を行ってもよいが、精製を行って純度の高いカルボキシ基含有セルロース繊維を得ることもできる。精製方法としては、酸化反応における溶媒の種類、生成物の酸化の程度、精製の程度により最適な方法を採用することができる。例えば、良溶媒として水、貧溶媒としてメタノール、エタノール、アセトン等を用いた再沈殿、ヘキサン等の水と相分離する溶媒へのTEMPO等の抽出、及び塩のイオン交換、透析等による精製等が挙げられる。
(微細化工程)
第1の製造形態では、前記精製工程後、工程(A)で得られたカルボキシ基含有セルロース繊維を微細化する工程を行う。微細化工程では、前記精製工程を経たカルボキシ基含有セルロース繊維を溶媒中に分散させ、微細化処理を行うことが好ましい。この微細化工程を行うことにより、平均繊維径及び平均アスペクト比がそれぞれ前記範囲にある微細セルロース繊維が得られる。
分散媒としての溶媒は、水の他、メタノール、エタノール、プロパノール等の炭素数1〜6、好ましくは炭素数1〜3のアルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン等の炭素数3〜6のケトン、直鎖又は分岐状の炭素数1〜6の飽和炭化水素又は不飽和炭化水素、ベンゼン、トルエン等の芳香族炭化水素、塩化メチレン、クロロホルム等のハロゲン化炭化水素、炭素数2〜5の低級アルキルエーテル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、コハク酸メチルトリグリコールジエステル等の極性溶媒等が例示される。これらは、単独で又は2種以上を混合して用いることができるが、微細化処理の操作性の観点から、水、炭素数1〜6のアルコール、炭素数3〜6のケトン、炭素数2〜5の低級アルキルエーテル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、コハク酸メチルトリグリコールジエステル等の極性溶媒が好ましく、環境負荷低減の観点から、水がより好ましい。溶媒の使用量は、カルボキシ基含有セルロース繊維を分散できる有効量であればよく、特に制限はないが、カルボキシ基含有セルロース繊維に対して、好ましくは1.0〜500重量倍、より好ましくは2.0〜100重量倍使用することがより好ましい。
また、微細化処理で使用する装置としては公知の分散機が好適に使用される。例えば、離解機、叩解機、低圧ホモジナイザー、高圧ホモジナイザー、グラインダー、カッターミル、ボールミル、ジェットミル、短軸押出機、2軸押出機、超音波攪拌機、家庭用ジューサーミキサー等を用いることができる。また、微細化処理における反応物繊維の固形分濃度は50質量%以下が好ましい。
微細化工程後に得られるカルボキシ基含有微細セルロース繊維の形態としては、必要に応じ、固形分濃度を調整した懸濁液状(目視的に無色透明又は不透明な液)、あるいは乾燥処理した粉末状(但し、微細セルロース繊維が凝集した粉末状であり、セルロース粒子を意味するものではない)とすることもできる。なお、懸濁液状にする場合、分散媒として水のみを使用してもよく、水と他の有機溶媒(例えば、エタノール等のアルコール類)や界面活性剤、酸、塩基等との混合溶媒を使用してもよい。
このような天然セルロース繊維の酸化処理及び微細化処理により、セルロース構成単位のC6位の水酸基がアルデヒド基を経由してカルボキシ基へと選択的に酸化され、前記カルボキシ基含有量が好ましくは0.1〜3mmol/gのセルロースからなる、平均繊維径0.1〜200nmの微細化された、好ましくは30%以上の結晶化度を有するセルロース繊維を得ることができる。前記微細セルロース繊維は、セルロースI型結晶構造を有している。これは、本発明で用いる微細セルロース繊維が、I型結晶構造を有する天然由来のセルロース固体原料が表面酸化され微細化された繊維であることを意味する。なお、工程(A)において、天然セルロース繊維の酸化処理後に、さらに酸(例えば、塩酸)を反応させてカルボキシ基含有量を調整することができ、該反応は微細化処理前、微細化処理後のいずれに行ってもよい。
<工程(B)>
第1の製造形態において、工程(B)は、前記微細化工程を経て得られたカルボキシ基含有微細セルロース繊維に、炭化水素基を有する第1級又は第2級アミンを反応させて、微細セルロース繊維複合体を得る工程である。具体的には、カルボキシ基含有微細セルロース繊維に含有されるカルボキシ基と、炭化水素基を有する第1級又は第2級アミンのアミノ基とを縮合反応させてアミド結合を形成し、炭化水素基がアミド結合を介して連結された微細セルロース繊維複合体を得る。
工程(B)で用いられる、炭化水素基を有する第1級又は第2級アミンとしては、微細セルロース繊維複合体において前記した炭化水素基と同様の炭化水素基を有する第1級又は第2級アミンを用いることができる。
前記第1級アミンとしては、炭素数1〜18の第1級アミンを用いることができる。具体的にはメチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、2−エチルヘキシルアミン、デシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、オクタデシルアミン等が挙げられる。得られる樹脂組成物の透明性及び機械的強度の観点から、炭素数1〜12の第1級アミンが好ましく、具体的にはメチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、2−エチルヘキシルアミン、デシルアミン、ドデシルアミンが挙げられる。より好ましくは炭素数1〜8の第1級アミンであり、具体的にはメチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミンが挙げられ、さらに好ましくは炭素数1〜6の第1級アミンであり、具体的にはメチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミンが挙げられる。
前記第2級アミンとしては、ジメチルアミン、ジエチルアミン、ジイソプロピルアミン、ジオクチルアミン、ジデシルアミン、ジドデシルアミン、ジテトラデシルアミン、ジオクタデシルアミン等が挙げられる。
前記炭化水素基を有する第1級又は第2級アミンは、単独で又は2種以上を組み合わせて用いることができる。これらの中では、カルボキシ基との反応性の観点から、好ましくは炭素数1〜18、より好ましくは炭素数1〜12、さらに好ましくは炭素数1〜8、さらに好ましくは炭素数1〜6の直鎖状又は分岐状の炭化水素基を有する第1級アミンが好ましい。
前記アミンの使用量は、反応性の観点から、カルボキシ基含有微細セルロース繊維に含有されるカルボキシ基1molに対して、好ましくは0.01〜50molであり、より好ましくは0.05〜40molであり、さらに好ましくは0.1〜20molである。該アミン量が0.1mol以上であれば、カルボキシ基との反応性が良好でかつ反応制御が容易であり、20mol以下であれば、製品純度の観点から好ましい。なお、前記範囲に含まれる量のアミンを一度に反応に供しても、分割して反応に供してもよい。
前記カルボキシ基含有微細セルロース繊維と、前記アミンとの反応(以下、「縮合反応」又は「アミド結合形成反応」と称する場合がある)においては、公知の縮合剤を用いることもできる。
縮合剤としては、特には限定されないが、合成化学シリーズ ペプチド合成(丸善社)P116記載、又はTetrahedron,57,1551(2001)記載の縮合剤などが挙げられ、例えば、4−(4,6−ジメトキシ−1,3,5−トリアジン−2−イル)−4−メチルモルホリニウムクロライド(以下、「DMT−MM」と称する場合がある)等が挙げられる。
上記縮合反応においては、前記微細化工程における溶媒と同様のものを用いることができる。
前記縮合反応における反応時間及び反応温度は、用いるアミン及び溶媒の種類等に応じて適宜選択することができるが、反応率の観点から、好ましくは1〜24時間である。また、反応温度は、微細セルロース繊維の劣化を抑制する観点から、好ましくは0〜200℃である。
前記縮合反応後、未反応のアミンや縮合剤等を除去するために、適宜後処理を行ってもよい。該後処理の方法としては、例えば、ろ過、遠心分離、透析等を用いることができる。
第2の製造形態では、前記した各工程を、工程(A)、工程(B)、微細化工程の順で行うこと以外は、第1の製造形態と同様の方法で行うことができる。
かくしてカルボキシ基含有セルロース繊維と炭化水素基を有する第1級又は第2級アミンとの反応生成物である微細セルロース繊維複合体が得られる。得られた微細セルロース繊維複合体は、上記後処理を行った後の分散液の状態で使用することもできるし、あるいは乾燥処理等により該分散液から溶媒を除去して、乾燥した粉末状の微細セルロース繊維複合体を得て、これを使用することもできる。ここで「粉末状」とは、微細セルロース繊維複合体が凝集した粉末状であり、セルロース粒子を意味するものではない。
粉末状の微細セルロース繊維複合体としては、例えば、前記微細セルロース繊維複合体の分散液をそのまま乾燥させた乾燥物;該乾燥物を機械処理で粉末化したもの;前記微細セルロース繊維複合体の分散液を公知のスプレードライ法により粉末化したもの;前記微細セルロース繊維複合体の分散液を公知のフリーズドライ法により粉末化したもの等が挙げられる。前記スプレードライ法は、前記微細セルロース繊維複合体の分散液を大気中で噴霧し、乾燥させる方法である。
得られた微細セルロース繊維複合体は、カルボキシ基含有量が、引張弾性率及び透明性の観点から、好ましくは0.10mmol/g以上、より好ましくは0.20mmol/g以上、さらに好ましくは0.30mmol/g以上である。また、耐熱性(成型時の着色の少なさ)の観点から、好ましくは3mmol/g以下、より好ましくは2mmol/g以下、さらに好ましくは1.5mmol/g以下である。また、カルボキシ基含有量は、引張弾性率及び透明性と耐熱性のいずれも優れる観点から、好ましくは0.10〜3mmol/g、より好ましくは0.20〜2mmol/g、さらに好ましくは0.30〜1.5mmol/gである。
また、微細セルロース繊維複合体は、平均繊維径が、耐熱性(成型時の着色の少なさ)の観点から、好ましくは0.1nm以上、より好ましくは0.2nm以上、さらに好ましくは0.5nm以上、さらに好ましくは0.8nm以上、よりさらに好ましくは1nm以上である。また、引張弾性率及び透明性の観点から、好ましくは200nm以下、より好ましくは100nm以下、さらに好ましくは50nm以下、さらに好ましくは20nm以下、よりさらに好ましくは10nm以下である。また、平均繊維径は、引張弾性率及び透明性と耐熱性のいずれも優れる観点から、好ましくは0.1〜200nm、より好ましくは0.2〜100nm、さらに好ましくは0.5〜50nm、さらに好ましくは0.8〜20nm、よりさらに好ましくは1〜10nmである。
なお、微細セルロース繊維複合体は、工程(B)の反応により結晶性が低下することがないことから、前記微細セルロース繊維の結晶化度と同程度の結晶化度を有することが好ましい。
微細セルロース繊維複合体の含有量は、ポリエステル樹脂100重量部に対して、得られるポリエステル樹脂組成物の機械的強度の観点から、好ましくは0.01重量部以上、より好ましくは0.05重量部以上、さらに好ましくは0.1重量部以上である。また、得られるポリエステル樹脂組成物の機械的強度の観点から、好ましくは5重量部以下、より好ましくは1重量部以下、さらに好ましくは0.5重量部以下である。また、好適な含有量範囲としては、好ましくは0.01〜5重量部、より好ましくは0.05〜1重量部、さらに好ましくは0.1〜0.5重量部である。
本発明のポリエステル樹脂組成物には、前記ポリエステル樹脂及び微細セルロース繊維複合体以外に、さらに、可塑剤、結晶核剤、加水分解抑制剤を含有することができる。
[可塑剤]
可塑剤としては、特に限定はなく、従来からの可塑剤であるフタル酸エステルやコハク酸エステル、アジピン酸エステルといった多価カルボン酸エステル、グリセリン等脂肪族ポリオールの脂肪酸エステル等が挙げられる。なかでも、分子内に2個以上のエステル基を有するエステル化合物であって、該エステル化合物を構成するアルコール成分の少なくとも1種が水酸基1個当たり炭素数2〜3のアルキレンオキサイドを平均0.5〜5モル付加したアルコールであるエステル化合物が好ましく、具体的には、特開2008−174718号公報及び特開2008−115372号公報に記載の可塑剤が例示される。なお、本発明では、微細セルロース繊維複合体を良好に分散させる観点から、微細セルロース繊維複合体の分散媒として予め両者を混合させて含有させてもよい。
また、本発明では、耐揮発性の観点から、下記式(I)で表されるポリエステル系可塑剤(オリゴエステルともいう)が好ましい。
O−CO−R−CO−〔(OR)O−CO−R−CO−〕OR (I)
(式中、Rは炭素数が1〜4のアルキル基、Rは炭素数が2〜4のアルキレン基、Rは炭素数が2〜6のアルキレン基であり、mは1〜6の数、nは1〜12の数を示し、但し、全てのRは同一でも異なっていてもよく、全てのRは同一でも異なっていてもよい)
式(I)におけるRは、炭素数が1〜4、好ましくは1〜2のアルキル基を示し、1分子中に2個存在して、分子の両末端に存在する。Rは炭素数が1〜4であれば、直鎖であっても分岐鎖であってもよい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、tert−ブチル基が挙げられ、なかでも、ポリエステル樹脂との相溶性を向上させ可塑化効果を発現させる観点から、メチル基が好ましい。
式(I)におけるRは、炭素数が2〜4のアルキレン基を示し、直鎖のアルキレン基が好適例として挙げられる。具体的には、エチレン基、1,3−プロピレン基、1,4−ブチレン基が挙げられ、なかでも、ポリエステル樹脂との相溶性を向上させ可撓性を発現させる観点から、エチレン基、1,3−プロピレン基が好ましく、エチレン基がより好ましく、可撓性を発現させる観点及び経済性の観点から、エチレン基、1,4−ブチレン基が好ましく、エチレン基がより好ましい。但し、全てのRは同一でも異なっていてもよい。
式(I)におけるRは、炭素数が2〜6、好ましくは2〜3のアルキレン基を示し、ORはオキシアルキレン基を示す。Rは炭素数が2〜6であれば、直鎖であっても分岐鎖であってもよい。具体的には、エチレン基、1,2−プロピレン基、1,3−プロピレン基、1,2−ブチレン基、1,3−ブチレン基、1,4−ブチレン基、2−メチル−1,3−プロピレン基、1,2−ペンチレン基、1,4−ペンチレン基、1,5−ペンチレン基、2,2−ジメチル−1,3−プロピレン基、1,2−ヘキシレン基、1,5−ヘキシレン基、1,6−ヘキシレン基、2,5−ヘキシレン基、3−メチル−1,5−ペンチレン基が挙げられ、なかでも、ポリエステル樹脂との相溶性を向上させ可塑化効果を発現させる観点から、エチレン基、1,2−プロピレン基、1,3−プロピレン基が好ましい。但し、全てのRは同一でも異なっていてもよい。
mはオキシアルキレン基の平均の繰り返し数を示し、1〜6の数である。mが大きくなると、式(I)で表されるエステル化合物のエーテル基価が上がり、酸化されやすくなり安定性が低下する傾向がある。ポリエステル樹脂との相溶性を向上させる観点から、1〜4の数が好ましく、1〜3の数がより好ましい。
nは平均重合度を示し、1〜12の数である。ポリエステル樹脂との相溶性を向上させ、ポリエステル樹脂の可撓性を向上させる観点から、1〜4の数が好ましい。
かかる構造のうちでも、耐揮発性を向上させる観点から、コハク酸、グルタル酸、及びアジピン酸から選ばれる少なくとも1つの二塩基酸と、ジエチレングリコール、トリエチレングリコール、1,2−プロパンジオール、及び1,3−プロパンンジオールから選ばれる少なくとも1つの2価アルコールのオリゴエステル〔式(I)中、n=1.2〜3〕が好ましい。
式(I)で表される化合物は、市販品であっても公知の製造方法に従って合成したものを用いてもよく、例えば特開2012−62467号公報に開示されているような方法に従って製造することができる。
可塑剤の含有量は、ポリエステル樹脂組成物からなる成形体の耐熱性、透明性、成形性を向上させる観点から、ポリエステル樹脂100重量部に対して、好ましくは1〜50重量部、より好ましくは5〜30重量部である。
[結晶核剤]
結晶核剤としては、天然又は合成珪酸塩化合物、酸化チタン、硫酸バリウム、リン酸三カルシウム、炭酸カルシウム、リン酸ソーダ等の金属塩やカオリナイト、ハロイサイト、タルク、スメクタイト、バーミキュライト、マイカ等の無機系結晶核剤の他、エチレンビス脂肪酸アミドやプロピレンビス脂肪酸アミド、ブチレンビス脂肪酸アミド等や、フェニルホスホン酸金属塩等の有機系結晶核剤が挙げられる。これらのなかでも、透明性向上の観点から、有機系結晶核剤が好ましく、エチレンビスステアリン酸アミドやエチレンビスオレイン酸アミド等のエチレンビス脂肪酸アミド、プロピレンビス脂肪酸アミド、ブチレンビス脂肪酸アミド等のアルキレンビス脂肪酸アミドがより好ましく、エチレンビス12-ヒドロキシステアリン酸アミド等のアルキレンビスヒドロキシ脂肪酸アミドがさらに好ましい。また、強度向上の観点から、フェニルホスホン酸金属塩も好ましい。
