[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5236303B2 - Gas meter - Google Patents

Gas meter Download PDF

Info

Publication number
JP5236303B2
JP5236303B2 JP2008029430A JP2008029430A JP5236303B2 JP 5236303 B2 JP5236303 B2 JP 5236303B2 JP 2008029430 A JP2008029430 A JP 2008029430A JP 2008029430 A JP2008029430 A JP 2008029430A JP 5236303 B2 JP5236303 B2 JP 5236303B2
Authority
JP
Japan
Prior art keywords
gas
flow path
ultrasonic wave
gas meter
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008029430A
Other languages
Japanese (ja)
Other versions
JP2009186430A (en
Inventor
彰 梶谷
秀一 山崎
富士雄 堀
二郎 水越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2008029430A priority Critical patent/JP5236303B2/en
Publication of JP2009186430A publication Critical patent/JP2009186430A/en
Application granted granted Critical
Publication of JP5236303B2 publication Critical patent/JP5236303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、流路部材と、計測管と、超音波伝播手段と、流量算出手段とを備えたガスメータに関する。   The present invention relates to a gas meter including a flow path member, a measurement tube, ultrasonic wave propagation means, and flow rate calculation means.

ガスメータは、例えば超音波の伝播時間または伝播速度がガス(被計測流体)の流速によって変化することを利用して、計測管内(導通路)を流れるガスに超音波を伝播させてガスの流量を計測している。流量を計測するにあたって、計測管におけるガスの流れの様相が大幅に変化すると、計測誤差が大きくなる傾向にある。従来では、計測精度を高めるため、厚さ(積層方向の高さ)が均等になるように複数の層に分割する整流板を計測管内に備える技術の一例が開示されている(例えば特許文献1を参照)。
特開2006−64626号公報
The gas meter, for example, utilizes the fact that the propagation time or propagation speed of ultrasonic waves changes depending on the flow velocity of the gas (measuring fluid), and propagates the ultrasonic waves to the gas flowing in the measurement pipe (conduction path) to reduce the gas flow rate. Measuring. When measuring the flow rate, if the aspect of the gas flow in the measuring tube changes significantly, the measurement error tends to increase. Conventionally, in order to improve measurement accuracy, an example of a technique in which a rectifying plate that is divided into a plurality of layers so that the thickness (height in the stacking direction) is uniform is provided in a measurement tube (for example, Patent Document 1). See).
JP 2006-64626 A

特許文献1に記載されたガスメータでは、流入口から流出口に至るガスの流路となる流路部材の途中に計測管を備えている。ガスメータ内を流れるガスには少なからず水分が含まれているので、環境条件が整うとガスメータの底部に水として貯まることがある。ところが、多量に貯まった水が計測管内にまであふれてしまうと、計測管を通過できるガスの通過断面積が減ってしまう。すると計測管で整流できる容量が減ることになり、ガスの流量を計測するにあたって誤差が大きくなる場合があった。   In the gas meter described in Patent Document 1, a measurement pipe is provided in the middle of a flow path member that becomes a flow path of gas from an inflow port to an outflow port. Since the gas flowing through the gas meter contains a lot of moisture, it may be stored as water at the bottom of the gas meter when the environmental conditions are met. However, when a large amount of water overflows into the measuring tube, the cross-sectional area of the gas that can pass through the measuring tube decreases. As a result, the capacity that can be rectified by the measuring tube is reduced, and the error may increase in measuring the gas flow rate.

一方、流量の計測誤差を少なくするには、水が貯まっても計測に影響を与えないようにガスメータの全体(特に底部)を大きく形成する方法が考えられる。ところが、ガスメータを単に大きくした場合には、ガスメータの重量が増し、構成する部材も大きく形成しなければならないのでコスト高となる。   On the other hand, in order to reduce the measurement error of the flow rate, a method is conceivable in which the entire gas meter (particularly, the bottom) is formed so as not to affect the measurement even if water is stored. However, when the gas meter is simply enlarged, the weight of the gas meter increases, and the constituent members must be formed larger, resulting in higher costs.

本発明はこのような点に鑑みてなしたものであり、流量の計測誤差を少なく抑えながらも、ガスメータの重量と製造コストを従来通りに維持できるガスメータを提供することを目的とする。   The present invention has been made in view of these points, and an object of the present invention is to provide a gas meter capable of maintaining the weight and manufacturing cost of the gas meter as usual while suppressing measurement errors in the flow rate to a small extent.

本発明は、請求項1に記載した通りである。
本発明によれば、バッファ部はガスの流路に生じた水を貯留する。言い換えれば、従来貯留できる水の容量に加えて、バッファ部で貯留する水の容量の分だけ増える。そのため、多量に貯まった水が計測管内にまであふれる事態を減らせるので、流量の計測誤差を少なくすることができる。また、バッファ部は流路部材と協働して計測管を固定する機能を有するので、ガスメータを単に大きくする必要がない。そのため、ガスメータの重量と製造コストを従来通りに維持することができる。
The present invention is as described in claim 1.
According to the present invention , the buffer unit stores water generated in the gas flow path. In other words, in addition to the capacity of water that can be stored conventionally, the capacity increases by the capacity of water stored in the buffer section. For this reason, it is possible to reduce a situation in which a large amount of stored water overflows into the measuring pipe, and hence it is possible to reduce flow measurement errors. Further, since the buffer unit has a function of fixing the measuring tube in cooperation with the flow path member, it is not necessary to simply enlarge the gas meter. Therefore, the weight and manufacturing cost of the gas meter can be maintained as usual.

