[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5234179B2 - 電動車両の電源システムおよびその制御方法 - Google Patents

電動車両の電源システムおよびその制御方法 Download PDF

Info

Publication number
JP5234179B2
JP5234179B2 JP2011518107A JP2011518107A JP5234179B2 JP 5234179 B2 JP5234179 B2 JP 5234179B2 JP 2011518107 A JP2011518107 A JP 2011518107A JP 2011518107 A JP2011518107 A JP 2011518107A JP 5234179 B2 JP5234179 B2 JP 5234179B2
Authority
JP
Japan
Prior art keywords
power storage
storage device
mode
storage devices
sub power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011518107A
Other languages
English (en)
Other versions
JPWO2010140213A1 (ja
Inventor
優 木村
純太 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2010140213A1 publication Critical patent/JPWO2010140213A1/ja
Application granted granted Critical
Publication of JP5234179B2 publication Critical patent/JP5234179B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、電動車両の電源システムおよびその制御方法に関し、より特定的には、複数の蓄電装置を備えた電源システムの充放電制御に関する。
環境にやさしい車両として、ハイブリッド車両、電気自動車、燃料電池自動車等の、電気エネルギによって走行可能な電動車両が開発され実用化されている。電動車両には、車両駆動力を発生する電動機と、電動機の駆動電力を蓄積する蓄電装置とが搭載される。
ハイブリッド車両では、車載の蓄電装置を車両外部の電源(以下、「外部電源」とも称する)によって充電する構成が提案されていることもあり、蓄電装置に蓄積された電力による走行距離を長くすることが求められている。なお、以下では、外部電源による車載蓄電装置の充電について、単に「外部充電」とも称する。
たとえば、特開2008−109840号公報(特許文献1)には、複数個の蓄電装置(バッテリ)を並列接続した電源システムが記載されている。特許文献1に記載の電源システムでは、蓄電装置(バッテリ)ごとに充放電調整機構としての電圧変換器(コンバータ)が設けられている。これに対して、特開2008−167620号公報(特許文献2)には、主蓄電装置と複数の副蓄電装置とを搭載した車両において、主蓄電装置に対応するコンバータと、複数の副蓄電装置により共有されるコンバータとを設ける電源装置の構成が記載されている。この構成によれば、コンバータの数を抑制しつつ蓄電可能なエネルギ量を増やすことができる。
特に、特許文献2に記載された構成では、複数の副蓄電装置のうちの1つが選択的にコンバータと接続されて、主蓄電装置および選択副蓄電装置によって、車両駆動用電動機の駆動電力が供給される。この電源装置では、蓄電装置の残容量を示すSOC(State Of Charge)に基づいて、電力の供給が制御される。具体的には、使用中の副蓄電装置のSOCが低下すると、新たな副蓄電装置がコンバータに接続される。複数個の副蓄電装置を順次使用することによって、車両に蓄えられた電気エネルギによる走行距離(EV(Electric Vehicle)走行距離)を延ばすことが可能になる。
特開2008−109840号公報 特開2008−167620号公報
特許文献2に記載された電源システムでは、使用中の副蓄電装置のSOCが低下したときには、その副蓄電装置がコンバータから電気的に切離される。しかしながら、副蓄電装置の自己放電等により、副蓄電装置のSOCは、その副蓄電装置がコンバータから切離された後も下がり続ける可能性がある。副蓄電装置が充電されない場合には、副蓄電装置の放電が継続されることによって副蓄電装置が過放電状態となるおそれがある。
本発明は、このような問題点を解決するためになされたものであって、本発明の目的は、主蓄電装置と複数の副蓄電装置とを備えた電源システムを搭載する電動車両において、複数の副蓄電装置の各々の過放電を回避することである。
本発明のある局面に従う電動車両の電源システムは、動力源としての電動機と、車両走行中に発電可能に構成された発電機構とを搭載した電動車両の電源システムであって、再充電可能に構成された主蓄電装置と、第1および第2の電圧変換器と、互いに並列に設けられた、各々が再充電可能な複数の副蓄電装置と、接続部と、充電部と、複数の検出部と、充電状態算出部と、選択部と、走行モード制御部と、接続制御部とを備える。第1の電圧変換器は、電動機および発電機構に電気的に接続された給電ラインと、主蓄電装置との間に設けられ、双方向の電圧変換を行なうように構成される。第2の電圧変換器は、複数の副蓄電装置と給電ラインとの間に設けられ、複数の副蓄電装置のうちの1つと給電ラインの間で双方向の電圧変換を行なうように構成される。接続部は、複数の副蓄電装置と第2の電圧変換器との間に設けられ、複数の副蓄電装置と第2の電圧変換器との間の接続および切離を制御するように構成される。充電部は、電動車両の外部の電源によって主蓄電装置および各複数の副蓄電装置を充電するように構成される。複数の検出部は、主蓄電装置および複数の副蓄電装置の状態をそれぞれ検出するように構成される。充電状態算出部は、複数の検出部の各々の検出結果に基づいて、主蓄電装置および複数の副蓄電装置の各々の残容量推定値を算出するように構成される。選択部は、複数の副蓄電装置のいずれかの残容量推定値が所定値を下回る場合に、複数の副蓄電装置の中から、充電対象として、所定値を下回る残容量推定値を有する1つの副蓄電装置を選択する。走行モード制御部は、電動車両に蓄えられた電気エネルギを使用して走行する第1のモードと、発電機構を用いて電気エネルギを一定範囲内に維持する第2のモードとを有する。走行モード制御部は、充電対象が選択された場合に、第2のモードを選択する。接続制御部は、充電対象が選択された場合に、充電対象が第2の電圧変換器に接続されるよう接続部を制御する。
好ましくは、複数の検出部の各々は、対応する蓄電装置から電力を受けるとともに、対応する蓄電装置の状態を検出する。
好ましくは、電源システムは、主蓄電装置および複数の副蓄電装置の各々の残容量の制御目標を設定するように構成された制御目標設定部をさらに備える。所定値は、複数の副蓄電装置の各々の制御目標よりも小さく、かつ、複数の副蓄電装置の各々の過放電状態に対応する残容量の値よりも大きい。走行モード制御部は、主蓄電装置および複数の副蓄電装置の残容量推定値の全てがそれぞれの制御目標まで低下するまでの間は、第1のモードを選択する一方で、残容量推定値の全てがそれぞれの制御目標まで低下した後は第2のモードを選択する。接続制御部は、第1のモードにおいて、複数の副蓄電装置の中から順次選択された1つの副蓄電装置を第2の電圧変換器に接続する一方、第1のモードから第2のモードへの切換えに応じて、複数の副蓄電装置の各々を第2の電圧変換器から切離す。
好ましくは、制御目標設定部は、充電対象が第2の電圧変換器に接続された場合には、充電対象の残容量の制御目標を、第1のモードにおける複数の副蓄電装置の各々の制御目標よりも高くする。
好ましくは、選択部は、電動車両の走行が終了した時に、充電対象を選択する。
本発明の他の局面に従う電動車両の電源システムの制御方法は、動力源としての電動機と、車両走行中に発電可能に構成された発電機構とを搭載した電動車両の電源システムの制御方法である。電源システムは、再充電可能に構成された主蓄電装置と、第1および第2の電圧変換器と、互いに並列に設けられた、各々が再充電可能な複数の副蓄電装置と、接続部と、充電部と、複数の検出部とを備える。第1の電圧変換器は、電動機および発電機構に電気的に接続された給電ラインと、主蓄電装置との間に設けられ、双方向の電圧変換を行なうように構成される。第2の電圧変換器は、複数の副蓄電装置と給電ラインとの間に設けられ、複数の副蓄電装置のうちの1つと給電ラインの間で双方向の電圧変換を行なうように構成される。接続部は、複数の副蓄電装置と第2の電圧変換器との間に設けられ、複数の副蓄電装置と第2の電圧変換器との間の接続および切離を制御するように構成される。充電部は、電動車両の外部の電源によって主蓄電装置および各複数の副蓄電装置を充電するように構成される。複数の検出部は、主蓄電装置および複数の副蓄電装置の状態をそれぞれ検出するように構成される。制御方法は、複数の検出部の各々の検出結果に基づいて、主蓄電装置および複数の副蓄電装置の各々の残容量推定値を算出するステップと、複数の副蓄電装置のいずれかの残容量推定値が所定値を下回る場合に、複数の副蓄電装置の中から、充電対象として、所定値を下回る残容量推定値を有する1つの副蓄電装置を選択するステップと、電動車両に蓄えられた電気エネルギを使用して走行する第1のモードと、発電機構を用いて電気エネルギを一定範囲内に維持する第2のモードとのうちの一方のモードを選択するステップとを備える。一方のモードを選択するステップは、充電対象が選択された場合に、第2のモードを選択する。制御方法は、充電対象が選択された場合に、充電対象が第2の電圧変換器に接続されるよう接続部を制御するステップをさらに備える。