結晶核剤の含有量は、ポリエステル樹脂組成物やポリエステル樹脂組成物からなる成形体の透明性向上の観点から、ポリエステル樹脂100重量部に対して、0.1〜1.0重量部が好ましく、0.1〜0.5重量部がより好ましい。
[加水分解抑制剤]
加水分解抑制剤としては、ポリカルボジイミド化合物やモノカルボジイミド化合物等のカルボジイミド化合物が挙げられ、ポリエステル樹脂組成物の耐久性、耐衝撃性を向上させる観点からポリカルボジイミド化合物が好ましく、ポリエステル樹脂組成物の耐久性、成形性(流動性)を向上させる観点から、モノカルボジイミド化合物が好ましい。また、ポリエステル樹脂組成物からなる成形品の耐久性、耐衝撃性、成形性をより向上させる観点から、モノカルボジイミドとポリカルボジイミドを併用することが好ましい。
ポリカルボジイミド化合物としては、ポリ(4,4’−ジフェニルメタンカルボジイミド)、ポリ(4,4’−ジシクロヘキシルメタンカルボジイミド)、ポリ(1,3,5−トリイソプロピルベンゼン)ポリカルボジイミド、ポリ(1,3,5−トリイソプロピルベンゼン及び1,3−ジイソプロピルベンゼン)ポリカルボジイミド等が挙げられ、モノカルボジイミド化合物としては、N,N’−ジ−2,6−ジイソプロピルフェニルカルボジイミド等が挙げられる。
前記カルボジイミド化合物は、ポリエステル樹脂組成物からなる成形品の耐久性、耐衝撃性及び成形性を満たすために、単独で又は2種以上組み合わせて用いてもよい。また、ポリ(4,4’−ジシクロヘキシルメタンカルボジイミド)はカルボジライトLA−1(日清紡ケミカル社製)を、ポリ(1,3,5−トリイソプロピルベンゼン)ポリカルボジイミド及びポリ(1,3,5−トリイソプロピルベンゼン及び1,3−ジイソプロピルベンゼン)ポリカルボジイミドは、スタバクゾールP及びスタバクゾールP−100(Rhein Chemie社製)を、N,N’−ジ−2,6−ジイソプロピルフェニルカルボジイミドはスタバクゾールI(Rhein Chemie社製)をそれぞれ購入して使用することができる。
加水分解抑制剤の含有量は、ポリエステル樹脂組成物からなる成形品の耐熱性、成形性を向上させる観点から、ポリエステル樹脂100重量部に対して、0.05〜3重量部が好ましく、0.10〜2重量部がより好ましい。
本発明のポリエステル樹脂組成物は、前記以外の他の成分として、充填剤(無機充填剤、有機充填剤)、難燃剤、酸化防止剤、炭化水素系ワックス類やアニオン型界面活性剤である滑剤、紫外線吸収剤、帯電防止剤、防曇剤、光安定剤、顔料、防カビ剤、抗菌剤、発泡剤等を、本発明の効果を損なわない範囲で含有することができる。また同様に、本発明の効果を阻害しない範囲内で他の高分子材料や他の樹脂組成物を添加することも可能である。
本発明のポリエステル樹脂組成物は、ポリエステル樹脂及び微細セルロース繊維複合体を含有するものであれば特に限定なく調製することができ、例えば、ポリエステル樹脂及び微細セルロース繊維複合体、さらに必要により各種添加剤を含有する原料(ポリエステル樹脂組成物用原料)を、密閉式ニーダー、1軸もしくは2軸の押出機、オープンロール型混練機等の公知の混練機を用いて溶融混練して調製することができる。原料は、予めヘンシェルミキサー、スーパーミキサー等を用いて均一に混合した後に、溶融混練に供することも可能である。なお、ポリエステル樹脂組成物を調製する際にポリエステル樹脂の可塑性を促進させるため、超臨界ガスを存在させて溶融混合させてもよい。
溶融混練温度は、ポリエステル樹脂組成物の成形性及び劣化防止を向上する観点から、ポリエステル樹脂の融点(Tm)以上であり、好ましくはTm〜Tm+100℃の範囲であり、より好ましくはTm〜Tm+50℃の範囲である。例えば、ポリエステル樹脂がポリ乳酸樹脂の場合、好ましくは170〜240℃であり、より好ましくは170〜220℃である。溶融混練時間は、溶融混練温度、混練機の種類によって一概には決定できないが、15〜900秒間が好ましい。なお、本明細書において、ポリエステル樹脂の融点は、JIS−K7121に基づく示差走査熱量測定の昇温法による結晶融解吸熱ピーク温度より求められ、例えば、昇温速度10℃/分で20℃から250℃まで昇温して測定することができる。
得られた溶融混練物は、結晶化速度をより向上させる観点から、溶融混練後に、溶融混練物を冷却してもよい。冷却温度は、溶融混練温度より、好ましくは60℃以上、より好ましくは70℃以上低い温度であり、具体的には、20〜120℃が好ましく、20〜100℃がより好ましい。冷却時間は、2〜90秒間が好ましく、5〜60秒間がより好ましい。なお、該冷却に際して、溶融混練物を公知の方法に従って成形してから冷却してもよい。
またさらに、冷却後には、好ましくは50〜120℃、より好ましくは60〜100℃で、好ましくは30〜180秒、より好ましくは30〜120秒、さらに好ましくは30〜60秒保持してもよい。なお、保持温度は、冷却温度と同一であっても異なっていてもよい。
かくして得られた本発明のポリエステル樹脂組成物は、加工性が良好で、かつ、高温での着色が抑制されているため、高温条件での使用が可能となり、各種用途、なかでも、自動車用途に好適に用いることができる。
〔ポリエステル樹脂成形体〕
本発明のポリエステル樹脂成形体は、本発明のポリエステル樹脂組成物を押出成形、射出成形、又はプレス成形することによって調製することができる。
押出成形では、例えば、加熱した押出機に充填された本発明のポリエステル樹脂組成物を溶融させた後にTダイから押出し、シート状成形体を得ることができる。このシート状成形体を直ぐに冷却ロールに接触させ、シートをポリエステル樹脂組成物のTg以下に冷却することでシートの結晶性を調整し、その後、冷却ロールから引き離し、それらを巻き取りロールにて巻き取り、シート状成形体を得ることもできる。なお、押出機に充填する際に、本発明のポリエステル樹脂組成物を構成する原料、例えば、ポリエステル樹脂及び微細セルロース繊維複合体、さらに必要により各種添加剤を含有する原料を充填して溶融混練後、押出し成形してもよい。
押出機の温度は、ポリエステル樹脂組成物を均一に混合し、且つポリエステル樹脂の劣化を防止する観点から、170〜240℃が好ましく、175〜220℃がより好ましく、180〜210℃がさらに好ましい。また冷却ロールの温度は、成形体の結晶性を調整する観点から、40℃以下が好ましく、30℃以下がより好ましく、10℃以下がさらに好ましい。
また押出速度は、成形体の結晶性を調整する観点から、1〜200m/分が好ましく、5〜150m/分がより好ましく、10〜100m/分がさらに好ましい。
射出成形では、例えば、本発明のポリエステル樹脂組成物を、シリンダー温度を好ましくはポリエステル樹脂の融点(Tm)+5〜Tm+50℃、より好ましくはTm+10〜Tm+30℃、具体的には、ポリエステル樹脂がポリ乳酸樹脂の場合、好ましくは180〜220℃、より好ましくは180〜210℃に設定した射出成形機を用いて、所望の形状の金型内に充填し、成形することができる。
金型温度は、結晶化速度向上及び作業性向上の観点から、150℃以下が好ましく、130℃以下がより好ましく、110℃以下がさらに好ましい。また30℃以上が好ましく、60℃以上がより好ましく、80℃以上がさらに好ましい。かかる観点から、金型温度は30〜150℃が好ましく、60〜130℃がより好ましく、80〜110℃がさらに好ましい。また、ポリエステル樹脂がポリ乳酸樹脂の場合、金型温度は、結晶化速度向上及び作業性向上の観点から、110℃以下が好ましく、90℃以下がより好ましく、80℃以下がさらに好ましい。また30℃以上が好ましく、40℃以上がより好ましく、60℃以上がさらに好ましい。かかる観点から、金型温度は30〜110℃が好ましく、40〜90℃がより好ましく、60〜80℃がさらに好ましい。
金型内での保持時間は、特に限定されないが、ポリエステル樹脂組成物からなる成形体の生産性の観点から、例えば90℃の金型において、2〜60秒が好ましく、3〜30秒がより好ましく、5〜20秒がさらに好ましい。
プレス成形で、例えば、シート状成形体を成形する場合は、シート形状を有する枠で本発明のポリエステル樹脂組成物を囲みプレス成形して調製することができる。
プレス成形の温度と圧力としては、例えば、好ましくは170〜240℃の温度、5〜30MPaの圧力の条件下、より好ましくは175〜220℃の温度、10〜25MPaの圧力の条件下、さらに好ましくは180〜210℃の温度、10〜20MPaの圧力の条件下でプレスすることができる。プレス時間は、プレスの温度と圧力によって一概には決定することができないが、1〜10分が好ましく、1〜7分がより好ましく、1〜5分がさらに好ましい。
また前記条件でプレスした後直ぐに、好ましくは0〜40℃の温度、5〜30MPaの圧力の条件下、より好ましくは10〜30℃の温度、10〜25MPaの圧力の条件下、さらに好ましくは10〜20℃の温度、10〜20MPaの圧力の条件下でプレスして冷却してもよい。この温度条件によるプレスにより、本発明のポリエステル樹脂組成物をそのTg以下に冷却して結晶性を調整するため、プレス時間は、プレスの温度と圧力によって一概には決定することができないが、1〜10分が好ましく、1〜7分がより好ましく、1〜5分がさらに好ましい。
シート状の成形体を調製する場合、加工性の観点から、その厚みは0.1〜1.5mmが好ましく、0.2〜1.4mmがより好ましく、0.3〜1.2mmがさらに好ましい。
かくして得られた本発明のポリエステル樹脂組成物の成形体は、機械的強度及び耐熱性に優れ、各種用途に好適に用いることができる。
また、本発明では、本発明のポリエステル樹脂成形体(本発明のポリエステル樹脂組成物からなる成形体)として、以下の態様の成形体を提供する。
態様1:ポリエステル樹脂、及び、微細セルロース繊維に炭化水素基がアミド結合を介して連結してなる、平均繊維径が0.1〜200nmの微細セルロース繊維複合体を含有してなるポリエステル樹脂組成物からなる熱成形品
態様2:ポリエステル樹脂、及び、微細セルロース繊維に炭化水素基がアミド結合を介して連結してなる、平均繊維径が0.1〜200nmの微細セルロース繊維複合体を含有してなるポリエステル樹脂組成物からなる射出成形体
態様1の熱成形品及び態様2の射出成形体は、ポリエステル樹脂と微細セルロース繊維複合体を含有する本発明のポリエステル樹脂組成物を成形したものであればよく、それぞれの成形方法は公知の方法に従って行なうことができ、該微細セルロース繊維複合体が微細セルロース繊維の表面に炭化水素基がアミド結合を介して連結されたものであることに特徴を有する。
態様1及び態様2の成形体におけるポリエステル樹脂は、前記と同様のものを用いることができる。
また、態様1及び態様2の成形体における微細セルロース繊維複合体も、前記と同様のものを用いることができ、炭化水素基の種類、平均結合量、平均繊維径等も成形体の種類によって一概には決定されない。態様1の成形体における微細セルロース繊維複合体の含有量は、引張り弾性率や耐熱性の観点から、ポリエステル樹脂100重量部に対して、好ましくは0.01重量部以上、より好ましくは0.05重量部以上、さらに好ましくは0.1重量部以上である。また、熱成形品の透明性の観点から、好ましくは5重量部以下、より好ましくは1重量部以下、さらに好ましくは0.5重量部以下である。また、好適な含有量範囲としては、好ましくは0.01〜5重量部、より好ましくは0.05〜1重量部、さらに好ましくは0.1〜0.5重量部である。態様2の成形体における微細セルロース繊維複合体の含有量は、ポリエステル樹脂100重量部に対して、好ましくは0.01重量部以上、より好ましくは0.05重量部以上、さらに好ましくは0.1重量部以上である。また、射出成形体の機械的強度の観点から、好ましくは5重量部以下、より好ましくは1重量部以下、さらに好ましくは0.5重量部以下である。また、好適な含有量範囲としては、好ましくは0.01〜5重量部、より好ましくは0.05〜1重量部、さらに好ましくは0.1〜0.5重量部である。
態様1におけるポリエステル樹脂組成物としては、前記ポリエステル樹脂、微細セルロース繊維複合体以外に、可塑剤、結晶核剤、その他の成分などを、本発明のポリエステル樹脂組成物と同様に含有することができるが、その種類も特に限定されず、前記同様のものを用いることができる。可塑剤、結晶核剤の含有量も前記同様である。
態様2におけるポリエステル樹脂組成物としては、前記ポリエステル樹脂、微細セルロース繊維複合体以外に、可塑剤、結晶核剤、加水分解抑制剤、その他の成分などを、本発明のポリエステル樹脂組成物と同様に含有することができるが、その種類も特に限定されず、前記同様のものを用いることができる。可塑剤、結晶核剤、加水分解抑制剤の含有量も前記同様である。
態様1の熱成形品は、前記本発明のポリエステル樹脂組成物を、特に限定なく公知の方法に従って熱成形することにより得られ、例えば、本発明のポリエステル樹脂組成物を用いてシートを調製した後、該シートを熱成形することにより調製することができる。
熱成形品の成形に用いるシート(熱成形品用のシートともいう)は、前記ポリエステル樹脂組成物を押出成形やプレス成形することによって調製することができる。
押出成形では、加熱した押出機に充填された前記ポリエステル樹脂組成物を溶融させた後にTダイから押出すことにより、熱成形品用のシートを得ることができる。なお、押出機に充填する際に、本発明のポリエステル樹脂組成物を構成する原料をそのまま充填して溶融混練後、押出し成形してもよい。
また、本発明では、Tダイから押出して得られたシート状の一次加工品を、直ぐに冷却ロールに接触させてポリエステル樹脂組成物のTg未満に冷却することで、非晶状態又は半結晶状態にし、その後、冷却ロールから引き離し、それらを巻き取りロールにて巻き取って熱成形品用のシートとしてもよい。なお、本明細書において、非晶状態及び半結晶状態とは、以下の式により求めた相対結晶化度が60%未満となる場合を非晶状態、相対結晶化度が60%以上、80%未満となる場合を半結晶状態とする。よって、非晶状態又は半結晶状態の成形品とは、相対結晶化度が80%未満の成形品を意味する。
相対結晶化度(%)={(ΔHm−ΔHcc)/ΔHm}×100
具体的には、相対結晶化度は、DSC装置(パーキンエルマー社製ダイアモンドDSC)を用い、1stRUNとして、昇温速度20℃/分で20℃から200℃まで昇温し、200℃で5分間保持した後、降温速度−20℃/分で200℃から20℃まで降温し、20℃で1分間保持した後、さらに2ndRUNとして、昇温速度20℃/分で20℃から200℃まで昇温し、1stRUNに観測されるポリエステル樹脂の冷結晶化エンタルピーの絶対値ΔHcc、及び2ndRUNに観測される結晶融解エンタルピーΔHmを用いて求めることができる。
押出機の温度は、ポリエステル樹脂組成物を均一に混合し、且つポリエステル樹脂の劣化を防止する観点から、好ましくは170℃以上、より好ましくは175℃以上、さらに好ましくは180℃以上であり、そして、好ましくは240℃以下、より好ましくは220℃以下、さらに好ましくは210℃以下である。また、170〜240℃が好ましく、175〜220℃がより好ましく、180〜210℃がさらに好ましい。なお、本発明において、押出機の温度とは押出機のバレル設定温度を意味する。
押出速度は特に限定されないが、非晶状態又は半結晶状態の成形品を得る観点から、1〜100m/分が好ましく、5〜80m/分がより好ましく、10〜50m/分がさらに好ましい。
また、冷却ロールの温度は、非晶状態又は半結晶状態の熱成形品用のシートを得る観点から、ポリエステル樹脂組成物のTg未満に設定することが好ましく、具体的には、40℃未満が好ましく、30℃以下がより好ましく、20℃以下がさらに好ましい。冷却ロールに接する時間としては、非晶状態又は半結晶状態の成形品を得る観点から、0.1〜50秒が好ましく、0.5〜10秒がより好ましく、0.8〜5秒がさらに好ましい。
プレス成形で熱成形品用のシートを成形する場合は、シート形状を有する枠で本発明のポリエステル樹脂組成物を囲みプレス成形して得られたシート状の一次加工品を、直ぐに冷却して調製することができる。
プレス成形の温度と圧力としては、好ましくは170〜240℃の温度、5〜30MPaの圧力の条件下、より好ましくは175〜220℃の温度、10〜25MPaの圧力の条件下、さらに好ましくは180〜210℃の温度、10〜20MPaの圧力の条件下でプレスすることが好ましい。プレス時間は、プレスの温度と圧力によって一概には決定することができないが、1〜10分が好ましく、1〜7分がより好ましく、1〜5分がさらに好ましい。
前記条件でプレスした後直ぐに、好ましくは0〜40℃の温度、5〜30MPaの圧力の条件下、より好ましくは10〜30℃の温度、10〜25MPaの圧力の条件下、さらに好ましくは10〜20℃の温度、10〜20MPaの圧力の条件下でプレスして冷却することが好ましい。この温度条件によるプレスにより、本発明のポリエステル樹脂組成物をそのTg未満に冷却して、非晶状態又は半結晶状態を維持することができる。プレス時間は、プレスの温度と圧力によって一概には決定することができないが、1〜10分が好ましく、1〜7分がより好ましく、1〜5分がさらに好ましい。
非晶状態又は半結晶状態の熱成形品用のシートを調製する場合、その厚みは均一な熱成形品(二次加工品)を得る観点から、0.1〜1.5mmが好ましく、0.1〜1.4mmがより好ましく、0.15〜1.2mmがさらに好ましい。