また、本発明では、バッファ部の流入口側に開口部分を設けている。ガスは流入口から入ってくるため、温度差等の環境条件が整えば、流入口側に水が多く発生する。こうして発生した水を開口部分からバッファ部に導けるので、水が計測管内にまであふれる事態をより確実に減らすことができる。したがって、流量の計測誤差をより少なくすることができる。 Moreover, in this invention, the opening part is provided in the inflow port side of the buffer part. Since gas enters from the inlet, a lot of water is generated on the inlet side if environmental conditions such as temperature differences are prepared. Since the water thus generated can be guided from the opening portion to the buffer portion, it is possible to more reliably reduce the situation where the water overflows into the measuring tube. Therefore, the flow rate measurement error can be further reduced.

また、本発明によれば、閉鎖部材でガスの流路に通じる開口部分を閉鎖すれば、ガスの外部流出を防止したうえで、排出口から水を排出することができる。したがって、適度に水を排出することで、水が計測管内にまであふれるような事態を確実に防止できる。 Further , according to the present invention , if the opening portion that leads to the gas flow path is closed by the closing member, the water can be discharged from the discharge port while preventing the gas from flowing out to the outside. Accordingly, by appropriately discharging water, it is possible to reliably prevent a situation in which water overflows into the measuring tube.

本発明によれば、流量の計測誤差を少なく抑えながらも、ガスメータの重量と製造コストを従来通りに維持することができる。   According to the present invention, the weight and manufacturing cost of a gas meter can be maintained as usual while suppressing flow rate measurement errors to a minimum.

つづいて、本発明の前提となる実施の形態を図1〜図7によって説明する。そして、本発明を実施するための最良の形態については、図8〜図10によって説明する。
本発明に係るガスメータの外観例について、図1には正面図を表し、図2には平面図(上面図)を表す。図3はガスメータの構成例を分解斜視図で表す。図4は図2のIV−IV線矢視の断面図を表す。図5は図4のV−V線矢視の断面図を表す。図6は図4のVI−VI線矢視の断面図を表す。
Next, an embodiment as a premise of the present invention will be described with reference to FIGS. The best mode for carrying out the present invention will be described with reference to FIGS.
FIG. 1 shows a front view of the gas meter according to the present invention, and FIG. 2 shows a plan view (top view). FIG. 3 is an exploded perspective view showing a configuration example of the gas meter. 4 represents a cross-sectional view taken along the line IV-IV in FIG. FIG. 5 shows a cross-sectional view taken along line VV in FIG. 6 represents a cross-sectional view taken along line VI-VI in FIG.

まずガスメータ10の外観例について、図1および図2を参照しながら簡単に説明する。図1および図2において、ほぼ矩形の箱状に形成されたガスメータ10は、正面パネル部材16を正面側に備え付ける。正面パネル部材16には、復帰ボタン18や表示手段20等が設けられる。復帰ボタン18は、異常検出によって作動した遮断弁34(図3を参照)を復帰させ、遮断状態から流通状態に戻す。表示手段20には例えば液晶表示器やLED表示器等が用いられ、計測したガスの流量の積算値やその他の情報等を表示する。   First, an appearance example of the gas meter 10 will be briefly described with reference to FIGS. 1 and 2. 1 and 2, a gas meter 10 formed in a substantially rectangular box shape is provided with a front panel member 16 on the front side. The front panel member 16 is provided with a return button 18, a display means 20, and the like. The return button 18 returns the shut-off valve 34 (see FIG. 3) that has been activated by abnormality detection to return from the shut-off state to the flow state. For example, a liquid crystal display, an LED display, or the like is used as the display means 20, and displays the integrated value of the measured gas flow rate, other information, and the like.

ガスメータ10は、図3に表すように、流路部材22を中心に正面パネル部材16、制御基板26、電源パック28、圧力センサ30、超音波伝播手段32(すなわち一対の超音波伝播器32a,32b)、整流板36,38、計測管40、底面パネル部材42などを有する。流路部材22は例えばアルミダイカストで一体形成され、ガスメータ10の外観には上面および左右両側面に表われる。この流路部材22は、流入口12と流出口14とが同一面(本例では上面)に配置された筒状のほぼU字型の流路を構成する。すなわち他の部材(例えば正面パネル部材16や、後述する背面パネル部材24および底面パネル部材42等)と合わせて、流入口12から流入し、流出口14から流出するガスの流路がほぼU字形状になる。   As shown in FIG. 3, the gas meter 10 includes a front panel member 16, a control board 26, a power pack 28, a pressure sensor 30, and an ultrasonic wave propagation means 32 (that is, a pair of ultrasonic wave propagation devices 32 a, around the flow path member 22. 32b), current plate 36, 38, measuring tube 40, bottom panel member 42, and the like. The flow path member 22 is integrally formed by, for example, aluminum die casting, and appears on the upper surface and the left and right side surfaces in the appearance of the gas meter 10. The flow path member 22 forms a cylindrical, substantially U-shaped flow path in which the inflow port 12 and the outflow port 14 are arranged on the same surface (upper surface in this example). That is, the flow path of the gas flowing in from the inlet 12 and flowing out of the outlet 14 together with other members (for example, the front panel member 16, the back panel member 24 and the bottom panel member 42 described later) is substantially U-shaped. Become a shape.