好ましくは、複数の検出部の各々は、対応する蓄電装置から電力を受けるとともに、対応する蓄電装置の状態を検出する。
好ましくは、所定値は、複数の副蓄電装置の各々の制御目標よりも小さく、かつ、複数の副蓄電装置の各々の過放電状態に対応する残容量の値よりも大きい。一方のモードを選択するステップは、主蓄電装置および複数の副蓄電装置の残容量推定値の全てがそれぞれの制御目標まで低下するまでの間は、第1のモードを選択する一方で、残容量推定値の全てがそれぞれの制御目標まで低下した後は第2のモードを選択する。制御方法は、第1のモードにおいて、複数の副蓄電装置の中から順次選択された1つの副蓄電装置を第2の電圧変換器に接続するステップと、第1のモードから第2のモードへの切換えに応じて、複数の副蓄電装置の各々を第2の電圧変換器から切離すステップとをさらに備える。
好ましくは、充電対象の残容量の制御目標は、第1のモードにおける複数の副蓄電装置の各々の制御目標よりも高い。
好ましくは、1つの副蓄電装置を選択するステップは、電動車両の走行が終了した時に充電対象を選択する。
本発明によれば、主蓄電装置と複数の副蓄電装置とを備えた電源システムを搭載する電動車両において、複数の副蓄電装置の過放電を回避することができる。
本発明の実施の形態による電源システムを備えた電動車両の代表例として示されるハイブリッド車両の全体ブロック図である。 図1に示した第1および第2コンバータ12−1,12−2の構成を示す回路図である。 本実施の形態による電動車両の電源システムにおける蓄電装置の使用態様の一例を示す概念図である。 HV走行モードにおける副蓄電装置の充電を説明する概念図である。 蓄電装置の選択および走行モードの選択のためのECUの制御構成を説明する機能ブロック図である。 走行モードおよび電動車両の走行時に使用される蓄電装置を選択するための処理を説明するフローチャートである。 車両の走行時における副蓄電装置の接続制御処理を説明するためのフローチャートである。
以下、図面を参照して本発明の実施の形態について詳細に説明する。なお以下図中の同一または相当部分には同一符号を付してその説明は繰返さない。
図1は、本発明の実施の形態による電源システムを備えた電動車両の代表例として示されるハイブリッド車両の全体ブロック図である。図1を参照して、ハイブリッド車両100は、電源システム1と、駆動力発生部2とを備える。駆動力発生部2は、第1インバータ30−1と、第2インバータ30−2と、第1MG(Motor-Generator)32−1と、第2MG32−2と、動力分割装置34と、エンジン36と、駆動輪38と、ECU(Electronic Control Unit)40とを含む。
第1MG32−1、第2MG32−2およびエンジン36は、動力分割装置34に連結される。そして、このハイブリッド車両100は、エンジン36および第2MG32−2の少なくとも一方からの駆動力によって走行する。エンジン36が発生する動力は、動力分割装置34によって2経路に分割される。すなわち、一方は駆動輪38へ伝達される経路であり、もう一方は第1MG32−1へ伝達される経路である。
第1MG32−1および第2MG32−2の各々は、交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える三相交流回転電機により構成される。第1MG32−1は、動力分割装置34によって分割されたエンジン36の動力を用いて発電する。たとえば、電源システム1に含まれる蓄電装置(後述)のSOCが低下すると、エンジン36が始動して第1MG32−1により発電が行なわれ、その発電された電力が電源システム1へ供給される。すなわち、ハイブリッド車両100において、第1MG32−1は、「発電機構」を構成する。
なお、本実施形態では、SOCは、蓄電装置の満充電時の容量に対する現在の残容量を百分率で示したものである。
第2MG32−2は、電源システム1から供給される電力および第1MG32−1により発電された電力の少なくとも一方を用いて駆動力を発生する。そして、第2MG32−2の駆動力は、駆動輪38に伝達される。車両の制動時には、駆動輪38により第2MG32−2が駆動されて、第2MG32−2は発電機として作動する。これにより、第2MG32−2は、制動エネルギを電力に変換する回生ブレーキとして作動する。そして、第2MG32−2により発電された電力は、電源システム1へ供給される。
動力分割装置34は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含む遊星歯車から成る。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤを自転可能に支持するとともに、エンジン36のクランクシャフトに連結される。サンギヤは、第1MG32−1の回転軸に連結される。リングギヤは第2MG32−2の回転軸に連結される。
第1インバータ30−1および第2インバータ30−2は、給電ラインMPLおよび接地ラインMNLに接続される。そして、第1インバータ30−1および第2インバータ30−2は、電源システム1から供給される直流電力を交流電力に変換して第1MG32−1および第2MG32−2へ出力する。また、第1インバータ30−1は、第1MG32−1が発電する交流電力を直流電力に変換する。第2インバータ30−2は、第2MG32−2が発電する交流電力を直流電力に変換する。第1インバータ30−1および第2インバータ30−2からの直流電力は、回生電力として電源システム1に出力される。
第1インバータ30−1および第2インバータ30−2の各々は、複数の電力用半導体スイッチング素子(以下、単に「スイッチング素子」と称する)によって構成された一般的な三相インバータの回路構成を有する。各インバータは、ECU40からの駆動信号に応じてスイッチング動作を行なうことにより、対応のMGを駆動する。
ECU40は、図示されない各センサの検出信号、走行状況およびアクセル開度などに基づいて、電源システム1への要求パワーPsを算出する。ECU40は、その算出された要求パワーPsに基づいて第1MG32−1および第2MG32−2のトルク目標値および回転数目標値を算出する。ECU40は、第1MG32−1および第2MG32−2の発生トルクおよび回転数が目標値となるように第1インバータ30−1および第2インバータ30−2を制御する。
また、ECU40は、算出した要求パワーPsを電源システム1のECU22(後述)へ出力する。要求パワーPsが正値のときは、電源システム1から駆動力発生部2へ電力が供給される。一方、要求パワーPsが負値のときは、駆動力発生部2から電源システム1へ、蓄電装置の充電電力が供給される。
電源システム1は、第1蓄電装置10−1と、第2蓄電装置10−2と、第3蓄電装置10−3と、第1コンバータ12−1と、第2コンバータ12−2と、接続部18と、給電ラインMPLと、接地ラインMNLと、平滑コンデンサCとを含む。電源システム1は、さらに、電源システム1の動作を制御するECU22と、監視ユニット5−1〜5−3と、電圧センサ20と、外部充電に用いられる充電器26と、車両インレット27とを含む。
上記ECU22および40は、図示しないCPU(Central Processing Unit)およびメモリを内蔵した電子制御ユニットにより構成され、当該メモリに記憶されたマップおよびプログラムに基づいて、各センサおよび各監視ユニットによる検出値を用いた演算処理を行なうように構成される。あるいは、ECUの少なくとも一部は、電子回路等のハードウェアにより所定の数値・論理演算処理を実行するように構成されてもよい。
第1蓄電装置10−1、第2蓄電装置10−2および第3蓄電装置10−3の各々は、再充電可能な直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池や、大容量のキャパシタ等により構成される。第1蓄電装置10−1は、第1コンバータ12−1に接続される。第2蓄電装置10−2および第3蓄電装置10−3は、接続部18を介して、第2コンバータ12−2に接続される。
接続部18は、第2蓄電装置10−2および第3蓄電装置10−3と第2コンバータ12−2との間に設けられる。接続部18は、開閉器RY1,RY2を含む。開閉器RY1,RY2の各々は、代表的には、電磁リレーにより構成される。
開閉器RY1は、第2蓄電装置10−2と第2コンバータ12−2との間に配設される。開閉器RY2は、第3蓄電装置10−3と第2コンバータ12−2との間に配設される。開閉器RY1,RY2のオン/オフは、ECU22からの制御信号SWによって制御される。
以下では、電源システム1の作動時には常時使用される第1蓄電装置10−1について「主蓄電装置」とも称し、電源システム1から切離され得る、第2蓄電装置10−2および第3蓄電装置10−3については「副蓄電装置」とも称する。さらに、蓄電装置10−1〜10−3を総称する場合には、単に「蓄電装置」と表記する。