次に、得られた熱成形品用のシートを熱成形する。熱成形の方法としては、加熱した状態で真空成形又は圧空成形する方法であれば、特に限定なく公知の方法が用いられる。例えば、前記シート、好ましくは非晶状態又は半結晶状態のシートを、加熱した真空圧空成形機中の金型内に設置して、加圧又は無加圧状態に保ち成型することにより調製することができる。
真空圧空成形機としては、公知の真空圧空成形機を用いることができる。例えば、脇坂製作所製の単発真空圧空成形機が挙げられる。
金型温度は、熱成形品用のシートを金型内に追従できる温度であれば特に限定はないが、ポリエステル樹脂組成物の結晶化速度向上及び作業性向上の観点から、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、融点(Tm)未満の温度が好ましい。具体的には、120℃以下が好ましく、115℃以下がより好ましく、110℃以下がさらに好ましい。また、70℃以上が好ましく、75℃以上がより好ましく、80℃以上がさらに好ましい。かかる観点から、金型温度は70〜120℃が好ましく、75〜115℃がより好ましく、80〜110℃がさらに好ましい。金型内を前記温度範囲内に加熱することによって、ポリエステル樹脂組成物の結晶化が進行して、例えば、前記方法により求めた相対結晶化度が好ましくは80%以上、より好ましくは90%以上となるよう結晶化させた熱成形品とすることができる。
金型内での保持時間は、ポリエステル樹脂組成物からなる熱成形品の耐熱性及び生産性の向上の観点から、例えば90℃の金型において、2〜60秒が好ましく、3〜30秒がより好ましく、5〜20秒がさらに好ましい。
かくして得られた本発明の熱成形品の厚みは、特に限定されないが、均一な成形体(二次加工品)を得る観点から、0.1〜1.5mmが好ましく、0.15〜1.4mmがより好ましく、0.2〜1.2mmがさらに好ましい。
本発明の熱成形品は、前記ポリエステル樹脂組成物が透明性及び熱安定性に優れることから、透明性及び耐熱性が優れるものとなり、該樹脂組成物からなるシート状の一次加工品が熱成形性が良好であることから、嵌合性に優れるものである。嵌合性とは、例えばプラスチック容器の蓋と本体を嵌め合わせる際のかみ合わせ性のことである。よって、本発明の熱成形品は、80℃における貯蔵弾性率(単に、貯蔵弾性率ともいう)が、好ましくは200MPa以上、より好ましくは250MPa以上、さらに好ましくは300MPa以上であり、上限は特に制限されないが、勘合性の観点から、好ましくは1000MPa以下、より好ましくは800MPa以下、さらに好ましくは500MPa以下である。また、本発明の熱成形品は、好ましくは30%以下、より好ましくは25%以下、さらに好ましくは20%以下のHaze(%)を有する。また、発明の熱成形品としては、貯蔵弾性率が200MPa以上、かつ、Haze(%)が30%以下であるものが好ましく、貯蔵弾性率が250MPa以上、かつ、Haze(%)が25%以下であるものがより好ましく、貯蔵弾性率が300MPa以上、かつ、Haze(%)が20%以下であるものがさらに好ましい。なお、本明細書において、80℃における貯蔵弾性率及びHaze(%)は、後述の実施例に記載の方法に従って測定することができる。
また、態様2の射出成形体は、前記本発明のポリエステル樹脂組成物を、特に限定なく公知の方法に従って射出成形することにより得られ、例えば、本発明のポリエステル樹脂組成物を射出成形機に充填して、金型内に注入して成型することにより調製することができる。
射出成形としては、公知の射出成形機を用いることができる。例えば、シリンダーとその内部に挿通されたスクリューを主な構成要素として有するもの〔J110AD−180H(日本製鋼所社製)等〕が挙げられる。なお、前記ポリエステル樹脂組成物の原料をシリンダーに供給してそのまま溶融混練してもよいが、予め溶融混練したものを射出成形機に充填することが好ましい。
シリンダーの設定温度は、ポリエステル樹脂の融点(Tm)+5〜Tm+50℃が好ましく、Tm+10〜Tm+30℃がより好ましく、例えば、ポリエステル樹脂がポリ乳酸樹脂の場合、180〜220℃が好ましく、180〜210℃がより好ましい。溶融混練機を使用する場合には、溶融混練する際の混練機のシリンダーの設定温度を意味する。なお、シリンダーはヒーターを具備しており、それにより温度調整が行なわれる。ヒーターの個数は機種によって異なり一概には決定されないが、前記設定温度に調整されるヒーターは、溶融混練物排出口側(ノズル先端側)に存在する温度である。
金型温度としては、ポリエステル樹脂組成物の結晶化速度向上及び作業性向上の観点から、30〜150℃が好ましく、60〜130℃がより好ましく、80〜110℃がさらに好ましい。また、ポリエステル樹脂がポリ乳酸樹脂の場合、金型温度は30〜110℃が好ましく、40〜90℃がより好ましく、60〜80℃がさらに好ましい。
金型内での保持時間は、金型の温度によって一概には決定できないが、10〜120秒が好ましく、30〜90秒がより好ましい。
本発明の射出成形体は、前記ポリエステル樹脂組成物が機械的強度及び耐熱性に優れることから、強度、耐熱性が良好である。よって、本発明の射出成形体は、好ましくは40MPa以上、より好ましくは45MPa以上の曲げ強度を有し、上限は特に制限されないが、成形性の観点から、好ましくは200MPa以下、より好ましくは150MPa以下、さらに好ましくは100MPa以下である。また、本発明の射出成形体は、好ましくは70℃以上、より好ましくは75℃以上の熱変形温度を示し、上限は特に制限されないが、成形性の観点から、好ましくは160℃以下、より好ましくは150℃以下である。また、発明の射出成形体としては、曲げ強度が40MPa以上、かつ、熱変形温度が70℃以上であるものが好ましく、曲げ強度が45MPa以上、かつ、熱変形温度が75℃以上であるものがより好ましい。なお、本明細書において、曲げ強度及び熱変形温度は、後述の実施例に記載の方法に従って測定することができる。
本発明はまた、本発明の熱成形品の製造方法及び射出成形体の製造方法を提供する。
熱成形品の製造方法としては、前記ポリエステル樹脂と微細セルロース繊維複合体を含有するポリエステル樹脂組成物を熱成形する工程を含む方法であれば特に限定はなく、得られる成形品の種類に応じて、適宜、工程を追加することができる。
具体的には、以下の工程を含む態様が挙げられる。
工程(1−1):微細セルロース繊維に炭化水素基がアミド結合を介して連結してなる、平均繊維径が0.1〜200nmの微細セルロース繊維複合体及びポリエステル樹脂を含有する原料を溶融混練して、ポリエステル樹脂組成物を調製する工程
工程(1−2):工程(1−1)で得られたポリエステル樹脂組成物を押出成形又はプレス成形してシートを得る工程
工程(1−3):工程(1−2)で得られたシートを熱成形して熱成形品を得る工程
工程(1−1)は、ポリエステル樹脂組成物を調製する工程であり、本発明のポリエステル樹脂組成物を調製する方法と同様に行なうことができる。例えば、ポリエステル樹脂及び微細セルロース繊維複合体、さらに必要により可塑剤、結晶核剤等の各種添加剤を含有する原料を公知の混練機を用いて溶融混練して調製することができる。溶融混練の装置、条件などは前記の通りである。なお、微細セルロース繊維複合体は、公知の方法に従って製造することができるが、前記微細セルロース繊維複合体の製造方法における工程(A)及び(B)を含む製造方法により製造されたものを用いることが好ましい。
工程(1−2)では、工程(1−1)で得られたポリエステル樹脂組成物を押出成形又はプレス成形してシート(熱成形品用のシート)を得る。この際、該シートを非晶状態又は半結晶状態のシートに調製してもよいことから、工程(1−2)は、例えば、工程(1−1)で得られたポリエステル樹脂組成物を押出成形法によりダイから押出してシートを調製後、ポリエステル樹脂組成物のガラス転移温度(Tg)未満に冷却して相対結晶化度80%未満のシートを得る工程であってもよい。押出成形、プレス成形は前記と同様に行なうことができる。また、シート状に成形後、冷却する場合も前記と同様である。
工程(1−3)では、工程(1−2)で得られたシートを熱成形して熱成形品を得る。熱成形の方法は前記と同様の方法であればよく、例えば、前記工程(1−2)で調製した熱成形品用のシート、好ましくは非晶状態又は半結晶状態のシートを、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、融点(Tm)未満の温度領域中で熱成形することにより結晶化を行って、例えば、前記方法により求めた相対結晶化度が好ましくは80%以上、より好ましくは90%以上となるよう結晶化させた熱成形品とすることができる。よって、工程(1−3)は、工程(1−2)で得られたシートを、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、融点(Tm)未満の温度領域中で熱成形して相対結晶化度80%以上に結晶化させた熱成形品を得る工程であってもよい。
射出成形体の製造方法としては、前記ポリエステル樹脂と微細セルロース繊維複合体を含有するポリエステル樹脂組成物を射出成形する工程を含む方法であれば特に限定はなく、得られる成形品の種類に応じて、適宜、工程を追加することができる。
具体的には、以下の工程を含む態様が挙げられる。
工程(2−1):微細セルロース繊維に炭化水素基がアミド結合を介して連結してなる、平均繊維径が0.1〜200nmの微細セルロース繊維複合体及びポリエステル樹脂を含有する原料を溶融混練して、ポリエステル樹脂組成物を調製する工程
工程(2−2):工程(2−1)で得られたポリエステル樹脂組成物を金型内に射出成形する工程
工程(2−1)は、工程(1−1)と同様に、ポリエステル樹脂組成物を調製する工程であり、本発明のポリエステル樹脂組成物を調製する方法と同様に行なうことができる。溶融混練の装置、条件などは前記の通りである。なお、微細セルロース繊維複合体は、公知の方法に従って製造することができるが、前記微細セルロース繊維複合体の製造方法における工程(A)及び(B)を含む製造方法により製造されたものを用いることが好ましい。
工程(2−2)は、ポリエステル樹脂組成物を射出成形する工程である。具体的には、工程(2−1)で得られたポリエステル樹脂組成物を、ポリエステル樹脂の融点(Tm)+5〜Tm+50℃、より好ましくはTm+10〜Tm+30℃、ポリエステル樹脂がポリ乳酸樹脂の場合は、好ましくは180〜220℃、より好ましくは180〜210℃に加熱したシリンダーを装備した射出成形機に充填し、好ましくは30〜150℃、より好ましくは60〜130℃、さらに好ましくは80〜110℃、また、ポリエステル樹脂がポリ乳酸樹脂の場合、好ましくは30〜110℃、より好ましくは40〜90℃、さらに好ましくは60〜80℃の金型内に射出して成形することができる。
かくして得られた本発明の熱成形品は、透明性が良好で、耐熱性に優れ、相対結晶化度が好ましくは80%以上、より好ましくは90%以上と結晶性の高いものであることから、各種用途、なかでも、日用品、化粧品、家電製品などのブリスターパックやトレイ、お弁当の蓋等の食品容器、工業部品の輸送や保護に用いる工業用トレイに好適に用いることができる。
また、本発明の射出成形体は、微細セルロース複合体が良分散されているために、強度及び耐熱性に優れることから、情報・家電機器や、日用品、文具、化粧品等の筐体、部品等に好適に用いることができる。
以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。
〔微細セルロース繊維及び微細セルロース繊維複合体の平均繊維径〕
微細セルロース繊維又は微細セルロース繊維複合体に水を加えて、その濃度が0.0001質量%の分散液を調製し、該分散液をマイカ(雲母)上に滴下して乾燥したものを観察試料として、原子間力顕微鏡(AFM、Nanoscope III Tapping mode AFM、Digital instrument社製、プローブはナノセンサーズ社製Point Probe (NCH)を使用)を用いて、該観察試料中のセルロース繊維の繊維高さを測定する。その際、該セルロース繊維が確認できる顕微鏡画像において、微細セルロース繊維又は微細セルロース繊維複合体を5本以上抽出し、それらの繊維高さから平均繊維径を算出する。
〔微細セルロース繊維及び微細セルロース繊維複合体のカルボキシ基含有量〕
乾燥質量0.5gの微細セルロース繊維又は微細セルロース繊維複合体を100mLビーカーにとり、(イオン交換水もしくはメタノール)/水=2/1の混合溶媒を加えて全体で55mLとし、そこに0.01M塩化ナトリウム水溶液5mLを加えて分散液を調製し、微細セルロース繊維又は微細セルロース繊維複合体が十分に分散するまで該分散液を攪拌する。この分散液に0.1M塩酸を加えてpHを2.5〜3に調整し、自動滴定装置(東亜ディーケーケー社製、商品名「AUT−50」)を用い、0.05M水酸化ナトリウム水溶液を待ち時間60秒の条件で該分散液に滴下し、1分ごとの電導度及びpHの値を測定し、pH11程度になるまで測定を続け、電導度曲線を得る。この電導度曲線から、水酸化ナトリウム滴定量を求め、次式により、微細セルロース繊維又は微細セルロース繊維複合体のカルボキシ基含有量を算出する。
カルボキシ基含有量(mmol/g)=水酸化ナトリウム滴定量×水酸化ナトリウム水溶液濃度(0.05M)/セルロース繊維の質量(0.5g)
〔微細セルロース繊維複合体の炭化水素基の平均結合量及び導入率〕
微細セルロース繊維複合体中の炭化水素基の平均結合量を下記式により算出する。
炭化水素基の結合量(mmol/g)=炭化水素導入前の微細セルロース繊維中のカルボキシ基含有量(mmol/g)−炭化水素導入後の微細セルロース繊維中のカルボキシ基含有量(mmol/g)
炭化水素基の導入率(%)={炭化水素基の結合量(mmol/g)/炭化水素導入前の微細セルロース繊維中のカルボキシ基含有量(mmol/g)}×100
微細セルロース繊維の調製例1(天然セルロースにN−オキシル化合物を作用させて得られるカルボキシ基含有微細セルロース繊維の分散液)
針葉樹の漂白クラフトパルプ(フレッチャー チャレンジ カナダ社製、商品名「Machenzie」、CSF650ml)を天然セルロース繊維として用いた。TEMPOとしては、市販品(ALDRICH社製、Free radical、98質量%)を用いた。次亜塩素酸ナトリウムとしては、市販品(和光純薬工業社製)を用いた。臭化ナトリウムとしては、市販品(和光純薬工業社製)を用いた。
まず、針葉樹の漂白クラフトパルプ繊維100gを9900gのイオン交換水で十分に攪拌した後、該パルプ質量100gに対し、TEMPO1.25質量%、臭化ナトリウム12.5質量%、次亜塩素酸ナトリウム28.4質量%をこの順で添加した。pHスタッドを用い、0.5M水酸化ナトリウムを滴下してpHを10.5に保持した。反応を120分行った後、水酸化ナトリウムの滴下を停止し、酸化パルプを得た。イオン交換水を用いて得られた酸化パルプを十分に洗浄し、次いで脱水処理を行った。その後、酸化パルプ3.9gとイオン交換水296.1gを高圧ホモジナイザー(スギノマシン社製、スターバーストラボ HJP−2 5005)を用いて245MPaで微細化処理を2回行い、カルボキシ基含有微細セルロース繊維分散液(固形分濃度1.3質量%)を得た。この微細セルロース繊維の平均繊維径は3.3nm、カルボキシ基含有量は1.2mmol/gであった。
微細セルロース繊維の調製例2(酸型処理して得られるカルボキシ基含有微細セルロース繊維分散液)
ビーカーに、調製例1で得られたカルボキシ基含有微細セルロース繊維分散液4088.75g(固形分濃度1.3質量%)にイオン交換水4085gを加えて0.5質量%の水溶液とし、メカニカルスターラーにて室温下、3時間攪拌した。続いて1M塩酸水溶液を245g仕込み室温下、1晩反応させた。反応終了後、アセトンで再沈し、ろ過、その後、アセトン/イオン交換水にて洗浄を行い、塩酸及び塩を除去した。最後にアセトンを加えてろ過し、アセトンにカルボキシ基含有微細セルロース繊維が膨潤した状態のアセトン含有酸型セルロース繊維分散液(固形分濃度5.0質量%)を得た。この微細セルロース繊維の平均繊維径は3.3nm、カルボキシ基含有量は1.4mmol/gであった。
微細セルロース繊維複合体の調製例1
マグネティックスターラー、攪拌子、還流管を備えた3口丸底フラスコに、微細セルロース繊維の調製例1で得られたカルボキシ基含有微細セルロース繊維分散液400g(固形分濃度1.3質量%)を仕込んだ。続いてプロピルアミン1.42g(微細セルロース繊維のカルボキシ基1molに対してアミン基4molに相当)、縮合剤である4−(4,6−ジメトキシ−1,3,5−トリアジン−2−イル)−4−メチルモルホリニウムクロライド(DMT−MM)9.96gを仕込んで溶解させた。反応液をpH7.0、温度60℃に保持し、窒素雰囲気下で8時間反応させた。反応終了後の反応液の透析を行うことにより、未反応のプロピルアミン及びDMT−MMを除去した。最後にアセトンを加えてろ過し、微細セルロース繊維にプロピル基がアミド結合を介して連結した微細セルロース繊維複合体を得た。微細セルロース繊維複合体におけるプロピル基の平均結合量は0.20mmol/gであり、微細セルロース繊維複合体の平均繊維径は3.07nmであった。