ところで、筒状のほぼU字型の全体を流路部材のみで一体成形した場合には、部品や部材(以下では単に「部品等」と呼ぶ。)を筒内に取り付けたり、あるいは取り外すことが困難になる。そこで、上記流路部材22は底辺部を開口させて一体成形を行い、この底辺部(すなわち開口部)から部品等を取り付けた後、底面パネル部材42で蓋をする構成とした(図3,図4を参照)。このような構成としたので、ガスの流路を筒状のほぼU字型としながらも、筒内に部品等の取り付けたり取り外すことが容易になる。   By the way, when the entire substantially cylindrical U-shape is integrally formed with only the flow path member, a part or member (hereinafter simply referred to as “part etc.”) can be attached to or removed from the cylinder. It becomes difficult. Therefore, the flow path member 22 is integrally formed by opening the bottom portion, and after attaching parts and the like from the bottom portion (that is, the opening portion), the bottom panel member 42 is used to cover (FIG. 3, FIG. 3). (See FIG. 4). With such a configuration, it is easy to attach or remove components or the like in the cylinder while the gas flow path is substantially U-shaped in a cylindrical shape.

上述のように構成された流路部材22に対して、種々の部品等を取り付ける。図3には各部品等の取付方向を矢印でそれぞれ表す。正面側(図面左側)から流路部材22に取り付けるのは、正面パネル部材16、制御基板26、電源パック28、圧力センサ30、超音波伝播器32a等である。制御基板26(「制御手段」に相当する)はCPUやメモリ等のような電子制御部品を備え、ガスメータ10全体の制御を司る。その制御例としては、超音波伝播器32a,32bから出力される検出信号に基づいて計測管40内を流れるガスの流量を算出し、当該算出したガスの流量を表示手段20に表示する。また別の制御例としては、圧力センサ30の検出信号から出力された圧力に基づいて種々の異常判定を行い、異常を判定した場合は遮断弁34に駆動信号を出力して流路を遮断する。   Various parts and the like are attached to the flow path member 22 configured as described above. In FIG. 3, the mounting directions of the components and the like are indicated by arrows. The front panel member 16, the control board 26, the power pack 28, the pressure sensor 30, the ultrasonic wave propagator 32a, and the like are attached to the flow path member 22 from the front side (left side in the drawing). The control board 26 (corresponding to “control means”) includes electronic control components such as a CPU and a memory, and controls the entire gas meter 10. As an example of the control, the flow rate of the gas flowing through the measuring tube 40 is calculated based on the detection signals output from the ultrasonic wave propagators 32a and 32b, and the calculated flow rate of the gas is displayed on the display means 20. As another control example, various abnormality determinations are performed based on the pressure output from the detection signal of the pressure sensor 30, and when the abnormality is determined, a drive signal is output to the shutoff valve 34 to block the flow path. .

電源パック28は、制御基板26や他の電子部品を駆動させるための電力源として用いられる。この電源パック28は、流路部材22のほぼ中央部に設けられた空間部Kに取り付けられる。圧力センサ30は種々の異常を検出するために利用され、流路内のガスの圧力を検出して検出信号を出力する。この圧力センサ30は、流路部材22のほぼU字型の流路における正面側に設けられた専用の取り付け穴に取り付けられる。超音波伝播器32aは、超音波伝播手段32の一方側を構成する。   The power pack 28 is used as a power source for driving the control board 26 and other electronic components. The power pack 28 is attached to a space K provided in the substantially central portion of the flow path member 22. The pressure sensor 30 is used to detect various abnormalities, detects the pressure of the gas in the flow path, and outputs a detection signal. The pressure sensor 30 is attached to a dedicated attachment hole provided on the front side of the substantially U-shaped flow path of the flow path member 22. The ultrasonic wave propagation device 32 a constitutes one side of the ultrasonic wave propagation means 32.