第1コンバータ12−1および第2コンバータ12−2は、互いに並列して給電ラインMPLおよび接地ラインMNLに接続される。第1コンバータ12−1は、ECU22からの駆動信号PWC1に基づいて、主蓄電装置10−1と給電ラインMPLとの間で双方向の電圧変換を行なう。
第2コンバータ12−2は、ECU22からの駆動信号PWC2に基づいて、接続部18によって第2コンバータ12−2に電気的に接続される1つの副蓄電装置(副蓄電装置10−2または副蓄電装置10−3)と給電ラインMPLとの間で双方向の電圧変換を行なう。なお、副蓄電装置10−2,10−3の両方が第2コンバータから切離される場合には、第2コンバータ12−2の動作は停止される。
平滑コンデンサCは、給電ラインMPLと接地ラインMNLとの間に接続され、給電ラインMPL上の直流電圧の高周波成分を低減する。電圧センサ20は、給電ラインMPLと接地ラインMNLとの間の電圧Vhを検出し、その検出値をECU22へ出力する。
監視ユニット5−1は、主蓄電装置10−1に蓄えられた電力の一部を使用することにより、主蓄電装置10−1の状態を検出する。具体的には、監視ユニット5−1は、主蓄電装置10−1の温度Tb1、電圧Vb1および主蓄電装置10−1に対して入出力される電流Ib1を検出する。監視ユニット5−1は、温度Tb1、電圧Vb1および電流Ib1の各値を検出値としてECU22に出力する。
監視ユニット5−2は、副蓄電装置10−2に蓄えられた電力の一部を使用することにより、副蓄電装置10−2の状態を検出する。具体的には、監視ユニット5−2は、副蓄電装置10−2の温度Tb2、電圧Vb2および副蓄電装置10−2に対して入出力される電流Ib2を検出する。監視ユニット5−2は、温度Tb2、電圧Vb2および電流Ib2の各値を検出値としてECU22に出力する。
監視ユニット5−3は、副蓄電装置10−3に蓄えられた電力の一部を使用することにより、副蓄電装置10−3の状態を検出する。具体的には、監視ユニット5−3は、蓄電装置10−3の温度Tb3、電圧Vb3および副蓄電装置10−3に対して入出力される電流Ib3を検出する。監視ユニット5−3は、温度Tb3、電圧Vb3および電流Ib3の各値を検出値としてECU22に出力する。監視ユニット5−1〜5−3の各々は、たとえば半導体集積回路である。
ECU22は、制御信号SWを生成して接続部18へ出力する。上述のように、制御信号SWは、開閉器RY1,RY2の一方をオンするように、あるいは、開閉器RY1,RY2の各々をオフするように設定される。
ECU22は、監視ユニット5−1〜5−3、電圧センサ20からの各検出値、およびECU40からの要求パワーPsに基づいて、第1コンバータ12−1および第2コンバータ12−2をそれぞれ駆動するための駆動信号PWC1,PWC2を生成する。ECU22は、その生成した駆動信号PWC1,PWC2を第1コンバータ12−1および第2コンバータ12−2へそれぞれ出力して、第1コンバータ12−1および第2コンバータ12−2を制御する。
ECU22は、さらに、ハイブリッド車両100の走行モードを制御する。具体的には、ECU22は、後述の充電器26により各蓄電装置の充電が行なわれると、初期の走行モードをEVモードに設定する。EVモードとは、各蓄電装置のSOCを維持することなくその蓄電電力を主に用いてハイブリッド車両100が走行するためのモードである。EVモードによる車両走行において、各蓄電装置のSOCが対応する制御目標値まで低下した場合、ECU22は、走行モードを、EVモードからHVモードへと変更する。HVモードとは、各蓄電装置のSOCを維持しつつハイブリッド車両100が走行するためのモードである。
EVモードでは、ハイブリッド車両100全体で、使用される蓄電装置の放電可能電力を超える出力パワーが要求されない限り、ハイブリッド車両100は、エンジン36を停止して第2MG32−2の出力により走行する。このため、使用される蓄電装置のSOCは次第に低下する。一方、HVモードでは、エンジン36が適宜動作することにより第1MG32−1が発電するので、各蓄電装置のSOCは一定範囲内に維持される。この「一定範囲」とは、たとえば走行モードがEVモードからHVモードに切り換わるときのSOCのしきい値を中心とする所定の範囲である。
さらに、ECU22は、蓄電装置の充放電を制御する。ECU22は、主蓄電装置10−1と、接続部18によって第2コンバータ12−2に電気的に接続された副蓄電装置(以下、「選択副蓄電装置」とも称する)との間の充放電電力の分配比を示す電力分配比を算出する。なお、ECU22は、EVモードにおいて用いられる電力分配比とHVモードにおいて用いられる電力分配比とを互いに区別して算出する。
さらに、ECU22は、電圧Vhを所定の目標電圧に調整するように第1コンバータ12−1を制御する。ECU22は、選択副蓄電装置の充放電電流が目標量と一致するように第2コンバータ12−2を制御する。この結果、選択副蓄電装置の充放電電力が制御される。主蓄電装置10−1の充放電電力は、電源システム1全体での充放電電力(要求パワーPs)から選択副蓄電装置の充放電電力を引いたものである。算出された電力分配比に従って第2コンバータ12−2による電流制御の目標値を設定することにより、主蓄電装置10−1および選択副蓄電装置の間の電力分配比を制御することが可能となる。
各蓄電装置を外部電源により充電するために、充電器26および車両インレット27がハイブリッド車両100に設けられる。充電器26は、外部電源28からの電力を用いて各蓄電装置を充電する。充電器26は、たとえば、第2コンバータ12−2と接続部18との間に接続されて、車両インレット27から入力される電力(たとえば交流電力)を、蓄電装置の充電のための電力(直流電力)に変換する。さらに充電器は、変換された電力を第2コンバータ12−2と接続部18との間の電力線へ出力する。
充電器26により主蓄電装置10−1の充電が行なわれるときは、第1および第2コンバータ12−1,12−2が適宜駆動される。具体的には、充電器26からの電力は、第2コンバータ12−2、給電ラインMPLおよび接地ラインMNLおよび第1コンバータ12−1をこの順に経由して主蓄電装置10−1に供給される。さらに、開閉器RY1がオンすることにより、充電器26からの電力は副蓄電装置10−2に供給される。さらに、開閉器RY2がオンすることにより、充電器26からの電力は、副蓄電装置10−3に供給される。
外部電源により蓄電装置を充電するための構成は、図1に示す構成に限定されるものではない。たとえば、第1MG32−1のステータコイルの中性点と第2MG32−2のステータコイルの中性点とが交流電源に接続可能なようにハイブリッド車両100が構成されてもよい。この構成によれば、インバータ30−1,30−2による交流−直流変換によって各蓄電装置を充電するための電力を生成することができる。あるいは、車両と外部電源との電磁的結合を利用する非接触充電方式に従った構成をハイブリッド車両100に適用してもよい。具体的には外部電源側に一次コイルが設けられて、車両側(車両インレット27)に二次コイルが設けられる。一次コイルと二次コイルとの間の相互インダクタンスを利用することによって、車両は、外部電源に接触しなくともその外部電源から電力を受けることが可能となる。
ECU22は、図1に示す車両システムを起動するための信号IGの状態がオフ状態からオン状態に遷移したときに、電源システム1を起動する。これにより車両は、走行を開始可能な状態となる。たとえばユーザが図示しないアクセルペダルを踏むと車両が走行を開始する。一方、信号IGの状態がオン状態からオフ状態に遷移したときに、ECU22は、次回の車両の走行における走行モードを設定するとともに、その走行に使用される少なくとも1つの蓄電装置を主蓄電装置10−1および副蓄電装置10−2,10−3の中から選択する。
図2は、図1に示した第1および第2コンバータ12−1,12−2の構成を示す回路図である。各コンバータの構成および動作は同様であるので、第1コンバータ12−1の構成および動作について代表的に説明する。
図2を参照して、第1コンバータ12−1は、チョッパ回路42−1と、電源ラインLN1Aと、接地ラインLN1Cと、配線LN1Bと、平滑コンデンサC1とを含む。チョッパ回路42−1は、電力用半導体スイッチング素子Q1A,Q1Bと、ダイオードD1A,D1Bと、インダクタL1とを含む。本実施例では、電力用半導体スイッチング素子(以下、単に「スイッチング素子」と称する)として、IGBT(Insulated Gate Bipolar Transistor)を例示する。なお電力用MOS(Metal Oxide Semiconductor)トランジスタあるいは電力用バイポーラトランジスタ等をスイッチング素子として用いることも可能である。
電源ラインLN1Aは、一方端がスイッチング素子Q1Bのコレクタに接続され、他方端が給電ラインMPLに接続される。接地ラインLN1Cは、一方端が負極線NL1に接続され、他方端が接地ラインMNLに接続される。
スイッチング素子Q1A,Q1Bは、接地ラインLN1Cと電源ラインLN1Aとの間に直列に接続される。具体的には、スイッチング素子Q1Aのエミッタが接地ラインLN1Cに接続され、スイッチング素子Q1Bのコレクタが電源ラインLN1Aに接続される。ダイオードD1A,D1Bは、それぞれスイッチング素子Q1A,Q1Bに逆並列に接続される。インダクタL1は、スイッチング素子Q1A,Q1Bの接続ノードと配線LN1Bとの間に接続される。