微細セルロース繊維複合体の調製例2
プロピルアミンの量を0.284g(微細セルロース繊維のカルボキシ基1molに対してアミン基1molに相当)、DMT−MMの量を1.99gに変更したこと以外は、調製例1と同様の方法で、微細セルロース繊維にプロピル基がアミド結合を介して連結した微細セルロース繊維複合体を調製した。微細セルロース繊維複合体におけるプロピル基の平均結合量は0.06mmol/gであり、微細セルロース繊維複合体の平均繊維径は3.07nmであった。
微細セルロース繊維複合体の調製例3
プロピルアミン1.42gをヘキシルアミン2.43g(微細セルロース繊維のカルボキシ基1molに対してアミン基4molに相当)に変更したこと以外は、調製例1と同様の方法で、微細セルロース繊維にヘキシル基がアミド結合を介して連結した微細セルロース繊維複合体を調製した。微細セルロース繊維複合体におけるヘキシル基の平均結合量は0.53mmol/gであり、微細セルロース繊維複合体の平均繊維径は3.17nmであった。
微細セルロース繊維複合体の調製例4
プロピルアミン1.42gをヘキシルアミン0.486g(微細セルロース繊維のカルボキシ基1molに対してアミン基1molに相当)に、DMT−MMを1.99gに変更したこと以外は、調製例1と同様の方法で、微細セルロース繊維にヘキシル基がアミド結合を介して連結した微細セルロース繊維複合体を調製した。微細セルロース繊維複合体におけるヘキシル基の平均結合量は0.02mmol/gであり、微細セルロース繊維複合体の平均繊維径は3.17nmであった。
微細セルロース繊維複合体の調製例5
メカニカルスターラー、還流管を備えた4口丸底フラスコに、微細セルロース繊維の調製例2で得られたアセトン含有酸型セルロース繊維分散液509.16g(固形分濃度を5.0質量%から4.4質量%に調整したもの)を仕込み、イソプロピルアルコール5000gを加えて0.5質量%溶液とし、マグネティックスターラーにて室温下、1時間攪拌した。続いて、プロピルアミン5.45g(微細セルロース繊維のカルボキシ基1molに対してアミン基3molに相当)、DMT−MM26.38gを仕込んで溶解させた後、室温下で1晩反応を行った。反応終了後、ろ過し、その後、メタノール/イオン交換水にて洗浄を行い、未反応のプロピルアミン及びDMT−MMを除去した。最後にアセトンを加えてろ過し、微細セルロース繊維にプロピル基がアミド結合を介して連結した微細セルロース繊維複合体を調製した。微細セルロース繊維複合体におけるプロピル基の平均結合量は0.79mmol/gであり、微細セルロース繊維複合体の平均繊維径は3.17nmであった。
微細セルロース繊維複合体の調製例6
メカニカルスターラー、還流管を備えた4口丸底フラスコに、微細セルロース繊維の調製例2で得られたアセトン含有酸型セルロース繊維分散液93.02g(固形分濃度を5.0質量%から4.4質量%に調整したもの)を仕込み、t−ブチルアルコール800gを加えて0.5質量%溶液とし、室温下で1時間攪拌した。続いて、ヘキシルアミン1.46g(微細セルロース繊維のカルボキシ基1molに対してアミン基3molに相当)、DMT−MM4.12gを仕込んで溶解させた後、60℃、4時間反応を行った。その後、更にヘキシルアミン1.46g(微細セルロース繊維のカルボキシ基1molに対してアミン基3molに相当)、DMT−MM4.12gを仕込み、60℃、4時間反応を行った。反応終了後、ろ過し、その後、エタノール/イオン交換水にて洗浄を行い、未反応のヘキシルアミン及びDMT−MMを除去した。最後にアセトンを加えてろ過し、微細セルロース繊維にヘキシル基がアミド結合を介して連結した微細セルロース繊維複合体を調製した。微細セルロース繊維複合体におけるヘキシル基の平均結合量は0.81mmol/gであり、微細セルロース繊維複合体の平均繊維径は3.07nmであった。
微細セルロース繊維複合体の調製例7
メカニカルスターラー、還流管を備えた4口丸底フラスコに、微細セルロース繊維の調製例2で得られたアセトン含有酸型セルロース繊維分散液(固形分濃度を5.0質量%から4.4質量%に調整したもの)488.80gを仕込み、t−ブチルアルコール4800gを加えて0.5質量%溶液とし、室温下、1時間攪拌した。続いて、オクタデシルアミン17.50g(微細セルロース繊維のカルボキシ基1molに対してアミン基2molに相当)、DMT−MM17.97gを仕込み溶解を確認し、55℃、6時間反応を行った。反応終了後、ろ過し、その後、メタノール/イオン交換水にて洗浄を行い、未反応オクタデシルアミン、DMT−MMを除去した。最後にアセトンを加えてろ過し、微細セルロース繊維にオクタデシル基がアミド結合を介して連結した微細セルロース繊維複合体を調製した。微細セルロース繊維複合体におけるオクタデシル基の平均結合量は0.64mmol/gであり、微細セルロース繊維複合体の平均繊維径は3.94nmであった。
微細セルロース繊維複合体の調製例8
微細セルロース繊維の調製例2で得られたアセトン含有酸型セルロース繊維分散液(固形分濃度5.0質量%)を、攪拌羽根を備えたビーカーに入れイオン交換水で固形分濃度1.0質量%に希釈し、分散液を調製した。この分散液をテトラブチルアンモニウムヒドロキシド10%水溶液(和光純薬)でpH8.0付近に調整し有機オニウム処理された微細セルロース(以下、「微細修飾セルロース」と称する)を得た。この微細修飾セルロースを凍結乾燥した。
上記の微細修飾セルロース1.0質量部をビーカーに移し、ジメチルホルムアミド100質量部添加しホモジナイザーで10分間分散処理を行った。さらにアルキル化剤としてヨウ化プロピル10.2質量部を添加した後、反応温度を25℃に設定し約48時間反応させた。該反応物をメタノールで洗浄した後に一昼夜減圧乾燥し、微細セルロース繊維にプロピル基がエステル結合を介して連結した微細セルロース繊維複合体を得た。微細セルロース繊維複合体におけるプロピル基の平均結合量は0.73mmol/gであり、微細セルロース繊維複合体の平均繊維径は3.02nmであった。
微細セルロース繊維複合体の調製例9
ヨウ化プロピル10.2質量部をヨウ化ヘキシル12.7質量部に変更したこと以外は、調製例8と同様の方法で、微細セルロース繊維にヘキシル基がエステル結合を介して連結した微細セルロース繊維複合体を得た。微細セルロース繊維複合体におけるヘキシル基の平均結合量は0.67mmol/gであり、微細セルロース繊維複合体の平均繊維径は3.28nmであった。
微細セルロース繊維複合体の調製例10
ビーカーに、微細セルロース繊維の調製例2で得られたアセトン含有酸型セルロース繊維分散液159.00g(固形分濃度を5.0質量%から4.4質量%に調整したもの)を仕込み、イオン交換水1400gを加えて0.5質量%水溶液とし、マグネティックスターラーにて室温下、1時間攪拌した。続いて、プロピルアミン2.86gを仕込み、室温下で6時間反応を行った。反応終了後、減圧濃縮を行って未反応のプロピルアミンを除去し、更に、イオン交換水にて希釈した後、透析を行った。その後、凍結乾燥を行い、微細セルロース繊維にプロピル基がイオン結合を介して連結した微細セルロース繊維複合体を得た。微細セルロース繊維複合体におけるプロピル基の平均結合量は1.15mmol/gであり、微細セルロース繊維複合体の平均繊維径は2.49nmであった。
微細セルロース繊維複合体の調製例11
ビーカーに、微細セルロース繊維の調製例2で得られたアセトン含有酸型セルロース繊維分散液159.11g(固形分濃度を5.0質量%から4.4質量%に調整したもの)を仕込み、イオン交換水1400gを加えて0.5質量%水溶液とし、マグネティックスターラーにて室温下、1時間攪拌した。続いて、ヘキシルアミン4.89gを仕込み、室温下、6時間反応を行った。反応終了後、反応液の透析を行い、未反応のヘキシルアミンを除去した。その後、凍結乾燥を行い、微細セルロース繊維にヘキシル基がイオン結合を介して連結した微細セルロース繊維複合体を得た。微細セルロース繊維複合体におけるヘキシル基の平均結合量は0.82mmol/gであり、微細セルロース繊維複合体の平均繊維径は2.91nmであった。
微細セルロース繊維複合体の調製例12
ビーカーに、微細セルロース繊維の調製例2で得られたアセトン含有酸型セルロース繊維分散液22.72g(固形分濃度を5.0質量%から4.4質量%に調整したもの)を仕込み、イソプロピルアルコール133g、イオン交換水67gを加えて0.5質量%溶液とし、マグネティックスターラーにて室温下、1時間攪拌した。続いて、オクタデシルアミン1.86gを仕込み、溶解を確認後、室温下、12時間反応を行った。反応終了後、ろ過し、その後、エタノールにて洗浄を行い、未反応のオクタデシルアミンを除去した。最後にアセトンを加えてろ過し、微細セルロース繊維にオクタデシル基がイオン結合を介して連結した微細セルロース繊維複合体を得た。微細セルロース繊維複合体におけるオクタデシル基の平均結合量は0.75mmol/gであり、微細セルロース繊維複合体の平均繊維径は3.18nmであった。
微細セルロース繊維複合体の調製例13
マグネティックスターラー、攪拌子を備えた1000mLビーカーに、微細セルロース繊維の調製例1で得られたカルボキシ基含有微細セルロース繊維分散液400g(固形分濃度1.3質量%)を仕込んだ。続いてテトラブチルアンモニウムヒドロキシド6.22g(有効分換算)を仕込んで溶解させ、室温で8時間反応させた。反応終了後にアセトンを加えてろ過し、微細セルロース繊維にテトラブチルアンモニウム基がイオン結合を介して連結した微細セルロース繊維複合体を得た。微細セルロース繊維複合体におけるテトラブチルアンモニウム基の平均結合量は0.93mmol/gであり、微細セルロース繊維複合体の平均繊維径は2.58nmであった。
微細セルロース繊維複合体の調製例14
メカニカルスターラー、還流管を備えた4口丸底フラスコに、微細セルロース繊維の調製例2で得られたアセトン含有酸型セルロース繊維分散液79.29g(固形分濃度を5.0質量%から3.3質量%に調整したもの)を仕込み、イソプロピルアルコール800gを加えて0.3質量%溶液とし、室温下で1時間攪拌した。続いて、ドデシルアミン1.19g(微細セルロース繊維のカルボキシ基1molに対してアミン基2molに相当)、DMT−MM1.78gを仕込んで溶解させた後、50℃、4時間反応を行った。反応終了後、ろ過し、その後、エタノール/イオン交換水にて洗浄を行い、未反応のドデシルアミン及びDMT−MMを除去した。最後にアセトンを加えてろ過し、微細セルロース繊維にドデシル基がアミド結合を介して連結した微細セルロース繊維複合体を調製した。微細セルロース繊維複合体におけるドデシル基の平均結合量は0.75mmol/gであり、微細セルロース繊維複合体の平均繊維径は7.33nmであった。
微細セルロース繊維複合体の調製例15
メカニカルスターラー、還流管を備えた4口丸底フラスコに、微細セルロース繊維の調製例2で得られたアセトン含有酸型セルロース繊維分散液51.55g(固形分濃度を5.0質量%から3.5質量%に調整したもの)を仕込み、イソプロピルアルコール400gを加えて0.5質量%溶液とし、室温下で1時間攪拌した。続いて、2−エチルヘキシルアミン0.62g(微細セルロース繊維のカルボキシ基1molに対してアミン基2.0molに相当)、DMT−MM1.33gを仕込んで溶解させた後、50℃、6時間反応を行った。反応終了後、ろ過し、その後、メタノール/イオン交換水にて洗浄を行い、未反応のドデシルアミン及びDMT−MMを除去した。最後にアセトンを加えてろ過し、微細セルロース繊維に2−エチルヘキシル基がアミド結合を介して連結した微細セルロース繊維複合体を調製した。微細セルロース繊維複合体における2−エチルヘキシル基の平均結合量は0.58mmol/gであり、微細セルロース繊維複合体の平均繊維径は4.17nmであった。
可塑剤の調製例1(コハク酸とトリエチレングリコールモノメチルエーテルとのジエステル)
攪拌機、温度計、脱水管を備えた3Lフラスコに、無水コハク酸500g、トリエチレングリコールモノメチルエーテル2463g、パラトルエンスルホン酸一水和物9.5gを仕込み、空間部に窒素(500mL/分)を吹き込みながら、減圧下(4〜10.7kPa)、110℃で15時間反応させた。反応液の酸価は1.6(mgKOH/g)であった。反応液に吸着剤キョーワード500SH(協和化学工業社製)27gを添加して80℃、2.7kPaで45分間攪拌してろ過した後、液温115〜200℃、圧力0.03kPaでトリエチレングリコールモノメチルエーテルを留去し、80℃に冷却後、残液を減圧ろ過して、ろ液として、コハク酸とトリエチレングリコールモノメチルエーテルとのジエステルを得た。得られたジエステルは、酸価0.2(mgKOH/g)、鹸化価276(mgKOH/g)、水酸基価1以下(mgKOH/g)、色相APHA200であった。
可塑剤の調製例2(ジメチルコハク酸と1,3プロパンジオールとのオリゴエステル化合物)
4ツ口フラスコ(攪拌機、温度計、滴下漏斗、蒸留管、窒素吹き込み管付き)に1,3−プロパンジオール521g(6.84モル)及び触媒として28重量%ナトリウムメトキシド含有メタノール溶液5.9g(ナトリウムメトキシド0.031モル)を入れ、常圧、120℃で0.5時間攪拌しながらメタノールを留去した。その後、コハク酸ジメチル(和光純薬工業社製)1500g(10.26モル)を1時間かけて滴下し、常圧、120℃で、反応により生じるメタノールを留去した。次に、60℃に冷却し、28重量%ナトリウムメトキシド含有メタノール溶液5.6g(ナトリウムメトキシド0.029モル)を入れ、2時間かけて120℃に昇温した後、圧力を1時間かけて常圧から3.7kPaまで徐々に下げてメタノールを留去した。その後、80℃に冷却してキョーワード600S(協和化学工業社製)18gを添加し、圧力4.0kPa、80℃で1時間攪拌した後、減圧ろ過を行った。ろ液を圧力0.1kPaで、温度を2.5時間かけて85℃から194℃に上げて残存コハク酸ジメチルを留去し、常温黄色の液体を得た。なお、触媒の使用量は、ジカルボン酸エステル100モルに対して0.58モルであった。
実施例A−1
微細セルロース繊維複合体の調製例1で得られた微細セルロース繊維複合体を固形分換算で0.05gと、分散媒としてのコハク酸メチルトリグリコールジエステル(可塑剤の調製例1にて合成)5gとを混合して、超音波攪拌機(UP200H、hielscher社製)にて3分間攪拌した。こうして、微細セルロース繊維複合体及び可塑剤を含む、微細セルロース繊維複合体分散液(微細セルロース繊維複合体濃度1質量%)を調製した。この微細セルロース繊維複合体分散液5.05gと、ポリ乳酸(Nature works製、商品名:NW4032D)50g、結晶核剤(日本化成社製、エチレンビス12-ヒドロキシステアリン酸アミド、商品名:スリパックスH)0.15gを順次添加し、混練機(東洋精機社製、商品名:ラボプラストミル)を用いて、回転数50rpm、180℃で10分混練して均一混合物を得た。該均一混合物を、プレス機(東洋精機社製、商品名:ラボプレス)を用いて、180℃、5kg/cm 2分、200kg/cm 2分、15℃、5kg/cm 1分、80℃、5kg/cm 1分の条件で順次プレスし、厚み約0.4mmのシート状の複合材料を製造した。
実施例A−2
微細セルロース繊維複合体を、調製例2で得られた微細セルロース繊維複合体に変更したこと以外は実施例A−1と同様の方法で複合材料を製造した。
実施例A−3
微細セルロース繊維複合体を、調製例5で得られた微細セルロース繊維複合体に変更し、使用量を固形分換算で0.025gに変更した以外は実施例A−1と同様の方法で複合材料を製造した。
実施例A−4
微細セルロース繊維複合体を、調製例5で得られた微細セルロース繊維複合体に変更したこと以外は実施例A−1と同様の方法で複合材料を製造した。
実施例A−5
調製例5で得られたアセトン含有微細セルロース繊維複合体を固形分換算で0.10gとなる量用いることに変更したこと以外は実施例A−4と同様の方法で複合材料を製造した。
実施例A−6
微細セルロース繊維複合体を、調製例3で得られた微細セルロース繊維複合体に変更したこと以外は実施例A−1と同様の方法で複合材料を製造した。
実施例A−7
微細セルロース繊維複合体を、調製例4で得られた微細セルロース繊維複合体に変更したこと以外は実施例A−1と同様の方法で複合材料を製造した。
実施例A−8
微細セルロース繊維複合体を、調製例6で得られた微細セルロース繊維複合体に変更したこと以外は実施例A−1と同様の方法で複合材料を製造した。
実施例A−9
微細セルロース繊維複合体を、調製例14で得られた微細セルロース繊維複合体に変更したこと以外は実施例A−1と同様の方法で複合材料を製造した。
実施例A−10
微細セルロース繊維複合体を、調製例7で得られた微細セルロース繊維複合体に変更したこと以外は実施例A−1と同様の方法で複合材料を製造した。
実施例A−11