背面側(図面右側)から流路部材22に取り付けるのは、遮断弁34、超音波伝播器32b、背面パネル部材24等である。遮断弁34は、異常を検出した場合に流路を閉じて(遮断して)、流出口14にガスが流れないようにする。この遮断弁34は、流路部材22のほぼU字型の流路における背面側に設けられた専用の取り付け穴に取り付けられる。超音波伝播器32bは、超音波伝播手段32の他方側を構成する。背面パネル部材24は、ガスメータ10の背面側に備え付けられる。   The shut-off valve 34, the ultrasonic wave propagator 32b, the back panel member 24, and the like are attached to the flow path member 22 from the back side (right side of the drawing). The shutoff valve 34 closes (shuts down) the flow path when an abnormality is detected, so that gas does not flow to the outlet 14. The shut-off valve 34 is attached to a dedicated attachment hole provided on the back side of the substantially U-shaped flow path of the flow path member 22. The ultrasonic wave propagation device 32 b constitutes the other side of the ultrasonic wave propagation means 32. The back panel member 24 is provided on the back side of the gas meter 10.

底面側(図面下側)から流路部材22に取り付けるのは、整流板36,38、計測管40、底面パネル部材42等である。図4および図5に表すように、整流板36は流入口12から流入したガスの流れをある程度整えて計測管40の流入口に導く。この整流板36は通路穴36bとリブ36aとを有する。通路穴36bは、計測管40の流入口形状に合わせて、例えば長方形状にあけられている(図6を参照)。リブ36aは、通路穴36bの周縁から流入口12側に起立して所定の高さからなる。図4に表すように、整流板38は計測管40の流出口から流出したガスの流れをある程度整えて流出口14に導く。この整流板38は通路穴38bとリブ38aとを有する。通路穴38bは通路穴36bと同じ形状であけられている(図6を参照)。リブ38aは、通路穴38bの周縁から流出口14側に起立して所定の高さからなる。リブ36a,38aにかかる所定の高さは、実験等によって適切に定める。   The rectifying plates 36, 38, the measuring tube 40, the bottom panel member 42, and the like are attached to the flow path member 22 from the bottom surface side (the lower side in the drawing). As shown in FIGS. 4 and 5, the rectifying plate 36 regulates the flow of the gas flowing in from the inflow port 12 to some extent and guides it to the inflow port of the measuring tube 40. The rectifying plate 36 has a passage hole 36b and a rib 36a. The passage hole 36b is formed in, for example, a rectangular shape in accordance with the shape of the inlet of the measuring tube 40 (see FIG. 6). The rib 36a rises from the peripheral edge of the passage hole 36b toward the inlet 12 and has a predetermined height. As shown in FIG. 4, the rectifying plate 38 regulates the flow of the gas flowing out from the outlet of the measuring tube 40 to some extent and guides it to the outlet 14. This baffle plate 38 has a passage hole 38b and a rib 38a. The passage hole 38b is formed in the same shape as the passage hole 36b (see FIG. 6). The rib 38a rises from the peripheral edge of the passage hole 38b toward the outlet 14 and has a predetermined height. The predetermined height applied to the ribs 36a and 38a is appropriately determined by experiments or the like.

計測管40をガスの流路内に配置するべく、本例では流路部材22の中央下部と底面パネル部材42のバッファ部42aとで挟みつけるように取り付ける。この計測管40はガスの通過断面がほぼ矩形となる筒状に形成され、管内には整流板群44が設けられている。整流板群44は計測管40内を流れるガスを整流する部材であって、複数枚の整流板を平行かつ多層に構成している。底面パネル部材42は「固定部材」に相当し、ガスメータ10の底面側に備え付けられる。図3と図4に表すように、底面パネル部材42には凸形状に形成されて水を貯留可能なバッファ部42aを有する。このバッファ部42aの一面(本例では流入口12側に対応する面)には、ガスの流路に通ずるとともに、内部に水を導くための開口部分42bを設けている。   In this example, the measuring tube 40 is attached so as to be sandwiched between the lower center portion of the flow path member 22 and the buffer portion 42a of the bottom panel member 42 so as to be disposed in the gas flow path. The measuring tube 40 is formed in a cylindrical shape in which the gas passage cross section is substantially rectangular, and a rectifying plate group 44 is provided in the tube. The rectifying plate group 44 is a member that rectifies the gas flowing in the measuring tube 40, and includes a plurality of rectifying plates arranged in parallel and in multiple layers. The bottom panel member 42 corresponds to a “fixing member” and is provided on the bottom side of the gas meter 10. As shown in FIGS. 3 and 4, the bottom panel member 42 has a buffer portion 42 a that is formed in a convex shape and can store water. One surface of the buffer portion 42a (the surface corresponding to the inlet 12 in this example) is provided with an opening portion 42b that leads to the gas flow path and guides water to the inside.