配線LN1Bは、一方端が正極線PL1に接続され、他方端がインダクタL1に接続される。平滑コンデンサC1は、配線LN1Bと接地ラインLN1Cとの間に接続され、配線LN1Bおよび接地ラインLN1C間の直流電圧に含まれる交流成分を低減する。
チョッパ回路42−1は、ECU22(図1)からの駆動信号PWC1に応じて、主蓄電装置10−1(図1)と給電ラインMPLおよび接地ラインMNLとの間で双方向の直流電圧変換を行なう。駆動信号PWC1は、下アーム素子を構成するスイッチング素子Q1Aのオン/オフを制御する駆動信号PWC1Aと、上アーム素子を構成するスイッチング素子Q1Bのオン/オフを制御する駆動信号PWC1Bとを含む。基本的には、一定のデューティサイクル(オン期間およびオフ期間の和)内で、スイッチング素子Q1A,Q1Bは、デッドタイム期間を除いて相補的にオン/オフ制御される。
ECU22は、スイッチング素子Q1A,Q1Bのデューティ比(オン/オフ期間比率)を制御する。スイッチング素子Q1Aのオンデューティが大きくなるようにスイッチング素子Q1A,Q1Bが制御されると、蓄電装置10−1からインダクタL1に流れるポンプ電流量が増大することによって、インダクタL1に蓄積される電磁エネルギが大きくなる。スイッチング素子Q1Aがオン状態からオフ状態に遷移すると、インダクタL1からダイオードD1Bを介して給電ラインMPLに電流が流れる。インダクタL1に蓄積される電磁エネルギが大きいため、このときの電流量は大きくなる。したがって給電ラインMPLの電圧が上昇する。
一方、スイッチング素子Q1Bのオンデューティが大きくなるようにスイッチング素子Q1A,Q1Bが制御されると、給電ラインMPLからスイッチング素子Q1BおよびインダクタL1を介して蓄電装置10−1へ電流が流れる。このときの電流量が増大することによって、給電ラインMPLの電圧が下降する。
このように、スイッチング素子Q1A,Q1Bのデューティ比を制御することによって、コンバータ12−1,12−2は、給電ラインMPLの電圧、あるいは、蓄電装置10−1および給電ラインMPLの間で入出力される電流(電力)の方向および電流量(電力量)を制御することができる。
また、上アーム素子であるスイッチング素子Q1Bがオン状態に固定され、かつ下アーム素子であるスイッチング素子Q1Aがオフ状態に固定された場合には、給電ラインMPLの電圧が蓄電装置10−1の出力電圧に実質的に等しくなる。このようにコンバータ12−1が制御された場合には、スイッチング素子Q1AおよびQ1Bのオン/オフによる電力損失が発生しない。よってコンバータの効率、ひいては、ハイブリッド車両100の燃費が相対的に向上する。
ここで、図1および図2より、接続部18によって副蓄電装置10−2または10−3が第2コンバータ12−2と接続されている場合には、第2コンバータ12−2の上アームのダイオード素子(D1B)によって主蓄電装置10−1と選択副蓄電装置(10−2または10−3)とが短絡することを防ぐ必要がある。このため、給電ラインMPLの電圧Vhは、主蓄電装置10−1および選択副蓄電装置の各出力電圧よりも高くする必要がある。
また、電圧Vhの下限値は、MG32−1,32−2の制御の観点からも制約を受ける。具体的には、MG制御の観点からは、電圧Vhは、MG32−1,32−2の誘起電圧よりも高くすることが好ましい。このため、実際には、電圧Vhは、バッテリ制約からの下限値およびMGモータ制御からの下限値のいずれよりも高くなるように制御される。
したがって、副蓄電装置10−2または10−3が第2コンバータ12−2と接続されている場合には、MG制御面からは電圧Vhを低下可能であるケース、特に、コンバータ12−1,12−2での昇圧が不要となるケースであっても、バッテリ制約からの下限値を満たすために、コンバータ12−1,12−2を昇圧動作させることが必要となる。
副蓄電装置10−2,10−3の両方、すなわち全ての副蓄電装置の電力を使い切った後においても1つの副蓄電装置が第2コンバータ12−2へ接続されたままである場合、電力バッファとして使用可能な蓄電装置の数は減らない。しかしその一方で、コンバータ12−1,12−2を昇圧モードで動作させ続けなければならないため、コンバータの損失を低減させることは容易ではない。
このため、各副蓄電装置の使用が完了した後(すなわちHVモード)では、接続部18の各開閉器RY1,RY2をオフすることにより、全ての副蓄電装置を電源システムから電気的に切離すと、バッテリ制約面からの昇圧を不要とすることができる。この結果、第2コンバータ12−2の動作を停止できるとともに、MG制御上、第1コンバータ12−1の昇圧が不要となった場合には、コンバータ12−1を電圧固定モード動作させることにより、コンバータ12−1,12−2での電力消費を抑制できる。
なお、蓄電装置の温度が極低温あるいは高温である場合、蓄電装置の入出力可能電量が低下する。このような状況においては、HVモードが選択された場合であっても副蓄電装置10−2または10−3が第2コンバータ12−2に接続される。これにより電力バッファとしての機能を確保することができる。
図3には、本実施の形態による電動車両の電源システムの基本的な使用パターンに従う蓄電装置の使用態様が示される。図3を参照して、主蓄電装置10−1のSOCの制御目標値(以下、「SOC制御目標」とも呼ぶ)がSAに設定される。一方で、副蓄電装置10−2,10−3の各々のSOC制御目標はSBに設定される。なおSA>SBである。
電動車両の走行開始前には、主蓄電装置10−1および副蓄電装置10−2,10−3は外部電源により充電される。これにより、電動車両の走行開始時には、主蓄電装置10−1および副蓄電装置10−2,10−3の各々のSOCは初期値S0である。初期値S0はたとえば80(%)である。
走行開始(時刻=0)から、ハイブリッド車両100は、主蓄電装置10−1および副蓄電装置10−2の電力を用いてEVモードで走行する。このとき、副蓄電装置10−2の電力が主蓄電装置10−1の電力よりも優先的に使用される。この結果、時刻tcにおいて、副蓄電装置10−2のSOC(SOC2)は、制御目標SBまで低下する。時刻tcからは、副蓄電装置10−2に代えて副蓄電装置10−3が、選択副蓄電装置として第2コンバータ12−2と接続される。
主蓄電装置10−1のSOC(SOC1)が時刻tcにおいて所定値となるように、時刻tcまでの主蓄電装置および選択副蓄電装置間の電力分配比が設定される。この所定値は、たとえば、初期値S0(時刻=0における値)と、主蓄電装置10−1の制御目標SBとの中間値となる。
時刻tcからは、ハイブリッド車両100は、主蓄電装置10−1および副蓄電装置10−3の電力を用いてEVモードで走行する。副蓄電装置10−3の電力は主蓄電装置10−1の電力よりも優先的に使用される。時刻tc以降では、SOC1が制御目標SAに達するときの時刻と、SOC3が制御目標SBに達する時刻とが同じになるように、電力分配比が設定される。この結果、時刻tdにおいて、SOC1が制御目標SAに達するとともに、SOC3が制御目標SBに達する。したがって時刻tdにおいて走行モードがEVモードからHVモードに切換わる。
HVモードでは、副蓄電装置10−2,10−3の両方が第2コンバータ12−2から電気的に切離される一方で、主蓄電装置10−1が第1コンバータ12−1に接続されたままとなる。HVモードでは、SOC1が制御目標SAに維持されるようにハイブリッド車両100が走行する。したがってHVモードでは、第2コンバータ12−2を停止させることができるとともに第1コンバータ12−1の上アームをオン状態に固定させることが可能となる。この結果、電源システム1の効率の向上を図ることができるのでHVモードでの燃費を向上できる。
副蓄電装置10−2,10−3の両方が第2コンバータ12−2から電気的に切離された後においても、監視ユニット5−2および5−3は副蓄電装置10−2の状態および副蓄電装置10−3の状態をそれぞれ検出する。監視ユニット5−2および5−3の動作のために副蓄電装置10−2および10−3は、監視ユニット5−2および5−3に電力をそれぞれ供給する。したがって副蓄電装置10−2および10−3の放電が継続される。さらに、副蓄電装置10−2および10−3の各々の自己放電が生じ得る。このため外部電源28による副蓄電装置10−2および10−3の充電が長期間行なわれない場合には、副蓄電装置10−2および10−3が過放電状態になるおそれがある。図3に示したSCは、副蓄電装置10−2(および10−3)が過放電状態に達したときのSOCを表わす。副蓄電装置10−2(および10−3)が第2コンバータ12−2から電気的に切離された後、SOC2(およびSOC3)はSCに次第に近づく。
そこで本実施の形態では、2つの副蓄電装置の少なくとも一方のSOCが所定値S1を下回る場合には、その副蓄電装置が充電対象として選択される。充電対象は、接続部18によって第2コンバータ12−2に接続される。さらに走行モードとしてHVモードが選択される。なお、HVモードにおける副蓄電装置(充電対象)のSOC制御目標は、主蓄電装置のSOCの制御目標SAと同じである。
ECU22は車両の走行の終了時に充電対象を選択するとともに、走行モードをHVモードに設定する。次回の走行においては、走行モードがHVモードに固定される。
HVモードにおいては、エンジン36が適宜動作することにより第1MG32−1が発電する。第1MG32−1が生成した電力が副蓄電装置(充電対象)に供給されることにより、その副蓄電装置が充電される。これによって副蓄電装置の過放電を防ぐことができる。