実施例A−4と同様にして調製した微細セルロース繊維複合体分散液5.05g(固形分換算)と、ポリエチレンテレフタレート(RP東プラ製、商品名:NOACRYSTAL−V)50gを順次添加し、混練機(ラボプラストミル)を用いて、回転数50rpm、260℃で10分混練して均一混合物を得た。該均一混合物を、プレス機(ラボプレス)を用いて、260℃、5kg/cm 2分、200kg/cm 2分、15℃、5kg/cm 1分、120℃、5kg/cm 2分の条件で順次プレスし、厚み約0.4mmのシート状の複合材料を製造した。
実施例A−12
微細セルロース繊維複合体を、調製例15で得られた微細セルロース繊維複合体に変更したこと以外は実施例A−1と同様の方法で複合材料を製造した。
実施例A−13
可塑剤の種類をMeSA−1,3PD(可塑剤の調製例2にて合成)に変更したこと以外は実施例A−4と同様の方法で複合材料を製造した。
実施例A−14
可塑剤の種類をDAIFATTY−101(大八化学工業社製)に変更したこと以外は実施例A−4と同様の方法で複合材料を製造した。
実施例A−15
結晶核剤(スリパックスH)を添加しなかったこと以外は実施例A−4と同様の方法で複合材料を製造した。
比較例A−1
微細セルロース繊維複合体を、調製例8で得られた微細セルロース繊維複合体に変更したこと以外は実施例A−1と同様の方法で複合材料を製造した。
比較例A−2
微細セルロース繊維複合体を、調製例9で得られた微細セルロース繊維複合体に変更したこと以外は実施例A−1と同様の方法で複合材料を製造した。
比較例A−3
微細セルロース繊維複合体を、調製例10で得られた微細セルロース繊維複合体に変更したこと以外は実施例A−1と同様の方法で複合材料を製造した。
比較例A−4
微細セルロース繊維複合体を、調製例11で得られた微細セルロース繊維複合体に変更したこと以外は実施例A−1と同様の方法で複合材料を製造した。
比較例A−5
微細セルロース繊維複合体を、調製例12で得られた微細セルロース繊維複合体に変更したこと以外は実施例A−1と同様の方法で複合材料を製造した。
比較例A−6
微細セルロース繊維複合体を、調製例13で得られた微細セルロース繊維複合体に変更したこと以外は実施例A−1と同様の方法で複合材料を製造した。
比較例A−7
製造例1で得られた微細セルロース繊維分散液をアセトンで再沈して得たアセトン含有微細セルロース繊維を、固形分換算で0.05gと、分散媒としてのコハク酸メチルトリグリコールジエステル(可塑剤の調製例1にて合成)5gとを混合して、超音波攪拌機(UP200H,hielscher社製)にて3分間攪拌した。こうして、微細セルロース繊維複合体及び可塑剤を含む、微細セルロース繊維複合体分散液(微細セルロース繊維複合体濃度1質量%)を調製した。この微細セルロース繊維複合体分散液5.05gと、ポリ乳酸(Nature works製、商品名:NW4032D)50g、結晶核剤(日本化成社製、エチレンビス12−ヒドロキシステアリン酸アミド、商品名:スリパックスH)0.15gを順次添加し、混練機(東洋精機社製、商品名:ラボプラストミル)を用いて、回転数50rpm、180℃で10分混練して均一混合物を得た。該均一混合物を、プレス機(東洋精機社製、商品名:ラボプレス)を用いて、180℃、5kg/cm 2分、200kg/cm 2分、15℃、5kg/cm 1分、80℃、5kg/cm 1分の条件で順次プレスし、厚み約0.4mmのシート状の複合材料を製造した。
比較例A−8
微細セルロース繊維複合体分散液を、微細セルロース繊維複合体を含まない、コハク酸メチルトリグリコールジエステル(可塑剤の調製例1にて合成)に変えて、実施例A−1と同様の方法で複合材料の製造を行った。
比較例A−9
微細セルロース繊維複合体を添加しないこと以外は実施例A−11と同様の方法で複合材料を製造した。
なお、表1〜6における原料は以下の通りである。
<ポリエステル樹脂>
NW4032D:ポリ乳酸樹脂、ネイチャーワークスLLC社製、ポリ−L−乳酸、NatureWorks 4032D、光学純度98.5%、融点160℃、重量平均分子量141000
NOACRYSTAL−V:ポリエチレンテレフタレート樹脂、RP東プラ社製、A−PET、融点250℃
<結晶核剤>
スリパックスH:エチレンビス12−ヒドロキシステアリン酸アミド、日本化成社製
<可塑剤>
(MeEO)SA:可塑剤の調製例1により調製されたコハク酸とトリエチレングリコールモノメチルエーテルとのジエステル
MeSA−1,3PD:可塑剤の調製例2により調製されたジメチルコハク酸と1,3プロパンジオールとのオリゴエステル化合物
DAIFATTY−101:アジピン酸とメチルジグリコール/ベンジルエステル等量混合物とのジエステル化合物、大八化学工業製
得られた成形体の特性を、下記の試験例A−1〜A−3の方法に従って評価した。結果を表1〜6に示す。
試験例A−1(弾性率)
引張圧縮試験機(SHIMADZU社製、商品名「Autograph AGS−X」)を用いて、JIS K7113に準拠して、成形体の引張弾性率及び引張降伏強度をそれぞれ引張試験によって測定した。2号ダンベルで打ち抜いたサンプルを支点間距離80mmでセットし、クロスヘッド速度50mm/minで測定した。弾性率が高い方が機械的強度に優れていることを示す。
試験例A−2(透明性)
ヘイズメーター(HM−150型 村上色彩技術研究所社製)を用いて、Haze値を測定し、これを透明度の指標とした。数値が低いほど透明性に優れることを示す。
試験例A−3(熱安定性)
成形体のYI(Yellow Index)値を分光式色彩計(日本電色工業社製 SE2000)を用いて測定した。数値が低いほど熱安定性に優れることを示す。
Figure 0005356593
Figure 0005356593
Figure 0005356593
Figure 0005356593
Figure 0005356593
Figure 0005356593
表1〜6の結果から明らかなように、アルキル基の同じ長さで比較した場合、本発明の微細セルロース繊維複合体は樹脂に添加した際に、樹脂組成物の透明性を損なうことなく樹脂組成物の機械的強度を著しく向上させることが可能である。さらに、本発明の微細セルロース繊維複合体は他の微細セルロース繊維複合体と比較し、熱安定性に優れることから、樹脂組成物とした後の黄色度が低く、変色し難いことがわかる。
実施例B−1〜B−10及び比較例B−1〜B−4
ポリエステル樹脂組成物の調製
表7〜9に示す組成物原料を、2軸押出機(池貝鉄工社製、PCM−45)の原料供給口から一括して添加し、回転数100r/min、溶融混練温度190℃で溶融混練し、ストランドカットを行い、ポリエステル樹脂組成物のペレットを得た。得られたペレットは、除湿乾燥機で80℃で5時間乾燥し、水分量を500ppm以下とした。なお、比較例B−1は、製造例1で得られた微細セルロース繊維分散液を固形分換算で表9に記載の含有量となるように用いて、実施例B−1と同様にしてペレットを調製した。
このペレットをTダイ2軸押出機(日本製鋼所社製 TEX44αII)にて、回転数120r/min、溶融混練温度200℃で溶融混練し、厚み0.3mmのシート状組成物(熱成形用シート)をTダイから押出し、表面温度20℃に制御した冷却ロールに2秒間接触させ、非晶シートを得た(厚み0.3mm)。
熱成形品の調製
次いで、単発真空圧空成形機(脇坂製作所社製、FVS−500P WAKITEC)を用いて、前記切り出したシートをガイドに取り付け、ヒーター温度を400℃に設定したヒーター部中での保持時間を変えることで、シート表面の温度が70〜90℃となり、熱成形可能な状態までシートを加熱・軟化させた後、シートを表面温度90℃に設定した上下金型を用いて真空成形を行い、金型内で10秒間保持した後に脱型し、熱成形品を得た。シート表面の温度は、加熱後のシート表面温度を直接表面温度計にて測定した。なお、使用した金型を図1に示す。
なお、表7〜9における原料は以下の通りである。
<ポリエステル樹脂>
NW4032D:ポリ乳酸樹脂、ネイチャーワークスLLC社製、ポリ−L−乳酸、NatureWorks 4032D、光学純度98.5%、融点160℃、重量平均分子量141000
<可塑剤>
(MeEO)SA:可塑剤の調製例1により調製されたコハク酸とトリエチレングリコールモノメチルエーテルとのジエステル
<結晶核剤>
スリパックスH:エチレンビス12−ヒドロキシステアリン酸アミド、日本化成社製
得られた成形体の特性を、下記の試験例B−1〜B−3の方法に従って評価した。結果を表7〜9に示す。
試験例B−1(耐熱性)
熱成形品天面の平坦部から幅1cm長さ4cmのサンプル片を切り取り、JIS−K7198に基づいて、動的粘弾性測定装置(エスアイアイ・ナノテクノロジー社製 EXSTAR6000)にて、周波数10Hz、昇温速度2℃/min、−20℃から80℃の温度領域における貯蔵弾性率(E’)を測定し、80℃における貯蔵弾性率(MPa)を求めた。数値が180以上であれば耐熱性に優れることを示す。
試験例B−2(透明性)
得られた成形体について、JIS 7105に基づいて、ヘイズメーター(HM−150型 村上色彩技術研究所社製)を用いて、Haze値を測定し、これを透明度の指標とした。数値が低いほど透明性に優れることを示す。
試験例B−3(相対結晶化度の測定)
前記非晶シートと熱成形品の一部を切り取り、相対結晶化度を求めた。具体的には、PerkinElmer社製 DSCを用いて、20℃から200℃まで20℃/minで昇温させ、観察された冷結晶化発熱ピークの絶対値ΔHccと結晶溶融ピークの絶対値ΔHmから下式より相対結晶化度を求めた。
相対結晶化度(%)={(ΔHm−ΔHcc)/ΔHm}×100
Figure 0005356593
Figure 0005356593
Figure 0005356593
表7〜9の結果から明らかなように、本発明のポリエステル樹脂組成物の熱成形品(実施例B−1〜B−10)は、透明性に優れ、かつ、80℃における貯蔵弾性率が大きく耐熱性に優れることが示唆される。
実施例C−1〜C−15及び比較例C−1〜C−5
ポリエステル樹脂組成物の調製
表10〜13に示す組成物原料を、2軸押出機(池貝鉄工社製、PCM−45)の原料供給口から原料を一括して添加し、回転数100r/min、溶融混練温度190℃で溶融混練し、ストランドカットを行い、ポリエステル樹脂組成物のペレットを得た。得られたペレットは、除湿乾燥機で80℃で5時間乾燥し、水分量を500ppm以下とした。なお、比較例C−1は、製造例1で得られた微細セルロース繊維分散液を固形分換算で表13に記載の含有量となるように用いて、実施例C−1と同様にしてペレットを調製した。実施例C−11及び比較例C−5は、溶融混練温度を260℃に設定する以外は、実施例C−1と同様にしてペレットを調製した。
実施例C−1〜C−10、実施例C−12〜C−15及び比較例C−1〜C−4
射出成形体の調製
次いで、得られたペレットを、シリンダー温度を200℃とした射出成形機(日本製鋼所社製 J110AD−180H)を用いて射出成形し、金型温度80℃、成形時間60秒で試験片〔角柱状試験片(125mm×12mm×6mm)〕を成形した。
実施例C−11及び比較例C−5
射出成形体の調製
シリンダー温度を260℃、金型温度を120℃、成形時間を120秒に変更した以外は実施例C−1と同様の方法で射出成形を行い、試験片を得た。
なお、表10〜13における原料は以下の通りである。
<ポリエステル樹脂>
NW4032D:ポリ乳酸樹脂、ネイチャーワークスLLC社製、ポリ−L−乳酸、NatureWorks 4032D、光学純度98.5%、融点160℃、重量平均分子量141000
NOACRYSTAL−V:ポリエチレンテレフタレート樹脂、RP東プラ社製、A−PET、融点250℃
<可塑剤>
(MeEO)SA:可塑剤の調製例1により調製されたコハク酸とトリエチレングリコールモノメチルエーテルとのジエステル
MeSA−1,3PD:可塑剤の調製例2により調製されたジメチルコハク酸と1,3プロパンジオールとのオリゴエステル化合物
DAIFATTY−101:アジピン酸とメチルジグリコール/ベンジルエステル等量混合物とのジエステル化合物、大八化学工業製
<結晶核剤>
PPA−Zn:無置換のフェニルホスホン酸亜鉛塩、日産化学工業社製
<加水分解抑制剤>
カルボジライトLA−1:ポリカルボジイミド、日清紡ケミカル社製
得られた成形体の特性を、下記の試験例C−1〜C−2の方法に従って評価した。結果を表10〜13に示す。
試験例C−1(耐熱性)
角柱状試験片(125mm×12mm×6mm)について、JIS K7191に基づいて、熱変形温度測定機(東洋精機製作所製、B−32)を使用して、荷重1.80MPaにおいて0.25mmたわむときの温度を熱変形温度(℃)として測定した。熱変形温度が高い方が耐熱性に優れていることを示す。
試験例C−2(曲げ強度)
角柱状試験片(125mm×12mm×6mm)について、JIS K7203に基づいて、テンシロン(オリエンテック社製、テンシロン万能試験機 RTC−1210A)を用いて、クロスヘッド速度を3mm/minに設定して曲げ試験を行い、曲げ強度を求めた。曲げ強度は、高いほうが強度に優れていることを示す。
Figure 0005356593
Figure 0005356593
Figure 0005356593
Figure 0005356593
表10〜13の結果から明らかなように、本発明のポリエステル樹脂組成物の射出成形体(実施例C−1〜C−15)は、耐熱性に優れ、かつ、曲げ強度が高く、機械的強度に優れることが示唆される。
本発明のポリエステル樹脂組成物は、日用雑貨品、家電部品、家電部品用梱包資材、自動車部品等の様々な工業用途に好適に使用することができる。
本発明は、下記のいずれかに関し得る;
<1>
ポリエステル樹脂、及び、微細セルロース繊維に炭化水素基がアミド結合を介して連結してなる、平均繊維径が好ましくは0.1nm以上、より好ましくは0.2nm以上、さらに好ましくは0.5nm以上、さらに好ましくは0.8nm以上、よりさらに好ましくは1nm以上であり、好ましくは200nm以下、より好ましくは100nm以下、さらに好ましくは50nm以下、さらに好ましくは20nm以下、よりさらに好ましくは10nm以下であり、また、好ましくは0.1〜200nm、より好ましくは0.2〜100nm、さらに好ましくは0.5〜50nm、さらに好ましくは0.8〜20nm、よりさらに好ましくは1〜10nmである微細セルロース繊維複合体を含有してなるポリエステル樹脂組成物。
<2>
炭化水素基が、炭素数が好ましくは1以上、より好ましくは2以上、さらに好ましくは3以上であり、好ましくは30以下、より好ましくは18以下、さらに好ましくは12以下、よりさらに好ましくは8以下、の飽和又は不飽和の、直鎖状又は分岐状の炭化水素基である、<1>記載のポリエステル樹脂組成物。
<3>
炭化水素基が、炭素数が1の炭化水素基、あるいは、炭素数が好ましくは2〜30、より好ましくは2〜18、さらに好ましくは2〜12、よりさらに好ましくは3〜8の飽和又は不飽和の、直鎖状又は分岐状の炭化水素基である、<1>記載のポリエステル樹脂組成物。
<4>
炭化水素基が、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、オクタデシル基からなる群より選ばれる少なくとも1つである、<1>〜<3>いずれか記載のポリエステル樹脂組成物。
<5>
微細セルロース繊維複合体における炭化水素基の平均結合量が、好ましくは0.001mmol/g以上、より好ましくは0.005mmol/g以上、さらに好ましくは0.01mmol/g以上であり、好ましくは3mmol/g以下、より好ましくは2mmol/g以下、さらに好ましくは1mmol/g以下である、<1>〜<4>いずれか記載のポリエステル樹脂組成物。
<6>
微細セルロース繊維複合体における炭化水素基の平均結合量が、好ましくは0.001〜3mmol/g、より好ましくは0.005〜2mmol/g、さらに好ましくは0.01〜1mmol/gである、<1>〜<4>いずれか記載のポリエステル樹脂組成物。
<7>
微細セルロース繊維の平均繊維径が、好ましくは0.1〜200nm、より好ましくは0.2〜100nm、さらに好ましくは0.5〜50nm、さらに好ましくは0.8〜20nm、よりさらに好ましくは1〜10nmである、<1>〜<6>いずれか記載のポリエステル樹脂組成物。
<8>
微細セルロース繊維のカルボキシ基含有量が、好ましくは0.1mmol/g以上、より好ましくは0.4mmol/g以上、さらに好ましくは0.6mmol/gであり
好ましくは3mmol/g以下、より好ましくは2mmol/g以下、さらに好ましくは1.8mmol/g以下である、<1>〜<7>いずれか記載のポリエステル樹脂組成物。
<9>
微細セルロース繊維のカルボキシ基含有量が、好ましくは0.1〜3mmol/g、より好ましくは0.1〜2mmol/g、さらに好ましくは0.4〜2mmol/g、よりさらに好ましくは0.6〜1.8mmol/gである、<1>〜<7>いずれか記載のポリエステル樹脂組成物。
<10>
微細セルロース繊維の平均アスペクト比が、好ましくは10〜1000、より好ましくは20〜500、さらに好ましくは50〜400、よりさらに好ましくは100〜350である、<1>〜<9>いずれか記載のポリエステル樹脂組成物。
<11>
微細セルロース繊維の結晶化度が、好ましくは30〜95%、より好ましくは35〜90%、さらに好ましくは40〜85%、よりさらに好ましくは45〜80%である、<1>〜<10>いずれか記載のポリエステル樹脂組成物。