超音波伝播手段32(超音波送受信センサ)について簡単に説明する。図6に表すように、超音波伝播器32aと超音波伝播器32bは、ガスメータ10内における上流側と下流側の所定個所に互いに対向させて配置するとともに、ガスの流れ方向に対して所定の角度「θ」をなして設ける。いずれか一方の超音波伝播器から超音波を出力し、この超音波を他方の超音波伝播器で受信して伝播時間を計測する。上流側から下流側への伝播と、下流側から上流側への伝播との双方を行って、ガスの流速および流量を求める。ここで、音速を「C」とし、超音波伝播器32a,32bの相互間距離を「L」とし、超音波の伝播時間を「T1」「T2」とすると、ガスの流速「U」は下記式で求められる。さらに算出した流速「U」に対して計測管40の断面積および流量係数を積算すると、ガスの流量が求められる。流量係数は流体の流量を補正する係数である。
U=(L/2cosθ)×{(1/T1)−(1/T2)}
The ultrasonic propagation means 32 (ultrasonic transmission / reception sensor) will be briefly described. As shown in FIG. 6, the ultrasonic wave propagator 32a and the ultrasonic wave propagator 32b are arranged to face each other at predetermined positions on the upstream side and the downstream side in the gas meter 10, and have a predetermined amount with respect to the gas flow direction. Provided at an angle “θ”. An ultrasonic wave is output from one of the ultrasonic wave propagators, the ultrasonic wave is received by the other ultrasonic wave propagator, and the propagation time is measured. Both the propagation from the upstream side to the downstream side and the propagation from the downstream side to the upstream side are performed to obtain the flow velocity and flow rate of the gas. Here, when the sound velocity is “C”, the distance between the ultrasonic wave propagators 32a and 32b is “L”, and the ultrasonic wave propagation time is “T1” and “T2”, the gas flow velocity “U” is as follows. It is calculated by the formula. Further, when the cross-sectional area and the flow coefficient of the measuring tube 40 are integrated with the calculated flow velocity “U”, the gas flow rate is obtained. The flow coefficient is a coefficient for correcting the flow rate of the fluid.
U = (L / 2 cos θ) × {(1 / T1) − (1 / T2)}

上述した実施の形態によれば、以下に表す各効果を得ることができる。
(1)底面パネル部材42は、ガスの流路に通じて水を貯留可能なバッファ部42aを備え、当該バッファ部42aと流路部材22との間で計測管40を固定する構成とした(図3,図4を参照)。この構成によれば、従来貯留できる水の容量に加えて、バッファ部42aで貯留する水の容量の分だけ増える。そのため、多量に貯まった水が計測管40内にまであふれる事態を減らせるので、流量の計測誤差を少なくすることができる。
また、バッファ部42aは流路部材22と協働して計測管40を固定する機能を有するので、ガスメータ10を単に大きくする必要がない。そのため、ガスメータ10の重量と製造コストを従来通りに維持することができる。
さらに、バッファ部42aには水だけでなくガスも入り得る空間を有しており、この空間自体が断熱機能をも奏する。よって計測管40に与える温度変化を減らせるので、温度変化を要因とする流量の計測誤差をより少なくすることができる。
According to the embodiment described above, the following effects can be obtained.
(1) The bottom panel member 42 includes a buffer part 42a that can store water through the gas flow path, and is configured to fix the measurement tube 40 between the buffer part 42a and the flow path member 22 ( (See FIGS. 3 and 4). According to this configuration, in addition to the capacity of water that can be stored conventionally, the capacity is increased by the capacity of water stored in the buffer unit 42a. For this reason, a situation in which a large amount of stored water overflows into the measuring tube 40 can be reduced, so that a flow measurement error can be reduced.
Moreover, since the buffer part 42a has a function of fixing the measuring tube 40 in cooperation with the flow path member 22, it is not necessary to simply enlarge the gas meter 10. Therefore, the weight and manufacturing cost of the gas meter 10 can be maintained as usual.
Furthermore, the buffer part 42a has a space where not only water but also gas can enter, and this space itself also has a heat insulating function. Therefore, since the temperature change given to the measuring tube 40 can be reduced, the flow rate measurement error caused by the temperature change can be further reduced.

(2)ガスは流入口12から入ってくるため、温度差等の環境条件が整えば、流入口12側のガスの流路に水が多く発生する。そこで、流入口12側のバッファ部42aを開口させて開口部分42bを設ける構成とした(図3,図4を参照)。この構成によれば、発生した水を開口部分42bからバッファ部42a内に導けるので、水が計測管40内にまであふれる事態をより確実に減らすことができる。したがって、流量の計測誤差をより少なくすることができる。 (2) Since gas enters from the inlet 12, if environmental conditions such as a temperature difference are prepared, a large amount of water is generated in the gas flow path on the inlet 12 side. Therefore, the buffer portion 42a on the inlet 12 side is opened to provide an opening portion 42b (see FIGS. 3 and 4). According to this configuration, since the generated water can be guided into the buffer portion 42a from the opening portion 42b, the situation where the water overflows into the measuring tube 40 can be more reliably reduced. Therefore, the flow rate measurement error can be further reduced.

〔他の実施の形態〕
以上では本発明の前提となる実施の形態について説明したが、次に示す各形態を実現してもよい。
[Other Embodiments]
Has been described in terms of preferred embodiments as a premise of the present invention in the above may realize each embodiment shown below.