さらに、所定値S1は、副蓄電装置のSOC制御目標SBと副蓄電装置の過放電状態に対応するSOCとの間の値である。したがって、副蓄電装置が過放電状態に達する前に副蓄電装置が充電される可能性を高めることができる。
さらに、HVモードにおける副蓄電装置(充電対象)のSOC制御目標SAは、EVモードからHVモードへの切換えのためのSOC制御目標(SB)よりも大きい。副蓄電装置(充電対象)が第2コンバータ12−2に接続された時点において、充電対象のSOCはSAより小さい。このため、第1MG32−1が生成した電力は副蓄電装置に優先的に供給される。したがって、副蓄電装置が充電される可能性をより高めることができる。さらに充電対象のSOCの制御目標をSBより高くすることによって、充電対象のSOCの制御目標をSBに設定した場合に比較して、副蓄電装置に多くの電気エネルギが蓄積される。これにより副蓄電装置が過放電状態となる可能性を小さくすることができる。
図4は、HV走行モードにおける副蓄電装置の充電を説明する概念図である。図4は、副蓄電装置10−2が充電対象として選択された場合を示すものである。図4を参照して、副蓄電装置10−2のSOC、すなわちSOC2は所定値S1よりも低い。このため副蓄電装置10−2が充電対象に選択されるとともに、HVモードが選択される。車両の走行にともなって副蓄電装置10−2が充電される。これにより副蓄電装置10−2のSOCは、制御目標SAに近づくように上昇する。したがって副蓄電装置10−2の過放電を回避できる。
なお、副蓄電装置10−2のSOCが制御目標SAに達した後には、副蓄電装置10−2のSOCが制御目標SAに保たれるように、副蓄電装置10−2が充電あるいは放電される。また主蓄電装置10−1のSOCは、制御目標SAに保たれるように制御される。
図5は、蓄電装置の選択および走行モードの選択のためのECUの制御構成を説明する機能ブロック図である。なお、図5に記載された各ブロックについては、当該ブロックに相当する機能を有する回路(ハードウェア)をECU22内に構成してもよいし、予め設定されたプログラムに従ってECU22がソフトウェア処理を実行することにより実現してもよい。
図5を参照して、ECU22は、SOC算出部50と、判定部52と、選択部54と、走行モード制御部56と、接続制御部58と、電力分配比算出部60と、指令生成部64と、駆動信号生成部66と、充電制御部68とを含む。
SOC算出部50は、温度Tb1、電流Ib1、電圧Vb1の各検出値に基づいて、第1蓄電装置10−1の残容量推定値であるSOC1を算出する。さらに、SOC算出部50は、温度Tb2、電流Ib2および電圧Vb2の各検出値に基づいて、第2蓄電装置10−2の残容量推定値であるSOC2を算出する。さらに、SOC算出部50は、温度Tb3、電流Ib3および電圧Vb3の各検出値に基づいて、第3蓄電装置10−3の残容量推定値であるSOC3を算出する。なお、SOCの算出手法については、種々の公知の手法を用いることができるので、ここでは詳細な説明は繰返さない。
判定部52は、信号IGの状態がオン状態からオフ状態に切り換わったとき、あるいは信号IGの状態がオフ状態からオン状態に切り換わったときに、充電対象が副蓄電装置10−2および10−3の中に含まれるか否かを判定する。具体的には、判定部52は、SOC算出部50によって算出されたSOC2およびSOC3に基づいて、残容量推定値(SOC)が所定値S1を下回る副蓄電装置が、副蓄電装置10−2および10−3の中に含まれるか否かを判定する。
選択部54は、判定部52の判定結果およびSOC算出部50によって算出されたSOC2およびSOC3に基づいて、残容量推定値(SOC)が所定値S1を下回る副蓄電装置、すなわち充電対象を副蓄電装置10−2および10−3の中から選択する。判定部52によって充電対象が副蓄電装置10−2および10−3の中に含まれると判定された場合、選択部54は、SOC2およびSOC3に基づいて、副蓄電装置10−2および10−3のいずれか1つを充電対象として選択する。そして選択部54は、その充電対象を表わす変数IDを出力する。
具体的に説明すると、副蓄電装置10−2のSOCのみが所定値S1を下回る場合には、選択部54は、副蓄電装置10−2を充電対象として選択する。副蓄電装置10−3のSOCのみが所定値S1を下回る場合には、選択部54は、副蓄電装置10−3を充電対象として選択する。副蓄電装置10−2のSOCおよび副蓄電装置10−3のSOCの両方が所定値を下回る場合には、選択部54は、副蓄電装置10−2のSOCおよび副蓄電装置10−3のSOCのうちの小さいほうに対応する副蓄電装置を充電対象として選択する。
SOC制御目標設定部55は、主蓄電装置10−1および副蓄電装置10−2,10−3のそれぞれのSOC制御目標Sr1〜Sr3を設定する。具体的には、図3に示した走行パターンにおいては、Sr1=SAかつSr2=Sr3=SBである。また、図4に示した走行パターンにおいては、Sr1=Sr2=SAである。
走行モード制御部56は、EVモードおよびHVモードのいずれか一方を選択するとともに、その選択されたモードを示す信号MDを出力する。走行モード制御部56は、基本的には、SOC算出部50によって算出されたSOC1〜SOC3とSOC制御目標Sr1〜Sr3との比較に基づいて、車両の走行モードを制御する。車両の走行中においては、EVモードで使用される蓄電装置のSOCが全てSOC制御目標まで低下するまでの期間はEVモードが選択される一方で、以降の期間ではHVモードが選択される。
走行モード制御部56は、車両の走行終了時(信号IGの状態がオン状態からオフ状態に変化したとき)に、EVモードおよびHVモードのいずれか一方を選択する。判定部52により充電対象が副蓄電装置10−2および10−3の中に含まれると判定された場合、すなわち充電対象が選択された場合、走行モード制御部54は、HVモードを選択する。一方、充電対象が副蓄電装置10−2および10−3の中に含まれていないと判定された場合には、走行モード制御部54は、EVモードを選択する。
なお、車両の走行を開始するために電源システム1が起動されたとき(信号IGの状態がオフ状態からオン状態に遷移したとき)に、走行モード制御部56は、判定部52の判定結果に基づいて、車両の走行終了時に設定されたモードの変更が必要か否かを判定する。たとえば、車両の走行終了時に副蓄電装置10−2のSOC(SOC2)が所定値S1を下回っていた場合、走行モードとしてHVモードが選択される。車両の停止期間に外部電源によって副蓄電装置10−2が充電されて、副蓄電装置10−2のSOC(SOC2)が所定値S1を上回ったとする。この場合には、判定部52により、充電対象が副蓄電装置10−2および10−3の中に含まれていないと判定される。これにより走行モード制御部56は、車両の走行終了時に設定されたモードの変更が必要と判定するとともに、走行モードとしてEVモードを選択する。
接続制御部58は、SOC算出部50によって算出されたSOC2,SOC3と、SOC制御目標Sr2,Sr3と、変数IDとに従って、接続部18の開閉器RY1、RY2のオン/オフを制御するための制御信号SWを生成する。
EVモードでは、制御信号SWは、SOC2またはSOC3と、Sr2またはSr3との比較に基づいて、第2コンバータ12−2と接続される選択副蓄電装置を、副蓄電装置10−2,10−3の間で切換えるように生成される。一方、HVモードでは、変数IDの有無に応じて開閉器RY1、RY2が制御される。具体的には、変数IDが発生した場合、すなわち充電対象が選択された場合には、その充電対象が第2コンバータ12−2と接続されるように、制御信号SWが生成される。一方、変数IDが発生していない場合、すなわち充電対象が存在しない場合には、副蓄電装置10−2,10−3の両方が第2コンバータ12−2から切離されるように制御信号SWが生成される。
電力分配比算出部60は、走行モード制御部56からの信号MD、SOC算出部50によって算出されたSOC1〜SOC3、電源システム1への要求パワーPs、および接続制御部の制御信号SWに基づいて、EVモードあるいはHVモードにおいて用いられる電力分配比を算出する。
指令生成部64は、第2コンバータ12−2に接続される選択副蓄電装置の充放電電力の目標値を示す目標電力PRを、要求パワーPsおよび電力分配比に基づいて算出する。
さらに指令生成部64は、電圧Vhの目標電圧VRを設定する。ここで、副蓄電装置10−2.10−3のいずれかが第2コンバータ12−2と電気的に接続されている場合には、電圧Vhを電圧Vb1〜Vb3の最大値より高くする必要がある。すなわち、電圧Vb1〜Vb3の最大値よりも高い電圧が、電圧Vhの下限電圧とされる。さらに、MG制御の観点からも、第1MG32−1および第2MG32−2の動作状態に応じて、電圧Vhの要求値(要求電圧)が設定される。したがって、指令生成部64は、副蓄電装置10−2,10−3のいずれかが第2コンバータ12−2と電気的に接続されている場合には、MG制御面からの要求電圧と、下限電圧との高い方を、目標電圧VRに設定する。一方で、指令生成部64は、副蓄電装置10−2.10−3の両方が第2コンバータ12−2から電気的に切離されている場合には、下限電圧を考慮する必要がなくなるので、要求電圧に従って目標電圧VRを設定する。
なお、指令生成部64は、制御信号SWに基づいて、全ての副蓄電装置が第2コンバータ12−2から切離されているか否かを判断することができる。また、MG制御からの要求電圧は、ECU40にて算出することができる。