<12>
微細セルロース繊維複合体のカルボキシ基含有量が、好ましくは0.10mmol/g以上、より好ましくは0.20mmol/g以上、さらに好ましくは0.30mmol/g以上であり、好ましくは3mmol/g以下、より好ましくは2mmol/g以下、さらに好ましくは1.5mmol/g以下である、<1>〜<11>いずれか記載のポリエステル樹脂組成物。
<13>
微細セルロース繊維複合体のカルボキシ基含有量が、好ましくは0.10〜3mmol/g、より好ましくは0.20〜2mmol/g、さらに好ましくは0.30〜1.5mmol/gである、<1>〜<11>いずれか記載のポリエステル樹脂組成物。
<14>
微細セルロース繊維複合体の含有量が、ポリエステル樹脂100重量部に対して、好ましくは0.01重量部以上、より好ましくは0.05重量部以上、さらに好ましくは0.1重量部以上であり、好ましくは5重量部以下、より好ましくは1重量部以下、さらに好ましくは0.5重量部以下である、<1>〜<13>いずれか記載のポリエステル樹脂組成物。
<15>
微細セルロース繊維複合体の含有量が、ポリエステル樹脂100重量部に対して、好ましくは0.01〜5重量部、より好ましくは0.05〜1重量部、さらに好ましくは0.1〜0.5重量部である、<1>〜<13>いずれか記載のポリエステル樹脂組成物。
<16>
微細セルロース繊維複合体が、下記工程(A)及び工程(B)を含む製造方法により得られるものである、<1>〜<15>いずれか記載のポリエステル樹脂組成物。
工程(A):天然セルロース繊維をN−オキシル化合物存在下で酸化して、カルボキシ基含有セルロース繊維を得る工程
工程(B):工程(A)で得られたカルボキシ基含有セルロース繊維と、炭化水素基を有する第1級又は第2級アミンとを反応させる工程
<17>
N−オキシル化合物が、炭素数1又は2のアルキル基を有するピペリジンオキシル化合物、ピロリジンオキシル化合物、イミダゾリンオキシル化合物、及びアザアダマンタン化合物から選ばれる1種以上の複素環式のN−オキシル化合物である、<16>記載のポリエステル樹脂組成物
<18>
N−オキシル化合物が、2,2,6,6−テトラメチルピペリジン−1−オキシル(TEMPO)、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン−1−オキシル、及び4−メトキシ−2,2,6,6−テトラメチルピペリジン−1−オキシルからなる群より選ばれる少なくとも1種である、<16>記載のポリエステル樹脂組成物。
<19>
炭化水素基を有する第1級アミンが、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、2−エチルヘキシルアミン、デシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、オクタデシルアミンからなる群より選ばれる少なくとも1種である、<16>〜<18>いずれか記載のポリエステル樹脂組成物。
<20>
炭化水素基を有する第2級アミンが、ジメチルアミン、ジエチルアミン、ジイソプロピルアミン、ジオクチルアミン、ジデシルアミン、ジドデシルアミン、ジテトラデシルアミン、ジオクタデシルアミンからなる群より選ばれる少なくとも1種である、<16>〜<18>いずれか記載のポリエステル樹脂組成物。
<21>
炭化水素基を有する第1級アミンが、好ましくは炭素数1〜18、より好ましくは炭素数1〜12、さらに好ましくは炭素数1〜8、さらに好ましくは炭素数1〜6の直鎖状又は分岐状の炭化水素基を有する第1級アミンである、<16>〜<18>いずれか記載のポリエステル樹脂組成物。
<22>
炭化水素基を有する第1級又は第2級アミンの使用量が、カルボキシ基含有微細セルロース繊維に含有されるカルボキシ基1molに対して、好ましくは0.01〜50molであり、より好ましくは0.05〜40molであり、さらに好ましくは0.1〜20molである、<16>〜<21>いずれか記載のポリエステル樹脂組成物。
<23>
微細セルロース繊維複合体が、カルボキシ基含有セルロース繊維と炭化水素基を有する第1級又は第2級アミンとの反応生成物である、<16>〜<22>いずれか記載のポリエステル樹脂組成物。
<24>
ポリエステル樹脂がポリ乳酸樹脂である、<1>〜<23>いずれか記載のポリエステル樹脂組成物。
<25>
さらに、可塑剤を含有してなる、<1>〜<24>いずれか記載のポリエステル樹脂組成物。
<26>
可塑剤が、分子内に2個以上のエステル基を有するエステル化合物であって、該エステル化合物を構成するアルコール成分の少なくとも1種が水酸基1個当たり炭素数2〜3のアルキレンオキサイドを平均0.5〜5モル付加したアルコールであるエステル化合物を含む、<25>記載のポリエステル樹脂組成物。
<27>
可塑剤が、下記式(I)で表されるポリエステル系可塑剤(オリゴエステルともいう)を含む、<25>記載のポリエステル樹脂組成物。
O−CO−R−CO−〔(OR)O−CO−R−CO−〕OR (I)
(式中、Rは炭素数が1〜4のアルキル基、Rは炭素数が2〜4のアルキレン基、Rは炭素数が2〜6のアルキレン基であり、mは1〜6の数、nは1〜12の数を示し、但し、全てのRは同一でも異なっていてもよく、全てのRは同一でも異なっていてもよい)
<28>
可塑剤の含有量は、ポリエステル樹脂100重量部に対して、好ましくは1重量部以上、より好ましくは5重量部であり、好ましくは50重量部以下、より好ましくは30重量部以下である、<25>〜<28>いずれか記載のポリエステル樹脂組成物。
<29>
さらに、結晶核剤を含有してなる、<1>〜<28>いずれか記載のポリエステル樹脂組成物。
<30>
結晶核剤が、エチレンビスステアリン酸アミドやエチレンビスオレイン酸アミド等のエチレンビス脂肪酸アミド、プロピレンビス脂肪酸アミド、ブチレンビス脂肪酸アミド等のアルキレンビス脂肪酸アミド、フェニルホスホン酸金属塩からなる群より選ばれる少なくとも1種を含む、<28>記載のポリエステル樹脂組成物。
<31>
可塑剤の含有量は、ポリエステル樹脂100重量部に対して、好ましくは1重量部以上、より好ましくは5重量部であり、好ましくは50重量部以下、より好ましくは30重量部以下である、<29>又は<30>記載のポリエステル樹脂組成物。
<32>
さらに、加水分解抑制剤を含有してなる、<1>〜<31>いずれか記載のポリエステル樹脂組成物。
<33>
加水分解抑制剤の含有量は、ポリエステル樹脂100重量部に対して、0.05重量部以上が好ましく、0.10重量部以上がより好ましく、3重量部以下が好ましく、2重量部以下である、<32>記載のポリエステル樹脂組成物。
<34>
ポリエステル樹脂及び微細セルロース繊維複合体を含有する原料を溶融混練してなる、、<1>〜<33>いずれか記載のポリエステル樹脂組成物。
<35>
<1>〜<34>いずれか記載のポリエステル樹脂組成物からなる熱成形品。
<36>
微細セルロース繊維複合体の含有量が、ポリエステル樹脂100重量部に対して、好ましくは0.01重量部以上、より好ましくは0.05重量部以上、さらに好ましくは0.1重量部以上であり、好ましくは5重量部以下、より好ましくは1重量部以下、さらに好ましくは0.5重量部以下であり、また、好ましくは0.01〜5重量部、より好ましくは0.05〜1重量部、さらに好ましくは0.1〜0.5重量部である、<35>記載の熱成形品。
<37>
<1>〜<34>いずれか記載のポリエステル樹脂組成物からなるシートを、加熱した真空圧空成形機中の金型内に設置して、加圧又は無加圧状態に保ち成型してなる、<35>又は<36>記載の熱成形品。
<38>
シートが、<1>〜<34>いずれか記載のポリエステル樹脂組成物を押出成形又はプレス成形によって調製される、<37>記載の熱成形品。
<39>
押出成形が、加熱した押出機に充填された<1>〜<34>いずれか記載のポリエステル樹脂組成物を溶融させた後にTダイから押出す、<38>記載の熱成形品。
<40>
押出機の温度が、好ましくは170℃以上、より好ましくは175℃以上、さらに好ましくは180℃以上であり、好ましくは240℃以下、より好ましくは220℃以下、さらに好ましくは210℃以下であり、また、170〜240℃が好ましく、175〜220℃がより好ましく、180〜210℃がさらに好ましい、<39>記載の熱成形品。
<41>
Tダイから押出して得られたシート状の一次加工品を、直ぐに冷却ロールに接触させてポリエステル樹脂組成物のTg未満に冷却する、<39>又は<40>記載の熱成形品。
<42>
冷却ロールの温度が、40℃未満が好ましく、30℃以下がより好ましく、20℃以下がさらに好ましい、<41>記載の熱成形品。
<43>
プレス成形が、シート形状を有する枠で<1>〜<34>いずれか記載のポリエステル樹脂組成物を囲みプレス成形する、<38>記載の熱成形品。
<44>
プレス成形の温度と圧力としては、好ましくは170〜240℃の温度、5〜30MPaの圧力の条件下、より好ましくは175〜220℃の温度、10〜25MPaの圧力の条件下、さらに好ましくは180〜210℃の温度、10〜20MPaの圧力の条件下である、<43>記載の熱成形品。
<45>
<44>記載の条件でプレスした後直ぐに、好ましくは0〜40℃の温度、5〜30MPaの圧力の条件下、より好ましくは10〜30℃の温度、10〜25MPaの圧力の条件下、さらに好ましくは10〜20℃の温度、10〜20MPaの圧力の条件下でプレスして冷却する、<44>記載の熱成形品。
<46>
シートが非晶状態又は半結晶状態である、<41>、<42>又は<45>記載の熱成形品。
<47>
非晶状態又は半結晶状態のシートの厚みが0.1〜1.5mmが好ましく、0.1〜1.4mmがより好ましく、0.15〜1.2mmがさらに好ましい、<46>記載の熱成形品。
<48>
金型温度が、120℃以下が好ましく、115℃以下がより好ましく、110℃以下がさらに好ましく、70℃以上が好ましく、75℃以上がより好ましく、80℃以上がさらに好ましく、また、70〜120℃が好ましく、75〜115℃がより好ましく、80〜110℃がさらに好ましい、<37>〜<47>いずれか記載の熱成形品。
<49>
熱成形品の厚みが、0.1〜1.5mmが好ましく、0.15〜1.4mmがより好ましく、0.2〜1.2mmがさらに好ましい、<35>〜<48>いずれか記載の熱成形品。
<50>
熱成形品の80℃における貯蔵弾性率が、好ましくは200MPa以上、より好ましくは250MPa以上、さらに好ましくは300MPa以上であり、好ましくは1000MPa以下、より好ましくは800MPa以下、さらに好ましくは500MPa以下である、<35>〜<49>いずれか記載の熱成形品。
<51>
熱成形品のHaze(%)が、好ましくは30%以下、より好ましくは25%以下、さらに好ましくは20%以下である、<35>〜<50>いずれか記載の熱成形品。
<52>
熱成形品が、80℃における貯蔵弾性率が200MPa以上、かつ、Haze(%)が30%以下であるものが好ましく、80℃における貯蔵弾性率が250MPa以上、かつ、Haze(%)が25%以下であるものがより好ましく、80℃における貯蔵弾性率が300MPa以上、かつ、Haze(%)が20%以下であるものがさらに好ましい、<35>〜<51>いずれか記載の熱成形品。
<53>
下記工程(1−1)〜(1−3)を含む、<35>〜<52>いずれか記載の熱成形品の製造方法。
工程(1−1):微細セルロース繊維に炭化水素基がアミド結合を介して連結してなる、平均繊維径が0.1〜200nmの微細セルロース繊維複合体及びポリエステル樹脂を含有する原料を溶融混練して、ポリエステル樹脂組成物を調製する工程
工程(1−2):工程(1−1)で得られたポリエステル樹脂組成物を押出成形又はプレス成形してシートを得る工程
工程(1−3):工程(1−2)で得られたシートを熱成形して熱成形品を得る工程
<54>
微細セルロース繊維複合体が、下記工程(A)及び工程(B)を含む製造方法により得られるものである、<53>記載の熱成形品の製造方法。
工程(A):天然セルロース繊維をN−オキシル化合物存在下で酸化して、カルボキシ基含有セルロース繊維を得る工程
工程(B):工程(A)で得られたカルボキシ基含有セルロース繊維と、炭化水素基を有する第1級又は第2級アミンとを反応させる工程
<55>
工程(1−2)が、工程(1−1)で得られたポリエステル樹脂組成物を押出成形法によりダイから押出してシートを調製後、ポリエステル樹脂組成物のガラス転移温度(Tg)未満に冷却して相対結晶化度80%未満のシートを得る工程である、<53>又は<54>記載の熱成形品の製造方法。
<56>
工程(1−3)が、工程(1−2)で得られたシートを、ポリエステル樹脂組成物のガラス転移温度(Tg)以上、融点(Tm)未満の温度領域中で熱成形して相対結晶化度80%以上に結晶化させた熱成形品を得る工程である、<53>〜<55>いずれか記載の熱成形品の製造方法。
<57>
<1>〜<34>いずれか記載のポリエステル樹脂組成物からなる射出成形体。
<58>
微細セルロース繊維複合体の含有量が、ポリエステル樹脂100重量部に対して、好ましくは0.01重量部以上、より好ましくは0.05重量部以上、さらに好ましくは0.1重量部以上であり、好ましくは5重量部以下、より好ましくは1重量部以下、さらに好ましくは0.5重量部以下であり、また、好ましくは0.01〜5重量部、より好ましくは0.05〜1重量部、さらに好ましくは0.1〜0.5重量部である、<57>記載の射出成形体。
<59>
<1>〜<34>いずれか記載のポリエステル樹脂組成物を射出成形機に充填して、金型内に注入して成型してなる、<57>又は<58>記載の射出成形体。
<60>
射出成形機が、シリンダーとその内部に挿通されたスクリューを主な構成要素として有するものである、<59>記載の射出成形体。
<61>
シリンダーの設定温度は、ポリエステル樹脂の融点(Tm)+5〜Tm+50℃が好ましく、Tm+10〜Tm+30℃がより好ましく、ポリエステル樹脂がポリ乳酸樹脂の場合、180〜220℃が好ましく、180〜210℃がより好ましい、<60>記載の射出成形体。
<62>
金型温度は、30〜150℃が好ましく、60〜130℃がより好ましく、80〜110℃がさらに好ましく、、ポリエステル樹脂がポリ乳酸樹脂の場合、30〜110℃が好ましく、40〜90℃がより好ましく、60〜80℃がさらに好ましい、<59>〜<61>いずれか記載の射出成形体。
<63>
射出成形体が、好ましくは40MPa以上、より好ましくは45MPa以上であり、好ましくは200MPa以下、より好ましくは150MPa以下、さらに好ましくは100MPa以下の曲げ強度を有する、<59>〜<62>いずれか記載の射出成形体。
<64>
射出成形体が、好ましくは70℃以上、より好ましくは75℃以上であり、好ましくは160℃以下、より好ましくは150℃以下の熱変形温度を有する、<59>〜<63>いずれか記載の射出成形体。
<65>
射出成形体が、曲げ強度が40MPa以上、かつ、熱変形温度が70℃以上であるものが好ましく、曲げ強度が45MPa以上、かつ、熱変形温度が75℃以上であるものがより好ましい、<59>〜<64>いずれか記載の射出成形体。
<66>
下記工程(2−1)〜(2−2)を含む、<59>〜<65>いずれか記載の射出成形体の製造方法。
工程(2−1):微細セルロース繊維に炭化水素基がアミド結合を介して連結してなる、平均繊維径が0.1〜200nmの微細セルロース繊維複合体及びポリエステル樹脂を含有する原料を溶融混練して、ポリエステル樹脂組成物を調製する工程
工程(2−2):工程(2−1)で得られたポリエステル樹脂組成物を金型内に射出成形する工程
<67>
微細セルロース繊維複合体が、下記工程(A)及び工程(B)を含む製造方法により得られるものである、<66>記載の射出成形体の製造方法。
工程(A):天然セルロース繊維をN−オキシル化合物存在下で酸化して、カルボキシ基含有セルロース繊維を得る工程
工程(B):工程(A)で得られたカルボキシ基含有セルロース繊維と、炭化水素基を有する第1級又は第2級アミンとを反応させる工程
<68>
工程(2−2)が、工程(2−1)で得られたポリエステル樹脂組成物を、好ましくはポリエステル樹脂の融点(Tm)+5〜Tm+50℃、より好ましくはTm+10〜Tm+30℃、ポリエステル樹脂がポリ乳酸樹脂の場合は、好ましくは180〜220℃、より好ましくは180〜210℃に加熱したシリンダーを装備した射出成形機に充填し、好ましくは30〜150℃、より好ましくは60〜130℃、さらに好ましくは80〜110℃、ポリエステル樹脂がポリ乳酸樹脂の場合は、好ましくは30〜110℃、より好ましくは40〜90℃、さらに好ましくは60〜80℃の金型内に射出して成形する工程である、<66>又は<67>記載の射出成形体の製造方法。
<69>
日用品、化粧品、家電製品などのブリスターパックやトレイ、お弁当の蓋等の食品容器、工業部品の輸送や保護に用いる工業用トレイに用いられる、<35>〜<52>いずれか記載の熱成形品。
<70>
情報・家電機器や、日用品、文具、化粧品等の筐体、部品に用いられる、<59>〜<65>いずれか記載の射出成形体。