(1)上述した実施の形態では、底面パネル部材42に対してバッファ部42aを一体に形成する構成とした(図3,図4を参照)。この形態に代えて、平面状の底面パネル部材42と、開口部分42bを備えた箱状のバッファ部42aとを別体に形成する構成としてもよい。この場合は、所定の固定方法(例えば接着,溶接,締結部材を用いた締結など)でバッファ部42aを底面パネル部材42に固定すればよい。この場合でもバッファ部42aで水を貯留する点に変わりないので、上述した実施の形態と同様の作用効果を得ることができる。またバッファ部42aを別体で形成した場合には、従来のガスメータにも取り付けられるので、安い費用で流量の計測誤差をより少なくできる。 (1) In the above-described embodiment, the buffer portion 42a is formed integrally with the bottom panel member 42 (see FIGS. 3 and 4). Instead of this configuration, a planar bottom panel member 42 and a box-shaped buffer 42a having an opening 42b may be formed separately. In this case, the buffer part 42a may be fixed to the bottom panel member 42 by a predetermined fixing method (for example, bonding, welding, fastening using a fastening member, etc.). Even in this case, since the buffer portion 42a does not change the point of storing water, the same effects as those of the above-described embodiment can be obtained. Further, when the buffer portion 42a is formed separately, it can be attached to a conventional gas meter, so that the flow measurement error can be reduced at a low cost.

(2)上述した実施の形態では、底面パネル部材42の上面にバッファ部42aを形成する構成とした(図3,図4)。この形態に代えて、バッファ部42aとともに、図7に表すような凹状部分42cを形成する構成としてもよい。この凹状部分42cによって底面が低くなって水の貯留容量を増やせるので、計測管40内にまで水があふれる事態をより確実に減らせる。したがって、流量の計測誤差をより確実に少なくできる。 (2) In the above-described embodiment, the buffer portion 42a is formed on the upper surface of the bottom panel member 42 (FIGS. 3 and 4). Instead of this form, a concave portion 42c as shown in FIG. 7 may be formed together with the buffer portion 42a. Since the bottom surface is lowered by this concave portion 42c and the water storage capacity can be increased, the situation where water overflows into the measuring tube 40 can be reduced more reliably. Therefore, the measurement error of the flow rate can be reduced more reliably.

(3)さて、本発明の実施の形態では、図8に表すように、栓42eを用いて塞ぐ排出口42fを底面パネル部材42に備える構成としてもよい。栓42eを外せば排水できるが、バッファ部42aはガスの流路に通ずるためにガスも充満する。よって排出口42fを備える場合には、開口部分42bを閉鎖する閉鎖部材42dも別個に備える必要がある。水を貯留するときは閉鎖部材42dが開口部分42bを塞がない姿勢(例えばスライド)にし、水を排出するときは閉鎖部材42dで開口部分42bを塞いだうえで栓42eを外す。閉鎖部材42dと栓42eとが連動して作動する構成であればなおよい。このように排出口42fを備えれば、バッファ部42aが満水状態になったときに水を排出して流量の計測誤差を少なくできる。
(3) Now, in the embodiment of the present invention, as shown in FIG. 8, the bottom panel member 42 may be provided with a discharge port 42f that is closed using a plug 42e. Although the water can be drained by removing the stopper 42e, the buffer portion 42a is filled with gas because it passes through the gas flow path. Therefore, when the discharge port 42f is provided, it is necessary to separately provide a closing member 42d for closing the opening portion 42b. When water is stored, the closing member 42d does not close the opening portion 42b (for example, slide), and when water is discharged, the closing member 42d closes the opening portion 42b and then removes the plug 42e. It is even better if the closing member 42d and the stopper 42e operate in conjunction with each other. If the discharge port 42f is provided in this way, water can be discharged when the buffer portion 42a is full, and flow measurement errors can be reduced.

(4)上述した実施の形態では、流入口12側のバッファ部42aを開口させて開口部分42bを設ける構成とした(図3,図4を参照)。この構成に代えて、流出口14側のバッファ部42aを開口させて開口部分を設ける構成としてもよい。流出口14側のガスの流路に少なからず発生した水をバッファ部42a内に導けるので、水が計測管40内にまであふれる事態をより確実に減らすことができる。したがって、流量の計測誤差を従来よりも少なくすることができる。 (4) In the above-described embodiment, the buffer portion 42a on the inlet 12 side is opened to provide the opening portion 42b (see FIGS. 3 and 4). Instead of this configuration, the buffer portion 42a on the outlet 14 side may be opened to provide an opening portion. Since the generated water can be led into the buffer part 42a in the gas flow path on the outlet 14 side, the situation where water overflows into the measuring tube 40 can be reduced more reliably. Therefore, the flow rate measurement error can be reduced as compared with the conventional case.

(5)上述した実施の形態ではバッファ部42aの開口部分42bを流入口12側のみに設ける構成とし(図3,図4を参照)、上記(4)ではバッファ部42aの開口部分42bを流出口14側のみに設ける構成とした。この構成に代えて、図9および図10に表すように、バッファ部42aの開口部分42bを流入口12側および流出口14側の双方に設ける構成としてもよい。図9(A)には流入口12側からみた底面パネル部材42の側面図を表し、図9(B)には流出口14側からみた底面パネル部材42の側面図を表し、図10には図9(A)におけるX−X線矢視の断面図を表す。 (5) In the above-described embodiment, the opening portion 42b of the buffer portion 42a is provided only on the inlet 12 side (see FIGS. 3 and 4). In the above (4), the opening portion 42b of the buffer portion 42a is flowed. It was set as the structure provided only in the exit 14 side. Instead of this configuration, as shown in FIGS. 9 and 10, the opening 42 b of the buffer 42 a may be provided on both the inlet 12 side and the outlet 14 side. 9A shows a side view of the bottom panel member 42 viewed from the inlet 12 side, FIG. 9B shows a side view of the bottom panel member 42 viewed from the outlet 14 side, and FIG. FIG. 10A is a cross-sectional view taken along line XX in FIG.