駆動信号生成部66は、電圧Vh,Vb1〜Vb3および電流Ib2,Ib3の各検出値、指令生成部64からの目標電圧VRおよび目標電力PR、ならびに制御信号SWに基づいて、第1コンバータ12−1および第2コンバータ12−2をそれぞれ駆動するための駆動信号PWC1,PWC2を後述の手法により生成する。そして、駆動信号生成部66は、その生成した駆動信号PWC1,PWC2をそれぞれ第1コンバータ12−1および第2コンバータ12−2へ出力する。
充電制御部68は、SOC算出部50により算出されたSOC1〜SOC3に基づいて、充電器26(図1参照)を制御するための制御信号を生成する。充電制御部68は、その制御信号を充電器26に出力する。
図6は、走行モードおよび電動車両の走行時に使用される蓄電装置を選択するための処理を説明するフローチャートである。このフローチャートに示す処理は、少なくとも車両の走行終了時に行なわれる。ただし車両の走行終了時だけでなく電源システムの起動時にも図6のフローチャートに示す処理が実行されてもよい。
図6を参照して、処理が開始されると、ステップS10において、ECU22は、各蓄電装置の温度、電流および電圧に基づいて、各蓄電装置のSOC推定値を算出する。ステップS11において、ECU22は、算出された副蓄電装置のSOC推定値に基づいて、SOCが所定値S1以下の副蓄電装置、すなわち充電対象の有無を判定する。
充電対象が存在すると判定された場合(ステップS11においてYES)、ECU22は、ステップS12において、HVモードを次回の車両の走行時における走行モードとして選択する。次にステップS13においてECU22は、SOC2およびSOC3に基づいて、副蓄電装置10−2および10−3の中から充電対象を選択する。これにより、次回の車両の走行時にその充電対象(副蓄電装置)が第2コンバータ12−2に接続される。ステップS13の処理が終了すると全体の処理が終了する。
一方、SOCが所定値以下の副蓄電装置が存在しない判定された場合、すなわち2つの副蓄電装置のいずれのSOCも所定値S1より高い場合(ステップS11においてNO)、ステップS14においてECU22はEVモードを次回の車両の走行時における走行モードとして選択する。次にステップS15において、ECU22は、2つの副蓄電装置のSOCの差が基準値以上であるか否かを判定する。この基準値は特に限定されないが、たとえば10(%)と定義される。
2つの副蓄電装置のSOCの差が基準値以上であると判定された場合(ステップS15においてYES)、ECU22は、ステップS16において、SOCが高いほうの副蓄電装置を車両の走行に使用される副蓄電装置として選択する。これにより、次回の車両の走行時にその副蓄電装置が第2コンバータ12−2に接続される。
2つの副蓄電装置のSOCの差が基準値未満であると判定された場合(ステップS15においてNO)、ECU22は、ステップS17において副蓄電装置の今回の使用が車両の走行のための使用であるか否かを判定する。副蓄電装置の使用とは、副蓄電装置の充電あるいは放電を意味する。副蓄電装置は、車両の走行時のみならず、外部電源と車両との接続時にも充電される。ステップS17において副蓄電装置の今回の使用が車両の走行のための使用であるか否かが判定される。たとえばECU22は充電器26の使用の日時に関する履歴および電動車両の走行の日時に関する履歴を記憶するとともに、それらの履歴に基づいて副蓄電装置の使用が車両の走行のための使用であるか否かを判定する。
副蓄電装置の使用が車両の走行のための使用であると判定された場合(ステップS17においてYES)、ECU22は、ステップS18において、2つの副蓄電装置のうち、今回は未使用であった副蓄電装置を選択する。なお、2つの副蓄電装置がともに使用された場合には、ECU22は、たとえば先に使用された副蓄電装置を選択する。
ステップS16の処理およびステップS18の処理のいずれかが終了すると全体の処理が終了する。また、副蓄電装置の使用が車両の走行のための使用でない、すなわち充電のための使用であると判定された場合(ステップS17においてNO)、全体の処理が終了する。
図7は、車両の走行時における副蓄電装置の接続制御処理を説明するためのフローチャートである。このフローチャートに示す処理は、図6のフローチャートの処理が終了した後、より具体的には車両の走行開始時に実行される。
図7を参照して、ステップS21において、ECU22は、選択された副蓄電装置をコンバータ12−2に接続するために接続部18を制御する。選択された副蓄電装置とは、充電対象あるいは、車両の走行のために使用される副蓄電装置である。ステップS22において、ECU22は走行開始時の走行モードがEVモードであるか否かを判定する。
走行モードがEVモードであると判定された場合(ステップS22においてYES)、処理はステップS23に進む。走行モードがEVモードではないと判定された場合、すなわち走行モードがHVモードであると判定された場合(ステップS22においてNO)、処理はステップS30に進む。
ステップS23において、ECU22は、2つの副蓄電装置10−2および10−3のいずれか一方をコンバータ12−2に接続する一方、他方の副蓄電装置がコンバータ12−2から切り離されるように接続部18を制御する。ステップS24において、ECU24は、主蓄電装置10−1および副蓄電装置10−2,10−3のSOCがいずれも制御目標に達したか否かを判定する。主蓄電装置10−1および副蓄電装置10−2,10−3のSOCのいずれも制御目標に達したと判定された場合(ステップS24においてYES)、処理はステップS25に進む。一方、副蓄電装置10−2,10−3のSOCのいずれかが制御目標に達していないと判定された場合(ステップS24においてNO)、処理はステップS23に戻される。したがって主蓄電装置10−1および副蓄電装置10−2,10−3の各々のSOCが制御目標に達するまで、ステップS23およびステップS24の処理が繰返される。これにより、EVモードでは、2つの副蓄電装置の中から順次選択された1つの副蓄電装置がコンバータ12−2に接続される。
ステップS25において、ECU22は、走行モードをEVモードからHVモードに移行させる。次にステップS26において、ECU22は、2つの副蓄電装置の両方を第2コンバータ12−2から切り離すために接続部18を制御する。これにより主蓄電装置10−1が第1コンバータ12−1に接続されたままとなる。ステップS27において、ECU22は、主蓄電装置10−1のSOC制御目標SAに従って、主蓄電装置10−1の充放電を制御する。
一方、ステップS30では、ECU22は、主蓄電装置10−1のSOC制御目標および副蓄電装置(充電対象)のSOC制御目標に従って、主蓄電装置10−1および副蓄電装置(充電対象)の充放電を制御する。なお、ステップS30の処理が実行される場合、充電対象はコンバータ12−2に接続されたままである。
以上説明したように、本実施の形態による電動車両の電源システムでは、2つの副蓄電装置の少なくとも一方のSOCが所定値(制御目標よりも低い値)以下である場合には、その副蓄電装置および主蓄電装置がハイブリッド車両100の次回の走行に使用される蓄電装置として選択される。さらに走行モードとしてHVモードが選択される。HVモードではエンジン36が適宜動作することにより第1MG32−1が発電する。これにより副蓄電装置が充電されるため、その副蓄電装置の過放電を防ぐことができる。
なお、本実施の形態では、車両の走行終了後に充電対象および走行モードが選択される。ただしハイブリッド車両の走行中に充電対象が選択されるとともに、走行モードがHVモードに設定されてもよい。
また、上記の実施の形態では、副蓄電装置が2個配置された構成を例示したが、副蓄電装置については3個以上配置してもよい。また、EVモードにおける複数個の副蓄電装置の使用順序は特に限定されない。
さらに、上記の実施の形態では、駆動力発生部2は、第1MG32−1および第2MG32−2を含むものとしたが、駆動力発生部2が含むMGの数は、2つに限定されるものではない。
さらに、本発明は車両駆動力を発生する電動機と、電動機の駆動電力を蓄積する蓄電装置とを搭載した電動車両に適用可能である。したがって本発明はハイブリッド車両に限定されず、たとえば電気自動車等にも適用可能である。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 電源システム、2 駆動力発生部、5−1〜5−3 監視ユニット、10−1 主蓄電装置、10−2,10−3 副蓄電装置、12−1 第1コンバータ、12−2 第2コンバータ、18 接続部、20 電圧センサ、22 ECU(電源システム)、26 充電器、27 車両インレット、28 外部電源、30−1,30−2 インバータ、32−1 第1MG、32−2 第2MG、34 動力分割装置、36 エンジン、38 駆動輪、42−1 チョッパ回路、50 SOC算出部、52 判定部、54 選択部、55 SOC制御目標設定部、56 走行モード制御部、58 接続制御部、60 電力分配比算出部、64 指令生成部、66 駆動信号生成部、68 充電制御部、100 ハイブリッド車両、C,C1 平滑コンデンサ、D1A,D1B ダイオード、L1 インダクタ、LN1A 電源ライン、LN1B 配線、LN1C,MNL 接地ライン、MPL 給電ライン、NL1 負極線、PL1 正極線、Q1A,Q1B 電力用半導体スイッチング素子、RY1,RY2 開閉器、S0 初期値、S1 所定値、SA,SB,Sr1〜Sr3 制御目標。