Claims (14)

  1. ポリエステル樹脂、及び、微細セルロース繊維に炭化水素基がアミド結合を介して連結してなる、平均繊維径が0.1〜200nmの微細セルロース繊維複合体を含有してなるポリエステル樹脂組成物。
  2. 炭化水素基が、炭素数が1の炭化水素基、あるいは、炭素数が2〜30の飽和又は不飽和の、直鎖状又は分岐状の炭化水素基である、請求項1記載のポリエステル樹脂組成物。
  3. 微細セルロース繊維複合体における炭化水素基の平均結合量が0.001〜3mmol/gである、請求項1又は2記載のポリエステル樹脂組成物。
  4. 微細セルロース繊維複合体がカルボキシ基を0.10〜3mmol/g含有してなる、請求項1〜3いずれか記載のポリエステル樹脂組成物。
  5. 微細セルロース繊維複合体が、カルボキシ基含有セルロース繊維と炭化水素基を有する第1級又は第2級アミンとの反応生成物である、請求項1〜4いずれか記載のポリエステル樹脂組成物。
  6. 微細セルロース繊維複合体が、下記工程(A)及び工程(B)を含む製造方法により得られるものである、請求項1〜5いずれか記載のポリエステル樹脂組成物。
    工程(A):天然セルロース繊維をN−オキシル化合物存在下で酸化して、カルボキシ基含有セルロース繊維を得る工程
    工程(B):工程(A)で得られたカルボキシ基含有セルロース繊維と、炭化水素基を有する第1級又は第2級アミンとを反応させる工程
  7. ポリエステル樹脂がポリ乳酸樹脂である、請求項1〜6いずれか記載のポリエステル樹脂組成物。
  8. 微細セルロース繊維複合体の含有量が、ポリエステル樹脂100重量部に対して、0.01〜5重量部である、請求項1〜7いずれか記載のポリエステル樹脂組成物。
  9. 請求項1〜いずれか記載のポリエステル樹脂組成物からなる熱成形品。
  10. 請求項1〜いずれか記載のポリエステル樹脂組成物からなる射出成形体。
  11. 下記工程(1−1)〜(1−3)を含む請求項記載の熱成形品の製造方法。
    工程(1−1):微細セルロース繊維に炭化水素基がアミド結合を介して連結してなる、平均繊維径が0.1〜200nmの微細セルロース繊維複合体及びポリエステル樹脂を含有する原料を溶融混練して、ポリエステル樹脂組成物を調製する工程
    工程(1−2):工程(1−1)で得られたポリエステル樹脂組成物を押出成形又はプレス成形してシートを得る工程
    工程(1−3):工程(1−2)で得られたシートを熱成形して熱成形品を得る工程
  12. 微細セルロース繊維複合体が、下記工程(A)及び工程(B)を含む製造方法により得られるものである、請求項11記載の熱成形品の製造方法。
    工程(A):天然セルロース繊維をN−オキシル化合物存在下で酸化して、カルボキシ基含有セルロース繊維を得る工程
    工程(B):工程(A)で得られたカルボキシ基含有セルロース繊維と、炭化水素基を有する第1級又は第2級アミンとを反応させる工程
  13. 下記工程(2−1)〜(2−2)を含む請求項10記載の射出成形体の製造方法。
    工程(2−1):微細セルロース繊維に炭化水素基がアミド結合を介して連結してなる、平均繊維径が0.1〜200nmの微細セルロース繊維複合体及びポリエステル樹脂を含有する原料を溶融混練して、ポリエステル樹脂組成物を調製する工程
    工程(2−2):工程(2−1)で得られたポリエステル樹脂組成物を金型内に射出成形する工程
  14. 微細セルロース繊維複合体が、下記工程(A)及び工程(B)を含む製造方法により得られるものである、請求項13記載の射出成形体の製造方法。
    工程(A):天然セルロース繊維をN−オキシル化合物存在下で酸化して、カルボキシ基含有セルロース繊維を得る工程
    工程(B):工程(A)で得られたカルボキシ基含有セルロース繊維と、炭化水素基を有する第1級又は第2級アミンとを反応させる工程
JP2012277750A 2011-12-28 2012-12-20 ポリエステル樹脂組成物からなる成形体 Expired - Fee Related JP5356593B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012277750A JP5356593B2 (ja) 2011-12-28 2012-12-20 ポリエステル樹脂組成物からなる成形体