図9(A)および図9(B)に表すように、流入口12側および流出口14側の双方に開口部分42bがあるので、双方側で水が発生してもバッファ部42aで貯留することができる。ただし、図10に表すようにバッファ部42aは流入口12側と流出口14側とで仕切られているので、一方の開口部分42bから流入した水やガスが他方の開口部分42bから流出することはない。この構成によれば、流入口12側および流出口14側の双方で発生した水を確実に貯留するので、水が計測管40内にまであふれる事態を減らして、流量の計測誤差をより確実に少なくすることができる。   As shown in FIG. 9 (A) and FIG. 9 (B), since there are opening portions 42b on both the inlet 12 side and the outlet 14 side, even if water is generated on both sides, it is stored in the buffer portion 42a. be able to. However, as shown in FIG. 10, since the buffer part 42a is divided by the inflow port 12 side and the outflow port 14 side, the water and gas which flowed in from one opening part 42b flow out from the other opening part 42b. There is no. According to this configuration, since the water generated on both the inlet 12 side and the outlet 14 side is reliably stored, the situation where water overflows into the measuring tube 40 is reduced, and the flow rate measurement error is more reliably performed. Can be reduced.

ガスメータの外観例を表す正面図である。It is a front view showing the example of appearance of a gas meter. ガスメータの外観例を表す平面図である。It is a top view showing the external appearance example of a gas meter. ガスメータの構成例を説明する分解斜視図である。It is a disassembled perspective view explaining the structural example of a gas meter. 図2におけるIV−IV線矢視の断面図である。It is sectional drawing of the IV-IV line arrow in FIG. 図4におけるV−V線矢視の断面図である。It is sectional drawing of the VV arrow in FIG. 図4におけるVI−VI線矢視の断面図である。It is sectional drawing of the VI-VI line arrow in FIG. 底面を凹状に形成した固定部材を用いて構成した例を表す断面図である。It is sectional drawing showing the example comprised using the fixing member which formed the bottom face in the concave shape. 排出口を形成した固定部材を用いて構成した例を表す断面図である。It is sectional drawing showing the example comprised using the fixing member in which the discharge port was formed. 流入口側と流出口側の双方を開口させたバッファ部を有する底面パネル部材を表す側面図である。It is a side view showing the bottom panel member which has a buffer part which opened both the inflow port side and the outflow port side. 図9(A)におけるX−X線矢視の断面図である。It is sectional drawing of the XX arrow in FIG. 9 (A).

符号の説明Explanation of symbols

10 ガスメータ
12 流入口
14 流出口
16 正面パネル部材
18 復帰ボタン
20 表示手段
22 流路部材
24 背面パネル部材
26 制御基板
28 電源パック
30 圧力センサ
32 超音波伝播手段
32a,32b 超音波伝播器
34 遮断弁
36,38 整流板
36a,38a リブ(ツバ)
36b,38b 通路穴
40 計測管
42 底面パネル部材(固定部材)
42a バッファ部
42b 開口部分
42c 凹状部分
42d 閉鎖部材
42e 栓
42f 排出口
44 整流板群
K 空間部
DESCRIPTION OF SYMBOLS 10 Gas meter 12 Inlet 14 Outlet 16 Front panel member 18 Return button 20 Display means 22 Flow path member 24 Back panel member 26 Control board 28 Power supply pack 30 Pressure sensor 32 Ultrasonic propagation means 32a, 32b Ultrasonic wave propagation device 34 Shut-off valve 36, 38 Current plate 36a, 38a Rib (head)
36b, 38b Passage hole 40 Measuring tube 42 Bottom panel member (fixing member)
42a Buffer part 42b Opening part 42c Concave part 42d Closing member 42e Plug 42f Discharge port 44 Current plate group K Space part

Claims (1)

流入口から流出口に至るガスの流路としてほぼU字型の筒状に形成された流路部材と、
前記流路部材で形成されるガスの流路内に配置され、ガスの通過断面がほぼ矩形となるように形成された計測管と、
前記計測管における上流側と下流側とに設けた所定の二点間で超音波を伝播させて検出信号を出力する一対の超音波伝播手段と、
前記超音波伝播手段から出力された検出信号に基づいて、前記計測管内を流れるガスの流量を算出する流量算出手段とを備えたガスメータであって、
前記ガスの流路に通じて水を貯留可能なバッファ部を備え、当該バッファ部と前記流路部材との間で前記計測管を固定する固定部材を有し、
前記固定部材のバッファ部は、ガスの流路に通じる流入口側を開口させる開口部分と、この開口部分を閉鎖する閉鎖部材と、貯留された水を排出する排出口とを備えるガスメータ。
A channel member formed in a substantially U-shaped cylindrical shape as a gas channel from the inlet to the outlet;
A measuring tube disposed in the gas flow path formed by the flow path member and formed so that the gas passage cross section is substantially rectangular;
A pair of ultrasonic wave propagation means for propagating the ultrasonic wave between two predetermined points provided on the upstream side and the downstream side in the measurement tube and outputting a detection signal;
A gas meter comprising flow rate calculation means for calculating a flow rate of the gas flowing in the measurement tube based on a detection signal output from the ultrasonic wave propagation means,
A buffer part capable of storing water through the gas flow path, and having a fixing member for fixing the measurement tube between the buffer part and the flow path member;
The buffer portion of the fixing member is a gas meter including an opening portion that opens an inflow side that communicates with a gas flow path, a closing member that closes the opening portion, and a discharge port that discharges stored water .
JP2008029430A 2008-02-08 2008-02-08 Gas meter Active JP5236303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008029430A JP5236303B2 (en) 2008-02-08 2008-02-08 Gas meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008029430A JP5236303B2 (en) 2008-02-08 2008-02-08 Gas meter

Publications (2)

Publication Number Publication Date
JP2009186430A JP2009186430A (en) 2009-08-20
JP5236303B2 true JP5236303B2 (en) 2013-07-17

Family

ID=41069812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008029430A Active JP5236303B2 (en) 2008-02-08 2008-02-08 Gas meter

Country Status (1)

Country Link
JP (1) JP5236303B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098563A (en) * 2012-11-13 2014-05-29 Panasonic Corp Flow rate measurement apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5510133B2 (en) * 2010-07-07 2014-06-04 パナソニック株式会社 Ultrasonic gas meter
JP2012103087A (en) 2010-11-10 2012-05-31 Panasonic Corp Ultrasonic flow measurement unit
JP5632298B2 (en) * 2011-01-07 2014-11-26 矢崎エナジーシステム株式会社 Gas meter
JP6689582B2 (en) * 2014-07-25 2020-04-28 矢崎エナジーシステム株式会社 Ultrasonic gas meter
JP6646415B2 (en) * 2015-11-20 2020-02-14 愛知時計電機株式会社 Ultrasonic flow meter
CN107228695B (en) * 2017-07-05 2024-02-27 上海埃科燃气测控设备有限公司 Integrated gas roots flowmeter box
JP6443902B1 (en) * 2018-03-20 2018-12-26 東洋ガスメーター株式会社 Gas meter
JP6478258B1 (en) * 2018-03-20 2019-03-06 東洋ガスメーター株式会社 Gas meter
CN109827626B (en) * 2019-03-22 2020-09-15 安徽徽宁电器仪表集团有限公司 Flow instrument who shocks resistance
JP7507657B2 (en) 2020-01-22 2024-06-28 関西ガスメータ株式会社 Ultrasonic Flow Meter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3334857B2 (en) * 1997-08-06 2002-10-15 矢崎総業株式会社 Gas meter
JP2001165725A (en) * 1999-12-09 2001-06-22 Fuji Electric Co Ltd Ultrasonic gas flowmeter
JP2006292380A (en) * 2005-04-05 2006-10-26 Tokyo Gas Co Ltd Ultrasonic gas meter
JP4926519B2 (en) * 2006-03-29 2012-05-09 東京瓦斯株式会社 Gas flow measurement structure of ultrasonic gas meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014098563A (en) * 2012-11-13 2014-05-29 Panasonic Corp Flow rate measurement apparatus

Also Published As

Publication number Publication date
JP2009186430A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP5236303B2 (en) Gas meter
US9372105B2 (en) Ultrasonic flow rate measurement device
JP2010164558A (en) Device for measuring flow of fluid
US20150292925A1 (en) Setting method of flow meter device and flow meter device
JP5148405B2 (en) Gas meter
JP2005315717A (en) Gas meter
JP2010117201A (en) Flowmeter
JPWO2013051272A1 (en) Setting method of flow rate measuring device
JP5297864B2 (en) Ultrasonic gas meter
JP2009186429A (en) Gas meter
JP6448467B2 (en) Ultrasonic flow meter
JP2005283565A (en) Flow rate measurement device
JP6134899B2 (en) Flow measurement unit
JP2006118864A (en) Gas meter
JP2012063187A (en) Ultrasonic flow meter
JP2010101704A (en) Flow measuring apparatus
JP6478258B1 (en) Gas meter
JP5154197B2 (en) Gas meter
JP6326073B2 (en) Gas meter
JP2009287966A (en) Assembling method of flowmeter, and flowmeter
JP6443902B1 (en) Gas meter
JP2017090268A (en) Ultrasonic flowmeter
JP2021117215A (en) Ultrasonic flowmeter
JP7312121B2 (en) ultrasonic flow meter
JP4677224B2 (en) Gas meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5236303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250