Claims (8)

  1. 動力源としての電動機(32−2)と、車両走行中に発電可能に構成された発電機構(32−1)とを搭載した電動車両の電源システムであって、
    再充電可能に構成された主蓄電装置(10−1)と、
    前記電動機(32−2)および前記発電機構(32−1)に電気的に接続された給電ライン(MPL)と、前記主蓄電装置(10−1)との間に設けられ、双方向の電圧変換を行なうように構成された第1の電圧変換器(12−1)と、
    互いに並列に設けられた、各々が再充電可能な複数の副蓄電装置(10−2,10−3)と、
    前記複数の副蓄電装置(10−2,10−3)と前記給電ライン(MPL)との間に設けられ、前記複数の副蓄電装置(10−2,10−3)のうちの1つと前記給電ライン(MPL)の間で双方向の電圧変換を行なうように構成された第2の電圧変換器(12−2)と、
    前記複数の副蓄電装置(10−2,10−3)と前記第2の電圧変換器(12−2)との間に設けられ、前記複数の副蓄電装置(10−2,10−3)と前記第2の電圧変換器(12−2)との間の接続および切離を制御するように構成された接続部(18)と、
    前記電動車両の外部の電源によって前記主蓄電装置(10−1)および各前記複数の副蓄電装置(10−2,10−3)を充電するように構成された充電部(26,27)と、
    前記主蓄電装置(10−1)および前記複数の副蓄電装置(10−2,10−3)の状態をそれぞれ検出するように構成された複数の検出部(5−1〜5−3)と、
    前記複数の検出部(5−1〜5−3)の各々の検出結果に基づいて、前記主蓄電装置(10−1)および前記複数の副蓄電装置(10−2,10−3)の各々の残容量推定値を算出するように構成された充電状態算出部(50)と、
    前記複数の副蓄電装置(10−2,10−3)のいずれかの前記残容量推定値(SOC2,SOC3)が所定値(S1)を下回る場合に、前記複数の副蓄電装置(10−2,10−3)の中から、充電対象として、前記所定値(S1)を下回る前記残容量推定値を有する1つの副蓄電装置を選択するための選択部(54)と、
    前記電動車両に蓄えられた電気エネルギを使用して走行する第1のモードと、前記発電機構を用いて前記電気エネルギを一定範囲内に維持する第2のモードとを有する走行モード制御部(56)とを備え、
    前記走行モード制御部(56)は、前記充電対象が選択された場合に、前記第2のモードを選択し、
    前記充電対象が選択された場合に、前記充電対象が前記第2の電圧変換器(12−2)に接続されるよう前記接続部(18)を制御するための接続制御部(58)をさらに備え、
    前記選択部(54)は、前記電動車両の走行が終了したときに、前記充電対象を選択する、電動車両の電源システム。
  2. 前記複数の検出部(5−1〜5−3)の各々は、対応する蓄電装置から電力を受けるとともに、前記対応する蓄電装置の状態を検出する、請求項1に記載の電動車両の電源システム。
  3. 前記電源システムは、
    前記主蓄電装置(10−1)および前記複数の副蓄電装置(10−2,10−3)の各々の残容量の制御目標を設定するように構成された制御目標設定部(55)をさらに備え、
    前記所定値(S1)は、前記複数の副蓄電装置(10−2,10−3)の各々の前記制御目標よりも小さく、かつ、前記複数の副蓄電装置(10−2,10−3)の各々の過放電状態に対応する残容量の値よりも大きく、
    前記走行モード制御部(56)は、前記主蓄電装置(10−1)および前記複数の副蓄電装置(10−2,10−3)の前記残容量推定値(SOC1〜SOC3)の全てがそれぞれの前記制御目標まで低下するまでの間は、前記第1のモードを選択する一方で、前記残容量推定値(SOC1〜SOC3)の全てがそれぞれの前記制御目標まで低下した後は前記第2のモードを選択し、
    前記接続制御部(58)は、前記第1のモードにおいて、前記複数の副蓄電装置(10−2,10−3)の中から順次選択された1つの副蓄電装置を前記第2の電圧変換器(12−2)に接続する一方、前記第1のモードから前記第2のモードへの切換えに応じて、前記複数の副蓄電装置(10−2,10−3)の各々を前記第2の電圧変換器(12−2)から切離す、請求項2に記載の電動車両の電源システム。
  4. 前記制御目標設定部(55)は、前記充電対象が前記第2の電圧変換器(12−2)に接続された場合には、前記充電対象の残容量の制御目標を、前記第1のモードにおける前記複数の副蓄電装置(10−2,10−3)の各々の前記制御目標よりも高くする、請求項3に記載の電動車両の電源システム。
  5. 動力源としての電動機(32−2)と、車両走行中に発電可能に構成された発電機構(32−1)とを搭載した電動車両の電源システムの制御方法であって、
    前記電源システムは、
    再充電可能に構成された主蓄電装置(10−1)と、
    前記電動機(32−2)および前記発電機構(32−1)に電気的に接続された給電ライン(MPL)と、前記主蓄電装置(10−1)との間に設けられ、双方向の電圧変換を行なうように構成された第1の電圧変換器(12−1)と、
    互いに並列に設けられた、各々が再充電可能な複数の副蓄電装置(10−2,10−3)と、
    前記複数の副蓄電装置(10−2,10−3)と前記給電ライン(MPL)との間に設けられ、前記複数の副蓄電装置(10−2,10−3)のうちの1つと前記給電ライン(MPL)の間で双方向の電圧変換を行なうように構成された第2の電圧変換器(12−2)と、
    前記複数の副蓄電装置(10−2,10−3)と前記第2の電圧変換器(12−2)との間に設けられ、前記複数の副蓄電装置(10−2,10−3)と前記第2の電圧変換器(12−2)との間の接続および切離を制御するように構成された接続部(18)と、
    前記電動車両の外部の電源によって前記主蓄電装置(10−1)および各前記複数の副蓄電装置(10−2,10−3)を充電するように構成された充電部(26,27)と、
    前記主蓄電装置(10−1)および前記複数の副蓄電装置(10−2,10−3)の状態をそれぞれ検出するための複数の検出部(5−1〜5−3)とを備え、
    前記制御方法は、
    前記複数の検出部(5−1〜5−3)の各々の検出結果に基づいて、前記主蓄電装置(10−1)および前記複数の副蓄電装置(10−2,10−3)の各々の残容量推定値(SOC1〜SOC3)を算出するステップ(S10)と、
    前記複数の副蓄電装置(10−2,10−3)のいずれかの前記残容量推定値が所定値(S1)を下回る場合に、前記複数の副蓄電装置(10−2,10−3)の中から、充電対象として、前記所定値(S1)を下回る前記残容量推定値を有する1つの副蓄電装置を選択するステップ(S13)と、
    前記電動車両に蓄えられた電気エネルギを使用して走行する第1のモードと、前記発電機構を用いて前記電気エネルギを一定範囲内に維持する第2のモードとのうちの一方のモードを選択するステップ(S12,S14,S24,S25)とを備え、
    前記一方のモードを選択するステップ(S12)は、前記充電対象が選択された場合に、前記第2のモードを選択し、
    前記充電対象が選択された場合に、前記充電対象が前記第2の電圧変換器(12−2)に接続されるよう前記接続部(18)を制御するステップ(S21)をさらに備え、
    前記1つの副蓄電装置を選択するステップは、前記電動車両の走行が終了したときに前記充電対象を選択する、電動車両の電源システムの制御方法。
  6. 前記複数の検出部(5−1〜5−3)の各々は、対応する蓄電装置から電力を受けるとともに、前記対応する蓄電装置の状態を検出する、請求項5に記載の電動車両の電源システムの制御方法。
  7. 前記所定値(S1)は、前記複数の副蓄電装置(10−2,10−3)の各々の制御目標よりも小さく、かつ、前記複数の副蓄電装置(10−2,10−3)の各々の過放電状態に対応する残容量の値よりも大きく、
    前記一方のモードを選択するステップ(S24,S25)は、前記主蓄電装置(10−1)および前記複数の副蓄電装置(10−2,10−3)の前記残容量推定値の全てがそれぞれの前記制御目標まで低下するまでの間は、前記第1のモードを選択する一方で、前記残容量推定値の全てがそれぞれの前記制御目標まで低下した後は前記第2のモードを選択し、
    前記制御方法は、
    前記第1のモードにおいて、前記複数の副蓄電装置(10−2,10−3)の中から順次選択された1つの副蓄電装置を前記第2の電圧変換器(12−2)に接続するステップ(S23)と、
    前記第1のモードから前記第2のモードへの切換えに応じて、前記複数の副蓄電装置(10−2,10−3)の各々を前記第2の電圧変換器(12−2)から切離すステップ(S26)とをさらに備える、請求項6に記載の電動車両の電源システムの制御方法。
  8. 前記充電対象の残容量の制御目標は、前記第1のモードにおける前記複数の副蓄電装置(10−2,10−3)の各々の前記制御目標よりも高い、請求項7に記載の電動車両の電源システムの制御方法。
JP2011518107A 2009-06-02 2009-06-02 電動車両の電源システムおよびその制御方法 Active JP5234179B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/060031 WO2010140213A1 (ja) 2009-06-02 2009-06-02 電動車両の電源システムおよびその制御方法

Publications (2)

Publication Number Publication Date
JPWO2010140213A1 JPWO2010140213A1 (ja) 2012-11-15
JP5234179B2 true JP5234179B2 (ja) 2013-07-10

Family

ID=43297359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011518107A Active JP5234179B2 (ja) 2009-06-02 2009-06-02 電動車両の電源システムおよびその制御方法

Country Status (5)

Country Link
US (1) US8594873B2 (ja)
EP (1) EP2439097B1 (ja)
JP (1) JP5234179B2 (ja)
CN (1) CN102448767B (ja)
WO (1) WO2010140213A1 (ja)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5229389B2 (ja) * 2009-06-10 2013-07-03 トヨタ自動車株式会社 電動車両の電源システムおよびその制御方法
FR2956261B1 (fr) * 2010-02-05 2012-03-09 Commissariat Energie Atomique Systeme d'equilibrage pour batteries d'accumulateurs
JP5836283B2 (ja) 2010-02-05 2015-12-24 コミサリア ア レネルジ アトミクエ オウ エネルジ アルタナティヴ 電池のための充電均等化システム
DE112011104809T5 (de) * 2011-01-31 2013-10-24 Suzuki Motor Corporation Antriebssteuervorrichtung und Antriebssteuerverfahren für Hybridfahrzeuge und Hybridfahrzeug
JP5206819B2 (ja) * 2011-02-14 2013-06-12 トヨタ自動車株式会社 車両および車両用制御方法
US9108528B2 (en) * 2011-04-06 2015-08-18 Gm Global Technoogy Operations Llc Open modular electric powertrain and control architecture
JP5998454B2 (ja) * 2011-11-07 2016-09-28 ソニー株式会社 制御装置、制御方法および制御システム
FR2985393B1 (fr) * 2012-01-03 2014-03-14 Peugeot Citroen Automobiles Sa Dispositif et procede de controle du rechargement sur le secteur des batteries rechargeables d'un vehicule hybride
KR101519807B1 (ko) * 2012-03-26 2015-05-12 도요타지도샤가부시키가이샤 차량의 제어 장치
EP2747237A3 (en) * 2012-11-28 2014-12-24 Actuant Corporation Apparatus and method for balancing cells in a plurality of batteries
US9300167B2 (en) * 2013-05-06 2016-03-29 Huang-Chiang Hung Circulating charging/discharging device for an electric vehicle
US10046646B2 (en) * 2013-09-06 2018-08-14 Samsung Sdi Co., Ltd. Power conversion system for electric vehicles
US10202042B2 (en) * 2013-10-04 2019-02-12 Samsung Sdi Co., Ltd. Electric vehicle power conversion system
JP5926336B2 (ja) * 2014-08-18 2016-05-25 トヨタ自動車株式会社 電源制御装置
KR101619648B1 (ko) * 2014-11-25 2016-05-10 현대자동차주식회사 하이브리드자동차의 엔진 제어 방법
US10170804B2 (en) 2015-06-15 2019-01-01 Gs Yuasa International Ltd. Monitoring device for secondary battery, battery pack, and vehicle
EP3203595A1 (en) * 2016-02-05 2017-08-09 Visedo Oy An electric power system
JP2017154637A (ja) * 2016-03-02 2017-09-07 トヨタ自動車株式会社 自動車
CN107294145A (zh) * 2016-03-30 2017-10-24 通用电气公司 充电装置、系统和方法
JP6663283B2 (ja) * 2016-04-12 2020-03-11 株式会社Subaru 車両用制御装置
JP6348929B2 (ja) * 2016-05-23 2018-06-27 本田技研工業株式会社 動力システム及び輸送機器、並びに、電力伝送方法
JP2018014808A (ja) * 2016-07-20 2018-01-25 トヨタ自動車株式会社 電力供給システム
WO2018161010A1 (en) * 2017-03-03 2018-09-07 Gentherm Incorporated Dual voltage battery system for a vehicle
CN111201444A (zh) * 2017-11-02 2020-05-26 株式会社半导体能源研究所 蓄电装置的电容推测方法及电容推测系统
US10647203B2 (en) 2018-01-02 2020-05-12 Ge Global Sourcing Llc Vehicle battery charging system
JP6919590B2 (ja) * 2018-02-08 2021-08-18 トヨタ自動車株式会社 車両および蓄電装置の充電方法
DE102018213542A1 (de) * 2018-08-10 2020-02-13 Audi Ag Kraftfahrzeug mit einem Elektroantrieb, HV-Wechselenergiespeicher und System
EP3667885B1 (en) * 2018-12-10 2022-05-04 Veoneer Sweden AB A power supply control system and method
WO2020240324A1 (ja) 2019-05-24 2020-12-03 株式会社半導体エネルギー研究所 二次電池の内部抵抗の推定方法及び二次電池の異常検知システム
JP7380712B2 (ja) * 2019-12-25 2023-11-15 株式会社村田製作所 スイッチングモジュールおよび電源システム
US11167644B2 (en) 2020-01-31 2021-11-09 Lear Corporation Method and system for notification of an active short circuit condition in an electric motor of a hybrid electric vehicle
US11332029B2 (en) * 2020-01-31 2022-05-17 Lear Corporation Method and system for producing an active short circuit condition in an electric motor of a hybrid electric vehicle
US11462920B2 (en) 2020-01-31 2022-10-04 Lear Corporation Method and system for producing an active short circuit condition in an electric motor of a hybrid electric vehicle
CN116195111A (zh) * 2020-07-28 2023-05-30 松下知识产权经营株式会社 管理装置、电源系统、电动移动体以及管理方法
JP7521482B2 (ja) * 2021-05-14 2024-07-24 トヨタ自動車株式会社 車載機器診断装置、車載機器診断装置を備える車両、車載機器診断方法及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167620A (ja) * 2007-01-04 2008-07-17 Toyota Motor Corp 車両の電源装置および車両
JP2008260346A (ja) * 2007-04-10 2008-10-30 Nissan Motor Co Ltd ハイブリッド電動車両用電源システムおよびその制御装置
JP2009018713A (ja) * 2007-07-12 2009-01-29 Toyota Motor Corp ハイブリッド車両およびハイブリッド車両の制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3436090B2 (ja) * 1997-02-14 2003-08-11 トヨタ自動車株式会社 電気式駆動車両
US7378818B2 (en) * 2002-11-25 2008-05-27 Tiax Llc Bidirectional power converter for balancing state of charge among series connected electrical energy storage units
JP4905300B2 (ja) 2006-09-28 2012-03-28 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、電源システムの制御方法ならびにその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
US20080067972A1 (en) * 2006-09-15 2008-03-20 Norio Takami Power supply system and motor car

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167620A (ja) * 2007-01-04 2008-07-17 Toyota Motor Corp 車両の電源装置および車両
JP2008260346A (ja) * 2007-04-10 2008-10-30 Nissan Motor Co Ltd ハイブリッド電動車両用電源システムおよびその制御装置
JP2009018713A (ja) * 2007-07-12 2009-01-29 Toyota Motor Corp ハイブリッド車両およびハイブリッド車両の制御方法

Also Published As

Publication number Publication date
JPWO2010140213A1 (ja) 2012-11-15
EP2439097A4 (en) 2014-09-03
CN102448767A (zh) 2012-05-09
US8594873B2 (en) 2013-11-26
US20120065827A1 (en) 2012-03-15
EP2439097B1 (en) 2015-11-11
WO2010140213A1 (ja) 2010-12-09
CN102448767B (zh) 2013-09-25
EP2439097A1 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP5234179B2 (ja) 電動車両の電源システムおよびその制御方法
JP5229389B2 (ja) 電動車両の電源システムおよびその制御方法
JP4798305B2 (ja) 電動車両の電源システムおよびその制御方法
JP5141772B2 (ja) 電動車両の電源システムおよびその制御方法
JP5024454B2 (ja) 電動車両の電源システムおよびその制御方法
EP3614524B1 (en) Power supply system and electric powered vehicle including power supply system, and method for controlling power supply system
EP2353920B1 (en) Electrically driven vehicle and electrically driven vehicle control method
JP5029784B2 (ja) 電動車両および電動車両の制御方法
JP4788842B2 (ja) ハイブリッド車両の制御装置および制御方法
WO2010050045A1 (ja) 電動車両の電源システム、電動車両および電動車両の制御方法
JP2011015473A (ja) 電源システムおよびそれを備えた電動車両ならびに電源システムの制御方法
JP5228824B2 (ja) 車両の電源システムおよび車両
JP2009261183A (ja) 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法
EP2403103A1 (en) Control apparatus and method for vehicle
JP5233821B2 (ja) 電源システムおよびそれを備えた電動車両ならびに電源システムの制御方法
EP2154772A1 (en) Power supply system, vehicle using the same, power supply system control method, and computer-readable recording medium containing the program for causing computer to execute the control method
JP2010136553A (ja) 電源システムおよびそれを搭載した電動車両
JP2010089719A (ja) ハイブリッド車両の電源システム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R151 Written notification of patent or utility model registration

Ref document number: 5234179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3