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011289170 2011-12-28
JP2011289170 2011-12-28
JP2012277750A JP5356593B2 (ja) 2011-12-28 2012-12-20 ポリエステル樹脂組成物からなる成形体

Publications (2)

Publication Number Publication Date
JP2013151661A JP2013151661A (ja) 2013-08-08
JP5356593B2 true JP5356593B2 (ja) 2013-12-04

Family

ID=49048251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012277750A Expired - Fee Related JP5356593B2 (ja) 2011-12-28 2012-12-20 ポリエステル樹脂組成物からなる成形体

Country Status (1)

Country Link
JP (1) JP5356593B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972335B2 (ja) 2014-10-14 2016-08-17 花王株式会社 三次元造形用可溶性材料
JP6443981B2 (ja) * 2015-02-26 2018-12-26 花王株式会社 微細セルロース繊維複合体
JP2018020530A (ja) * 2016-08-05 2018-02-08 三菱ケミカル株式会社 成形性および安定性良好な成形シートの製造方法および、それを用いた加飾品の製造方法
JP2018020531A (ja) * 2016-08-05 2018-02-08 三菱ケミカル株式会社 成形性および安定性良好な真空成形シートの製造方法および、それを用いた加飾品の製造方法
JP2018024967A (ja) * 2016-08-09 2018-02-15 花王株式会社 微細セルロース繊維複合体
JP2018070835A (ja) * 2016-11-02 2018-05-10 互応化学工業株式会社 ポリエステル樹脂組成物
JP7223498B2 (ja) 2016-12-27 2023-02-16 花王株式会社 樹脂組成物
DK3594301T3 (da) 2017-03-07 2022-05-16 Kao Corp Film omfattende hydrofobiserede cellulosefibre og olie
JP2018168513A (ja) * 2017-03-30 2018-11-01 花王株式会社 熱可塑性樹脂繊維及びその製造方法
EP3733957A4 (en) 2017-12-27 2021-10-06 Kao Corporation METHOD OF MANUFACTURING MICRONIZED HYDROPHOBICLY MODIFIED CELLULOSE FIBER
US20210253830A1 (en) * 2018-08-30 2021-08-19 Oji Holdings Corporation Cellulose fiber-containing composition, liquid composition, and molded body

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4236064B2 (ja) * 1998-05-07 2009-03-11 旭化成ケミカルズ株式会社 低結晶性のセルロース微粒子を含む化粧料組成物
JP4998981B2 (ja) * 2006-06-20 2012-08-15 国立大学法人 東京大学 微細セルロース繊維
AU2008339362B2 (en) * 2007-12-17 2013-01-10 Teijin Limited Cellulose derivative and hydrogel thereof
JP5269512B2 (ja) * 2008-07-31 2013-08-21 第一工業製薬株式会社 化粧料組成物
JP2010116477A (ja) * 2008-11-13 2010-05-27 Sumitomo Bakelite Co Ltd 複合体組成物
JP2010242063A (ja) * 2009-03-17 2010-10-28 Kuraray Co Ltd セルロースナノファイバー複合ポリビニルアルコール系重合体組成物
JP2010270315A (ja) * 2009-04-24 2010-12-02 Sumitomo Bakelite Co Ltd 複合体組成物
JP5692786B2 (ja) * 2009-12-28 2015-04-01 花王株式会社 ポリ乳酸樹脂組成物の製造方法
JP5923370B2 (ja) * 2011-06-07 2016-05-24 花王株式会社 樹脂改質用添加剤及びその製造方法
JP5362881B2 (ja) * 2012-05-25 2013-12-11 株式会社三共 遊技機

Also Published As

Publication number Publication date
JP2013151661A (ja) 2013-08-08

Similar Documents

Publication Publication Date Title
WO2013099770A1 (ja) ポリエステル樹脂組成物
JP5356593B2 (ja) ポリエステル樹脂組成物からなる成形体
JP6177119B2 (ja) 酸化セルロース繊維の製造方法
JP6281937B2 (ja) 微細セルロース繊維複合体の分散液の製造方法
EP2310454B1 (en) Biodegradable resin composition
JP5794731B2 (ja) 樹脂組成物
WO2018123150A1 (ja) セルロース含有樹脂組成物及びセルロース製剤
KR101308643B1 (ko) 생분해성 수지 조성물
JP2007308650A (ja) 生分解性樹脂組成物
JP2023503533A (ja) 生分解性バイオ複合材料及びその調製方法
Osorio‐Madrazo et al. Morphological and thermal investigations of cellulosic bionanocomposites
JP2010037438A (ja) ポリ乳酸樹脂組成物
JP2012057120A (ja) 生分解性ポリエステル系樹脂組成物およびその製造方法並びに生分解性ポリエステル系樹脂成形体および生分解性ポリエステル系樹脂繊維
JP2010037437A (ja) ポリ乳酸樹脂組成物
JP2010070722A (ja) ポリ乳酸樹脂組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130502

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20130502

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20130612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R151 Written notification of patent or utility model registration

Ref document number: 5356593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees